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1 Introduction

Feynman Integrals are the computational core of Quantum Field Theory. Yet, despite

over seventy years of work on their evaluation it appears that we do not have a general

theory for it. The Symmetries of Feynman Integrals approach [2] is a step in that direction.

It considers a Feynman diagram of fixed topology (fixed graph), but varying kinematical

invariants, masses and spacetime dimension. Each diagram is associated with a system of

differential equations in this parameter space. The equation system defines a Lie group G

which acts on parameter space and foliates it into orbits. This geometry allows to reduce

the diagram to its value at some convenient base point within the same orbit plus a line

integral over simpler diagrams, namely with one edge contracted.

The SFI method is related to both the Integration By Parts method [3] as well as to

the Differential Equations method [4–6], see also the textbooks [7, 8]. SFI novelties include

the definitions of the group and its orbits, as well as the reduction to a line integral.

Other recent approaches to the evaluation of Feynman Integrals include a direct solu-

tion [9], avoiding squared propagators [10], Intersection theory [11] and a development of

loop-tree duality [12].1

SFI suggests to partially order all diagrams according to edge contraction as shown in

figure 1 where the sources, or descendants, for each diagram are in the columns to its left.

1See also [13, 14].
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Figure 1. Roadmap to diagrams according to edge contraction. Each column has diagrams of

fixed number of vertices V = 1, 2, 3, 4. As contraction reduces V by one the necessary sources for

each diagram are always on its left. Each column in ordered according to the number of external

legs N . The triangle is on the top row, second from the right.

Several diagrams were already studied in this way: the bubble, diameter, vacuum seagull,

propagator seagull and the kite [15–19]. See also developments of the method in [20, 21].

This paper studies the triangle diagram, namely the diagram with 3 legs and 1 loop.

Clearly this is one of the simplest diagrams and its study through the SFI approach is

intended to gain insight into both the diagram and the method. We proceed to review the

literature and to present the questions which we set to answer.

Like all diagrams, the triangle can be considered in the plane of alpha (Schwinger)

parameters. This representation was shown to offer a geometric interpretation of Feynman

diagrams in terms of simplices [1] and the detailed application to the triangle was given

in [22]. The geometrical interpretation further suggested a decomposition of a general n-

simplex into n right handed simplices thereby recursively splitting the value of the N = n-

point 1-loop diagram into a sum of N ! terms (sum decomposition) each having the same

form, but depending on different sets of N−1 variables [1, 23]. Another sum decomposition

appeared from the functional relations of [24]; when applied to the triangle these produce

a decomposition of the massless triangle into a sum of 3 terms each having the same form,

but depending on different sets of 2 variables [25]. The similarity between these sum

decompositions suggests that they are related.

The Landau equations for the singularity locus of the triangle relate it to the planarity

of the on-shell dual tetrahedron [26]. Such a 3 particle singularity is known as an anomalous

threshold, to distinguish it from the more common singularity of the bubble diagram, known

as a normal threshold [27].

The general massive triangle in 4d was evaluated in [28] in terms of dilogarithms and

improved in [29] including through the use of Gram determinants. It was expressed in
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terms of Appell function F3 in [30]. The maximally general case of general d was expressed

as a line integral in [1], evaluated in terms of the Appell function F1 through dimensional

recursion relations in [31] and somewhat improved in [32], see also [33]. Finally we note

that IBP relations for the triangle diagram were discussed in [34], where consequences of

dual conformal symmetry were studied.

The massless triangle satisfies the so-called magic connection. It depends on 3 kine-

matic invariants with an S3 permutation symmetry and the same is true of the diameter

diagram (two-loop vacuum) which depends on 3 masses. Surprisingly the two essentially

coincide once the spacetime dimension is transformed [35]. This relation was called the

magic connection.

We shall be interested in the following questions

• What is the SFI equation system for the triangle?

• What is the geometry in parameter space including orbit co-dimension and singular

locus?

• Can the system be solved through SFI on the singular locus? In general?

• Does SFI shed light on the sum decomposition? on the magic connection?

The paper is organized as follows. We start in section 2 by setting up the definitions,

presenting useful facts on tetrahedron geometry and an account of the alpha parameters

presentation together with the associated sum decomposition. In section 3 the equation

system and the associated SFI group G are presented, followed by a study the geometry of

parameter space. Section 4 describes the solutions to the equation system: first the reduc-

tion of the integral at the two components of the singular locus and then the general solution

is derived. The massless triangle and the magic connection are discussed in section 5 from

an SFI perspective. Finally, section 6 is a summary and discussion. An appendix contains

a generalization of the tetrahedron geometry to higher dimensional simplices.

2 Set-up

2.1 Definitions

The subject of this paper is the triangle diagram shown in figure 2 and the associated

Feynman integral defined by

I =

∫
ddl∏3

i=1

(
k 2
i −m 2

i

) . (2.1)

The propagator currents can be chosen as2

ki = l + (pi+1 − pi−1) /3 , i = 1, 2, 3. (2.2)

2An alternative practical choice is given by k1 = l, k2 = l + p3, k3 = l − p2.
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p1

p3 p2

l

x1

x3x2

bc

a

Figure 2. The triangle diagram. p1, p2, p3 are the external currents of energy-momentum while

x1, x2, x3 are the squared masses of the respective propagators (x1 ≡ m 2
1 , etc.). The vertices are

denoted by a, b, c.

The most general parameters which define the diagram are shown in the figure. As

usual, the masses appear in the integral only through their squares. In order to param-

eterize the kinematical invariants, given there are 2 independent external momenta and

thus 3 independent kinematical invariants, we choose to parameterize them symmetrically

through p 2
1 , p

2
2 and p 2

3 . Altogether, the parameter space X is given by

X =
{

(x1, x2, x3, x4, x5, x6) =
(
m 2

1 , m
2

2 , m
2

3 , p
2

1 , p
2

2 , p
2

3

)}
. (2.3)

We consider a general spacetime dimension d where the mass dimension of the integral

is d− 6.

The diagram and the associated integral are invariant under a Γ = S3 permutation

symmetry. Its elements consist of rotations, which are generated by a third of a full rotation,

and of 3 reflections through appropriate axes.

Tetrahedron volume. As a preliminary we define two quantities which describe the

volumes of general triangles and tetrahedra and will be useful throughout the paper. The

Heron/Källén invariant λ is defined for any three quantities x, y, z by

λ (x, y, z) := x2 + y2 + z2 − 2x y − 2x z − 2 y z . (2.4)

If x, y, z denote the squared lengths of the sides of a triangle, then its squared area is

given by −λ/16, see e.g. [2, 15] and references therein. Any trivalent vertex v defines a

corresponding λ

λv := λ(xi, xj , xk) (2.5)

where i, j, k are the edges incident on v. In particular, the external momenta of the tri-

angle are incident on the ∞-vertex and form a triangle whose Heron/Källén invariant is

denoted by

λ∞ := λ (x4, x5, x6) . (2.6)
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p3

p2p1

m3 m1m2

(a)

p1

m1m2

m3 p2

p3

(b)

Figure 3. The relevant tetrahedron with sides of squared-length x1, . . . , x6. It is dual to the

vacuum closure of the triangle diagram. (a) A 3d image, (b) a plane projection. This tetrahedron

appears also in the Landau equations [26].

B3 will denote a cubic polynomial given by

B3 =x1
2x4+x1x4

2+x2
2x5+x2x5

2+x3
2x6+x3x6

2

+x1x2x6+x1x3x5+x2x3x4+x4x5x6

−(x2x5(x1+x3+x4+x6)+x3x6(x1+x2+x4+x5)+x1x4(x2+x3+x5+x6)) . (2.7)

(−B3)/144 expresses the squared volume of a tetrahedron in terms of the squared lengths

of its sides (the edges associated with x1, x2, x3 meet at a point, while those associated

with x4, x5, x6 form a triangle). This is known as Tartaglia’s formula, after the Italian

mathematician-engineer (1499/1500–1577) who published it, yet essentially it was already

known to the Italian painter Piero della Francesca (c. 1415–1492) [36–38]. B3 appeared

in the physics literature in the work of Baikov on the 3-loop vacuum diagram (the tetra-

hedron) [39, 40]. Therefore we shall refer to B3 as the Tartaglia/Baikov polynomial. The

tetrahedron relevant to the triangle diagram is shown in figure 3.

We noticed the following useful relations among these quantities

(
∂1B3

)2 − 4x4B3 = λa λ∞ (2.8)(
∂1 + ∂2 + ∂3

)
B3 = λ∞ . (2.9)

λa = λ(x2, x3, x4) is the λ variable (2.5) associated with the vertex a in figure 2. The first

line, (2.8), can be permuted cyclically to produce two additional identities. Moreover, for

a Euclidean tetrahedron the derivative ∂1B3 is given by

∂1B3 =
√
λaλ∞ cos(α) (2.10)

where here α denotes the angle between the a and ∞ faces of the dual tetrahedron. The

identities appeared already in equations (9,10) of [32], while identity (2.10) was noted

already in theorem 1 of [41].
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The generalization of both λ and B3 to a simplex of arbitrary dimension is given by the

Cayley-Menger determinant [42, 43],3 which applies also to pseudo-Riemannian metrics.

The identities (2.8), (2.9) are generalized to an arbitrary n-simplex in appendix A where

they are proven and some geometrical interpretation is provided.

2.2 Alpha plane and sum decomposition

In terms of alpha (Schwinger) parameters the triangle integral is given by

I = c∆

∫
∆β

V
d−6
2 (2.11)

where the triangle constant is given by

c∆ := −iπ
d
2 Γ

(
6− d

2

)
; (2.12)

the beta integration is over∫
∆β

:=

∫ 1

0
dβ1 dβ2 dβ3 δ (β1 + β2 + β3 − 1) , (2.13)

namely, the two dimensional simplex (a triangle with vertices at u1 = (1, 0, 0), u2 = (0, 1, 0)

and u3 = (0, 0, 1)); finally the standard Kirchhoff-Symanzik polynomial V is given by

V ({βi}3i=1; {xj}6j=1) := x1 β
1 + x2 β

2 + x3 β
3 −

(
x4 β

2 β3 + x5 β
3 β1 + x6 β

1 β2
)
. (2.14)

Change of variables and geometric interpretation. The following is closely related

to the results of [1] regarding geometrical interpretation and sum decomposition (split).

After the forthcoming description we shall comment on this relation.

Given that V is quadratic in the βi variables, we can map them into 2d q variables

such that V is in the form V = V0 + q2 where q2 is a canonical quadratic form, namely,

it is diagonal and its entries all belong to {1,−, 1, 0}. We denote by O the point where

the extremum of V is obtained. Its β coordinates are given by β1(O) = ∂1B3/λ∞ where

λ∞, B3 were defined in (2.6), (2.7), and similarly for β2(O), β3(O).

We notice that length squared of the edge suspended from u2 to u3, computed in the

q coordinates, is x4 ≡ p 2
1 , and similarly for the other two edges. This allows us to identify

the integration region in the q coordinates with the triangle in momentum space formed by

the external momenta p1, p2, p3. Accordingly, the integration measure is transformed into∫
∆β

→ 1√
|λ∞|/4

∫
∆q

d2q (2.15)

where ∆q denotes the triangle in the q variables.

We can furthermore enhance this geometrical picture to incorporate V0 as well. The

2d q plane contains a marked point O. From it erect an abstract 3rd axis perpendicular to

3Introduced by Cayley in 1841 for the 4-simplex and straightforwardly generalized to arbitrary dimen-

sions by Menger in 1928 as part of developing an axiomatic approach to geometry.
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the q plane, and mark a point Ô such that if we denote ~h =
−−→
OÔ then its length squared

is given by h2 = V0 where V0 is the extremal value of V (this defines the signature of this

extra dimension, namely whether it is spacelike or timelike). Now V is given by

V (q) = V0 + q2 =
−−→
OÔ

2

+
−→
Oq

2
≡
−→
Ôq

2

(2.16)

where

V0 ≡
−−→
OÔ

2

≡ h2 :=
B3

λ∞
, (2.17)

and
−→
Oq

2
is in canonical form. This means that V (q) is interpreted as the squared-distance

of q from Ô.

Altogether, the q variables transform the Schwinger plane expression (2.11) through

(2.15) into

I(x) =
c∆√
|λ∞|/4

∫
∆q

d2q V
d−6
2 (2.18)

where c∆ is defined in (2.12) and V in (2.16). In terms of the tetrahedron shown in figure 3.

The integration is over the interior of the triangle formed by p1, p2, p3; the integrand is

defined through the distance to the vertex where m1,m2 and m3 meet. This tetrahedron

is dual to the graph of the Feynman diagram, figure 2, and it is on-shell in the sense that

the edge lengths are given by the masses of the corresponding (dual) propagators.

Sum decomposition. The metric in q space enables a natural decomposition of the tri-

angular integration region ∆q thereby leading to a sum decomposition of the integral (2.1).

As shown in figure 4, the triangular domain is first divided into 3 triangles by connecting

the point O with the 3 vertices. The squared-length of the segment Oa connecting O to

vertex a where p2 and p3 meet is denoted by c 2
1 and is given by

c 2
1 := m2

1 −
−−→
OÔ

2

= x1 −
B3

λ∞
. (2.19)

Similarly we define and express c 2
2 , c

2
3 .

Next each triangle is bisected by a height from O to an opposite edge. We denote the

distance squared to edge m1 by a 2
1 and it is given by

a 2
1 = c 2

2 −
(c2 · p1)2

p 2
1

≡ c 2
3 −

(c3 · p1)2

p 2
1

= −(∂1B3)2

4x4λ∞
= − λa

4x4
− B3

λ∞
(2.20)

where the last equality uses the identity (2.8) and λa := λ(x2, x3, x4) is the Heron/Källén

invariant associated with vertex a. Similarly we define and express a 2
2 , a

2
3 .

In this way the triangular integration region is split into 6 right-handed triangles,

each one including the point O as a vertex. Correspondingly the triangle integral (2.1)

decomposes into a sum of 6 terms

I =
c∆√
|λ∞|/4

[
F (h2, c 2

1 , a
2

2 ) + F (h2, c 2
1 , a

2
3 ) + cyc.

]
(2.21)
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(1, 0, 0)

(0, 1, 0)(0, 0, 1)

a1

a3a2
c1

c2c3

O

Figure 4. Splitting the integration region into 6 right handed triangles. The figure assumes a

Euclidean (spacelike) plane, but the procedure applies to a general signature.

where the function F is defined by

F (h2, c2, a2) :=

∫
∆a,c

d2q
(
h2 + q2

) d−6
2

∫
∆a,c

d2q :=

∫ |a|
0

dqy

∫ |b|
|a| qy

0
dqx (2.22)

and |a| :=
√
|a2|, |b| :=

√
|c2 − a2| are the side-lengths of a right angle triangle. q2 is the

squared-length of the vector
−→
Oq. For a spacelike q plane q2 = −q 2

x − q 2
y , while for a 1 + 1

signature one of these signs should be changed. Note that the integrand of F is essentially

that of the full triangle integral (2.11), (2.16) and only the integration region is restricted

to a right handed triangle. In this way each F summand depends on only 3 dimensionful

parameters out of 6.

Comments. 4d value. The ε expansion around 4d is known to be expressed in terms of

the dilogarithmic function [28]. In fact the d→ 4 limit of (2.22) is finite. It depends on the

signatures of q2 and h2. For some choice of signature we were able to evaluate the integrals

and we obtained

4

∫ a

0
dt

∫ b
a
t

0
dx

1

h2 + t2 − x2
= −Li2

(
−a

2

h2

)
+ Li2

(
b2 − a2

h2

)
+ 2

(
Li2

(
a

a−
√
a2 + h2

)
+ Li2

(
a

a+
√
a2 + h2

)
− Li2

(
a+ b

a−
√
a2 + h2

)
− Li2

(
a+ b

a+
√
a2 + h2

))
. (2.23)

Generalization to N -point functions. The identification of the integration simplex in β

Schwinger parameters with the dual on-shell simplex generalizes to 1-loop diagrams with

any number of external legs N .

Relation with [1]. The results of this section are closely related to those of [1, 23],

including the geometric interpretation and the sum decomposition. However, the integra-
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tion domain is somewhat different, being the N − 1 simplex rather than the corresponding

hypersphere, and some readers may find the current presentation to be clearer.

Relation with Appell functions. We compared the expression for the triangle (2.21)–

(2.22) with the expression in terms of Appell functions in [32], equations (74–81), and found

them to coincide through numerical evaluation at numerous randomly selected parameter

values.

3 Equation system

We will study the diagram through the Symmetries of Feynman Integrals method (SFI)

described in [2]. Briefly, one varies the integral with respect to infinitesimal re-definitions

of loop momenta thereby giving rise to a set of differential equations which the integral

satisfies in parameter space X. Let us determine the equation set for I and the associated

group G.

The SFI group. Let us choose the 3 independent currents to be {qm}3m=1 = {l, p2, p3}.
The irreducible numerators (or irreducible scalar products) are defined to be the quotient

of current quadratics by current squares (or propagators)

Num = Q/S = Sp{qm · qn}m,n=1,2,3/Sp{k 2
i , p

2
i }i=1,2,3 = {0} . (3.1)

This means that there are no irreducible numerators and hence all the 7 current variation

operators in the upper triangular group T1,2 define differential equations for I and therefore

belong to the SFI group G

G = T1,2 = Sp{l∂l, pi∂l, pi∂pj}i,j=2,3 . (3.2)

The SFI equation system. The SFI equation system consists of 7 equations which

correspond to the operators in G. We choose a basis which is compatible with the S3

symmetry group and has the shortest possible source terms. We find that p2∂p2 produces

one such equation, namely

0 = I + 2s1
b

∂

∂x3
I + 2s6

∞
∂

∂x4
I + 2x5

∂

∂x5
I − ∂

∂x3
O1I (3.3)

where for any trivalent vertex v, with incident vertices i, j, k, the siv variables denote

siv := (xj + xk − xi) /2 ≡ −
∂λv
4 ∂xi

(3.4)

and Oi denotes the operation of omission (or contraction) of propagator i. Such a contrac-

tion of the triangle produces the bubble topology shown in figure 5.

5 other equations are gotten by S3 permutations. The seventh and last equation is the

dimension equation

0 = (d− 6)I − 2

6∑
i=1

∂

∂xi
I (3.5)

which is generated by
∑3

i=1 qi∂qi and is equivalent to performing a dimensional analysis.

– 9 –
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Figure 5. The sources (or descendants) for the triangle consist of three possible bubble diagrams

(see [15]), corresponding to the omission of either propagator i = 1, 2 or 3.

The equation system thus obtained can be summarized in matrix form by

0 = ca I − 2 (Tx)aj ∂
j I + Ja, a = 1, . . . , 7 (3.6)

where the generator matrix is given by

(Tx)aj =



0 s1
c 0 s5

∞ 0 x6

0 0 s2
a x4 s6

∞ 0

s3
b 0 0 0 x5 s4

∞
0 0 s1

b s
6
∞ x5 0

s2
c 0 0 0 s4

∞ x6

0 s3
a 0 x4 0 s5

∞
x1 x2 x3 x4 x5 x6


; (3.7)

the xi-independent constants are given by

ca =



−1

−1

−1

−1

−1

−1

d− 6


; (3.8)

and finally, the sources are given by

Ja =



∂
∂x2

O1 I
∂
∂x3

O2 I
∂
∂x1

O3 I
∂
∂x3

O1 I
∂
∂x1

O2 I
∂
∂x2

O3 I

0


. (3.9)

This equation system was confirmed to hold for the expression in α space (2.11)–(2.15)

and against the program FIRE [44]. Its determination answers the first question posed in

the introduction section.
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Source simplification. We can use the SFI equations for the bubble diagram, see [15],

to eliminate derivatives of the bubble which appear in the source term (3.9), in favor of

the bubble and its tadpole sources. Denoting by I3 ≡ O3 I, a bubble with squared-masses

x1, x2 we have
λ

2

∂

∂x1
I3 = −(d− 3)s1

c I3 + x2 j
′
2 − s6

c j
′
1 (3.10)

where the tadpoles are described by ji = j(xi), j(x) = ct x
(d−2)/2, ct = −iπd/2 Γ

(
2−d

2

)
and

the bubble s variables are defined in (3.4). Analogous relations are gotten by permutations.

3.1 Geometry of parameter space

In this section we analyze the geometry in parameter space.

G-orbit co-dimension and 6-minors. The equation system (3.6) consists of 7 equa-

tions in a 6 dimensional parameter space. The dimension of the G-orbit through any point

x ∈ X is given by the rank of Tx at that point.

In order to determine the rank we follow the method of maximal minors [21] and

compute the 6-minors Ma defined by omitting row a taking a determinant and multiplying

by an alternating sign (see [21] for a precise definition in terms of the ε tensor). Using

Mathematica [45] here an onward, Ma is found to be of the form

Ma = S Ka ; (3.11)

the singular factor S(x) is given by

S(x) = 4λ∞B3 ; (3.12)

λ∞, B3 were defined in (2.6), (2.7) respectively, while Ka(x) is given by

Ka = (s3
a, s

1
b , s

2
c , −s2

a, −s3
b , −s1

c , 0) . (3.13)

For generic values of x ∈ X S(x) 6= 0 and hence Ma(X) 6= 0 and the dimension of

the G-orbit is generically 6. We confirmed this by a numerical evaluation of rk(Tx) at

randomly chosen points. Since dim(X) = 6 we may answer the first question from the

introduction section and conclude that generically in X

codim(G− orbit) = 0 . (3.14)

This means that SFI is maximally effective for the triangle diagram and a discrete set of

base points in X space will suffice for reaching any other point through a line integral over

a path which lies within a G-orbit.

Let us multiply the equation system (3.6) on the left by Ka. By construction Ka

annihilates the Tx term (3.7), meaning that the group action vanishes for this linear com-

bination of generators for all x; hence the Ka is termed the global stabilizer. Moreover

2Ka c
a =

(
s2
a − s3

a

)
+ cyc. = (x3 − x2) + cyc. = 0, namely it annihilates the c term (3.8) as

well. This implies that KaJ
a = 0, which we term an algebraic constraint. Indeed substitut-

ing source simplification (3.10) into Ja (3.9) we have 2Ka J
a =

(
s3
a ∂2O1 I − s2

a ∂3O1 I
)

+

cyc. = (j′2 − j′3) + cyc. = 0.
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Constant free invariants and the homogeneous solution. The constant free sub-

group Gcf is defined to consist of generators such that the constant term vanishes, c = 0.

In terms of a basis of generators it consists of coefficients for linear combinations la (xi-

independent) such that la c
a = 0. In the basis (3.8) this happens for l7 = 0 and

∑6
i=1 la = 0.

The Gcf orbits are co-dimension 2, and they define 2 invariants. Denoting the differ-

ential operator appearing in (3.3) by

D13 := s1
b ∂

3 + s6
∞ ∂

4 + x5∂
5 (3.15)

we have

D13 λ∞ = λ∞

D13B3 = B3 . (3.16)

TheD13 operator is not constant free, together with all its permutations Dij , i 6= j = 1, 2, 3.

Yet a difference of any two Dij operators is constant free and hence λ∞, B3 are the two

Gcf invariants.

The homogeneous solution of the equation set (3.6), I0, is an ingredient of the general

reduction formula to a line integral. Substitution into a constant free equation shows

that it is independent of directions along a Gcf -orbit and hence must depend on the Gcf
invariants, namely

I0 = I0(λ∞, B3) . (3.17)

Substituting this into 2 (independent) non constant free equations we obtain an equa-

tion set for I0 such as (3.3), (3.5)

0 = I0 + 2B3
∂I0

∂B3
+ 2λ∞

∂I0

∂λ∞

0 = (d− 6)I0 − 6B3
∂I0

∂B3
− 4λ∞

∂I0

∂λ∞
. (3.18)

Solving the set we find that

I0 = 2λ
3−d
2∞ B

d−4
2

3 ≡ 2√
|λ∞|

(
h2
) d−4

2 (3.19)

where the multiplicative normalization was set for later convenience.

4 Solutions

4.1 Singular locus

The singular locus is defined as the locus in X of non-generic G-orbits with sub-generic

dimension [20]. On this locus there is a linear combination of SFI equations such that

the differential part vanishes, namely, the equations become algebraic. If furthermore the

constant term of this combination is non-zero then the diagram can be expressed as a

linear combination of its descendants. Experience shows that this criterion is related to

the criteria for Landau singularities [26].
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Considering S(x) (3.12), the singularity locus factor of the triangle, we see that the

singularity locus consists of two components: one where λ∞ = 0 and one where B3 = 0.

Before proceeding to a separate discussion of each component, we describe some features

which are common to both.

At the singular locus the maximal minors are 5 dimensional and being maximal they

factorize into [21]

M i
ab = Invi Stbab (4.1)

Invi(x) are the components of a 1-form in X which annihilate the G-orbit and hence it is

related to group invariants. Here it must be proportional to the gradient of the quantity

which defines the locus component

Invi = ∂iInv (4.2)

where Inv is given by either λ∞ or B3 on the respective component. Stbab(x) is a 2-form

in G which stabilizes (or annihilates) the point x. It is a 2-form since G is 7d and the

singular G-orbits are 5d. Moreover Stbab(x) defines a 2-plane in G which includes in it the

global stabilizer Ka(x) (3.13).

Stbab can be computed through (4.1), (4.2). Its value must be independent (mod

Inv) of the index i. For the triangle we found that Stbab could always be expressed as a

polynomial rather than a rational function. Through degree balance we find the x-degree

of the stabilizer to be

deg(Stb) = deg(M)− deg(Invi) = 5− (deg(Inv)− 1) = 6− deg(Inv) . (4.3)

Next the solution at the component Inv can be found by multiplying the SFI equation

system indexed by a (3.6) by Stbab. Now the solution must be independent of b after we

account for source simplification. Alternatively the solution at Inv can be evaluated by

Gauss elimination of derivative terms out of the equation system (for instance, implemented

by Mathematica).

λ∞ locus. The vanishing of λ∞ implies that p1, p2, p3 are “collinear up to a null vector”,

namely that they are either collinear or that they define a degenerate plane, one where the

induced metric has 0 as an eigenvalue.

We determined the associated stabilizer Stbab, yet it is of degree 4 in x due to (4.3)

and the expression was too long to be included in the paper in a useful way.

We determined the solution at the λ∞ locus to be

−I|λ∞=0 =
1

2B3

(
∂1B3 I1 + ∂2B3 I2 + ∂3B3 I3

)
=

=
2x4

∂1B3
I1 +

2x5

∂2B3
I2 +

2x6

∂3B3
I3 (4.4)

where Ii, i = 1, 2, 3 denote bubble diagrams with propagator i contracted. The two lines

are equal (mod λ∞) due to the identity (2.8), and we note that the expressions are S3

symmetric, as they should be. This result has been tested successfully at the arbitrarily

chosen numerical subspace (x4, x5, x6) = (7, 10 + 2
√

21, 3).
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B3 locus. The vanishing of B3 implies that the tetrahedron is coplanar.

We note that in Euclidean geometry a colinear triangle at a tetrahedron basis implies

a coplanar tetrahedron. However, here λ∞ = 0 does not imply B3 = 0. The geometrical

reason is that in non-Euclidean signature λ∞ = 0 could hold when the basis triangle is

contained in a null plane, and then the tetrahedron need not be degenerate.

On this component the stabilizer is cubic in x, see (4.3), and one form for it is

x4 ∂
1B3

x3 λ∞
2
(
x1 x4 s

4
∞ + x2 x5 s

5
∞ + x3 x6 s

6
∞ − x4 x5 x6

)
0

x3 λ∞ − x5 ∂1B3

2x4

(
x3 x6 − x6 s

6
∞ − x1 s

5
∞ − x2 s

4
∞
)
− x2 λ∞

−s2
a λ∞


. (4.5)

We find that the solution at B3 is given by

I|B3=0 = −2(d− 3)

(d− 4)

(
x4

∂1B3
I1 +

x5

∂2B3
I2 +

x6

∂3B3
I3

)
+

2λ∞
(d− 4)

(
x1T1

(∂2B3)(∂3B3)
+

x2T2

(∂1B3)(∂3B3)
+

x3T3

(∂1B3)(∂2B3)

)
. (4.6)

This expression is S3 symmetric, as it should be. The coefficient of tadpoles (Ti) in the

above equation can be expanded in partial fractions as follows

1

s3
b

(
x5

∂2B3
+

s4
∞

∂3B3

)
=

λ∞
(∂2B3)(∂3B3)

(4.7)

and so on. The above result has been tested successfully at the arbitrarily chosen numerical

values (x1, x2, x3, x4, x5, x6) = (35, 25, 15, 0, 4, 0) and (28, 60, 0, 44, 0,−33).

4.2 SFI derivation of general solution

In this subsection we solve the SFI equation system for the triangle (3.6).

According to the method of variation of the constants, once a homogenous solution,

I0(x), is known we substitute into the SFI equations

I(x) = I0(x) Î(x) (4.8)

and we find that Î(x) is given by a line integral over simpler diagrams [2], as will seen later

for the case at hand.

We choose the integration curves to be the flow lines of the vector field

D1 := s1
c ∂2 + s1

b ∂
3 + x4 ∂

4 + x5 ∂
5 + x6 ∂

6 . (4.9)

This vector field is obtained by adding together the 1st and 4th rows in the SFI equation

system (3.7). More precisely this defines a family of curves which foliates X, and it can

also be thought to be characteristic curves corresponding to D1.

– 14 –



J
H
E
P
0
3
(
2
0
2
0
)
1
5
6

This generator is chosen for source simplicity. Indeed J1, J4, defined in (3.9), depend

only on the parameters of the I1 ≡ O1I bubble, namely x2, x3, p
2

1 ≡ x4, and the chosen lin-

ear combination will be seen to produce an especially simple source. The source is given by

Ja =
(
∂2 + ∂3

)
I1 . (4.10)

The bubble I1 is given by

I1 =
cb√
|p 2

1 |

∫ b12

−b13
dq V

d−4
2 (4.11)

where the bubble constant is defined by

cb := iπd/2 Γ

(
4− d

2

)
, (4.12)

the integration limits are given by

b13 =
s2
a√
|p 2

1 |
, b12 =

s3
a√
|p 2

1 |
(4.13)

and finally the Kirchhoff-Symanzik function V is given by

V (q) :=
~̂
h1

2

+ ~q 2 = − λa
4p 2

1

− q2 (4.14)

where the last equality holds for a space like p1 and otherwise the sign of q2 needs to be

changed.

Putting together these ingredients we find the source to be

Ja =
c∆√
|p 2

1 |

∫ b12

−b13
dq V

d−6
2 (4.15)

where c∆ is the triangle constant defined in (2.12), which satisfies c∆ = d−4
2 cb. We have

used 0 =
(
∂2 + ∂3

)
b13 =

(
∂2 + ∂3

)
b12 so there is no contribution from the integration limit,

as well as
(
∂2 + ∂3

)
ĥ2 = 1. All these last equalities are special for the chosen linear combi-

nation of generators and are responsible for the simple form of (4.15) as announced above.

The integration curves have a geometrical interpretation: the parameter space of the

diagram, X (2.3), can be identified with the parameter space of tetrahedra shown in figure 3

hence the integration curves can be interpreted as 1-parameter families of tetrahedra. The

definition of D1 (4.9) implies

D1xi = xi i = 4, 5, 6

D1x1 = 0

D1λ∞ = 2λ∞

D1B3 = 2B3 (4.16)

where the last two equalities are implied by D1 = D12 + D13 and (3.16). These relations

imply that h2, ĥ 2
2 ≡ λb/p 2

2 , ĥ
2

3 are annihilated by D1.

– 15 –



J
H
E
P
0
3
(
2
0
2
0
)
1
5
6

p1

m1

p2

p3

Figure 6. The flow lines of D1 (4.9) generate families of tetrahedra where p1 slides while Ô is fixed.

The algebraic relations above imply that the family of tetrahedra is formed by sliding

p1 in a direction normal to itself within the plane of p1, p2, p3, while fixing the points Ô, O.

In this manner the p1, p2, p3 triangle is rescaled, see figure 6.

We need to choose a parameterization for the integration curves. Since they describe

a slide of the p1 edge two possibilities suggest themselves: the heights of either one of the

two triangle containing p1, namely either h1 ≡
√
|λ∞/4p 2

1 | or ĥ1 ≡
√
|λa/4p 2

1 |. In the

following we shall find it convenient to use h1.

Now we have all the necessary ingredients to integrate I. The D1 generator defined

in (4.9) implies the following equation for Î defined in (4.8)

2I0
h1

2

∂

∂h1
Î = Ja (4.17)

where I0 the homogenous solution is given in (3.19), D1h1 = h1/2 and the source Ja is

given in (4.10). Performing the integration we find

Î(x) =
c∆

(h2)
d−4
2

∫
∆q

d2q V
d−6
2 + Î(h1 = 0) (4.18)

where the integration domain ∆q is the triangle of external momenta, see (2.15), and

h1 = 0 was chosen as a base point (location of initial condition). This is convenient since

Î(h1 = 0) = 0 as can be seen directly in the Schwinger plane, such as in subsection 2.2. Us-

ing this and restoring I through (4.8), (3.19) we finally arrive at the same expression which

appeared already in (2.18) by transforming the expression in Schwinger parameters into the

triangle of external momenta. Thus we were able to solve the SFI equation system for the

general triangle diagram, the expression found in this way coincides with the one obtained

in subsection 2.2 and it is the simplest expression that we have found for the diagram.

Comments. We have confirmed that the general expression (2.18) not only satisfies

the SFI equation associated with D1 defined in (4.9) but also the one associated with D13

defined in (3.15) and hence through permutations the first six equations of the SFI equation

system (3.6). The last equation in the set is confirmed through dimensional analysis.

The general expression (2.18) can be restricted to the singular loci and it would be

interesting to compare it with the expressions (4.4), (4.6) gotten in the previous subsection.
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⇐⇒

x1

x2

x3

x4

x6 x5

Figure 7. Magic connection between diameter and massless triangle.

5 Perspective on massless triangle and magic

There is a connection between the diameter diagram and the massless triangle diagram

upon mapping of parameters. This is known as ‘magic connection’ in the literature [35] —

see figure 7. We will provide a novel re-derivation of this connection by comparing the SFI

equation systems for these two diagrams.

The massless triangle and the diameter are similar in that they both depend on 3

parameters and both enjoy an S3 permutation symmetry. However, they differ in the

diagram topology including the number of loops and the number of external legs. Moreover,

the connection includes a currently mysterious relation between the dimensions of the two

diagrams.

First we tried to compare the SFI equation systems for the two diagrams, but their

relation was not apparent at this level. Therefore we proceeded to compare the integral

normalized by its leading singularities, defined by

Î = I/I0 (5.1)

where I0 denotes the homogenous solution; the gradient of Î is gotten by inverting the Tx

matrix which appears in the SFI system.

For the diameter we find

∂1ÎD = −d− 2

x1λ

1

I0D

(
−x1 j2j3 + s3j1j3 + s2j1j2

)
(5.2)

and similarly for ∂2ÎD and ∂3ÎD. For the massless triangle we find

∂4Î∆ =
2(d− 3)

x4 λ∞

1

I0T

(
−x4 I1 + s6I2 + s5I3

)
(5.3)

and similarly for ∂5Î∆ and ∂6Î∆. The respective homogenous solutions are given by

I0D(d) = λ
d−3
2 (5.4)

I0∆(d) = λ
3−d
2∞ (x4x5x6)

d−4
2

while the tadpole and bubble sources are given by

jµ(µ; d) = iπ
d
2 Γ

(
2− d

2

)
µ( d

2
−1) (5.5)

IBi(µi; d) =
i1−dπ

d
2 Γ(2− d

2)Γ2(d2 − 1)

Γ(d− 2)
µ

( d
2
−2)

i .
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After substituting for these we get

∂1ÎD = −
(d− 2) c2

T

x1 λ

1

λ
d−3
2

(
−x1 (x2 x3)

d−2
2 + s2 (x1 x2)

d−2
2 + s3 (x1 x3)

d−2
2

)
∂4Î∆ =

2 (d− 3)cB
x4 λ∞

λ
d−3
2

(
−x4 (x5 x6)−

d−4
2 + s5(x4 x6)−

d−4
2 + s6(x4 x6)−

d−4
2

)
(5.6)

where cT , cB are the tadpole and bubble constants, respectively, which depend only on d

and can be read off (5.5).

Now it is observed that the two equations are similar under the straightforward

mapping

xi ↔ xi+3 ≡ p2
i , i = 1, 2, 3 . (5.7)

However, this is not enough. In order to match the powers of λ we must have

dD + d∆ = 6 , (5.8)

namely the respective dimensions dD and d∆ must change. (5.8) implies dD − 2↔ 4− d∆

and hence the expressions within parenthesis in (5.6) match as well.

Finally after multiplication by an x-independent factor we obtain the magic connection

ID(x1, x2, x3; d) = i1−dπ
3d
2
−3 Γ(3− d)

Γ(d2)
(x1x2x3)

d
2
−1I∆({p2

i = xi}i=1,2,3; 6− d) . (5.9)

This result matches exactly with the relation discovered in [35]. The original derivation

used the Mellin-Barnes representation while we provide a novel re-derivation through SFI.

Unfortunately the current derivation does not motivate the dimension relation (5.8) but at

least it makes clear how the correspondence works given this relation.

6 Summary and discussion

In this paper we have analyzed the triangle Feynman integral through the Symmetries of

Feynman Integrals (SFI) method. The SFI analysis stresses the relation of any diagram

with simpler diagrams obtained through edge contraction, diagrams which can be termed

descendants. For the triangle the descendant diagrams are three different bubble diagrams,

see figure 5.

We proceed to summarize the paper’s results. The SFI equation system was determined

and presented in a simple basis in (3.6). We studied the geometry of parameter space and

found that the SFI method is maximally effective here as the co-dimension of the G-orbit

is 0 (3.14). The singular locus was found to consist of two components where either

the Heron/Källén invariant λ∞ or the Tartaglia/Baikov polynomial B3 vanish (3.12). At

these components the triangle was evaluated as a linear combination of descendant bubble

diagrams (4.4), (4.6).

The general solution was derived in subsection 4.2, arriving at an expression (2.18)

in terms of an integral over the triangle of external momenta. This expression was al-

ready essentially known since [1] and it can be derived directly by transforming the alpha
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(Schwinger) parameter representation as described in subsection 2.2. It is the simplest ex-

pression that we know for the general triangle, it can be decomposed (split) into a sum of

6 terms (2.21) and it must be equal to the known expression in terms of Appell functions,

as discussed in the third paragraph below (2.23).

This list of results answers the first three questions posed in the introduction; now

we address the fourth. Sum decomposition was known to originate from a split of the

integration domain and SFI does not add to this perspective. The magic connection was

discussed through the SFI perspective in section 5 but the transformation of dimensions

remains mysterious.

Discussion. Following [1] we stressed the underlying tetrahedron geometry. The analytic

expressions contain numerous appearances of the quantities (λ∞, B3) defined in (2.6), (2.7)

which are instances of Cayley-Menger (CM) determinants that express the volume of a

simplex in terms of the length squares of its edges. Instances of such appearances include

the tetrahedron height (2.17) and the singular locus (3.12). Much of the geometry of a

simplex such as the tetrahedron can be expressed in terms of CM determinants, and this

perspective forms the basis of a mathematical field known as Distance Geometry which has

applications to GPS navigation and MRI tomography, see e.g. [46]. Hence we realize that

Distance Geometry plays a role in the evaluation of the triangle diagram and likely also in

more general diagrams.

Acknowledgments

We would like to thank Ruth Shir and Amit Schiller for many useful discussions and the

workshop “The Mathematics of Linear Relations between Feynman Integrals” MITP, Mainz

for hospitality while this work was in progress. For further hospitality B.K. would like to

thank Harald Ita (Freiburg university), while S.M. would like to thank TIFR, Mumbai

and International Solvay Institutes, Brussels. We would like to thank Phillip Burda for

participation in early stages of this work.

This research was supported by the “Quantum Universe” I-CORE program of the

Israeli Planning and Budgeting Committee.

B.K. dedicates this paper to Neta.

A The n-simplex

This appendix contains some higher dimensional generalization of the discussion of the

tetrahedron geometry in subsection 2.1. This should be useful for more involved diagrams

including 1-loop diagrams with more legs.

The n-dimensional simplex and its Cayley-Menger determinant. The n-dimen-

sional simplex ∆n is the polytope defined by n+ 1 points (or vertices) u0, u1, . . . , un [47].

The standard simplex is defined by the n + 1 standard basis vectors in Rn+1. The low-

dimensional simplices are the point, interval, triangle and tetrahedron for n = 0, 1, 2 and

3, respectively.
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Given an n-dimensional simplex, the Cayley-Menger (CM) determinant is defined by

the (n+ 2) ∗ (n+ 2) determinant

Cn = det


0 d2

01 d2
02 . . . d

2
0n 1

d2
10 0 d2

12 . . . d
2
1n 1

...
...

...
. . .

...
...

d2
n0 d

2
n1 d

2
n2 . . . 0 1

1 1 1 . . . 1 0

 (A.1)

where

d2
ij := (~ui − ~uj)2 (A.2)

and in the last definition the vector notation ~ui stresses the vector nature of ui. Equivalently

Cn = (−)n+1 2n det{sij}i,j=1,...,n (A.3)

where sij =
(
d2

0i + d2
0j − d2

ij

)
/2. This definition is in terms of a smaller, n∗n determinant,

but it hides the Sn permutation symmetry.

The Cayley-Menger determinant is related to the squared volume of ∆n through the

normalization

Vol2(∆n) =
(−)n+1

n!2 2n
Cn . (A.4)

It is manifestly symmetric under the Sn+1 permutations of the vertices.

The distances d2
ij are known to fix the embedding of the system of points into Euclidean

space as long as some positivity conditions on CM determinants of sub-simplices hold (the

conditions include d2
ij ≥ 0 for each edge and the triangle inequalities for each triangle).

Moreover, we believe that any set of squared distances fixes an embedding into a pseudo-

Euclidean space of free signature, and it is not clear to us whether this generalization

appears already in the literature.

In low dimensions we have

C0 = −1

C1 = 2 d2
01

C2 = λ
(
d2

01, d
2
02, d

2
12

)
C3 = −2B3 (A.5)

and

Vol2(∆0) = 1

Vol2(∆1) = d2
01

Vol2(∆2) = −λ/16

Vol2(∆3) = −B3/144 . (A.6)
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Identity for derivatives of a CM determinant. We have found useful identities for

the derivative of Cn which generalize (2.8)–(2.10) to arbitrary dimensions.4 From the

definition (A.1) and the determinant derivative formula we have

∂

∂d2
01

C = −2C12 (A.7)

where Cij is the minor obtained from C by deleting row i and column j and taking the

determinant, and symmetry implies C12 = C21. On the other hand the minors of any

matrix M (not necessarily symmetric) satisfy

M11M22 −M12M21 = MM1212 (A.8)

where M1212 is the minor obtained by deleting rows 1, 2 and columns 1, 2. This can be

proven by expanding the determinant with respect to rows 1, 2 (row expansion is known

as the Laplace expansion [48]). In addition, we verified this formula for 2 ∗ 2 and 3 ∗ 3

matrices. Combining these two equations we obtain

C11C22 −
1

4

(
∂

∂d2
01

C

)2

= C C1212 . (A.9)

Noting that C11, C22, C1212 are all Cayley-Menger determinants of sub-simplices, this iden-

tity expresses the derivative of C in terms of CM determinants. Permutation symmetry

immediately generalizes the discussion to a derivative of C with respect to any d2
ij .

For n = 2 dimensions (A.9) becomes

4x1 x2 − 4 (s3)2 = −λ (A.10)

where λ = λ(x1, x2, x3) and s3 = −∂λ/(4∂x3) is an s variable (3.4); for n = 3 it repro-

duces (2.8).

Geometric interpretation. We proceed to offer a geometric interpretation for the iden-

tity (A.9). For this purpose we shall use figure 8 which shows the simplex ∆n and the 01

edge. ∆n is projected over the hyperplane containing the simplex ∆n−2 that consists of all

points other than 0, 1, and hence ∆n−2 collapses into a point and the projection is planar.

Denoting by ∆1
n−1 the (n− 1)-simplex obtained by deleting vertex 1 from ∆n we have

Vol ∆1
n−1 =

1

n− 1
aVol ∆n−2 (A.11)

and similarly by exchanging 1, a into 0, b respectively. In addition we have

Vol ∆n =
2

n(n− 1)
Vol ∆2 Vol ∆n−2 (A.12)

where ∆2 is the triangle shown in the figure. Henceforth we shall assume that the plane

of the triangle ∆2 is Euclidean and hence its area is of course

Vol ∆2 =
1

2
a b sin γ (A.13)

4We thank Nadav Drukker for a useful and enjoyable discussion of this subject.
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∆n−2
γ

a

b

1

0

Figure 8. A projection of ∆n over ∆n−2, a sub-simplex which does not include the 0, 1 vertices.

a, b are the lengths of the shown edges and γ is the angle between them. This figure illustrates the

geometrical interpretation of derivatives of CM determinants as discussed in the text.

(for a non-Euclidean triangle the sin function should be appropriately generalized into a

hyperbolic function). Putting together these ingredients we have

Vol2 ∆n Vol2 ∆n−2 =
4

n2(n− 1)2
Vol2 ∆2 Vol4∆n−2 =

=
a2 b2 sin2 γ

n2(n− 1)2
Vol4 ∆n−2 =

=
(n− 1)2

n2
Vol2 ∆0

n−1 Vol2 ∆1
n−1 sin2 γ . (A.14)

The first equality uses (A.12), the second (A.13) and the third substituted a2, b2 from (A.11).

Changing normalizations into CM determinants through (A.4) we obtain

CnCn−2 = C0
n−1C

1
n−1 sin2 γ . (A.15)

Now (A.9) implies

1

4

(
∂

∂d2
01

C

)2

=
√
C0
n−1C

1
n−1 cos2 γ (A.16)

and the identity (A.9) reduces to sin2 γ + cos2 γ = 1. Equation (A.16) expresses a CM

derivative in terms of the volumes of the two relevant (n − 1)-simplices and the angle

between them (in fact, once the areas are viewed as tensors, this is their inner product)

and it generalizes (2.10) to arbitrary dimensions.

Another identity can be obtained by noticing that upon choosing an (n−1) simplex, say

the one associated with vertices 1, 2, . . . , n its volume is equal to the sum of the projections

of all other (n− 1)-simplices onto it. This implies(
∂

∂d2
01

+
∂

∂d2
02

+ · · ·+ ∂

∂d2
0n

)
C = −2C0

n−1 (A.17)

where we have used (A.16). This identity generalizes (2.9) from n = 3 to all dimensions

and provides it with a geometrical interpretation. In particular, for n = 2 it reads

(∂1 + ∂2)λ = −4x3 (A.18)

which holds since ∂iλ = −4 si for i = 1, 2, 3.
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