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1 Introduction

The discovery of the Higgs boson in 2012 [1, 2] marked a milestone for the particle physics

community. Since then, great efforts have been made to measure its properties in order to

determine if it corresponds to the Standard Model (SM) Higgs boson or if it opens a window

to new physics beyond it. One of the crucial aspects of this quest is the determination of

its self-couplings, which are directly related to the scalar potential that drives electroweak

symmetry breaking, and can be modified in the presence of new-physics effects.

In the SM, the triple and quartic self couplings of the Higgs, λ3 and λ4, are uniquely

fixed by its mass mH through the enforcement of gauge symmetries and renormalisability

of the theory, namely λ3 = λ4 = λSM = m2
H/(2v

2), where v ≈ 246 GeV is the Higgs

vacuum expectation value. These couplings are directly accessible through double (for

λ3) and triple (for λ4) Higgs boson production, although they might also be extracted

indirectly from single Higgs production [3–8] and precision electroweak observables [9, 10].

All of these measurements, however, are extremely challenging, and in particular already

the determination of the triple self-coupling will prove very difficult at the high-luminosity

phase of the LHC (see ref. [11] for a review). Unfortunately, the much smaller triple-Higgs

production rate makes the determination of λ4 prohibitive at the LHC, and even challenging

at future colliders [12, 13]. New physics effects, however, might change the prospects of

measuring triple-Higgs production by inducing large enhancements of the cross section, and

in this respect it is therefore desirable to provide precise predictions for the SM expectation.

As it occurs for single and double Higgs, the dominant triple Higgs production mech-

anism at hadron colliders is gluon fusion, mediated by a heavy-quark (mostly top quark)

loop. This process, being gluon induced, is expected to present large QCD corrections.

However, due to the massive loop appearing in the amplitude at Born level and the large

number of external particles, the calculation of its higher order corrections is extremely
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challenging. As a consequence, the exact cross-section for triple Higgs production is only

known at leading order (LO) in QCD [14, 15], while next-to-leading order (NLO) cor-

rections are currently unknown. In order to provide precise predictions for triple Higgs

production, approximate NLO corrections were calculated in ref. [16] within the heavy top

limit (HTL) for the virtual amplitudes, while keeping the exact dependence on the top mass

mt for the real emission diagrams (this approximation is denoted FTapprox.). In ref. [17]

the NNLO virtual amplitudes where computed in the HTL, and the so-called soft-virtual

approximation of the HTL NNLO corrections (NNLOSV) was obtained [18]. Phenomeno-

logical results were presented by reweighting the NNLOSV cross-section by the exact LO

result (i.e. with full mt dependence) [17], in what is known as the Born-improved (Bi)

cross-section. The main goal of the present work is to extend the results of ref. [17] beyond

the soft-virtual approximation, computing the complete set of NNLO QCD corrections for

triple Higgs production within the HTL. In addition to that, we include partial finite-mt

effects by taking into account the NLO FTapprox. results of ref. [16], thus providing a final

estimate of the cross section that combines the most advanced results available to date.

The paper is organised as follows. In section 2 we examine the structure of the LO triple

Higgs production cross-section and its dependence on λ3 and λ4. Then, in section 3 we

complete the calculation of the NNLO corrections in the HTL by adding the real emission

corrections to the results presented in ref. [17]. Then, in section 4 we present the phe-

nomenological results for triple Higgs production at the LHC and future hadron colliders.

We estimate the dependence on the reweighting method by comparing the Born-improved

result with a modified prescription (introduced in ref. [19]), that we call dynamically Born-

improved. Finally, we combine our result with the one presented in ref. [16] to report our

best prediction, and in section 5 we present our conclusions.

2 The amplitude at LO

In this section we will examine the structure of the LO amplitude and cross-section. The

Born amplitudes needed for the numerical calculation were obtained using Recola2[20].

For the parton distribution functions we adopted the MMHT2014 [21] set interfaced via

LHAPDF[22], while the CUBA[23] library was used to perform the numerical integration.

The values implemented for the physical input parameters are GF = 1.16656×10−5 GeV−2

for the Fermi constant, mH = 125 GeV, mt = 173.2 GeV and ΓH = Γt = 0 for the masses

and widths of the Higgs boson and the top quark, respectively, and αS(mZ) = 0.135 for

the strong coupling constant at LO, as provided by the MMHT2014 set. Throughout this

work, the on-shell top quark mass scheme is used. All the plots in this section correspond

to a collider centre of mass (CM) energy of 100 TeV, although we explicitly checked that

all our conclusions also hold at 14 and 27 TeV.

For triple Higgs production, the relevant diagrams (modulo permutations of the final

state particules) are shown in figure 1. We can split them in four different categories:

pentagons (P), boxes (B) and two triangle contributions (T1 and T2), each one of these with

a specific dependence on the parameters κ3 = λ3/λSM and κ4 = λ4/λSM that parametrise
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Figure 1. Diagrams that contribute to the LO triple Higgs production in the gluon fusion channel

(modulo permutations of the final state bosons). We identify the pentagon P (left), box B (second

from left) and triangles T4 and T3 (right) diagrams, respectively.
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Figure 2. Spin 0 (∼ |M++|2) and Spin 2 (∼ |M+−|2) contributions to the invariant mass

distribution of the triple Higgs system for collider CM energies of 100 TeV. The left plot shows the

absolute contributions, while the right one shows the percentage.

departures of the self couplings from the SM expectations,

M = P + κ3 B + κ2
3 T3 + κ4 T4. (2.1)

As in the case of double Higgs production [24], there are only two independent helicity

configurations of the initial gluons, that we call

M++ =M−−, “Spin 0”,

M+− =M−+, “Spin 2”,

according to the value of total spin along the collision axis.

The Spin 2 configuration vanishes in the limit mt →∞, while the Spin 0 configuration

remains. We observe in figure 2 that the contribution from the Spin 2 piece is rather small

(below 5% of the total cross-section). Also, we notice that triangle contributions T only

contribute to the Spin 0 helicity configuration, and therefore the Spin 2 configuration is

not sensitive to the quartic Higgs self coupling κ4.

It is interesting to observe the share of the cross-section from each topological contri-

bution and their corresponding interferences. In figure 3 we show different contributions

of the Spin 0 component to the invariant mass distribution of the triple Higgs system. In

the left panel we plot the interference structure between the P and the B diagrams, similar

to the one usually presented for double Higgs production between the box and triangle

contributions. This pattern can be better understood if we parametrise the amplitudes in

terms of quark loop form factors (factoring out the Higgs boson couplings and propagators)
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Figure 3. Different contributions to the Spin 0 component of the invariant mass distribution.

Left: in dashed lines we show the contributions from the pentagon and box diagrams, as well as

their destructive interference, resulting in the red solid line. Right: the contributions separated by

their κ4 dependence. In dashed lines we show a similar destructive interference pattern, due to the

sign difference between the box and the pentagon (and triangle) form factors, resulting in the green

solid line.

and look at their behaviour in the HTL:

T4 =:
αs
2π

Q2

3v3

3m2
H

Q2−m2
H

FT (Q2)

T3 =:
αs
2π

Q2

3v3

(
3m2

H

)2
Q2−m2

H

∑
(ij)

1

sij−m2
H

FT (sij)

B =:
αs
2π

Q2

3v3
3m2

H

∑
(ij)

1

sij−m2
H

FB(Q2, (pi+pj−p1)2, (pi+pj−p2)2, sij ,m
2
H)

P =:
αs
2π

Q2

3v3
FP(p1, p2, p3, p4, p5)

=⇒ lim
mt→∞

FT =
1

2
lim

mt→∞
FP = − lim

mt→∞
FB = 1, (2.2)

where p1 and p2 is the four-momenta of the initial gluons, and pi (i = 3, 4, 5) the ones of the

outgoing Higgs bosons, Q2 = (p1+p2)2 and sij = (pi+pj)
2 are the squared invariant masses

of the triple Higgs boson system and of the different pairs (ij), respectively, and
∑

(ij) is

a sum over the three different pairs {(34), (45), (53)}. The dominant contributions come

from the pentagon and the box diagrams, as they are less suppressed by Higgs propagators,

although the difference in sign between the FP with FB is responsible for a large negative

interference between them. This effect is particularly strong at threshold, and therefore

this region presents an enhanced sensitivity to any BSM effect that can alter the delicate

cancellation between diagrams present in the SM.

In the right panel of figure 3 we present, in solid lines, the contribution originated from

different powers of κ4. The quadratic dependence arises from the T4 triangle diagram, which

is suppressed by a Higgs propagator (∼ Q−2) making it negligible, with a contribution at

the peak of ∼ 1.5%. The linear term has two contributions, plotted as dashed lines,

that cancel each other to a large extent. This cancellation is due to the sign difference
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Figure 4. Departure from the SM of the triple Higgs boson invariant mass distribution for contin-

uum (top) or discrete (bottom) values of κ4 (left) and κ3 (right). Due to the quadratic dependence

of σ on the couplings, a nonlinear colormap is used for better visualisation.

of the form factors in eq. (2.2), making the κ4 linear contribution about a 15% of the

κ4-independent one.

Because of the different dependence on the self-couplings of the contributions presented

in eq. (2.1), a departure from the SM value κ3,4 = 1 might spoil the destructive interference

patterns depicted in figure 3. This can be seen clearly in figure 4, where a large sensitivity

to the κ3 coupling is present particularly around the threshold, where the cross-section can

be more than 30 times larger than the SM expectation. Indeed, deviations from κ3 = 1

spoil the cancellation between the diagrams with most significant contributions, P and

B. In the case of κ4, because it only affects the 2Re((P + B)T ∗4 ) contribution, which is

suppressed with respect to |P +B|2, the regions of larger sensitivity are those in which the

latter is small, namely the production threshold (for κ3 = 1) and the tail of the invariant

mass distribution.

We can also analyse the dependence of the inclusive cross-section on the couplings

κ3,4, by performing variations with respect to the SM value, as shown in figure 5. For

illustrative purposes, both coupling modifiers are varied in the range κi ∈ [−1; 3]. While

the dependence on κ3 is large (e.g. σ > 8σSM for κ3 ∼ −1 and κ4 = 1) and quadratic

– 5 –



J
H
E
P
0
3
(
2
0
2
0
)
1
5
5

-1 0 1 2 3
3

-1

0

1

2

3
4

1.
00

0

2.
00

0

3.
00

0

4.
00

0
5.

00
0

6.
00

0
7.

00
0

-1 0 1 2 3
-2

0

2

4

6

σ
(

3
=

,
4
=

1
)/
σ

S
M

 -
 1

1

2

3

4

5
6
7
8

d
σ
(

3
,

4
)
/
d
σ
S
M

-0.2

0.0

0.2

0.4

0.6

σ
(

3
=

1
,

4
=

)/
σ

S
M
−

1

Figure 5. Departure of the inclusive cross-section as a function of κ3 and κ4 from its SM value.

In the left plot the couplings are varied simultaneously and in the right one separately, keeping

one fixed to the SM value. Due to the quadratic dependence of σ on the couplings, a nonlinear

colormap is used for better visualisation.

contributions become noticeable, the dependence on κ4 is rather small (with departures of

|σ/σSM − 1| < 28% in the range under study), which is compatible with the right panel of

figure 3 that shows the |T4|2 contribution to the invariant mass distribution.

3 NNLO corrections

After discussing the different contributions to the LO cross-section in the previous section,

we will present the results for the full NNLO corrections in the HTL.

In the HTL the Higgs bosons couple directly to gluons via the effective Lagrangian

Leff = −1

4
GaµνG

µν
a

(
CH

H

v
− CHH

H2

2v2
+ CHHH

H3

3v3
+ . . .

)
, (3.1)

where the matching coefficients can be expanded in powers of the strong coupling constant

αs as

CX = −αs
3π

∑
n≥0

C
(n)
X

(αs
π

)n
, (3.2)

where the expansion is known up to fourth order for X = H, HH, HHH [25–31].

The computation of the complete NLO corrections and of the virtual amplitudes up to

NNLO, both in the HTL, was presented in ref. [17]. The latter were used to construct the

soft-virtual approximation (based on the results from ref. [18]) to provide a phenomenolog-

ical NNLOSV cross-section. In the present work we computed the real emission amplitudes

to obtain a full NNLO cross-section in the HTL, including all partonic channels in addition

to gluon-fusion. To this end, we exploited the known relation between the single Higgs

boson cross-section and some contributions to the multiple Higgs one. This is done in the

same fashion as the calculations for double Higgs production [32] and its extension to the

dimension 6 Standard Model Effective Theory and Higgs Effective Theory [19].
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Contributions involving only one HTL operator at the amplitude level (i.e. a single

effective vertex between Higgs bosons and gluons) are totally equivalent, apart for an

overall normalization and the corresponding matching coefficient, to those from single

Higgs production. In terms of the degree of difficulty, these contributions are truly at

the NNLO level, but the results can be borrowed from single Higgs production, exploiting

the above mentioned similarities. On the other hand, when considering diagrams with

more than one HTL operator insertion (actually, their interference with the ones with

just one insertion), as each of them carries an extra coupling CX = O(αs), only tree level

configurations can appear to NLO, while at NNLO accuracy the only possible contributions

arise from one-loop and single real emission diagrams. Because of this simplification, their

infrared divergences can actually be handled with standard NLO procedures.

In our calculation, the FeynArts[33] and FeynCalc[34, 35] packages were used in

Mathematica to compute the amplitudes. The cancellation of their infrared singularities

with the ones present in the virtual amplitudes presented in ref. [17] and the absorption of

the remaining ones into the evolution of the parton distribution functions was performed

following the FKS [36, 37] approach. In this work we neglect effects coming from the Higgs

width, and set it equal to zero throughout the calculation.

We present below the final result with a notation suitable for the discussion on the

reweighting following in section 3.1. More details on the derivation can be found in the

appendix.

As usual, the cross-section can be written as

dσ

dQ2
=
∑
i,j

∫ 1

0
dx1 dx2 fi/h1(x1)fj/h2(x2)

∫ 1

0
δ

(
x− Q2

x1x2sH

)
dσ̂ij
dQ2

, (3.3)

where Q is the invariant mass of the triple Higgs system,
√
sH the collider centre of mass

energy, and i, j are the labels for the massless partons inside the hadrons h1 and h2 with

respective parton density f(i,j)/(h1,h2). Here the dependence on the factorisation and the

renormalisation scales is implicitly understood.

The partonic cross-section σ̂ is computed order by order as an expansion in the strong

coupling αS , such that up to NNLO we write it as

Q2 dσ̂ij
dQ2

=
1

2Q23! 22

∫
dPS 3|M3H |2

[
η

(0)
ij +

(αs
2π

)
η

(1)
ij +

(αs
2π

)2
η

(2)
ij +O(α3

s)

]
, (3.4)

where the LO amplitude M3H can generically be written as

M3H =
(αs

2π

) Q2

3v3
C3H

LO , (3.5)

and

C3H
LO(p1, p2, p3, p4, p5) = FP(p1, p2, p3, p4, p5)+FT (Q2)

3m2
Hκ4

Q2−m2
H

+
∑
(kl)

[
(3m2

Hκ3)2

Q2−m2
H

FT (Q2)

+3m2
Hκ3 FB(Q2, (pk+pl−p1)2, (pk+pl−p2)2, skl,m

2
H)

]
1

skl−m2
H

.

(3.6)
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The perturbative coefficients η
(0,1,2)
ij , within the HTL approximation and its extensions

(reweightings) described in section 3.1, are up to NNLO

η
(0)
ij = η

H (0)
ij = δ(1− x)δigδjg, (3.7)

η
(1)
ij = 2 η

H (1)
ij + η

H (0)
ij

4

3

Re
(

(C3H
LO)∗

∑
(kl)C

2H
LO({k, l})

)
|C3H

LO |2
, (3.8)

η
(2)
ij = 4 η

H (2)
ij + 4η

H (0)
ij

2 Re
(

(C3H
LO)∗

(
(C

(2)
HHH − C

(2)
H )P + (C

(2)
HH − C

(2)
H )κ3B

))
|C3H

LO |2

+ η
H (0)
ij

Re
(

(C3H
LO)∗(R(2)

3H + (C3H
LO)3 T (2)

3H )
)

+ V(2)
3H |CHLO|2

|C3H
LO |2

+ ρ
(2)
ij , (3.9)

where η
H,(n)
ij , n = 0, 1, 2, are the corresponding QCD corrections for single Higgs production

that can be found in ref. [38] (and coincide with the results in refs. [39, 40]), the renormali-

sation and factorisation scales were set to µF = µR = Q, k and l label the final state Higgs

bosons, and
∑

(kl) denotes the sum over distinct pairs of them. CHLO and C2H
LO are (up to a

normalisation factor) the LO amplitudes for single and double Higgs production

CHLO = FT (m2
H), (3.10)

C2H
LO({k, l}) =

3m2
H

skl −m2
H

FT (skl) + FB({k, l}), (3.11)

and the coefficients R(2)
3H , T (2)

3H and V(2)
3H are the finite remainders of the virtual corrections

at NNLO presented in ref. [17], with the only difference being that we use (as we will

discuss later) the general definition of eq. (2.2) for C2H
LO . If we express this coefficient in

the HTL, the expressions are identical to those in ref. [17].

The only missing ingredient, ρ
(2)
ij , corresponds to the finite remainder of the real emis-

sion corrections to the diagrams with more than one HTL operator insertion (which are

already included in η
H(2)
ij ). These only contain diagrams with a single parton emission

whose divergences were regulated using dimensional regularisation in D = 4 − 2ε dimen-

sions in the FKS [36, 37] framework. After subtracting the singularities, we can write the

remainder as

ρ
(2)
ij =

4

3

Re
(

(C3H
LO)∗

∑
(kl)C

2H
LO({k, l})

)
|C3H

LO |2
ρ

(sc)
ij

+

∫ 2π

0
dφ

∫ 1

−1
dy

1

2

(
1

1− x

)
+

[(
1

1− y

)
+

+

(
1

1 + y

)
+

]
ρ

(r)
ij (x, y, φ) (3.12)

that contains a soft-collinear term ρ
(sc)
ij and a regular term ρ

(r)
ij whose explicit expressions,

together with the definition of the standard plus-prescription, are given in the appendix.
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3.1 Reweighting

The results presented in this section complete the full NNLO corrections to triple Higgs

production in the HTL when the quantities FP , FB and FT are expressed in this limit

(see eq. (2.2)). In order to retain part of the mt dependence, this expression is usually

reweighted by using the exact result for M3H in eq. (3.4), while keeping the coefficients

η
(0,1,2)
ij in the HTL. This procedure is usually referred to as the Born-improved (Bi) NNLO

cross-section, and its accuracy has been studied for double Higgs production [41–43] at

NLO finding that it overestimates the exact inclusive cross-section by a 32% at collider

energies of 100 TeV (and around 16% at 14 TeV). This overestimation is enhanced in the

tail of the Higgs pair invariant mass distribution.

In order to parametrise the dependence of the result on the reweighting procedure,

we also considered what we call a dynamically-Born-improved (dBi) NNLO cross-section,

which we obtain by using the full dependence on the kinematics of the outgoing particles

of FT , FB and FP in the definitions of P, B, CHLO and C2H
LO , and therefore also in the

definitions of R(2)
3H ,T (2)

3H , V(2)
3H and ρ

(2)
ij . In this way, we reweight the HTL insertion operators

with the respective LO amplitude diagram by diagram (e.g. the (H)Hgg vertex with the

(double) single Higgs production amplitude ∼ C
(2)H
LO ). This reweight cannot be applied

in a straightforward way, as the form factor FB is not always defined for the kinematics

characterising the HTL vertex. This happens in diagrams with two HTL vertices connected

via an off-shell gluon (e.g. a box and a triangle loop). To fix this problem, we modify the

kinematics in a way such that we preserve the momenta of the outgoing Higgs bosons,

while redefining the momenta of the gluons entering the vertex to be on-shell.

For the triangle form factor FT , we evaluate it at the invariant mass of the outgoing

Higgs boson, just as expressed in the eqs. (3.10) and (3.11). For the box form factor FB
appearing in eq. (3.11), we need to define a prescription that corrects the momenta of the

initial gluons to compensate for the recoil of all other particles not involved in the HTL

vertex. Lets recall we are labelling p1 and p2 as the momenta of the incoming partons, and

p(3,4,5) the momenta of the outgoing Higgs Bosons. For the vertex with outgoing Higgses

{i, j}, we define q := pi + pj , M
2 := q2, and qµT as the transverse component of q with

respect to p1 and p2, and then define the momenta of the gluons entering the form factor

as k1 and k2 := q − k1 in the following way

FB({i, j}) = FB((k1 + k2)2, (k1 − pi)2, (k1 − pj)2,m2
H ,m

2
H), (3.13)

kµ1 := z1
M2

2q · p1
pµ1 + ξqµT +

ξqTqTqT
2

z1

q · p1

M2p1 · p2
pµ2 , (qµT qTµ =: −qTqTqT 2), (3.14)

z1 :=
M2 + 2ξqTqTqT

2 +
√

(M2 + 2ξqTqTqT 2)2 − 4(M2 + qTqTqT 2)ξ2qTqTqT 2

2M2
, (3.15)

where the different choices of ξ ∈ [0, 1/2] define different consistent prescriptions to account

for the Higgs pair recoil. This prescription corresponds to the one presented in ref. [44]

in the context of transverse-momentum resummation, if one chooses k1Tk1Tk1T = ξqTqTqT for the

eqs. (25) and (26) therein. In particular, if ξ = 0 the transverse recoil is compensated by
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one gluon (k1Tk1Tk1T = 0, k2Tk2Tk2T = qTqTqT ) while if ξ = 1/2 it is equally compensated by both gluons

(k1Tk1Tk1T = k2Tk2Tk2T = qTqTqT /2).

Let us emphasise that this prescription leaves unchanged the momenta of all the Higgs

bosons involved, including their virtuality, and its main purpose is to redefine the momenta

of the virtual gluons entering Box diagrams, so that these are on-shell and FB is well defined.

With this prescription, the dynamically Born improved approximation is well defined

and we will denote it as dBiξ. In particular, we will present results for dBi0 and dBi1/2
as benchmarks to show the dependence on the choice of ξ, and we will show that this

dependence is numerically negligible at NLO and NNLO.

4 Phenomenological results

We present results for the NNLO cross-section for triple Higgs production, reweighted using

the Bi, dBi0 and dBi1/2 prescriptions. The set-up is the same as the one used in section 2.

We use the MMHT2014 [21] set of parton distributions, at the corresponding order in the

strong coupling constant for each contribution (LO, NLO, NNLO). For phenomenological

purposes, we compute this for collider energies of 100 TeV and 27 TeV that are relevant for

physics at the Future Circular Collider and High-Energy LHC, respectively. To estimate

the theoretical uncertainty arising from the missing higher orders in the perturbative series,

we perform an independent variation of the factorisation and renormalisation scales in the

range [µ0/2, 2µ0], with the constrain 0.5 < µR/µF < 2. The choice of the central values µ0

used in this work were µ0 = Q/2 and µ0 = Q, where Q is the invariant mass of the triple

Higgs system.

In figure 6 we see the cross-section computed in the dinamically Born improved approx-

imation up to different orders, as well as the K factor defined as usual, K = dσ / dσLO .

As seen also within the soft-virtual approximation [17], the cross-section begins to sta-

bilise only from NNLO. The K factors are rather flat at the peak of the invariant mass

distribution, with values around 1.7 and 1.8 for collider CM energies of 100 and 27 TeV

respectively, while the NNLO K factors present a suppression in the tail. Due to this

suppression, the entire NNLO band falls inside the scale variation of the NLO, suggesting

that the perturbative series is more stable in this region. The total scale uncertainty is

reduced from 37% to 27% and to 11% when going from LO to NLO to NNLO, at 100 TeV

with a central scale choice of µ0 = Q/2. For 27 TeV the reduction is similar, from 48% to

30% and then to 12%.

To measure the effect of the reweighting, we can compare the different approximations

Bi, dBi0 and dBi1/2 and observe the corresponding effect on the invariant mass distribution.

In figure 7 we see that, although at NLO the three approximations are almost completely

compatible, at NNLO there is a significant decrease in the tail of the distribution when

using a dBiξ instead of the Bi approximation, a discrepancy that is even bigger than

the scale variation in this region. We also notice that the dependence on ξ of the dBiξ
approximation is phenomenologically negligible. We know that for double Higgs production

the Bi approximation overestimates the tail of the distribution at NLO respect to the exact

calculation [41–43]. If this effect holds also for triple Higgs production, we can expect the
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Figure 6. Invariant mass distribution of the triple Higgs system in the dBi approximation up

to different orders (up) and corresponding K factor (down). The results are shown for a collider

center of mass energy of 100 TeV (left) and 27 TeV (right). The shaded bands correspond to the

uncertainty from the variation of scales from the central value of µ0 = Q/2.
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Figure 7. Comparison between the Bi, dBi0 and dBi1/2 reweights to the triple Higgs boson invariant

mass distribution. The result is shown at NLO (left) and NNLO (right) in the αS expansion. There

are no visible differences between the dBi0 and dBi1/2 bands, as they overlap completely. The

shaded bands correspond to the uncertainty from the variation of scales from the central value

of µ0 = Q/2.

dBi approximation to provide more reliable predictions, as it predicts a smaller tail of the

distribution just by reweighting each contribution by the associated form factor instead of

using the full amplitude.

In order to understand why the discrepancies in the tail of the invariant mass distri-

bution between the Bi and dBi prescriptions arise only at NNLO, lets recall what are the

main differences between the two reweighting procedures. The Bi reweights all amplitudes

by the Born amplitude, including those that have more than one HTL vertex. The dBi

only does this to amplitudes containing a single HTL vertex, while applying a different

prescription for those amplitudes with more than one HTL vertex. In this way, the Bi
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µ0 = Q 14 TeV 27 TeV 100 TeV

LO 0.0462+31%
−22% 0.235+26%

−19% 3.29+20%
−15%

NLOBi 0.0833+18%
−15% 0.408+16%

−13% 5.12+14%
−11%

NLOdBi 0.0831+18%
−15% 0.407+16%

−13% 5.09+14%
−12%

NNLOBi 0.105+8%
−9% 0.503+7%

−8% 6.11+6%
−7%

NNLOdBi 0.104+8%
−9% 0.498+7%

−8% 6.02+6%
−7%

µ0 = Q/2 14 TeV 27 TeV 100 TeV

LO 0.0605+34%
−24% 0.295+28%

−20% 3.88+21%
−16%

NLOBi 0.0983+18%
−15% 0.473+16%

−14% 5.75+15%
−12%

NLOdBi 0.0982+18%
−15% 0.471+17%

−14% 5.72+15%
−12%

NNLOBi 0.114+5%
−8% 0.540+5%

−7% 6.47+5%
−6%

NNLOdBi 0.113+5%
−8% 0.534+5%

−7% 6.36+5%
−6%

NNLOBest 0.103+5%
−8% 0.501+5%

−7% 5.56+5%
−6%

Table 1. Results for the inclusive cross-section (in fb) of triple Higgs boson production for different

collider energies, calculated at different orders and with the different reweighting procedures. The

results are shown for central scale values of Q (top) and Q/2 (bottom). The dependence on ξ in

the dBiξ reweight procedure is below the per-mill level and therefore omitted. The last row shows

our best available prediction for the different collider energies. The uncertainties correspond to the

scale variation.

reweighting procedure increases the relative significance of the amplitudes with many HTL

vertices, respect to the dBi. At NLO such amplitudes appear only at tree level, due to

the power counting of the HTL vertices, making the discrepancy phenomenologically neg-

ligible. At NNLO, such diagrams are enhanced by real emission corrections, making the

discrepancy at the tail of the invariant mass distribution more noticeable.

In table 1 we present the results for the inclusive cross-section obtained for different

collider energies, choices of central scales µ0, reweighting procedures and orders in the

perturbative expansion. The corresponding K factors for the dBi results are presented in

table 2. When comparing our results with the ones obtained in ref. [17] in the soft-virtual

approximation, we find that although the SV result differs only in about 1% from the full

NNLO in the HTL, when using the Bi reweight the difference grows to a 2.5% and 4.4%

increase in the inclusive cross-section at 14 TeV and 100 TeV, respectively. This larger

difference is due to the fact that in the HTL the SV approximation is slightly smaller

than the complete NNLO for small invariant masses, but compensates at large invariant

masses, resulting in a small difference in the inclusive cross section. After the reweighting

procedure, the region of large invariant masses is suppressed, and therefore this accidental
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µ0 = Q 14 TeV 27 TeV 100 TeV

KNLO 1.80 1.732 1.56

KNNLO 2.27 2.12 1.55

µ0 = Q/2 14 TeV 27 TeV 100 TeV

KNLO 1.63 1.60 1.47

KNNLO 1.87 1.81 1.64

KNNLO–Best 1.70 1.70 1.43

Table 2. NLO and NNLO K factors for the inclusive triple Higgs boson production at different

collider energies. These defined as the quotient between the dBi and the LO cross section. The

results are shown for central scale values of Q (top) and Q/2 (bottom). The dependence on ξ in

the dBiξ reweight procedure is below the per-mill level and therefore omitted. The last row shows

our best available prediction for the different collider energies.

compensation is reduced, increasing the difference in the inclusive cross sections between

SV and complete NNLO.

The different reweighting procedures produce a small difference ranging from ∼ 0.7%

at 14 TeV up to ∼ 1.3% at 100 TeV. Although in figure 7 we see that the different reweights

lead to discrepancies larger than the theoretical uncertainties in the tail of the distribution,

since this region has a small impact on the inclusive cross-section the results for the total

cross-section are consistent within the theoretical uncertainties. Of course, this small dif-

ference at the total cross section level can only be a lower bound on the expected finite top

mass effects, and from the results obtained at NLO within the FTapprox. (which are ∼ 10%

smaller than the dBi prediction) it is clear that they are expected to be much larger. What

we can conclude from this exercise therefore, is that the systematic uncertainties related

to the choice of the reweighting procedure (among the choices presented here) is expected

to be marginal compared to the full size of the finite-mt effects.

In order to provide the best possible estimate of the triple-Higgs production cross

section, it becomes necessary to include the partial finite-mt effects obtained in ref. [16]

within the FTapprox. To this end, we use the predictions presented therein and in ref. [45]

for the total cross section, and encode the finite mass effects in the parameter δt defined by

σNLO
FTapprox = σNLO

dBi (1 + δt) , (4.1)

and we define our best prediction as

σNNLO
Best = σNNLO

dBi + δtσ
NLO
dBi . (4.2)

This procedure is similar to the prescription that was implemented in ref. [45] for double-

Higgs production. The values that we obtain for δt at the different collider energies are

δt = −0.107, −0.073 and −0.146 for 14, 27 and 100 TeV, respectively.1 The corresponding

cross sections and K factors are presented in tables 1 and 2, respectively.

1The value corresponding to 27TeV was extracted from results of [16] computed at 33TeV, which is the

closest one in energy available in the literature.
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Before providing our final results, we address the issue of the remaining uncertainties

associated to finite-mt effects. There is in principle no reason to expect these effects to

be smaller than the corresponding ones present in double Higgs production; in fact the

typically larger invariant masses involved might point to the opposite direction. Of course,

the more complicated structure of the triple Higgs production amplitudes, involving ad-

ditional topologies, might lead to accidental cancellations of these effects that cannot be

predicted at this point. In the absence of any prediction with full top mass dependence be-

yond the LO, one can only rely on approximated results in order to estimate the associated

uncertainties at NNLO. The best available approximation at NLO, the FTapprox., differs

from the Born-improved NLO at O(10%) at 14 and 27 TeV, and O(15%) at 100 TeV. The

size of this difference can be a good estimation of the missing finite top mass effects, and

indeed this is the case for the double-Higgs production cross section. In order to provide

a conservative estimation, and having in mind the possibly worse situation in triple Higgs

as compared to Higgs pair production, we estimate the uncertainty of our prediction to be

of ±15% at 14 and 27 TeV, and ±20% at 100 TeV.

Given that the full dependence on the top mass is only retained at LO, it is not possible

to perform a complete analysis on the top mass scheme uncertainty (which was found to

be large at NLO in the case of double Higgs [43]). Nevertheless, a parametric variation of

the default on-shell value mt = 173.2 GeV used along this work to the correspondent one

in the MS scheme, mt(mt) = 163.6 GeV (using a three-loop conversion between schemes),

shows a decrease of about 25% in the cross section, which indicates an uncertainty in line

with the one estimated for the finite top mass effects.

Compiling all the ingredients described in the last paragraphs, we arrive therefore to

the following final prediction for the triple Higgs production cross section:

σNNLO
Best = 0.103+5%

−8% ± 15% fb, KNNLO
Best = 1.70, (14 TeV)

σNNLO
Best = 0.501+5%

−7% ± 15% fb, KNNLO
Best = 1.70, (27 TeV)

σNNLO
Best = 5.56+5%

−6% ± 20% fb, KNNLO
Best = 1.43. (100 TeV) .

5 Conclusions

In this work we presented for the first time the complete set of NNLO corrections to triple

Higgs boson production at hadron colliders in the heavy top limit. To partially retain finite

top mass effects, two different reweighting procedures have been implemented: the usual

Born-improved approximation (Bi), and a new procedure that we call dynamically Born

improved approximation (dBi). Both procedures coincide at LO, and from their difference

at higher orders we infer the dependence of the result upon the reweighting procedure.

Overall, we found that the invariant mass distribution is sensitive to the reweighting pro-

cedure only in the tail, where the cross-section is already small, while for the inclusive

cross-section the dependence on this procedure is O(1%), which falls inside the scale vari-

ation uncertainties of O(7%).

In order to provide a prediction based on the most advanced results available in the lit-

erature, we combined our dBi-reweighted NNLO results with the NLO predictions obtained
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within the FTapprox. From the differences between the available NLO approximations we es-

timated the size of the missing finite top mass effects. Based on this, our final prediction for

the triple Higgs production cross section at a 100 TeV collider is σNNLO = 5.56+5%
−6%±20% fb.
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A Real corrections

In this appendix we present the results for the corrections arising from real emission in

diagrams with more than one HTL insertion operator.

Because each HTL operator insertion carries a αs factor, tree level diagrams with

two operator insertions are already NLO, so their real radiation corrections correspond

to a single parton emission. In the same way, diagrams with three operator insertions

appear only at NNLO and their real emission corrections are of higher order, and therefore

not considered. The single real emission amplitudes present divergences when the emitted

parton becomes unresolved, some of which will cancel against the divergences present in the

corresponding loop corrections calculated in ref. [17] and the rest have to be absorbed in the

NLO evolution of the parton distribution functions. In order to perform such cancellations,

we used an FKS approach in D = 4− 2ε dimensions.

The key idea of the FKS method is to divide the phase space of the real corrections

dPS4 into soft, collinear and regular regions. To do so, we express it in terms of the LO

phase space dPS3 plus the dependence on the emitted particle

dPS4 |Mr|2 = (4π)−2+ε Γ(1− ε)
Γ(1− 2ε)

s1−ε

2π
(1− x)−1−2ε(1− y2)−1−ε dy sin−2ε φ dφ[

(1− x)2(1− y2) |Mr|2
]

dPS
(x)
3 (A.1)

whereMr is the amplitude for the real emission process we are considering, s is the invariant

mass of the incoming partons, dPS
(x)
3 is the Born phase space evaluated at s → xs and

Q2 is the invariant mass of the triple Higgs system such as x = Q2/s. The emitted parton

therefore has a momentum fraction of (1 − x)s, and we define its orientation with respect

to one of the initial partons with the azimuth φ and the cosine of the polar angle y.

With this definitions, the real radiation amplitudeMr becomes singular in the regions

x → 1 (soft) and y → ±1 (collinear). Nevertheless, the expression (1 − x)2(1 − y2) |Mr|2

is regular in both limits. This means that in eq. (A.1) we have isolated the singularities

in the terms (1 − x)−1−2ε and (1 − y2)−1−ε. To make them explicit, we use the following
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identities

(1− x)−1−2ε =
−1

2ε
δ(1− x) +

(
1

1− x

)
+

− 2ε

(
log(1− x)

1− x

)
+

+O(ε2) (A.2)

(1− y2)−1−ε = −4−ε

2ε
[δ(1− y) + δ(1 + y)] +

1

2

[(
1

1− y

)
+

+

(
1

1 + y

)
+

]
+O(ε) (A.3)

where the plus distributions are defined as usual

∫ 1

0
dx f(x) [g(x)]+ =

∫ 1

0
dx (f(x)− f(1)) g(x) (A.4)∫ 1

−1
dy f(y)

(
1

1± y

)
+

=

∫ 1

−1
dy

f(y)− f(∓1)

1± y
. (A.5)

Now that the different divergences are explicitly expressed as poles in ε, we can subtract

the infrared divergences appearing in the virtual amplitudes, and reabsorb the remaining

divergences in the factorised parton distribution functions. After doing so, we have a finite

remainder which we can write in terms of ρ
(sc)
ij (x) and ρ

(r)
ij (x, y, φ), following the notation

of eq. (3.12). The explicit expressions for each channel are given below as

ρ(sc)
gg = 2π2δ(1− x) + 12 (1− (1− x)x)2

(
2D1(x)− log(x)

1− x

)
, (A.6)

ρ(sc)
qg = ρ(sc)

gq =
4

3

(
x2 + (2 log(1− x)− log(x))(1 + (1− x)2)

)
, (A.7)

ρ
(r)
ij (x, y, φ) =

1

2πs2

∑
(kl)

Re
(
(C3H

LO)∗C2H
LO({k, l})

)
|C3H

LO |2
fij({k, l}), (A.8)

where
∑

(kl) denotes a sum over the three distinct combinations of pair of Higgs bosons

that we label {k, l}, and the f({k, l}) functions are defined for each channel as

fgg({k, l}) = G(s, tk, uk, q1, q2, skl,m
2
H) + G(s, tk, uk, q̂1, q̂2,m

2
H , skl) (A.9)

fqg({k, l}) =
−2

9
(1− x)(1 + y)Q(s, tk, uk, q1, q2, skl,m

2
H) (A.10)

fgq({k, l}) =
−2

9
(1− x)(1− y)Q(s, uk, tk, q̂2, q̂1, skl,m

2
H) (A.11)

fqq({k, l}) =
−8

27
(1− x)2(1− y2)Q(tk, s, uk, q1, q1 − q2 + skl − uk, skl,m2

H). (A.12)

The invariants entering as arguments of f are defined for each {k, l} pair. For a given

{k, l}, we call p1 and p2 the four-momenta of the incoming partons, phh = pk + pl the sum

of the four-momenta of the outgoing Higgs bosons labelled k and l, ph the four-momenta
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of the other Higgs and k the one of the emitted parton. Then we define the invariants as

s = (p1 + p2)2 = xQ2, q1 = (p1 − ph)2,

tk = (p1− k)2 = −s
2

(1− x)(1− y), q2 = (p2 − phh)2,

uk = (p2− k)2 = −s
2

(1− x)(1 + y), q̂1 = (p1 − phh)2 = m2
H − q1 − s+ skl − tk,

skl = p2
kl, q̂2 = (p2 − ph)2 = m2

H − q2 − s+ skl − uk.

(A.13)

The functions G and Q are regular in the limits x→ 1 and y → ±1. From the expressions

in equations (A.9)–(A.12) we can see explicitly that soft divergences appear only in the

gg channel, as all others fij vanish in this limit. The gg channel also shows divergent

behaviour in both collinear y → ±1 limits. The qg and gq channels only have singularities

in y → 1 and y → −1 respectively, while the qq channel is completely regular and free of

any divergences.

The analytic expressions for G and Q are

G(s, t, u, q1, q2,m
2
1,m

2
2) =

g1(s, t, u, q1, q2,m
2
1,m

2
2)

s(m2
2−q1+q2−t)

+
g2(s, t, u, q1, q2,m

2
1,m

2
2)

q1q2

+
g3(s, t, u, q1, q2,m

2
1,m

2
2)

q2tu(q1+s+t−m2
1−m2

2)
, (A.14)

Q(s, t, u, q1, q2,m
2
1,m

2
2) =

−4

t(m2
2−q2−s+m2

1−u)

×

(
m2

1s
2t+m2

2s
2t−s3t+m4

1t
2−m2

1st
2+s2t2+q2

2(s2+st+t2)

+m2
1m

2
2tu−m2

2stu−s2tu−2m2
1t

2u+st2u+m4
2u

2+m2
1tu

2

−stu2+t2u2−tu3+q2
1(s+u)2−q2(2s2t+s(m2

1t−t2−2m2
2u

−tu)+t(2m2
1t+u(m2

2−2t+u)))+q1(s2t+u(−(m2
1t)−2m2

2u

+tu)+s(m2
1t−2m2

2u+2tu)−q2(2s2−tu+s(t+2u)))

)

+
−4

tq2

×

(
m4

1t
2+q2

2(s2+st+t2)+m2
1m

2
2tu−m2

1t
2u+m4

2u
2−2m2

2tu
2

+t2u2+q2
1(s+u)2+q2(s2t+s(−(m2

1t)+2m2
2u)+t(−2m2

1t

+u(−m2
2+t+u)))−q1(u(m2

1t+2m2
2u−2tu)−s(m2

1t

−2m2
2u+2tu)+q2(2s2−tu+s(t+2u)))

)
, (A.15)
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with g1, g2 and g3 being the following polynomials:

g1(s, t, u, q1, q2,m
2
1,m

2
2) = 4m2

1q2s
3t−4q2

2s
3t+q2s

4t−4m4
1s

2t2+8m2
1q2s

2t2−4q2
2s

2t2

+m2
1s

3t2+9q2s
3t2−2s4t2−2m2

1s
2t3+12q2s

2t3−8s3t3+4q2st
4

−10s2t4−4st5+m2
1q2s

3u−q2
2s

3u+4q2s
4u+m4

1s
2tu−2m2

1q2s
2tu

−5q2
2s

2tu+2m2
1s

3tu+14q2s
3tu−8s4tu+4m2

1q2st
2u−4q2

2st
2u

+8m2
1s

2t2u+25q2s
2t2u−19s3t2u−4m4

1t
3u+8m2

1q2t
3u−4q2

2t
3u

−m2
1st

3u+11q2st
3u−24s2t3u−10st4u+9q2s

3u2+25q2s
2tu2

−12s3tu2+5m2
1st

2u2+11q2st
2u2−34s2t2u2+8m2

1t
3u2−8q2t

3u2

−19st3u2+10q2s
2u3+10q2stu

3−11s2tu3−15st2u3−4t3u3

+4q2su
4−4stu4+m4

2(s2(t−4u)u−4tu3)−q2
1(4stu2+4tu3

+s3(t+4u)+s2u(5t+4u))+m2
2(m2

1s
2t2+2s3t2+6s2t3+4st4

−8m2
1s

2tu+7s3tu+17s2t2u+10st3u+m2
1s

2u2+4s3u2+28s2tu2

−8m2
1t

2u2+19st2u2+7s2u3+15stu3+8t2u3+4su4+q1(−2s2(t

−4u)u+4stu2+8tu3+s3(t+4u))−q2(4stu2−8t2u2+s3(t+4u)

+s2(t2−8tu+u2)))+q1(8t2(m2
1−u)u2−s4(t+4u)−s3(10t2

+23tu+11u2+m2
1(4t+u))−s(4t4+10t3u+15tu3+4u4+t2u(4m2

1

+23u))−s2(10t3+30t2u+33tu2+11u3+m2
1(t2−8tu+u2))

+q2(−8t2u2+5s3(t+u)+4stu(t+u)+s2(t2+4tu+u2))), (A.16)

g2(s, t, u, q1, q2,m
2
1,m

2
2) = q2s(3s−2t)t(−(m2

1t)+q2(s+t))+(q3
2(s+t)(s+2t)

+q2
2(s2(−m2

1+s)+3s(−2m2
1+s)t+2(−3m2

1+s)t2)−2m2
1t

2(m4
1

+(s+t)2)+q2t(2s
3−s2(m2

1−9t)+2t(3m4
1+t2)+s(3m4

1−2m2
1t

+4t2)))u−2m6
2tu

2+t(2t(−m2
1+s+t)2+q2

2(3s+2t)+q2(5s2

+4t(−m2
1+t)+s(−3m2

1+10t)))u2+2t(q2(2s+t)+t(−m2
1

+2s+2t))u3+2t2u4+q3
1t(s+u)(s+2u)+q2

1(st(s2+m2
1t

−q2(2s+t))+(s2(−m2
1+q2+3s)+3s(−q2+s)t+(−2m2

1+2q2

+3s)t2)u+(s(−m2
1+q2+s)+2st+2t2)u2−2su3)+m2

2(−((q1

−q2)st(q1s+m
2
1t−q2(s+t)))−(−4q2s

3+s(6q1(q1−q2)

+(q1−5q2)s)t+(q2s+q1(−4m2
1+4q2+3s))t2)u−(q2(m2

1

−q2−7s)s+q1s(−m2
1+q2+3s)+2(m4

1+3q2
1−2m2

1q2+q2
2+q1s

−3q2s+s
2)t+4(q1+s)t2+2t3)u2+2(q1s+q2s−2t(s

+t))u3−2tu4)+q1(st(q2
2(s+t)+m2

1(4s2+7st+2t2)
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−q2(8s2+5st+t(m2
1+2t)))+s(−2q2s(−m2

1+q2+4s)+(−3m4
1

+6m2
1q2−3q2

2+5m2
1s−14q2s+2s2)t+(6m2

1−5q2+5s)t2+4t3)u

+(q2(m2
1−q2−5s)s+(2m4

1+2q2
2−5q2s+9s2−m2

1(4q2+s))t

+10st2+2t3)u2+2(−(q2s)+2t(s+t))u3+2tu4)+m4
2tu(−3q2s

−2m2
1t+2q2t+2tu+3q1(s+2u)), (A.17)

g3(s, t, u, q1, q2,m
2
1,m

2
2) = −(q3

1u(s+u)2(3t2+4su))+q3
2t(s+t)

2(4st+3u2)+q2
2(−4s4u2

+s3u(−5t2+4(m2
1+m2

2)u−10tu)+t2u2(m2
2(t−3u)+t(−6m2

1

+t+5u))+s2t(u(8m2
2t+4m2

2u−11tu+u2)+m2
1(−8t2

+4tu+5u2))+st(−(m2
1t(8t

2−4tu+u2))+u(5t3−4t2u+3m2
2u

2

+tu(5m2
2+6u))))+q2

1(q2(−3t3u2+st2u(3t+11u)+4s3(t2+2u2)

+s2u(11t2+8tu+8u2))+u(−4s4u−s3(4t2+9tu−4(m2
1

−2u)u)+t2u(u(−7t+u)+3m2
1(t+u))−s2(5t3+7t2u+16tu2

+4u3+m2
1(−3t2+4tu−8u2))+2m2

2(s+u)(2s2u+5t2u+s(t2

+6u2))+s(−(tu(12t2+2tu+7u2))+m2
1(−3t3+6t2u+4tu2

+4u3))))+u(m6
2u(−(st2)+4t2u+4su2)+m2

2t(s
3(4m2

1t+u(t

+5u))+s2(m2
1(6t2+4tu−9u2)+u(5t2+10tu+3u2))

+tu(4m4
1t+2t(3t−u)u+m2

1(−3t2+2tu+5u2))+s(tu(7t2

+5tu+u2)+m4
1(t2+6tu+4u2)+m2

1(3t3+5t2u−3tu2

−3u3)))+m4
2(−(s2u2(5t+4u))+t2u(u(−9t+u)+4m2

1(t

+u))+s(−(tu(2t2+4tu+7u2))+m2
1(t3−t2u+4tu2+4u3)))

−t2(4m2
1s

4+s3(−4m4
1+u(t+5u)+m2

1(11t+5u))+s2(m4
1(−7t

+u)+m2
1(11t2+16tu−4u2)+u(5t2+5tu−u2))+(−m2

1

+t)u(t(t−u)u+m2
1(t2+7tu+4u2))+s(−6m6

1u+tu(4t2+tu

−2u2)−m4
1(4t2+6tu+u2)+m2

1(4t3+9t2u+8tu2+5u3))))

+q2(8s5tu+s4tu(−8m2
1−8m2

2+29t+25u)−s3u(t(21m2
1t

−52t2+17m2
1u−76tu−23u2)+m2

2(20t2+25tu+8u2))

+tu(3m4
1t

2u−m4
2tu(4t+u)−2m2

1(2t4+4t3u+8t2u2

+5tu3+2u4)+t(4t4+11t3u+18t2u2+14tu3+4u4)−m2
2(4t4

+7t3u+4u4+tu2(−3m2
1+14u)+t2u(5m2

1+17u)))−s2u(m4
2(t2

−8u2)+t(−45t3+4m4
1u−103t2u−63tu2−12u3+m2

1(26t2
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+27tu+17u2))+m2
2(m2

1(t2+4tu−8u2)+t(29t2+66tu+29u2)))

+st(m4
1t(4t

2−4tu−13u2)−m2
1u(19t3+22t2u+28tu2

+10u3+m2
2(t2+4tu+3u2))+u(18t4+57t3u+58t2u2+29tu3

+4u4−m4
2(t2−14tu+4u2)−m2

2(13t3+56t2u+35tu2

+11u3))))−q1(q2
2(−3t2u3+stu2(11t+3u)+4s3(2t2+u2)

+s2t(8t2+8tu+11u2))−q2(8s4u(t+u)+s3u(29t2+39tu

+8u(−m2
1−m2

2+u))+tu(4t4+8t3u+4u4+tu2(−3m2
1

+m2
2+14u)+t2u(3m2

1+7m2
2+18u))+stu(−3m2

1t
2+17t3

+14m2
1tu+53t2u+3m2

1u
2+37tu2+11u3−2m2

2(t2+13tu

−2u2))+s2(4tu(10t2+17tu+7u2)−2m2
2u(5t2+2tu+8u2)

+m2
1(8t3−7t2u−tu2−8u3)))+u(m4

2(11t2u2−s2(t2−8u2)

+s(5t2u+12u3))−m2
2(s3u(5t+8u)+t2u(2(8t−u)u−7m2

1(t+u))

+s2(t3+8t2u+21tu2+8u3+m2
1(t2+4tu−8u2))+s(tu(15t2

+6tu+14u2)+2m2
1(t3−3t2u−4tu2−4u3)))+t(s4(t

+5u)+s3(3m2
1t+3t2−m2

1u+6tu+8u2)+s2(2t3−4m4
1u

+8t2u+12tu2+3u3+4m2
1(2t2+2tu−3u2))+tu(3m4

1t

+t(5t−2u)u+m2
1(−2t2+3tu+5u2))+s(tu(10t2+3tu+u2)

+m4
1(−3t2+6tu+4u2)+m2

1(7t3+3t2u−2tu2−3u3))))). (A.18)
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