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1 Introduction

F-theory [1–3] is compactified on manifolds that admit a torus fibration. Axiodilaton in

type IIB superstrings and the modular parameter of elliptic curves as fibers of the torus

fibration are identified in F-theory, enabling the axiodilaton to exhibit SL2(Z) monodromy.

In recent years, F-theory compactifications on genus-one fibrations without a global

section have attracted interest, for reasons including the discrete gauge group1 arising in

this type of compactification [19] of F-theory.

There are situations in which a genus-one fibration has a global section and in which it

does not have a global section; when a genus-one fibration does not have a global section, a

discrete gauge group forms in F-theory on this fibration, as mentioned. Recent discussions

of F-theory on genus-one fibrations without a global section can be found, for example,

in [19–45].2 When a genus-one fibration has a global section (in which case, the fibration is

often called an elliptic fibration3 in the F-theory literature), the U(1) gauge group forms in

F-theory if the fibration has two or more independent global sections. The global sections

of an elliptic fibration form a group, known as the Mordell-Weil group, which has the

notion of “rank.” The rank of the Mordell-Weil group is given by one less the number

of independent global sections. The rank of the Mordell-Weil group gives the number of

U(1)s arising in F-theory on the elliptic fibration [3].

A genus-one fibration lacking a global section still has a “multisection,” and whereas a

global section (which can be seen as a “horizontal” divisor) intersects a fiber (which can be

1See, e.g., [4–18] for recent progress of discrete gauge groups.
2[46, 47] discussed F-theory on genus-one fibrations without a global section.
3See, e.g. [48–76] for discussions of F-theory on elliptic fibrations with a global section.
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seen as a “vertical” divisor) at one point, a multisection of “degree n,” or more concisely,

an “n-section,” intersects a fiber in n points. A discrete Zn gauge group forms in F-theory

on a genus-one fibration with an n-section [19].4

In the moduli of the n-section, an n-section deforms to split into n sheets of separate

global sections. It was argued in [19] that the physical viewpoint of this process reverses

the geometric order and can be interpreted as a Higgsing process wherein U(1)n−1 breaks

down into a discrete Zn gauge group.

However, there are various other manners in which a multisection splits into multi-

sections of smaller degrees in the moduli of multisection geometry. When studying these,

physically unnatural phenomena are identified [44, 45]. Under certain conditions, a four-

section splits into a pair of bisections [34, 44]. When one considers the process [44] wherein

a four-section splits into a pair of bisections, and these bisections further split into four

global sections, when seen from the physical viewpoint, U(1)3 breaks into a discrete Z2

gauge group, and this discrete Z2 gauge group transitions further to a discrete Z4 gauge

group via Higgsing. It was pointed out in [44] that this process appears unnatural because

a discrete Z2 gauge group appears “enhanced” to a discrete Z4 gauge group, rather than

broken down into another discrete gauge group of a smaller degree. In contrast, another

puzzling physical phenomenon was observed in [45], wherein an n-section (with n ≥ 3)

splits into a global section and an (n − 1)-section. This process can be viewed from the

physical viewpoint as a Higgsing process wherein an F-theory model without a discrete or

U(1) gauge group transitions to another model with a discrete Zn gauge group, and this

also appears puzzling [45].

It was proposed in [45] that if one interprets a gauge group to be enhanced to a

larger gauge symmetry at the points in the multisection geometry where a multisection

splits into multisections of smaller degrees, these apparently puzzling phenomena can be

naturally explained. This proposal includes a situation in which a discrete Z2 gauge group

is enhanced to U(1)× Z2 [45].5

The aim of this note is to examine whether the proposal in [45] to resolve the puzzle

pointed out in [44] is consistent along bisection geometry loci in a four-section geometry.

We focus on six-dimensional F-theory compactifications to test the proposal. We confirm

in section 3.1 that a discrete Z2 gauge group actually expands and U(1) also forms in

F-theory along any bisection geometry locus in a four-section geometry, realized as the

complete intersections of two quadrics in P3 fibered over any base space. Furthermore,

we demonstrate that the Higgsing process giving vacuum expectation values (vevs) to

hypermultiplets breaks the enlarged U(1) × Z2 group down to a discrete Z4 gauge group,

thus confirming that the proposal given in [45] indeed occurs along the bisection geometry

loci in the four-section geometry, when the base spaces are isomorphic to P1 × P1 and P2.

These observations can support, at least to some degree, the proposal in [45].

4When F-theory is compactified on a Calabi-Yau genus-one fibration Y , the discrete gauge group arising

in this compactification is identified with the discrete part of the “Tate-Shafarevich group,” X(J(Y )), of

the Jacobian, J(Y ) [19, 47].
5See also, e.g., [22, 39, 77] for discussions of F-theory models in which both U(1) and a discrete gauge

symmetry form.
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Points in the moduli of multisection geometry on which both U(1) and discrete gauge

groups form simultaneously are relevant to the physically puzzling phenomena noted

in [44, 45], and studying models in which both U(1) and discrete gauge groups form can be

useful in checking the consistency of the proposal in [45] to resolve the puzzles. Motivated

by this background, we also construct a family of F-theory models in which U(1) × Z4

forms in section 4.

The number of U(1) arising in F-theory on a genus-one fibration lacking a global section

is given by the Mordell-Weil rank of its Jacobian fibration6,7 [20], whose types of singular

fibers and the discriminant locus are identical to those of the original genus-one fibration.

We consider in this study Calabi-Yau four-section geometry built as complete inter-

sections of two quadrics in P3 [26, 34, 44] fibered over any base. This approach has several

advantages. One of the advantages of this approach is that the four-section geometry real-

ized in this fashion contains a bisection geometries locus [34, 44, 45]. Another advantage

is that one can construct the associated double cover of four-section geometry realized as

a complete intersection. It can be determined when the Mordell-Weil rank of the Jacobian

increases to one by studying the coefficients of this associated double cover [19].

Recent model buildings of F-theory emphasized the use of local model buildings [79–82].

Global aspects of models, however, need to be studied to address the issues of early universe

including inflation and the issues of gravity. The compactification geometries are analyzed

from the global perspective here.

We present a summary of the results obtained in this work in section 2. We show in

section 3.1 that a discrete Z2 gauge group expands and is enhanced to U(1) × Z2 along

every bisection geometry locus in the four-section geometry, constructed as complete in-

tersections of two quadrics fibered over any base. In section 3.3, we demonstrate that the

expanded U(1)×Z2 breaks down to a discrete Z4 gauge group via Higgsing by giving vevs

to hypermultiplets, when the base surfaces are isomorphic to P1 × P1 and P2.

We briefly discuss an example of the construction of six-dimensional F-theory models,

in which the U(1)× Z4 gauge group forms, in section 4. We state our concluding remarks

and open problems in section 5.

2 Summary of the discussion

As pointed out in [44, 45], physically puzzling phenomena can be observed when some

splitting processes in the multisection geometry are analyzed. It was proposed in [45] that

an interpretation that a (discrete) gauge group tends to enlarge at such points in the moduli

where multisections split into multisections of smaller degrees, which can naturally explain

the puzzling phenomena.

We demonstrate in section 3.1 that along any bisection geometries locus in the four-

section geometry realized as complete intersections of two quadratic hypersurfaces in P3

6The relation of the moduli of genus-one fibrations and those of the Jacobian fibrations and Weierstrass

models was discussed in [19] in the context of F-theory.
7Construction of the Jacobians of elliptic curves is discussed in [78].
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fibered over any base space, U(1) × Z2 forms. This confirms that the proposal [45] of the

puzzle raised in [44] is consistent when a four-section is split into a pair of bisections.

The geometric aspects of the constructions we describe in sections 3.1, 3.2 and 4 do

not depend on the dimension of the space. Our argument particularly applies both to

six-dimensional (6D) and four-dimensional (4D) F-theory models, at least at the geomet-

rical level. However, when one considers four-dimensional F-theory models, the issues of

flux [83–87],8 including the effect of the superpotential that it generates, also need to be

considered [19]. To this end, we mainly focus on 6D F-theory models in this note9 to dis-

cuss F-theory models with U(1)×Z2 and U(1)×Z4 gauge groups in relation to transitions

in discrete gauge groups. We do not discuss the effects of flux in this study.

In this study, we consider, as four-section geometry [26, 34, 44], the complete intersec-

tion of two quadric hypersurfaces in P3 fibered over any base space. The general form of

this type of complete intersection is given by the following equation:

a1x
2+a2 y

2+a3 z
2+a4w

2+2a5xy+2a6xz+2a7xw+2a8 yz+2a9 yw+2a10 zw= 0 (2.1)

b1x
2+b2 y

2+b3 z
2+b4w

2+2b5xy+2b6xz+2b7xw+2b8 yz+2b9 yw+2b10 zw= 0.

[x : y : z : w] gives the coordinates of P3, and ai and bj , i, j = 1, . . . , 10, are sections of

line bundles10 over the base. For these complete intersections, a method to construct the

Jacobian fibration is known [20, 44]. This method is described in [20, 44]. The construction

of the Jacobian11 consists of two steps: one can build the associated double cover of a

quartic polynomial from the complete intersection, and this double cover is generally a

bisection geometry [19, 20]. The associated double cover can be expressed as follows:

τ2 = e0λ
4 + e1λ

3 + e2λ
2 + e3λ+ e4. (2.2)

The Jacobian fibration of the double cover is known [19, 20], and the resulting Jacobian of

the double cover yields the Jacobian fibration of the original complete intersection.

When either the constant term e4 or the coefficient e0 of λ4 of the double cover is a

perfect square, the double cover admits two global sections [19]. In this case, the double

cover yields the Jacobian of the complete intersection and it has Mordell-Weil rank is

one. Therefore, to demonstrate that along a bisection geometries locus in the four section

geometry a discrete Z2 gauge group enlarges and U(1) also forms, it suffices to compute the

associated double cover and confirm that either of the coefficients e0 or e4 is a perfect square.

We demonstrate in section 3.1 that the equation of every bisection geometry locus in

the four-section geometry (2.1), built as the complete intersections of two quadrics in P3

fibered over any base, admits a transformation to a certain form of complete intersection.

8Recent progress of F-theory compactifications with four-form flux can be found, for example,

in [28, 88–100].
9Genus-one fibration structures of 3-folds are analyzed in [101–103].

10These are subject to the conditions, so when the Jacobian fibration is taken, the Weierstrass form of

which is y2 = x3 +f x+g, then [f ] = −4K, [g] = −6K, to ensure that the total space yields the Calabi-Yau

genus-one fibration, as described in [44]. (K denotes the canonical divisor of the base space.)
11[26] also discussed a method to construct the Jacobian fibrations of genus-one fibrations built as the

complete intersections. We take a different approach here.
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We then confirm that the Jacobian of this specific form of complete intersection describing

a bisection geometry locus has the Mordell-Weil rank one. This shows that U(1)×Z2 forms

in F-theory along any bisection geometry locus in the four-section geometry (2.1).

We find that, when some of the parameters of the quadrics of the complete intersections

are set to zero along the bisection geometry locus, the U(1) gauge group is enhanced to

SU(4)× SU(2)× SU(2)× SU(2). This is discussed in section 3.2.

We demonstrate in section 3.3 that giving vevs to hypermultiplets breaks U(1) × Z2

that forms along the bisection geometry loci in the four-section geometry down to a discrete

Z4 gauge group via Higgsing.

We deduce the matter spectra on F-theory on the bisection geometry locus when the

gauge group is enhanced to SU(4)×SU(2)×SU(2)×SU(2)×Z2. We focus on the situations

where the base surfaces are isomorphic to P1 × P1 and P2. The curve in the base surface

supporting the SU(4) gauge group has positive genus; the genus is 9 when the base is

isomorphic to P1 × P1, and the genus of the curve is 10 when the base is isomorphic

to P2. From these facts, it follows that the adjoint12 hypermultiplets 15 arise on the

curve supporting SU(4). We also determine the matter fields localized at the intersections

of the curves supporting SU(2) factors and the curve supporting SU(4). The deduced

matter spectra satisfy the 6D anomaly cancellation conditions [104–109]. Giving vevs to

hypermultiplets breaks SU(4) × Z2 to U(1) × Z2. The remaining adjoint hypermultiplets

15 become scalar fields with U(1) charge 4 through this Higgsing process. Giving vev to

one of these scalar fields breaks the U(1) gauge group down to a discrete Z4 gauge group.

This mechanism explains how the U(1) × Z2 gauge group breaks down to a discrete Z4

gauge group via Higgsing.

As noted in the introduction, this result can support to some degree the interpretation

proposed in [45] to possibly resolve the puzzle in [44], when a four-section is split into a

pair of bisections.

We provide in section 4 an example of a family on which U(1)×Z4 forms in F-theory.

Models with U(1) × Z4 can be relevant to the situation where a multisection splits into

multisections including a four-section.

3 Six-dimensional F-theory models with U(1)×Z2 and transitions to Z4

through Higgsing

3.1 Expansion of a discrete gauge group in bisection geometry loci in four-

section geometry

Complete intersection of two quadrics in P3 fibered over a base space:

a1x
2+a2 y

2+a3 z
2+a4w

2+2a5xy+2a6xz+2a7xw+2a8 yz+2a9 yw+2a10 zw= 0 (3.1)

b1x
2+b2 y

2+b3 z
2+b4w

2+2b5xy+2b6xz+2b7xw+2b8 yz+2b9 yw+2b10 zw= 0

12[19] discussed adjoint hypermultiplets of SU(2) on the curves of positive genus supporting SU(2) gauge

group in 6D F-theory with SU(2)× SU(2) gauge group on bisection geometries.
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yields a four-section geometry [26, 44]. ai, bj are sections of line bundles, subject to certain

conditions, so the genus-one fibration yields a Calabi-Yau manifold [44] as previously noted

in section 2. [x : y : z : w] are the coordinates of P3.

We now show that when a four-section in the complete intersection splits into a pair of

bisections, the equation (3.1) reduces to a specific form. A four-section splits into bisections,

precisely when one of the two quadrics in the complete intersection (3.1) splits into linear

factors along the vanishing of a certain linear equation. After some change of coordinate

variables, one can assume that one of the two quadrics in the complete intersection (3.1)

reduces to xy along the vanishing of a certain linear equation. Therefore, a four-section

splits into bisections when one of the two quadrics in the complete intersection (3.1) takes

the form: αxy+(ax+ by+ cz+dw)(ex+fy+gz+hw) = 0. Under a change of coordinate

variables, one can replace ax+ by + cz + dw with z; therefore, we learn that any bisection

geometries locus in the four-section geometry (3.1) admits a transformation to the complete

intersection of the following form:

2a5xy+z (2a6x+2a8 y+a3 z+2a10w) = 0 (3.2)

b1x
2+b2 y

2+b3 z
2+b4w

2+2b5xy+2b6xz+2b7xw+2b8 yz+2b9 yw+2b10 zw= 0

{x = 0, z = 0} and {y = 0, z = 0} yield bisections.

Now, we compute the associated double cover of the bisection geometries locus (3.2).

One subtracts λ times the first equation from the second equation, and one arranges the

coefficients of the resulting equation into a 4 × 4 symmetric matrix. (λ serves as a variable.)

Taking the double cover of the determinant of this symmetric matrix, one arrives at the

equation of the associated double cover [20, 44]. The resulting associated double cover is

given by

τ2 =

∣∣∣∣∣∣∣∣∣
b1 b5 − λa5 b6 − λa6 b7

b5 − λa5 b2 b8 − λa8 b9
b6 − λa6 b8 − λa8 b3 − λa3 b10 − λa10

b7 b9 b10 − λa10 b4

∣∣∣∣∣∣∣∣∣ . (3.3)

| · | on the right-hand side means to take the determinant of the matrix. Expanding the

determinant on the right-hand side, we find that the term e0 of τ2 = e0λ
4 + e1λ

3 + e2λ
2 +

e3λ + e4 is a perfect square: e0 = a25 a
2
10. Thus, the double cover (3.3) actually has two

global sections [19], and therefore yields the Jacobian of the complete intersection (3.2).

Because the Jacobian (3.3) has two global sections, the Mordell-Weil rank is one, and we

deduce that U(1)× Z2 forms in F-theory on the bisection geometries locus (3.2).

Because we demonstrated that every bisection geometries locus in the four-section

geometry (3.1) admits a transformation13 to the complete intersection (3.2), we learn from

these computations that U(1)× Z2 forms in F-theory on any bisection geometries locus in

the four-section geometry (3.1).

13Under transformation x → x + i y and y → x− i y, one can confirm that the bisection geometries loci

considered in [34, 44] admit transformation to the complete intersections of the form (3.2).
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3.2 Enhancement of U(1) to SU(4) × SU(2) × SU(2) × SU(2)

Now, we would like to demonstrate that when some of the coefficients of the bisection

geometry locus are set to zero, the U(1) gauge group is enhanced to SU(4) × SU(2) ×
SU(2)× SU(2). We begin with the complete intersections of two quadrics, given by:

a1 (x2+z2)+y (2a5x+a2 y+2a8 z+2a9w) = 0 (3.4)

b1x
2+b2 y

2+b3 z
2+b4w

2+2b5xy+2b6xz+2b7xw+2b8 yz+2b9 yw+2b10 zw= 0

The four-section splits into a pair of bisections in these complete intersections. By an

argument similar to that we noted in the footnote 13, under the transformation x→ x+ z,

z → i (x − z) (followed by an exchange of the coordinates (y, z) → (z, y)), the complete

intersections (3.4) transform to those in the bisection geometry locus (3.2). {x + i z =

0, y = 0} and {x − i z = 0, y = 0} yield bisections. U(1) × Z2 forms in 6D F-theory on

the complete intersections (3.4).

Next, we consider the situation where the coefficients a2, a5, a8, b1, b3, b5, b7, b8, b9, b10
are set to zero. That is, we consider the complete intersection of the following form:

a1 (x2 + z2) + 2a9 yw = 0 (3.5)

b2 y
2 + b4w

2 + 2b6 xz = 0.

For the sake of notation clarity, we rename the coefficients a1, a9, b2, b4, b6 as f1, f2, h1, h2, h3,

respectively, as follows:

f1 (x2 + z2) + 2f2 yw = 0 (3.6)

h1 y
2 + h2w

2 + 2h3 xz = 0.

As we will see shortly, SU(4) × SU(2)× SU(2)× SU(2)× Z2 forms in 6D F-theory on the

complete intersection (3.6).

The associated double cover of the complete intersection (3.6) is given as follows:

τ2 =

∣∣∣∣∣∣∣∣∣
−λf1 0 h3 0

0 h1 0 −λf2
h3 0 −λf1 0

0 −λf2 0 h2

∣∣∣∣∣∣∣∣∣ (3.7)

= −f21 f22 λ4 + (f21h1h2 + f22h
2
3)λ

2 − h1h2h23.

The discriminant is given by

∆ ∼ f21 f22h1h2h23 (f21h1h2 − f22h23)4. (3.8)

Because the coefficient e0 of the term λ4 is a perfect square, e0 = −f21 f22 , the obtained

associated double cover, has a global section [19]; thus, the double cover (3.7) yields the

Jacobian fibration of the complete intersection (3.6). When the coefficient e1 of the term

λ3 is nonzero, the double cover has two global sections and U(1) forms in F-theory on the

– 7 –
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double cover [19]. For our case (3.7), the coefficient e1 is zero, e1 = 0, and U(1) is enhanced

to SU(2), as discussed in [45].

The associated double cover (3.7) admits a transformation to the following Weierstrass

equation:

y2 = x3 +

(
−1

3
f42h

4
3 −

14

3
f21 f

2
2h1h2h

2
3 −

1

3
f41h

2
1h

2
2

)
x

+

(
− 2

27
f61h

3
1h

3
2 +

22

9
f41 f

2
2h

2
1h

2
2h

2
3 +

22

9
f21 f

4
2h1h2h

4
3 −

2

27
f62h

6
3

)
.

(3.9)

From the discriminant (3.8), one can find that the 7-branes are wrapped on the following

curves:

C1 = {f21h1h2 − f22h23 = 0} (3.10)

C2 = {f1 = 0}
C3 = {f2 = 0}
C4 = {h3 = 0}
C5 = {h1 = 0}
C6 = {h2 = 0}.

From the equations (3.8) and (3.9), it is clear that the singular fibers over the curve C1 are

type I4, and the singular fibers over the curves C2, C3 and C4 are type I2. The fiber type

over the curves C5 and C6 is I1.

Using an argument similar to that given in A.1 in [34], it is clear that the type I4 fibers

over the curve C1 are split [110]. The SU(4) gauge group forms on the 7-branes wrapped

on the curve C1, and the SU(2) gauge group is supported on the three curves C2, C3, C4.

Therefore, the SU(4)× SU(2)× SU(2)× SU(2)×Z2 gauge group forms in F-theory on the

complete intersection (3.6).

3.3 Transition from U(1) × Z2 theory to Z4 via Higgsing

We demonstrate that the SU(4) × Z2 gauge group in F-theory on the complete intersec-

tion (3.6) transitions to U(1) × Z2, and further transitions to a discrete Z4 gauge group

through Higgsing processes. We deduce the matter spectrum in 6D F-theory on the com-

plete intersection (3.6) and show that this transition of the gauge group indeed occurs

by giving vevs to hypermultiplets. We focus on the situations where the base surface is

isomorphic to P1 × P1 and P2. (The results obtained in section 3.1 and 3.2 hold for any

base surface, when the degrees of the line bundles, sections of which yielding the coef-

ficients of the complete intersections, are appropriately chosen to satisfy the Calabi-Yau

condition [44].)

3.3.1 Case base is isomorphic to P1 × P1

We choose f1, f2, h1, h2, h3 to be polynomials of bidegree (1,1) on P1×P1. This amounts to

regarding the equation (3.6) as a (2,1,1) and (2,1,1) complete intersection in the product

– 8 –
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P3 × P1 × P1, yielding a Calabi-Yau 3-fold. The natural projection onto P1 × P1 yields a

genus-one fibration.

Because a bidegree (a, b) curve has genus (a − 1)(b − 1), the curve C1 has genus

g = (4 − 1)(4 − 1) = 9. The other curves C2, C3, C4, C5, C6 have genus 0. There should

exist matter fields arising on the curve C1 contributing to the genus g = 9 because of

the anomaly equations [111]. We expect that nine adjoint hypermultiplets 15 arise on the

curve C1. Similar to that discussed in [110], considering further compactification on T 2

down to 4D theory, this agrees with the result obtained in [112].

Because the curves C2, C3, C4, C5, C6 have genus 0, only the fundamental representa-

tion 2 (or 1) can arise [19, 111] on these curves.

By studying the discriminant (3.8), it is clear that the curves supporting the SU(4) or

SU(2) gauge group intersect along:

{f1 = 0} ∩ {f2 = 0}, {f1 = 0} ∩ {h3 = 0}, {h1 = 0} ∩ {f2 = 0}, (3.11)

{h1 = 0} ∩ {h3 = 0}, {h2 = 0} ∩ {f2 = 0}, {h2 = 0} ∩ {h3 = 0},
{f2 = 0} ∩ {h3 = 0}.

Matter fields are localized at these intersections. Because two bidegree (1,1) curves intersect

at two points, each of the seven intersections in (3.11) consists of two points. The curve C1

supporting SU(4) and another curve supporting SU(2) intersect for the first six intersections

in (3.11). The last intersection in (3.11) is the intersection of the curves C3 and C4 at two

points. A bifundamental (2,2) arises at each of the two intersection points of C3 and C4.

A symmetry argument suggests that the identical matter representations arise from

the four points in the intersections {f1 = 0} ∩ {f2 = 0}, {f1 = 0} ∩ {h3 = 0}; similarly,

the identical matter arises from the eight points in the intersections {h1 = 0} ∩ {f2 = 0},
{h1 = 0} ∩ {h3 = 0}, {h2 = 0} ∩ {f2 = 0}, {h2 = 0} ∩ {h3 = 0}.

Because the base is isomorphic to P1 × P1, the number of tensor multiplets arising

in 6D F-theory is T = 1, and H − V = 273 − 29 = 244 by the 6D anomaly cancellation

condition [104–109]. The non-Abelian gauge group forming in 6D F-theory compactification

is SU(4)×SU(2)×SU(2)×SU(2); thus, V = 24. Therefore, the number of hypermultiplets

should be H = 268 to cancel the anomaly. There are nine adjoint hypermultiplets 15 of

SU(4) on the curve C1, and two bifundamentals (2,2) localized at the intersections of C3

and C4. To cancel the anomaly, it appears a unique choice that the matter representations

have 12 dimensions at each of the four points at the intersections {f1 = 0} ∩ {f2 = 0},
{f1 = 0}∩ {h3 = 0}, and have 8 dimensions at each of the eight points at the intersections

{h1 = 0}∩{f2 = 0}, {h1 = 0}∩{h3 = 0}, {h2 = 0}∩{f2 = 0}, {h2 = 0}∩{h3 = 0}. Matter

at each of the four points at the intersections {f1 = 0} ∩ {f2 = 0}, {f1 = 0} ∩ {h3 = 0}
is either 6 ⊕ 6 or (6,2),14 and matter at each of the eight points in the intersections

{h1 = 0} ∩ {f2 = 0}, {h1 = 0} ∩ {h3 = 0}, {h2 = 0} ∩ {f2 = 0}, {h2 = 0} ∩ {h3 = 0}
14The possibility that the 12-dimensional matter representation is 10 ⊕ 2 is ruled out because of the

anomaly cancellation condition. Matter 10 of SU(4) contributes to the genus [111] of the curve C1 if it

arises on the curve; however, there are nine adjoint hypermultiplets 15 on the curve C1 as we mentioned

previously. Therefore, the presence of 10 violates the anomaly cancellation conditions.
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is either (4,2) or 4 ⊕ 4. Including the neutral hypermultiplets, one can confirm that the

anomaly cancels with these matter.

Turning on vevs for hypermultiplets breaks SU(4)×Z2 gauge group down to U(1)×Z2.

Adjoint hypermultiplets 15 of SU(4) are used for Higgsing SU(4) gauge group down to U(1),

and the remaining adjoint hypermultiplets become scalar fields of U(1) charge 4,15 along

the line of arguments as in [19].

A discrete Z2 gauge group that forms in F-theory on the bisection geometry is un-

Higgsed to U(1) at the special points in the bisection geometry moduli where a bisection

splits into two global sections [19]. This U(1) becomes further enhanced to SU(2) in 6D F-

theory compactifications [19, 112]. Therefore, we can consider the unHiggsing of Z2 gauge

group contained in SU(4) × SU(2)× SU(2)× SU(2)× Z2 gauge group in the 6D F-theory

model (3.6) to SU(2). Reversing the order, there is a Higgsing process of SU(2) breaking

down into Z2 gauge group. As we discussed previously, the base surface of the 6D F-theory

model on the complete intersection (3.6) contains three curves supporting SU(2) factors.

We choose one of the curves, and we consider the product of SU(2) factor that the chosen

curve supports with the SU(2) breaking down into discrete Z2 gauge group via Higgsing.

Let us choose curve C2 in (3.10), and we denote the curve supporting SU(2) that breaks

down into the Z2 gauge group by D. We take the product, SU(2) × SU(2), of two SU(2)s

supported on the curves C2 and D. There are the adjoints of SU(2) on the curve D, and

fundamentals are localized at the intersections of the curves C2 and D [19]. SU(2) is Hig-

gsed to a discrete Z2 gauge group by giving vevs to adjoint hypermultiplets of SU(2), and

the localized fundamentals become fields charged under the Z2 gauge group [19]. Applying

this argument to Higgsing of SU(4)×SU(2) down to SU(4)×Z2, we learn that the adjoints

of SU(4) include those charged under the Z2.

Giving vevs to adjoint hypermultiplets of SU(4) that are also charged under the Z2,

SU(4)×Z2 is Higgsed to U(1)×Z2, and adjoints of SU(4) become scalars of U(1) of charge

4 that are also charged under the Z2 gauge group. One of the resulting scalar fields of

U(1) charge 4 can be used to Higgs the U(1) × Z2 further down to a discrete Z4 gauge

group. Since the scalar field has a Z2 charge, the discrete Z2 group is completely broken

in this process.

3.3.2 Case base is isomorphic to P2

We choose f1, f2 to be polynomials of degree two on P2, and h1, h2, h3 to be polynomials

of degree one on P2 here. The equation (3.6) is (2,2) and (2,1) complete intersection in

P3 × P2 for this situation, yielding a Calabi-Yau 3-fold. The natural projection onto P2

yields a genus-one fibration.

In this situation, because the curve C1 has degree 6, C1 has genus g = 1
2(6−1)(6−2) =

10. We expect that there are ten adjoint hypermultiplets of SU(4) on the curve C1. The

other curves, C2, C3, C4, C5, C6, have genus 0. The two curves C3 and C4 intersect at two

points, and a bifundamental (2,2) arises at each of the two points.

15To read the charges of the resulting scalar fields, we consider the embedding of gauge groups: SU(4) ⊃
SU(3)×U(1). The decomposition of the adjoints of SU(4) under this embedding includes 34 (and 3−4) [113].

Therefore, the adjoints of SU(4) become charge 4 scalar fields when SU(4) breaks down into U(1).
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Matter fields are localized at the intersections of the curves (3.11). C1 supporting SU(4)

intersects with other curves at the first six intersections in (3.11), and the last intersection

in (3.11) is the intersection of the two curves C3 and C4.

Because the base is isomorphic to P2, the number of tensor multiplets arising in 6D

F-theory is T = 0. The 6D anomaly cancellation condition is then H−V = 273; therefore,

the anomaly cancellation condition reads H = 297. Utilizing an argument similar to that

given in section 3.3.1, it is clear that matter representations arising from the six points at

the intersections {f1 = 0} ∩ {f2 = 0}, {f1 = 0} ∩ {h3 = 0} should be identical. Similarly,

the identical matter arises from the six points at the intersections {h1 = 0} ∩ {f2 = 0},
{h1 = 0} ∩ {h3 = 0}, {h2 = 0} ∩ {f2 = 0}, {h2 = 0} ∩ {h3 = 0}. When the matter

representation of 12 dimensions arise from the six points in {f1 = 0} ∩ {f2 = 0}, {f1 =

0} ∩ {h3 = 0} and matter of 8 dimensions arise from the six points in {h1 = 0} ∩ {f2 = 0},
{h1 = 0} ∩ {h3 = 0}, {h2 = 0} ∩ {f2 = 0}, {h2 = 0} ∩ {h3 = 0}, the anomaly cancels,

including the neutral hypermultiplets. The dimensions of matter representations arising

from the twelve intersection points appear to be unique. Matter localized at each of the six

points at the intersections {f1 = 0}∩{f2 = 0}, {f1 = 0}∩{h3 = 0} is either 6⊕6 or (6,2),

and matter localized at each of the six points at the intersections {h1 = 0} ∩ {f2 = 0},
{h1 = 0} ∩ {h3 = 0}, {h2 = 0} ∩ {f2 = 0}, {h2 = 0} ∩ {h3 = 0} is either (4,2) or 4⊕ 4.

The SU(4) × Z2 gauge group is Higgsed to U(1) × Z2 by turning on vevs for hyper-

multiplets, and adjoint hypermultiplets 15 of SU(4) are used to break the gauge group in

this process. The remaining adjoint hypermultiplets 15 become scalar fields of U(1) charge

4, one of which having a Z2 charge can be used to Higgs the U(1) down to a discrete Z4

gauge group. The Z2 in U(1)×Z2 is completely broken in this process. An argument sim-

ilar to that given in section 3.3.1 reveals that the adjoints of SU(4) include those charged

under the Z2.

4 Construction of models with U(1) × Z4

If we can construct complete intersections of two quadrics in P3 fibered over a base whose

Jacobians have the Mordell-Weil rank one, this yields a family of Calabi-Yau genus-one

fibrations on which U(1)×Z4 forms in F-theory, and it suffices to check either the coefficient

e0 or e4 of the associated double cover is a perfect square to achieve this construction. We

present an explicit example of such a family here.

The coefficients e0 and e4 of the associated double cover of complete intersection of

the general form (3.1) are not perfect squares, so some specific coefficients of the complete

intersection need to be chosen.

To this end, we choose the following specific complete intersection:

a1 x
2 + a2 y

2 + a3 z
2 + a4w

2 + 2a6 xz + 2a9 yw = 0 (4.1)

b1 x
2 + b2 y

2 + b1 z
2 + b2w

2 + 2b2 xz + 2b1 yw = 0

This is a four-section geometry, and as we demonstrate shortly, the associated double cover

of this complete intersection has two global sections.
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The associated double cover is given by the following equation:

τ2 =

∣∣∣∣∣∣∣∣∣
b1 − λa1 0 b2 − λa6 0

0 b2 − λa2 0 b1 − λa9
b2 − λa6 0 b1 − λa3 0

0 b1 − λa9 0 b2 − λa4

∣∣∣∣∣∣∣∣∣ . (4.2)

Expanding the determinant on the right-hand side, we find that the term e4 of τ2 =

e0λ
4 + e1λ

3 + e2λ
2 + e3λ+ e4 is a perfect square, e4 = −(b21− b22)2; therefore, the associated

double cover (4.2) has two global sections. Thus, the associated double cover (4.2) yields

the Jacobian fibration of the complete intersection (4.1), and the Mordell-Weil rank of the

Jacobian is one. U(1)× Z4 forms in F-theory on the complete intersections (4.1).

5 Concluding remarks and open problems

We observed in section 3.1 an expansion of a discrete gauge group along any bisection

geometry locus in four-section geometry, realized as complete intersections of two quadric

hypersurfaces in P3 fibered over any base. U(1) in U(1) × Z2 forming along the bisection

geometry locus in the four-section geometry is enhanced to SU(4)×SU(2)×SU(2)×SU(2)

when some of the coefficients of the complete intersection are set to zero, as discussed in

section 3.2. We deduced matter spectra on these enhanced 6D F-theory models. Starting

from these enhanced 6D models, by giving vevs to hypermultiplets, we demonstrated that

U(1) × Z2 theory indeed transitions to a model with a discrete Z4 gauge group through

Higgsing, when the base surfaces are isomorphic to P1 × P1 and P2. This observation can

support, at least to some level, the possible interpretation proposed in [45] that can resolve

the puzzle raised in [44]. Extending the analysis in section 3.3 to 6D F-theory models over

other base surfaces is a likely direction for future study.

When the n-section geometry also admits an m-section where m and n are coprime,

m- and n-sections generate a global section [45]. In this case, the geometry generically

is expected to have only one independent global section, and the gauge group does not

expand to include U(1) [45]. When the four-section geometry admits a trisection, because

3 and 4 are coprime, four-section and trisection generate a global section, and this situation

can be viewed as the four-section splitting into a trisection and a global section. When a

four-section splits into a trisection and a global section the fibration has no gauge group

in F-theory [45].

Determining whether an expansion of gauge group occurs in F-theory on multisection

geometries of higher degrees when the multisection splits in ways similar to a four-section

splitting into two bisections (namely when n-section splits into multisections of smaller

degrees, n1, . . . , nl, where any pair of ni, i = 1, . . . , l, is not coprime, for n > 5) remains

open [45].

It might be interesting to determine if the family (4.1) on which U(1) × Z4 forms in

F-theory constructed in section 4 belongs to some four-section geometry loci of a multi-

section geometry of higher degree. If this is the case, this would also support the proposal
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in [45]. Analyzing the Higgsing processes occurring in this geometry is a likely direction

for future study.
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[12] M. Berasaluce-González, P.G. Camara, F. Marchesano and A.M. Uranga, Zp charged branes

in flux compactifications, JHEP 04 (2013) 138 [arXiv:1211.5317] [INSPIRE].

[13] F. Marchesano, D. Regalado and L. Vazquez-Mercado, Discrete flavor symmetries in

D-brane models, JHEP 09 (2013) 028 [arXiv:1306.1284] [INSPIRE].

– 13 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(96)00172-1
https://arxiv.org/abs/hep-th/9602022
https://inspirehep.net/search?p=find+EPRINT+hep-th/9602022
https://doi.org/10.1016/0550-3213(96)00242-8
https://arxiv.org/abs/hep-th/9602114
https://inspirehep.net/search?p=find+EPRINT+hep-th/9602114
https://doi.org/10.1016/0550-3213(96)00369-0
https://arxiv.org/abs/hep-th/9603161
https://inspirehep.net/search?p=find+EPRINT+hep-th/9603161
https://doi.org/10.1016/j.nuclphysb.2007.01.018
https://arxiv.org/abs/hep-ph/0611020
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0611020
https://doi.org/10.1016/j.nuclphysb.2009.05.024
https://arxiv.org/abs/0904.2631
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2631
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1103/PhysRevD.83.084019
https://arxiv.org/abs/1011.5120
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5120
https://doi.org/10.4310/ATMP.2011.v15.n4.a7
https://arxiv.org/abs/1012.5999
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5999
https://doi.org/10.1007/JHEP09(2011)110
https://arxiv.org/abs/1106.0060
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0060
https://doi.org/10.1007/JHEP12(2011)113
https://arxiv.org/abs/1106.4169
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4169
https://doi.org/10.1016/j.nuclphysb.2012.08.008
https://arxiv.org/abs/1205.5364
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5364
https://doi.org/10.1007/JHEP09(2012)059
https://arxiv.org/abs/1206.2383
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2383
https://doi.org/10.1007/JHEP04(2013)138
https://arxiv.org/abs/1211.5317
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5317
https://doi.org/10.1007/JHEP09(2013)028
https://arxiv.org/abs/1306.1284
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1284


J
H
E
P
0
3
(
2
0
2
0
)
1
5
3

[14] G. Honecker and W. Staessens, To Tilt or Not To Tilt: Discrete Gauge Symmetries in

Global Intersecting D-brane Models, JHEP 10 (2013) 146 [arXiv:1303.4415] [INSPIRE].
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