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1 Introduction

The existence of dark matter and dark energy suggests the possible existence of a light hid-

den sector. To avoid experimental observation, the particles in this hidden sector should

have suppressed interactions with visible matter; these sectors are broadly referred to as

dark sectors. The existence of a dark sector may imply that nature exhibits new macro-

scopic forces between visible sector particles. For example the exchange of a single bosonic

particle induces a Yukawa-like potential. A multitude of experimental searches probe the

possible existence of spin-independent forces, see e.g. [1–3]. However, it is also possible that

the dominant effects of a hidden sector force could be spin-dependent. These types of forces

are more challenging to observe and relatively few experiments are designed to probe them.

Both theoretical and experimental efforts have focused primarily on Yukawa-like spin-

dependent forces that arise from the exchange of a single massive boson. Spin-dependent

forces from the axion were identified in [4]. More recently, Dobrescu and Mociou pre-

sented a dictionary between the field theoretical properties of new bosons and the types

of spin-dependent macroscopic forces that they generate [5]. See [6] for a recent discussion

that includes contact interactions, further phenomenology, and corrections of earlier liter-

ature. Conversely, experiments have been focused on the search for Yukawa-like forces, see

e.g. [7–9].

In this manuscript we present exotic forces, with a primary focus on spin-dependent

ones. We define exotic to mean forces that are not Yukawa-like. The main goal of this

paper is to fill a gap in the literature by presenting exotic potentials generated by explicit

dark sector models.1 As a preliminary study, we systematically consider the experimen-

tal complementarity of exotic and Yukawa-like potentials from an effective field theory

perspective.

The complementarity of the exotic and Yukawa-like potentials is manifested clearly in

searches for spin-dependent forces. We point out that spin-dependent Yukawa forces have

specific properties and are not representative of the behavior of generic potentials. Because

of this, it is necessary to have a set of benchmark scenarios beyond the spin-dependent

Yukawa case to interpret and design experiments. The general aspects of effective theory

and experimental complementarity are discussed in sections 2 and 3. In sections 4–6 we

identify and examine three kinds of exotic potentials based on how they are generated in

a microscopic theory:

• Quantum: the potential is generated by particles that couple bilinearly to nucleons.

The leading contribution is generated at loop-level.

• Conformal: the potential is generated by approximately conformal dynamics.

• Emergent: the potential is generated by low-mass states that exist in the infrared

limit of the theory, analogous to pions in QCD.

These potentials are sketched in figure 1 and can serve as benchmarks for experimental

studies.
1See also [3, 10, 11] for related work on spin-independent potentials.
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Figure 1. t-channel diagrams generating long-range forces in the scenarios we consider. Shaded

regions represent strong dynamics.

2 Effective field theory

We assume that the dark sector interacts with nucleons via local effective operators. Be-

cause the relevant distance scales are longer than the inverse QCD confinement scale,

ΛQCD, it is sufficient to use a relativistic effective theory of nucleons without specifying the

microphysics of dark sector-partonic interactions.

2.1 Effective operators and potentials

The low-energy effective Lagrangian between nucleons and the dark sector is of the form

L ⊃ ONODS . (2.1)

We focus on bilinear nucleon operators ON = N̄ΓN with some Lorentz structure Γ. We

consider the following nucleon bilinears:

OS
N = N̄N OV

N = N̄γµN OT
N = N̄σµνN

OP
N = N̄iγ5N OA

N = N̄γµγ5N . (2.2)

We focus on the case where only one of these operators is active in the effective Lagrangian.

A pseudo-tensor operator N̄σµνγ5N also exists, but is redundant with the tensor operator

in the scope of our study.2 Nucleon bilinears with more complex Lorentz structures also

exist but have higher dimension, such that the ones considered here are the most impor-

tant.3 While the OS,P,V,A operators can have renormalizable couplings to spin-0 and spin-1

mediators, the tensor operator has to couple to other fields through a higher-dimensional

operator such as a gauge field strength. We remark on ultraviolet completions of this

coupling in appendix A.

The leading relativistic 2→ 2 scattering amplitude contributing to long-range potential

between nucleons N1 and N2 through operators OIN and OJN is

iMIJ ∝ 〈N1,out| OIN |N1,in〉ΣDS 〈N2,out| OJN |N2,in〉 (2.3)

2This is a consequence of the relation iγ5σµν = i
2
εµναβσαβ .

3The complexity of the Lorentz structures grows together with the dimensionality of OSMODS because

either more derivatives or a more intricate UV origin — such as higher loop diagrams — are needed to form

complex Lorentz structures.
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where I ∈ {S, V, T, P,A}. The quantity ΣDS encodes the intermediate states generated by

the dark sector operators ODS. The class of ‘exotic’ long range potential is encoded in ΣDS.

We provide non-relativistic limits of 〈Nout| OIN |Nin〉 in appendix D.

The potential between nucleons is proportional to the spatial Fourier transform of the

amplitude with respect to the exchanged three-momentum q,

VIJ(r) = − 1

4m2
N

∫
d3q

(2π)3
eiq·rMIJ . (2.4)

The non-relativistic limit is taken by keeping the leading order terms in |p|/mN , where

mN is the nucleon mass and p is the characteristic nucleon three-momentum. The cutoff

of the effective theory should in principle be taken into account when performing the

Fourier integral.4 We show in appendix B that effects from the cutoff are negligible when

implementing a smooth cutoff avoiding spurious non-analyticity in the integrand.

In this manuscript we focus on the case where only one operator OI is present so

that we examine diagonal potentials VI ≡ VII(r). While cross terms VIJ 6=I(r) may lead

to interesting effects, they are necessarily accompanied by the diagonal potentials. Thus

in the scope of fifth force searches it is sufficient to focus on diagonal potentials. Table 1

presents classification of spin structures arising in the potentials studied in this manuscript.

The non-relativistic formalism above takes only t-channel diagrams into account and

also implies that sources are distinguishable. For certain applications, u-channel diagrams

can also be relevant see e.g. ref. [12] for a discussion in the context of self-interacting dark

matter.

2.2 Spin dependence and spin averaging

Both the amplitude for nucleon scattering, iM, and the associated long range potential,

V (r), are matrices in spin-space. For instance, the N1 current connects an incoming nucleon

spinor to an outgoing nucleon spinor. The potential is a tensor product of spin matrices

acting on N1 and N2. Each component gives the potential for a probe particle of a specified

spin scattering off of a source of specified spin. The spin-dependent interactions are encoded

in linear combinations of Pauli matrices σ1,2 acting on N1 and N2, respectively. The spin-

independent pieces are proportional to the 2 × 2 identities 11 ⊗ 12. The spin structures

appearing in the potentials are always tensor products. In this manuscript, we omit the

explicit ⊗ symbol. The relevant spin structures and their simplified notation are

11 ⊗ 12 ≡ 1112 , σi1 ⊗ σi2 ≡ σ1 · σ2 , σi1∇i ⊗ σ
j
2∇

j ≡ (σ1 ·∇)(σ2 ·∇) ≡ /∇1 /∇2 (2.5)

where the 1, 2 indices correspond to the N1 and N2 currents.

4In this paper the cutoff, Λ, is the scale at which the contact operators of the effective relativistic theory

are UV completed. The non-relativistic potentials derived from this theory are expansions in q2/M2, where

M is typically the mass of the scattering particle. For distances shorter than M−1, higher order potential

terms in q2/M2 are significant when solving the Schrödinger equation. These terms are likely pertinent to

resolving the behavior of singular potentials near the origin [12]. Ref. [13] takes a complementary, bottom-

up approach and addresses singular potentials through a renormalization procedure based on physical

observables and assuming only the leading q2/M2 term.
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For unpolarized sources, one averages over the appropriate initial (or final) state spins

in the potential. Observe that this is equivalent to summing together amplitudes with

different initial states. This averaging does not change the spin-independent contributions,

but causes the spin-dependent contributions to vanish. The scalar and vector potentials

are unaffected by polarization average, while the pseudo-scalar and axial potentials vanish

at all orders. For the tensor potential a spin-independent contribution remains at next to

leading order in the non-relativistic expansion. Spin averaging is denoted by 〈σ2〉 in table 1.

2.3 Orientation averaging for spin-dependent potentials

Spin-dependent potentials may be sensitive to scattering orientation. Consider scattering

of a probe particle moving along a fixed axis towards the target. One may obtain the

potential for isotropic scattering — for example, in a gas — by appropriate averaging over

the polar angle. This is the orientation-averaged limit.

Let r̂ = r/|r| be the orientation of source N1 with respect to source N2. Certain spin-

dependent potentials are proportional to (σ1 ·∇) (σ2 ·∇). Averaging over this orientation

yields

〈V (r)〉r̂ ∝ 〈(σ1 ·∇) (σ2 ·∇) f(r)〉r̂ =
1

3
(σ1 · σ2)∇2f(r) . (2.6)

This particular relation is phenomenologically significant. In the Coulomb case, coming

from the exchange of a single massless mediator particle, the radial dependence of the

potential is f(r) ∝ 1/r. Because this is the Green’s function of the three-dimensional

Laplacian,

〈V (r)〉r̂ ∝ ∇
2f(r) = −4πδ(r) . (2.7)

This is simply Gauss’ law. This means that when a single, massless mediator is exchanged,

the spin structure in (2.6) produces only a contact interaction and no finite-range contribu-

tion. Similarly, in case of a Yukawa interaction f(r) ∝ e−mr/r, ∇2f(r) = m2f(r)− 4πδ(r)

gives a finite range interaction suppressed by O((mr)2) with respect to the naive dimen-

sional expectation of 1/r3. The suppression of finite-range interactions in the orientation-

averaged limit are important for experimental prospects. We discuss this in section 3.

Orientation averaging is denoted by 〈r̂〉 in table 1. The columns marked Yukawa have

radial dependence characteristic of single particle exchange, whereas the columns marked

exotic are general and may be generated by the models presented in this manuscript.

2.4 Higher-order terms

We remark on the contribution of higher-order Feynman diagrams:

+··· ∝
∫

d4k

(2π)4
〈N1,out|OIN∆NO

I
N |N1,in〉ΣDS〈N2,out|OJN∆NO

J
N |N2,in〉 ,

(2.8)

where ∆N is the nucleon propagator. The size of such loop diagrams is suppressed compared

to tree-level diagrams within the effective theory’s regime of validity. A good estimate

of the magnitude of these diagrams in the non-relativistic limit is obtained by taking

– 5 –



J
H
E
P
0
3
(
2
0
2
0
)
1
4
8

VS/V [1/γµ] VP [iγ5] VA [γµγ5] VT [σµν ]

Any Exotic Yukawa Exotic Yukawa Exotic Yukawa

n
o

av
g
. 1112 X m−2

N r−2 m4m−2
N r2

/∇1 /∇2 X X X X X X

σ1 · σ2 X X X m2r2

〈r̂
〉 1112 X m−2

N r−2 m4m−2
N r2

σ1 · σ2 X m2r2, δ(r) X X, δ(r) X m2r2

〈σ̂
2
〉 1112 X m−2

N r−2 m4m−2
N r2

p× σ1 m−2
N r−1 m2m−2

N r

〈r̂
〉,
〈σ̂

2
〉

1112 X m−2
N r−2 m4m−2

N r2

p× σ1

Table 1. Spin structures, (2.5), generated by S, V, T, P,A nucleon operators in the cases of no av-

eraging, the orientation-averaged limit, averaging over N2 spins, and both the orientation-averaged

limit and averaging over N2 spin. Check marks indicate that the spin structure is generated. Other

factors indicate extra suppression depending on the mediator mass, m, and the nucleon mass, mN .

Yukawa forces indicate a potential with radial dependence f(r) ∼ e−mr/r. Exotic forces indicate a

radial dependence that is not Yukawa-like.

∆N ∼ −1/mN . However, it is possible that the tree-level diagram may be suppressed by

its spin-dependence while the loop diagram gives a spin-independent component. In this

case, it is possible that the loop-level contribution produces the most experimentally viable

signal. See section 3 for more details.

We explicitly illustrate the calculation of a higher order contribution with the case of

a pseudoscalar, L = iyφN̄γ5N . The tree-level exchange of φ generates a spin-dependent

Yukawa-type force, as indicated in table 1. At one-loop order, a box diagram made of φ

and N propagators exists. The diagram corresponds to substituting the blobs by tree-level

exchange of φ in (2.8).5 The vertices in the amplitude of (2.8) are OI,JN = −yγ5. In

our approximation, we reduce the nucleon propagators ∆N to −1/mN in this amplitude.

The two γ5 simplify, giving OI∆NOI ≈ −1/mN . One then notices that such contracted

diagram is equivalent to the exchange of a bubble of scalars induced by an effective operator

y2

2mN
φ2N̄N . (2.9)

Such bubble loop diagram is much simpler to calculate than the original box, and has been

evaluated in e.g. ref. [3]. The effective vertex (2.9) gives the spin-independent potential

V (r) = − y4

64π3m2
Nr

3
. (2.10)

5A cross-diagram also exists.
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It turns out this result matches exactly the result obtained by evaluation of the full box

diagram made in [10]. Note however that in general our approximation should give the

correct behaviour of the potential but not necessarily reproduce the exact coefficient.

3 On experimental complementarity

Our effective theory study of the potentials in section 2 and the corresponding classifi-

cation of their properties in table 1 are useful to evaluate experimental prospects. They

can be used to sharpen a search strategy and delineate the theoretical motivations of a

search. Whenever an experiment has potential sensitivity to a given type of potential, it

is natural to ask whether another effect necessarily exists which may overwhelm the pro-

posed search: either because an experimental bound is already set or because it provides a

more promising search direction. In this section, we discuss some examples of experimental

complementarity and point out the consequences for existing and future searches.

Two types of searches for fifth forces are neutron spin rotation and nuclear magnetic

resonance experiments. Neutron spin rotation experiments pass a polarized neutron beam

between metal plates that contain unpolarized spins. Spin-velocity potentials cause the

polarized neutron spins to precess about the direction of their three-momentum as they

pass through the plates. The observation of this precession would be evidence for new

physics that generates a spin-velocity potential. Nuclear magnetic resonance (NMR) ex-

periments can probe new spin-dependent forces through the effective anomalous J-coupling

of deuterated molecular hydrogen (HD). A gas of HD is in a disordered phase because col-

lisions result in random reorientations of nuclei. The relative orientations between nuclei

must be averaged for a fixed separation. This presents a way to search for orientation-

averaged potentials. We present quantitative details of the experimental reach of NMR

experiments in section 4.1.1.

A simple example of this experimental complementarity is as follows. The vector-axial

Yukawa cross-potential VV A features a spin-velocity term that can be probed by neutron

spin rotation experiments [8]. However, any effective theory that yields a VV A potential

must simultaneously furnish a vector-vector Yukawa potential VV . This VV potential is

spin-independent and easier to probe experimentally. As a matter of fact, it is highly

constrained. In the scope of the search for the dark sector, focusing on VV is clearly more

efficient than VV A so that the search for VV A is therefore not well-motivated.6

We see that the complementarity between spin-dependent and spin-independent

searches is an important experimental consideration. To further illustrate this, consider

the tree-level exchange of a single pseudoscalar versus the loop-level box diagram com-

ing from the exchange of two pseudoscalars; see section 2.4. The former term is spin-

dependent while the loop contribution is spin-independent. It is natural to ask which of

these contributions is a more effective channel to search for the new pseudoscalar particle.

A search for the spin-dependent pseudoscalar potential has been done in [9] using NMR

data. The experiment is in a disordered phase so that the potentials are calculated in the

orientation-averaged limit. This means that the dominant contribution to the tree-level

6Note that if a new VV potential were actually discovered, the cross term VV A would then become an

efficient way to search for a spin-dependent coupling of the newly discovered particle.
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potential vanishes, and the main term is proportional to e−mrm2/(m2
Nr)� e−mr/(m2

Nr
3).

On the other hand, the loop-level contribution force is proportional to 1/(m2
Nr

3) at short

distance, as shown in (2.10). The bound on this one-loop, spin-independent component

can be readily obtained from [3]. It turns out that, except in a region of a few orders of

magnitude around m ∼ 10 keV where the NMR search is optimal, the bounds from the

spin-independent component are the dominant ones. There is therefore complementarity

between spin-dependent and spin-independent searches, and the spin-independent search

turns out to be quite competitive in this example. See [14] for another example of this

complementarity.

Another key aspect of experimental complementarity is the role of exotic versus Yukawa

forces and the corresponding interplay with orientation and spin averages. To discuss

orientation averaging, consider again the example of a pseudoscalar discussed above. The

Yukawa-like spin-dependent force is suppressed because of Gauss’ law. In particular, the

force is suppressed by a O
(
m2r2

)
factor such that the search sensitivity vanishes in the

m → 0 limit, while the spin-independent component does not. In contrast, an exotic

force is — by definition — not subject to cancellations related to Gauss’ law, and is

therefore not suppressed in the same way. This affects the size of the spin-dependent force

relative to higher-order spin-independent counterparts. Moreover, in contrast to scenarios

with Yukawa-like forces, one typically expects that the higher-loop contributions to exotic

forces are subdominant and poorly constrained. From this, one concludes that exotic forces

motivate experiments with disordered phases — such as NMR-based searches [9].

The case of a single polarized source is also interesting. Table 1 shows that the tensor

potential features a mixed velocity-spin structure, p×σ1, in this limit. The complementar-

ity of Yukawa versus exotic forces is again relevant in this case. For a Yukawa-type force,

the velocity-dependent structure is O(m2) and thus vanishes in the m → 0 limit. This is

not the case for an exotic force. One concludes that exotic forces motivate searches for

velocity-spin dependent forces. These can be done in experiments with a polarized source

— such as a neutron beam — at finite velocity. We expand on the theoretical ultraviolet

completion of the tensor operator in appendix A.

In summary, the possible existence of exotic spin-dependent forces motivates exper-

iments with (i) disordered phases and (ii) polarized sources at finite velocity. Another

general lesson is that the properties of Yukawa-like forces are rather non-generic and so

they should not be used as the only benchmark for spin-dependent fifth force experiments.

The following sections present well-motivated alternatives that can serve as benchmark

models for the exotic potentials.

4 Spin-dependent quantum forces

Our first example of an exotic force is when ODS in (2.1) is a bilinear of dark particles,

each with mass m. The potential is generated by the exchange of two virtual particles [15].

In the scenario where the dark particles are dark matter, then the bilinear interaction with

nucleons may be motivated from a Z2 symmetry that explains the particle’s stability.7

7The search for long-range potentials induced by the loop-level exchange of pairs of dark particles is

then a search for virtual dark matter. In contrast to searches for on-shell dark matter in direct detection

experiments, this is independent of the dark matter phase space distribution in the local galaxy.

– 8 –
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We extend the spin-independent study in ref. [11] to the case of spin-dependent nucleon

operators. We write the combined ONODS operators in (2.1) as effective contact operators.

Because ODS is a dark particle bilinear, it is possible to have dark particles of any spin.

Here we consider spin-0, 1
2 , and 1. These operators are non-renormalizable so that the

effective theory is valid above distance scales of

r ∼ max

(
1

4πΛ
,

1

4πΛQCD

)
, (4.1)

where Λ is the scale at which the contact operator description breaks down. This is defined

by the underlying physics that generate the ONODS operators. We consider the operators:

O0
a =

1

Λ2
N̄γµγ5Niφ∗

←→
∂µφ O

1
2
a =

1

Λ2
N̄iγ5Nχ̄iγ5χ O1

a =
1

Λ3
N̄iγ5N |Xµν |2

O0
b =

1

Λ
N̄iγ5N |φ|2 O

1
2
b =

1

Λ2
N̄iγ5Nχ̄χ O1

b =
1

Λ3
N̄iγ5NXµνX̃

µν

O0
c =

1

Λ3
N̄iγ5N |∂µφ|2 O

1
2
c =

1

Λ2
N̄γµγ5Nχ̄γµγ

5χ (4.2)

O0
d =

1

Λ3
N̄σµνN(∂µφ)(∂νφ

∗) O
1
2
d =

1

Λ2
N̄γµγ5Nχ̄γµχ

O
1
2
e =

1

Λ2
N̄σµνNχ̄σµνχ .

We write the dark particle as φ for scalars, χ for fermions, and Xµ for vectors. We use←→
∂µ ≡

−→
∂µ −

←−
∂µ. We assume that only one of these operators is active. That is, we do not

consider any cases that mix vertices from different operators in a single Feynman diagram.

The potentials depend on modified Bessel functions of the second kind and on a Meijer

G-function; we denote these by:

Ki ≡ Ki(2mr) G ≡ G2,0
2,4

(
m2r2

∣∣∣∣ 1
2 ,

3
2

0, 0, 1
2 ,

1
2

)
. (4.3)

We also introduce a discrete variable for whether or not the dark particle is self-conjugate:

η =

{
0 if self-conjugate

1 otherwise
. (4.4)

For these loop-induced potentials, the amplitude has a branch cut — appearing via a

logarithm. The Fourier transform integral (2.4) is performed by analytical continuation into

the complex |q| plane, reducing the integral over the real line to one on the discontinuity

across the branch cut. Details are provided in appendix C.

– 9 –
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The operators produce the following potentials:

V 0
a = −ηm

2(σ1 · σ2)

8π3Λ4

(
K2

r3

)
− η (σ1 ·∇)(σ2 ·∇)

96π3Λ4

(
−2mrK1 + 4 +m2π2r2G

r3

)
(4.5)

V 0
b = 2η

m(σ1 ·∇)(σ2 ·∇)

128π3Λ2m2
N

(
K1

r2

)
(4.6)

V 0
c = 2η

m2(σ1 ·∇)(σ2 ·∇)

128π3Λ6m2
N

(
(15mr +m3r3)K1 + (30 + 6m2r2)K2

r5

)
(4.7)

V 0
d = η

[
(σ1 ·∇)(σ2 ·∇)− (σ1 · σ2)∇2

]
32π3Λ6

(
m2K2

r3

)
(4.8)

V
1
2
a = 2η

(σ1 ·∇)(σ2 ·∇)

32π3m2
NΛ4

(
3m2K2 − 2m3rK1

r3

)
(4.9)

V
1
2
b = 2η

(σ1 ·∇)(σ2 ·∇)

32π3m2
NΛ4

(
3m2K2

r3

)
(4.10)

V
1
2
c = −2η

m2(σ1 · σ2)

4π3Λ4

(
K2

r3

)
+ 2η

(σ1 ·∇)(σ2 ·∇)

96π3Λ4

(
π2m2r2G+ 4mrK1 + 4

r3

)
(4.11)

V
1
2
d = −ηm

2(σ1 · σ2)

2π3Λ4

(
mrK1 +K2

r3

)
+ 2η

(σ1 ·∇)(σ2 ·∇)

96π3Λ4

(
π2m2r2G+ 4mrK1 + 4

r3

)
(4.12)

V
1
2
e = −ηm

2(σ1 · σ2)

π3Λ4

(
K2

r3

)
− η

[
(σ1 ·∇)(σ2 ·∇)− (σ1 · σ2)∇2

]
12π3Λ4

(
π2m2r2G+ 4mrK1 + 4

r3

)
(4.13)

V 1
a = 2η

(σ1 ·∇)(σ2 ·∇)

8π3m2
NΛ6

[(
30m3

r4
+

3m5

r2

)
K1 +

(
60m2

r5
+

12m4

r3

)
K2

]
(4.14)

V 1
b = 2η

(σ1 ·∇)(σ2 ·∇)

8π3m2
NΛ6

(
30m3

r4
K3 +

12m4

r3
K2

)
. (4.15)

4.1 Orientation-averaged limit

We perform the orientation-averaging limit of section 2.3 on the potentials of the previ-

ous section. We present these in the r � m−1 limit. Note that by doing so, the mass

dependence drops out. These take the limiting forms:

V 0
a = −ησ1 · σ2

24π3Λ4

1

r5
V

1
2
a = 2η

σ1 · σ2

16π3m2
NΛ4

5

r7
V 1
a = 2η

σ1 · σ2

2π3m2
NΛ6

105

r9

V 0
b = 2η

σ1 · σ2

128π3m2
NΛ2

1

r5
V

1
2
b = 2η

σ1 · σ2

16π3m2
NΛ4

5

r7
V 1
b = 2η

σ1 · σ2

2π3m2
NΛ6

105

r9

V 0
c = 2η

σ1 · σ2

64π3m2
NΛ6

105

r9
V

1
2
c = −2η

σ1 · σ2

12π3Λ4

1

r5
(4.16)

V 0
d = −ησ1 · σ2

24π3Λ6

5

r7
V

1
2
d = −ησ1 · σ2

6π3Λ4

1

r5

V
1
2
e = η

σ1 · σ2

6π3Λ4

1

r5
.
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Figure 2. Bounds on O
1
2
c from NMR [9] on the direct detection plane. Note that this search is

sensitive to much lighter masses than direct detection experiments, e.g. [16]. The cross section is for

tree-level 2→ 2 scattering of dark matter off xenon. The bound vanishes in a narrow region around

m ≈ 6850 eV because orientation averaging causes V
1
2
c to vanish at approximately 2mr ≈ 5.2.

4.1.1 Bounds on dark matter from NMR

The orientation-averaged form of the potential appears when forces are present in a dis-

ordered phase of matter. This is the case for NMR experiments in a gas phase. NMR

data can be used to place bounds on the effective anomalous J-coupling of deuterated

molecular hydrogen HD; ref. [9] found that ∆J3 must be less than 9.8× 10−16 eV. This, in

turn, bounds the strength of a possible spin-dependent potential between these nuclei. The

proton-deuteron distance is of order 〈r〉 = 0.00038 eV−1. The relative orientations between

nuclei are averaged because of random reorientation of HD molecules due to collisions.

If one of the dark particles φ, χ or Xµ is identified as the dark matter, the contact

interactions (4.2) induce dark matter-nucleus scattering. This scattering process is probed

by dark matter direct detection experiments. The sensitivity of such searches typically

drops below m ∼ 1 GeV. In contrast, NMR experiments probe dark particles that are much

lighter than this scale — illustrating the complementarity between dark matter scattering

and quantum force searches.

As a specific example, we provide bounds on Dirac dark matter interacting with xenon

through the O
1
2
c axial-vector interaction. This is the standard benchmark case for spin-

dependent direct detection. The bound is plotted in figure 2.

4.2 Spin-dependent potentials with one unpolarized source

In the case in which one source is unpolarized, one must average over source’s initial state

spins. The corresponding nucleon bilinear vanishes for pseudoscalar (Niγ5N) and axial

vector (N̄γµγ5N) interactions. This leaves only the operators with spin-0 or spin-1/2 dark

particles interacting with the nucleon dipole. The resulting potentials include a term that is

spin independent term and a term that is both spin and velocity dependent. We define the

velocity, v as the average of the probe nucleon’s incoming and outgoing momenta divided

by the nucleon mass.
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The general long-range potentials are:

V 0
d = η

2mN12(v × σ1) ·∇ + 1112∇2

128π3m2
NΛ6

∇2

(
m2K2

r3

)
(4.17)

V
1
2
e = η

2mN12(v × σ1) ·∇ + 1112∇2

4π3m2
NΛ4

m2

(
2mrK1 +K2

r3

)
. (4.18)

At distances much smaller than the dark particle’s Compton wavelength, m−1, these

reduce to:

V 0
d (r � m−1) = η

5

64π3m2
NΛ6

(
421112

r9
+ 2mN12(v × σ1) ·∇ 1

r7

)
(4.19)

V
1
2
e (r � m−1) = η

1

8π3m2
NΛ4

(
201112

r7
+ 2mN12(v × σ1) ·∇ 1

r5

)
. (4.20)

5 Spin-dependent warped/conformal forces

Weakly coupled new physics in four dimensions produce potentials that carry negative

integer powers of r. This section presents a departure from this behavior by examining

effects from a five dimensional curved space and from a four-dimensional conformal sector.

5.1 Warped dark sector scenario

The Standard Model may live on a four-dimensional brane lying at the boundary of a trun-

cated five-dimensional AdS space with curvature k; see e.g. [17–19]. We refer to this brane

as the UV brane. In this model, the effect of 5D gravity is mild as it is localized away from

the UV brane. 5D gravity only induces a small O(k−2r−3) correction to Newton potential.

Such deviation is mildly constrained experimentally: torsion pendulum experiments put a

lower bound k & 104 TeV, which constitutes the leading constraint for curvature in this

model [3]. On the other hand, the AdS curvature k may be as high as the 4D Planck mass

while staying consistent with the validity of the 5D effective theory.

Beyond this minimal braneworld model, matter fields can in principle propagate in

the bulk of the extra dimension. These fields tend to be hidden from the UV brane as a

result of the localization in the fifth dimension induced by the curvature. This framework

therefore naturally gives rise to a dark sector [20] and is sketched in figure 3. As a concrete

realization, consider the simplest case of a bulk scalar field, Φ that couples linearly to

nucleons. The 5D matter action is

S5⊃
∫

bulk
d5X

√
|g|
(

1

2
∂MΦ∂MΦ−

m2
Φ

2
Φ2

)
+

∫
brane

d4X
√
|γ|
(
LSM+

λ√
k
ONΦ−mUV

2
Φ2

)
,

(5.1)

where γµν is the induced metric on the brane, ON is a nucleon bilinear, and λ is a di-

mensionless effective coupling which can be taken to be of order one. Using conformal

coordinates and a (+,−,−,−,−) signature, the AdS metric reads

ds2 = gMNX
MXN =

1

(kz)2

(
ηµνdx

µdxν − dz2
)
, (5.2)
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Figure 3. Diagram in 5D anti-de Sitter space giving rise to the conformal force.

and the brane is localized at z0 = k−1.8 We focus on the case of a brane-localized mass

term satisfying the condition mUV =
√

4k2 +m2
Φ − 2k . This is consistent with the BPS

brane condition from supergravity, and can be also motivated using holography, see [19]

and references therein.

We consider couplings of the bulk scalar to the scalar (OS) and pseudoscalar (OP )

nucleon operators in (2.2). The former generates a spin-independent force which we include

as a useful benchmark. The axial coupling 1
ΛN̄γ5γµN∂µΦ generates the same tree-level

potential as the pseudoscalar. This can be seen directly at the level of the Lagrangian by

integrating by part the interaction and using the nucleon equation of motion.9

5.2 Potential

The brane-to-brane Feynman propagator for Φ in mixed position/momentum space [21, 22]

reads

〈Φ(pµ, z0)Φ(−pµ, z0)〉 ≡ ∆p(z0, z0) =
i

p

H
(2)
α (p/k)

H
(2)
α−1(p/k)

p =
√
ηµνpµpν α =

√
4 +

m2
Φ

k2
,

(5.3)

where H(2) is the Hankel function of the second kind. Regularity of the solution to the

5D equation of motion is imposed to obtain this propagator. For invariant four-momenta

much less than the curvature, p� k, this gives

∆p(z0, z0) ≈ i
[

p2

2k(α− 1)
− 2k

Γ(1− α)

Γ(α)

(
− p

2k

)2α
]−1

. (5.4)

For α > 1, this propagator is dominated by the analytic term ∝ 1/p2. An observer on

the UV brane thus mostly see a 4D massless field, similarly to the gravity case discussed

above. For α < 1, on the other hand, the propagator (5.4) is dominated by the non-analytic

term with p2α scaling.

8Another common convention in the literature is to use the curvature radius of AdS, R ≡ k−1.
9The theories differ at higher order in their interactions. At loop level, for example, the spin-independent

potential from a scalar with a derivative coupling to an axial vector current can be distinguished from a

pseudoscalar [10].
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One may qualitatively understand this behavior by imagining the presence of an IR

brane at some distance z1 > z0 that creates a discrete spectrum of Kaluza-Klein modes.

The parameter α controls the localization of these modes. For α > 1 and any boundary

condition on the IR brane, an ultralight mode localized on the UV brane exists. This

corresponds to the 4D pole in ∆p(z0, z0). For α < 1, the light mode is instead localized

towards the IR brane and an observer on the UV brane is primarily sensitive to the Kaluza-

Klein excitations that are collectively encoded in the non-analytic p2α term.

For the case α < 1, the bulk scalar Φ generates an exotic long-range force between

the nucleons on the UV brane. This force has non-integer dependence on the nucleon

separation. The scalar and pseudo-scalar nucleon operators in (2.2) generate the following

potentials:

VS(r) =
−λ2

2π
3
2

Γ(3
2 − α)

Γ(1− α)

1

r(kr)2−2α
(5.5)

VP (r) =
λ2

2π
3
2

Γ(3
2 − α)

Γ(1− α)

(σ1 ·∇)(σ2 ·∇)

4m2
N

(
1

r(kr)2−2α

)
. (5.6)

In the orientation-averaged limit, the pseudo-scalar potential becomes:

VP (r) =
2λ2

3π
3
2

(1− α)Γ(5
2 − α)

Γ(1− α)

(σ1 · σ2)

4m2
N

1

r3(kr)2−2α
. (5.7)

5.3 A conformal model

The AdS/CFT correspondence relates the warped dark sector model to a purely four-

dimensional conformal dark sector. For an exotic potential with α < 1, the simplest

realization of the duality is

L = LSM + LCFT +
1

M∆SM+∆CFT−4
ONOCFT . (5.8)

The Lagrangian LCFT encodes the dynamics of the conformal field theory. The operator

OCFT contains fields from the conformal sector. ∆SM = 3 is the scaling dimension of the

scalar or pseudo-scalar nucleon operators. We further define ∆ ≡ ∆CFT, the dimension of

the OCFT operator.

The symmetries of the CFT fully dictates the theory’s behavior. In position space,

conformal symmetry constrains the two-point correlation function to be

〈OCFT(0)OCFT(x)〉 =
c

4π2(−|x|)2∆
, (5.9)

where c is an undetermined real number. In momentum space this is

〈OCFT(−p)OCFT(p)〉 = c
iΓ(2−∆)

4 Γ(∆)

(
−p2

4

)∆−2

. (5.10)

By construction, nucleons source this correlation function and thus experience a force due

to the conformal dynamics.
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By comparing (5.10) to the non-analytical part of the brane-to-brane propagator

in (5.4), one identifies ∆ = 2−α. In the language of AdS/CFT, this is the “∆− branch” of

the correspondence, in which the boundary of the bulk field is identified with the classical

value of OCFT itself. This version of the duality is valid only for 0 < α < 1, i.e. 1 < ∆ < 2.

In contrast, the ∆+ branch identifies ∆ = 2 + α and is valid for any α. The ∆− branch

model is sufficient in the context of our study.

Taking the non-relativistic limit of the conformal two-point functions and trans-

forming back to position space yields the conformal spin-dependent potentials analogous

to (5.5)–(5.6):

VS(r) =
c

4π3/2

Γ(∆− 1/2)

Γ(∆)

1

r(Mr)2∆−2
(5.11)

VP (r) = − c

4π3/2

Γ(∆− 1/2)

Γ(∆)

(σ1 ·∇)(σ2 ·∇)

4m2
N

(
1

r(Mr)2∆−2

)
. (5.12)

Both the warped and conformal models continuously interpolates between 1/r and 1/r3

as a function of a continuous parameter: either the bulk mass of the scalar field living

AdS space, or — equivalently — the conformal dimension of the correlation function of

conformal dynamics exchanged between nucleons.

6 Spin-dependent emergent forces

A new force may emerge from a change in a theory’s degrees of freedom at low energies.

This may happen, for example, as a consequence of a phase transition. This scenario

departs from Yukawa-like behavior and is thus exotic. Also, there is a priori no principle

enforcing exact continuity of the potential between the short- and long-distance regimes,

hence the potential might feature a smooth kink in the transition regime. We discuss this

scenario from the perspective of a confining non-Abelian gauge theory and present a more

explicit realization from a five-dimensional holographic setup.

6.1 Emergent force from a confining dark sector

Suppose a dark sector contains a non-Abelian gauge field with coupling g and field strength

Xµν . This sector can couple to visible matter through gauge-invariant higher-dimensional

operators of the form (2.1):

L ⊃ c

M3
ONXµνX

µν + · · · . (6.1)

In the regime where the dark sector gauge theory is weakly coupled, it induces a quantum

force (see section 4), whose exact form is given by (4.15). Dimensional analysis requires

the potential to scale as

V (r)gauge ∼
c2 g4

M6r7
. (6.2)

When the gauge theory is asymptotically free, there is an infrared scale, µ�M , at which

the theory becomes strongly-interacting and confines. In this scenario, the theory may

develop a mass gap analogous to QCD. Below the confinement scale, physics is described
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Figure 4. Diagram in 5D anti-de Sitter space giving rise to the emergent force. Blue line shows

the propagator of the IR brane localized field. Crosses indicate mass mixing.

by an effective theory of composite states. Composite states with same quantum numbers

as Tr XµνX
µν may arise as scalar glueball fields:

Lconf ⊃
cϕµ

3

M3
OSM ϕ+ . . . , (6.3)

where ϕ is a CP-even scalar denoting the glueball excitation in the confined theory. See

refs. [23, 24] for earlier work on dark sectors described by glueball-like excitations. The cϕ
coefficient arises from strong dynamics and is evaluated by dimensional analysis at strong

coupling.

In the confined phase, r � µ−1, the potential is Yukawa-like,

Vconf(r) ∼
c2
ϕ

r

µ6

M6
. (6.4)

The potentials (6.2) and (6.4) appear to match at the level of dimensional analysis: the

transition occurs at r ∼ 1/µ, where it turns out that Vconf(µ
−1) ∼ Vgauge(µ

−1). However,

the c2g4 and c2
ϕ couplings are in principle different. The coupling g is perturbative at

energies well above the confinement scale µ. In contrast, cϕ may typically be O(4π),

hence it is possible that c2
ϕ be substantially larger than c2g4. This implies that the spatial

potential could undergo some enhancement when r enters the confined region at r ∼ 1/µ.

6.2 Holographic emergent force

This emergent force scenario can be realized more precisely in a five-dimensional model, as

suggested by the AdS/CFT corresponddence. We sketch this in figure 4.

Consider the limit where the dark sector is a strongly-coupled gauge theory with large

’t Hooft coupling and a large number of colors. The deconfined picture is similar to the

picture described in section 5.3. The key difference is that, at four-momentum of order of

the confinement scale, an observer on the UV brane should see the appearance of a mass

gap. The AdS/CFT correspondence relates confinement to presence of an IR brane located

at z1 = 1/µ > z0. This IR brane encodes the spontaneous breaking of conformal symmetry

in the infrared. States localized on the IR brane are identified with states that emerge

below the confinement scale.
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For example, a UV observer probing the bulk at low four-momentum observes a stan-

dard 4D theory. As four-momentum is increased beyond µ, the effect of the IR brane

vanishes from the correlation functions because the bulk propagators are exponentially

suppressed when probing the IR region z > 1/p [25]. Hence for p� µ, the IR region of the

bulk becomes opaque to observers on the UV brane. In that limit, the observer sees only

an infinite AdS bulk, as described in the conformal/warped force scenario of section 5.3.

This mechanism can realize many versions of an emergent force. For simplicity, we

focus on an extension of the model in section 5.3. Assume a warped 5D AdS space with

curvature k. The Standard Model is localized on the UV brane at z0 = 1/k and interacts

with a bulk scalar field Φ. We introduce an IR brane at z1 = 1/µ. There may be a IR-

localized mass term. This term is left as a free parameter and does not crucially affect the

results. Let us assume the existence an IR-localized operator that interacts linearly with Φ:

S = S5 +

∫
IR brane

d4X
√
|γ|
(
LIR +OIRΦ−

m2
IR

2
Φ2

)
, (6.5)

where S5 is the 5D action in (5.1).

The bulk Feynman propagator is readily expressed in terms of Bessel functions of the

first and second kinds,

∆p(z, z
′) = i

π(kz)2(kz′)2

2k

[
Ỹ UV
α Jα (pz<)− J̃UV

α Yα (pz<)
] [
Ỹ IR
α Jα (pz>)− J̃ IR

α Yα (pz>)
]

J̃UV
α Ỹ IR

α − Ỹ UV
α J̃ IR

α

,

(6.6)

where we define the extra-dimensional positions z< ≡ min(z, z,′ ), z> ≡ max(z, z,′ ), and

the boundary functions

J̃UV
α ≡ p

k
Jα−1

(p
k

)
J̃ IR
α ≡

p

µ
Jα−1

(
p

µ

)
+ bIR Jα

(
p

µ

)
, (6.7)

and similarly for the Ỹα functions.

We assume that a 4D field ϕ is present on the IR brane and mixes with Φ such that

OIR = ωϕΦ . (6.8)

with brane mass mixing parameter

ω ≡ cϕ
µ2

√
k
. (6.9)

The magnitude of ω is set by dimensional analysis, such that cϕ ∼ O(1). Since this is

a bilinear interaction, the presence of the IR brane field ϕ can be rigorously included in

the bulk propagator using the five-dimensional version of dressing, i.e. a geometric series

representation of the brane-bulk mass mixing. The UV-to-UV brane propagator dressed

by IR brane insertions is

∆dr
p (z0, z0) = ∆p(z0, z0)−

[
∆p(z0, z1)

]2 i ω2

p2 −m2
ϕ

. (6.10)
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We have introduced the ϕ mass as

m2
ϕ = m2

ϕ,0 − i ω2∆(mϕ,0; z1, z1) , (6.11)

where m2
ϕ,0 is a bare mass term and the ∆(p; z1, z1) term encodes the contribution to the

mass from Kaluza-Klein modes. From dimensional analysis, both terms have a typical mag-

nitude O(µ2). The first term of (6.10) corresponds to the undressed propagator. The sec-

ond term encodes the effect of the IR brane and generates the emergent force in the infrared.

6.3 Potential

The spatial potential follows from the dressed propagator, (6.10). However, the Fourier

transform of this expression is only analytically tractable in the high- and low-energy limits.

Let us consider the limits with space-like four-momentum p = i|q| ≡ iq, as needed for the

t-channel diagram that generates the potential. For q � µ,

∆p(z0, z0) ≈ −i Γ(α)

Γ(1− α)

2k

q2

( q
2k

)2−2α
(6.12)

∆p(z0, z1) ≈ −i
√

2π

Γ(1− α)

2k

q3/2√µ

( q
2k

)1−α
e−q/µ (6.13)

∆p(z1, z1) ≈ −i k
qµ

tanh(q/µ) . (6.14)

In the q � µ limit,

∆p(z0, z0) ≈ −i2α+ bIR
2α bIR

k

µ2

(µ
k

)2−2α
(6.15)

∆p(z0, z1) ≈ −i k

bIR µ2

(µ
k

)1−α
(6.16)

∆p(z1, z1) ≈ −i k

bIR µ2
. (6.17)

The behavior of the potential can be understood from these limits. In the q � µ limit,

all ∆’s are constant and only the IR-brane scalar remains in the spectrum. The dressed

propagator takes the form of a 4D massive propagator, thereby generating a standard 4D

Yukawa force. Equivalently, this is the behavior of the 4D effective theory whose Kaluza-

Klein modes are integrated out. In the q � µ limit, the ∆(p; z0, z1) propagators are

exponentially suppressed. Only the ∆(p; z0, z0) term remains, reproducing the conformal

scenario with no IR brane described in section 5.3. In the 4D CFT interpretation, this

is because the composite states have typical size 1/µ and are not seen by probes with

virtuality much higher than µ.

For the scalar nucleon operators, OS , the potential is:

VS(r) ≈


−
c2
ϕλ

2

b2IR

(µ
k

)2−2α e−mϕr

4πr
if r � 1/µ

− λ2

2π3/2

Γ(3/2− α)

Γ(1− α)

1

r

1

(kr)2−2α
if r � 1/µ

(6.18)
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Analogously, for the pseudoscalar nucleon operators, OP , the potential is:

VP (r) ≈


c2
ϕλ

2

b2IR

(µ
k

)2−2α (σ1 ·∇)(σ2 ·∇)

4m2
N

e−mϕr

4πr
if r � 1/µ

λ2

2π3/2

Γ(3/2− α)

Γ(1− α)

(σ1 ·∇)(σ2 ·∇)

4m2
N

1

r

1

(kr)2−2α
if r � 1/µ

. (6.19)

Just like the case of an emergent force from a confining non-Abelian sector in sec-

tion 6.1, there is again an approximate continuity between the long and short distance

regimes. This can be seen in the spatial potentials (6.18)–(6.19), and also at the level in

the propagator itself by comparing the undressed and emergent parts of (6.10) at momen-

tum of order µ.

Despite this approximate continuity, there may be a smooth kink around r ∼ 1/µ if

the emergent force is enhanced. This can happen for sufficiently large ω. In our simple

scalar model this requires some tuning to keep mϕ small. The emergent force can also be

enhanced if ϕ has some multiplicity, nϕ, in which case the emergent component of the force

is increased by nϕ. Note however that nϕ cannot be arbitrarily increased because the local

strong coupling scale decreases as n
−1/2
ϕ .

Finally, it is instructive to estimate how the emergent force vanishes at short distances.

In the q � µ regime, the emergent contribution is

∆dr
p (z0, z0) ⊃ kµ3

q5

( q
k

)2−2α
e−2q/µ , (6.20)

where we have dropped all the O(1) factors for clarity. This approximation is valid for

momenta larger than µ. We thus take q > µ̃ where µ̃ is an IR cutoff that may be taken to

be around O(few)×µ. The Fourier transform integrates over a momentum range q ∈ [µ̃,∞].

Expanding in small rµ̃ shows that the emergent component of the potential behaves as

V (r)|r�1/µ ∼ c
2
ϕλ

2e−2µ̃/µ µ
4r2

k

(
µ̃

k

)1−2α

+ · · · . (6.21)

This limit explicitly shows how the emergent force vanishes at short distance. This is only a

crude approximation as the overall magnitude strongly depends on µ̃. An exact, numerical

calculation of the holographic emergent force is beyond the scope of the present study.

7 Conclusion

Hidden (dark) sectors with new particles may generate long-range forces between visible

sector matter. This manuscript examines exotic long-range forces that differ from the

Yukawa-like forces generated from single-particle exchange. We present three classes of

exotic forces.

Quantum forces come from the loop-level exchange of pairs of dark sector particles.

They are described by an effective theory and may themselves be the dark matter. We

present the spin-dependent potentials including the spin- and orientation-averaged limits.
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As an example, we show the constraints on a light dark sector imposed from NMR bounds

on the anomalous J-coupling of deuterium.

Conformal forces arise when visible particles couple to a dark sector with conformal

symmetry. Such forces are also generated in the case of a “warped dark sector,” which

by the AdS/CFT correspondence is a five-dimensional realization of the conformal dark

sector. These forces have non-integer behavior in r.

Emergent forces are induced by effective degrees of freedom arising in the infrared. We

presented a qualitative picture in a 4D strongly-interacting dark sector, and a quantitative

result from a specific realization of this scenario in a slice of AdS5. In the AdS model, the

emergent force comes from an IR brane-localized degree of freedom that becomes invisible

to the UV-localized nucleons at short distances.

As an aside we classify the behavior of spin-dependent and spin-independent forces,

for Yukawa and exotic cases, and for the ordinary, spin-averaged, and orientation-averaged

cases. Such an analysis is required to form a coherent vision of existing and upcoming

experimental prospects. We point out that in the orientation-averaged limit, the Yukawa

forces are suppressed as a result of Gauss’ law. A similar effect also occurs for the tensor

force upon spin-averaging. This behavior is not true for exotic forces. Yukawa forces are

thus non-generic compared to exotic forces.

It follows that experiments that use disordered phases of matter are particularly ap-

propriate for searching for exotic spin-dependent forces. NMR-based experiments are one

such type of setup. We find that searches for spin/velocity-dependent forces are especially

sensitive to exotic tensor potentials.
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A The dipole potential

The four operators OS,P,A,V
N can couple to a dark mediator with renormalizable couplings.

In contrast, the tensor operator OT
N can only couple to other fields through a higher-

dimensional operator. This is a consequence of its two Lorentz indexes. Since σµν is
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antisymmetric, the only operator available is a field strength tensor Xµν which couples to

the tensor operator as

mN

Λ2
N̄σµνNX

µν mN

Λ2
N̄σµνNX̃

µν . (A.1)

It is natural to assume that Xµν is the field strength of a hidden gauge group. The operators

in (A.1) then describe dark magnetic and electric dipole moments. We assume the gauge

group is Abelian and denote it U(1)X . We refer to the gauge boson as the dark photon.

The Standard Model particles themselves may have hidden charge. This possibility is

highly constrained due to the chiral structure of the Standard Model: either new chiral

fermions must be carefully introduced to cancel anomalies, or Wess-Zumino terms are

generated in the low-energy theory. A less constrained possibility is that all Standard

Model fields are singlets under U(1)X . In that case, the dark photon may have a kinetic

mixing with the visible photon [26, 27]. This mixing is typically loop induced so that the

dark photon has a small coupling to visible electric currents.

Even without kinetic mixing, visible sector fields can interact with the dark photon

through multipole operators. Complex and Dirac fields can have dipoles, and self-conjugate

fields can have dark polarizability.10 In particular, nucleons (or quarks), have dark dipole

operators like those in (A.1). Two ways to generate a dark polarization are: (i) The

polarization may be induced by loops of heavy particles coupled to the Standard Model.

(ii) The polarization could be a consequence of the compositeness of Standard Model

particles if the underlying constituents are charged under U(1)X . In the latter case, the

dipole moment is a low-energy manifestation of the internal structure of the Standard

Model particle. This is analogous to the electromagnetic moments of hadrons. In this

“dark dipole scenario,” some amount of photon-dark photon kinetic mixing should also

be present, at least as a result of loops contributing to Fµν −Xµν mixing. However, this

loop-induced mixing via Standard Model fields can be expected to be small.

If the hidden gauge boson is sufficiently light, the nucleon dipole operator induces a

spin-dependent force of tensor-type:

VT(r) =
−4m2

N [(σ1 · σ2)∇2 − (σ1 ·∇)(σ2 ·∇)]

Λ4

(
e−mr

4πr

)
. (A.2)

Upon spin averaging σ2, the dominant piece is

VT(r) =
{12[(p1 + p′1)× σ1] ·∇ + 1112∇2}

Λ4
∇2

(
e−mr

4πr

)
. (A.3)

If, instead, the dark photon is heavy, then (A.1) generates the N̄σµνNOµνDS tensor interac-

tion. This operator induces a quantum force, presented in the analysis of section 4. We

leave further study of this “dipole portal” scenario for future work.

10See e.g. [28] for more details on polarizability operators in the context of a dark sector.
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B Fourier transforms and effective theory

While the technique to derive a non-relativistic potential from a field theory amplitude is

not new (see e.g. [29]), some aspects related to the effective theory framework are usually

left implicit and deserve clarification.11

The integral in the Fourier transform (2.4) spans three-momenta up to infinity. How-

ever, whenever working within a low-energy effective theory, momenta higher than the

effective theory cutoff Λ should not be used in a calculation because it probes physics

beyond the validity of the theory. For finite, low-energy predictions — like the potentials

studied here — the details of the momentum truncation are ultraviolet details that should

have negligible impact.

However, this leads to an apparent paradox. Amplitudes arising in the effective theory

can grow with energy with a polynomial form such that the integrand in (2.4) takes typically

the form eiqrqn ln q2, with n > 0, q ≡ |q|, r ≡ |r|. An integral up to infinity diverges and

requires an ultraviolet cutoff. One may impose the cutoff by introducing a step function

Θ(|q| < Λ) in the integrand. In the presence of this factor the integral produces oscillating

Λ-dependent terms such as Λn sin(Λr) in addition to Λ-independent terms from the low-

energy region of the Fourier integral. These Λ terms are unsuppressed and do not vanish

in the Λ→∞ limit.

The same paradox occurs if one attempts an analytic continuation to transform the

integral along the real line as an integral over the branch cut of the amplitude, as described

in appendix C and used in section 4. In that case, the integral along the branch cut provides

the universal long-distance contribution, while the integral over the large arcs of radius Λ

needed to close the contour gives rise to the Λ-dependent oscillating terms described above.

These Λ-dependent contributions originate from the fact that a hard cutoff factor

Θ(|q| < Λ) introduces a non-analyticity at |q| = Λ because it is not continuous across this

boundary. The Λ-dependent contributions are thus artifacts of the truncation of momentum

space. The solution to the paradox is then clear: a smooth cutoff should be used in order

to avoid the spurious Λ-dependent contributions.

Such smooth cutoff is conveniently implemented by convolving the step function with

a smooth distribution, π. For example:

Θ(|q| < Λ)→
∫
dξΘ(|q| < Λ + ξ)π(ξ) π(ξ) =

1√
2πσ

e−ξ
2/(2σ2) , (B.1)

where σ � Λ is the width of the smoothing function. The Fourier integral takes the form∫
d3q

(2π)3
eiq·rMIJ

∫
dξΘ(|q| < Λ + ξ)π(ξ) . (B.2)

The ξ integral is most conveniently performed after the Fourier transform. The Λ-

dependent contribution to the potential is exponentially suppressed by a factor e−r
2σ2

,

thereby leaving the universal long-distance contribution as the main contribution to the

potential.

11This appendix is based on discussions between S. F., G. von Gersdorff, and E. Ponton.
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C Calculation of the quantum potentials

We present additional details for the calculation of the quantum potentials in section 4.

C.1 Loop calculation

The relevant one-loop amplitudes for the operators of section 4 are:

iM0
a =

η

Λ4
(ūp′1γ

µγ5up1 ūp′2γ
νγ5up2)

∫
d4k

(2π)4

2kµ+qµ
k2−m2

2kν +qν
(q+k)2−m2

(C.1)

iM0
b =

2η−1

Λ2
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4

1

k2−m2

1

(q+k)2−m2
(C.2)

iM0
c =

2η−1

Λ6
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4

k2 +k ·q
k2−m2

k2 +k ·q
(q+k)2−m2

(C.3)

iM0
d =

η

Λ6
(ūp′1σ

µνup1 ūp′2σ
αβup2)

∫
d4k

(2π)4

kµ(k+q)ν
k2−m2

kα(k+q)β
(q+k)2−m2

(C.4)

iM
1
2
a =
−2η−1

Λ4
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4
Tr

[
(/k+m)iγ5

k2−m2

(/q+/k+m)iγ5

(q+k)2−m2

]
(C.5)

iM
1
2
b =
−2η−1

Λ4
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4
Tr

[
(/k+m)

k2−m2

(/q+/k+m)

(q+k)2−m2

]
(C.6)

iM
1
2
c =
−2η−1

Λ4
(ūp′1γ

µγ5up1 ūp′2γ
νγ5up2)

∫
d4k

(2π)4
Tr

[
(/k+m)γµγ

5

k2−m2

(/q+/k+m)γνγ
5

(q+k)2−m2

]
(C.7)

iM
1
2
d =
−η
Λ4

(ūp′1γ
µγ5up1 ūp′2γ

νγ5up2)

∫
d4k

(2π)4
Tr

[
(/k+m)γµ
k2−m2

(/q+/k+m)γν

(q+k)2−m2

]
(C.8)

iM
1
2
e =
−η
Λ4

(ūp′1σ
µνup1 ūp′2σ

αβup2)

∫
d4k

(2π)4
Tr

[
(/k+m)σµν
k2−m2

(/q+/k+m)σαβ

(q+k)2−m2

]
(C.9)

iM1
a =

2η+3

Λ6
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4

1

k2−m2

2(k ·(k+q))2 +k2(k+q)2

(q+k)2−m2
(C.10)

iM1
b =

2η+4

Λ6
(ūp′1iγ

5up1 ūp′2iγ
5up2)

∫
d4k

(2π)4

1

k2−m2

(k ·(k+q))2−k2(k+q)2

(q+k)2−m2
, (C.11)

where q = p1 − p′1 = p′2 − p2. Unprimed momenta represent the initial states, and primed

momenta represent the final states. We introduce Feynman parameters to simplify the

integral in the usual way. The resulting integrals are∫
d4l

(2π)4

1

(l2 −∆)2
−→ −i

(4π)2
ln

(
∆

Λ2

)
(C.12)∫

d4l

(2π)4

l2

(l2 −∆)2
−→ −2i∆

(4π)2
ln

(
∆

Λ2

)
(C.13)∫

d4l

(2π)4

(l2)2

(l2 −∆)2
−→ −3i∆2

(4π)2
ln

(
∆

Λ2

)
(C.14)

with ∆ = m2−x(1−x)q2. The amplitudes can then be written in a basis of integrals over

the Feynman parameters,

fn =

∫ 1

0
dx(x(1− x))n ln

(
∆

Λ2

)
. (C.15)
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ln(y) has a branch cut along the real axis for y < 0. The discontinuity in fn due to this

branch cut is given by

Disc(fn) = 2πi

∫ x+

x−

dx(x(1− x))n x± =
1

2
± 1

2q

√
q2 − 4m2 . (C.16)

C.2 Amplitude to spatial potential

The spatial potential is a Fourier transform of the relativistic scattering amplitude M,

V (r) =

∫
d3q

(2π)3

−M(q)

4m2
N

eiq·r M(q) =
∑
A

SA(q)fA(|q|) . (C.17)

Here A indexes possible tensor structures in spin space as carried by the factors SA(q).

Observe that SA(q) may depend on q through (q · σ1)(q · σ2). This is the only piece of the

amplitude that may depend on q as a spatial vector rather than just its magnitude. Inside

the Fourier transform, we may identify the transfer momentum with a gradient, q = −i∇.

This gives an expression for the potential that is a Fourier transform of a function that

only depends on the magnitude, ρ = |q|:

V (r) =
∑
A

−iSA(−i∇)

4m2
N

∫ ∞
−∞

dρ

(2π)2
ρfA(ρ)eiρr , (C.18)

where we have performed the angular integrals and have extended the radial integral to the

entire real line. The remaining integral may be performed by analytic continuation into

the complex plane, minding the branch cuts in the fA(ρ) functions along the imaginary

ρ-axis starting at ρ = 2im. Deforming the integration contour then maps the integral to

the discontinuity across this branch cut:∫ ∞
−∞

dρ

(2π)2
ρfA(ρ)

eiρr

r
=

∫ i∞+ε

2im+ε

dρ

(2π)2
ρfA(ρ)

eiρr

r
−
∫ i∞−ε

2im−ε

dρ

(2π)2
ρfA(ρ)

eiρr

r
. (C.19)

Changing integration variables then yields:

V (r) =
∑
A

iSA(−i∇)

4m2
N

∫ ∞
2m

dλ

(2π)2
λDisc [fA(λ)]

e−λr

r
. (C.20)

To complete the remaining integral, we use∫ ∞
2m

dλ
√
λ2 − 4m2e−λr =

2m

r
K1(2mr) (C.21)∫ ∞

2m
dλλ2

√
λ2 − 4m2e−λr =

8m3

r
K1(2mr) +

12m2

r2
K2(2mr) (C.22)∫ ∞

2m
dλλ4

√
λ2 − 4m2e−λr =

32m4

r2
K2(2mr) +

(
120m3

r3
+

32m5

r

)
K3(2mr) (C.23)∫ ∞

2m
dλλ6

√
λ2 − 4m2e−λr = 2m8

[
K1(2mr)

2mr
+

9K2(2mr)

(2mr)2

+
45K3(2mr)

(2mr)3
+

105K4(2mr)

(2mr)4

]
(C.24)∫ ∞

2m

dλ

λ2

√
λ2 − 4m2e−λr =

1

4m2r2

(
4 + πm3r3 + π2m2r2G(m2r2)

)
. (C.25)
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G(m2r2) is shorthand for one of the Meijer G-functions,

G(m2r2) ≡ G2,0
2,4

(
m2r2

∣∣∣∣ 1
2 ,

3
2

0, 0, 1
2 ,

1
2

)
. (C.26)

The orientation-averaged form for the potentials is equivalent to the replacement

∂i∂j −→
1

3
δij∇2 . (C.27)

D Non-relativistic spinor limits

For convenience, we present results of spinor contractions to leading order in the non-

relativistic limit. Latin indices refer to spatial directions.

D.1 Both sources polarized

ūp′1up1 ūp′2up2 ≈ 4m2
N1112 (D.1)

ūp′1γ
µup1 ūp′2γ

νup2 ≈ 4m2
Nδ

µ
0 δ

ν
01112 (D.2)

ūp′1σ
µνup1 ūp′2σ

ρλup2 ≈ 4m2
Nε

ijkεlmnδµi δ
ν
j δ
ρ
l δ
λ
mσ

k
1σ

n
2 (D.3)

ūp′1γ
µγ5up1 ūp′2γ

νγ5up2 ≈ 4m2
Nδ

µ
i δ

ν
j σ

i
1σ

j
2 (D.4)

ūp′1iγ
5up1 ūp′2iγ

5up2 ≈ qjqkσ
j
1σ

k
2 . (D.5)

D.2 One source polarized, other unpolarized

The above results change when one source of nucleons is unpolarized. Take σ2 to represent

the spin of the unpolarized nucleon current. The long-range potential is the average of the

initial spins. The spin-independent OS and OV bilinears remain unchanged. The axial and

pseudo-scalar combinations vanish at all order:

ūp′1γ
µγ5up1 ūp′2γ

νγ5up2 = 0 ūp′1iγ
5up1 ūp′2iγ

5up2 = 0 . (D.6)

The tensor combination at leading order is

ūp′1σ
µνup1 ūp′2σ

ρλup2 ≈ −iqa12[((p1 +p′1)×σ1)i− iqi11](δµi δ
ν
0 − δνi δ

µ
0 )(δρaδ

λ
0 − δλaδ

ρ
0) . (D.7)
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