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1 Introduction

Bondi-van der Burg-Metzner-Sachs (BMS) group is a symmetry of asymptotically flat four-
dimensional spacetimes at null infinity [1, 2]. It is a semi-direct product of the SL(2,C)
subgroup of global conformal transformations of the celestial sphere CS? at null infinity
(isomorphic to Lorentz transformations) times the abelian subgroup of so-called super-
translations. In 2009, Barnich and Troessaert [3] argued that SL(2,C) should be extended
to the group of all local conformal transformations (diffeomorphisms) of celestial sphere,
a.k.a. superrotations. In 2013, Strominger showed that such extended BMS is also a sym-
metry of the S-matrix describing elementary particles and gravitons [4]. This symmetry
plays central role in Strominger’s proposal of a flat spacetime hologram on CS? [5].! In

IFor a review of more recent developments, see ref. [6]. For an earlier proposal of flat holography, see
ref. [7].



particular, superrotations set the stage for two-dimensional celestial conformal field theory
(CCFT) on CS? which, according to Strominger, should encode four-dimensional physics.

In CCF'T, each particle is associated to a conformal field operator. The correlators of
these operators are identified with four-dimensional S-matrix elements transformed to the
basis of conformal wave packets. They can be obtained by applying Mellin transformations
(with respect to the energies of external particles) to traditional, momentum space ampli-
tudes [8-11]. Within this framework, the operator insertion points z € CS? are identified
with the asymptotic directions of four-momenta while their dimensions A are identified
with the dimensions of wave packets. The conformal wave packets associated to stable,
helicity ¢ particles have conformal weights (h, h) = (%, %) with Re(A) =1 [12]. Two
of us have recently shown that, given the proper definition of CCFT energy-momentum
tensor, the operators representing gauge bosons and gravitons do indeed transform under
diffeomorphisms of CS? (superrotations) as primary conformal fields [13].

There are two special cases of conformal dimensions that lead to important insights into
CCFT. For gauge bosons, it is the “conformally soft” limit of A = 1 [14] in which conformal
wave packets describe pure gauge fields. They correspond to asymptotically “large” gauge
configurations that have observable effects similar to Goldstone modes. The operators
emerging in the A =1 (h = 1, h = 0) limit of gauge boson operators are the holomorphic
currents J¢ carrying gauge group charges. In ref. [15], we derived OPEs of J* with other
operators and showed that respective Ward identities agree with soft theorems. For gravi-
tons, both A = 0 and A = 1 spin 2 wave packets represent (large) diffeomorphisms. Upon a
shadow transformation, the operator associated to A = 0 (h = 1,h = —1) graviton (which
is outside the Re(A) = 1 stability domain) changes its dimension to A = 2 (h = 2,h = 0)
and becomes the CCFT energy-momentum tensor 7' generating superrotations [16, 17].
The graviton associated to A =1 (h = 3/2,h = —1/2) yields a primary field operator with
a single-derivative descendant P that generates supertranslations. Hence BMS symmetries
are controlled by A = 0 and A = 1 soft limits. On the other hand, collinear limits are use-
ful for studying OPEs because identical momentum directions correspond to the operator
insertion points coinciding on CS?. We will utilize them together with the soft limits in
the following discussion of the extended BMS symmetry algebra bms,.

While BMS is a highly nontrivial symmetry of asymptotically flat spacetimes, its im-
plementation in CCFT is rather straightforward. Virasoro subalgebra must emerge from
the standard OPE of TT" products. We also know what to expect from the OPE of the
supertranslation operator P with T because P is a well-defined descendant of a primary
field. What is non-trivial in the context of CCFT is to show that such OPEs follow from
the properties of Einstein-Yang-Mills (EYM) theory of gauge bosons coupled to gravitons.
In this work, we extract bms, from the collinear and soft limits of EYM amplitudes.

The paper is organized as follows. In section 2, we revisit OPEs of the operators asso-
ciated to gauge bosons and gravitons previously discussed in refs. [15] and [18]. We rewrite
them in uniform normalization coventions. The relevant collinear limits are collected in
appendix A, where they are derived by using EYM Feynman rules. In section 3, we derive
the OPEs of superrotations generated by the energy-momentum tensor and of supertrans-
lations generated by a descendant of a soft graviton operator, with the operators associated



to gauge bosons and gravitons. Although the energy-momentum tensor is defined by a non-
local shadow integral, its OPEs are always localized. In section 4, we use soft theorems [15,
19-23] to derive the OPEs of BMS generators.? In section 5 we connect OPEs with bms,.

2 Preliminaries: OPEs of spin 1 and 2 operators

The connection between light-like four-momenta p# of massless particles and points z € CS?
relies on the following parametrization:

1
Pr=wet, =50+ 2%, 2+ 2, —i(z — 2),1 — |2]%), (2.1)
where w is the light-cone energy and ¢* is a null vector — the direction along which

the massless state propagates, determined by z. The basis of wave functions required
for transforming scattering amplitudes into CCFT correlators consist of conformal wave
packets characterized by z, dimension A and helicity ¢. The starting point for constructing
such packets are Mellin transforms of spin 1 and 2 plane waves:

o0
V(XHE 2, 2) = 8””/0 dw WP T X (0=+1), (2.2
[e.9]
H“AV’K(X“, 2,Z) = (9Jqu6Jq,,/ dw WA teTiwaX—ew (0 = £2). (2.3)
0

where 0y = 0, for £ = +1,42 and 95 = 05 for £ = —1, —2. The conformal (quasi-primary)
wave functions can be written as

AR = g(AWVS +gauge,  GL = f(A)HS! + diff (2.4)
with the normalization constants
B A—1 1 A(A-1)
9A=tary =@y (2:3)

The presence of these normalization factors makes it clear that, as mentioned in the Intro-
duction, fields with spin 1 become pure gauge when A = 1 while fields with spin 2 become
pure diffeomorphisms for A =0, 1.

The CCFT correlators are identified with the S-matrix elements transformed from the
plane wave basis into conformal basis (2.4) by using properly normalized Mellin transfor-
mations [8-11]:

N N N
< H OAn,Kn (Zn, Zn)> = < H Cn(An) / dwy, w7?"_1> 5(4) (Z Enann>
n=1 n=1 n=1
XMZI,,,ZN(wn,Zn,En) (26)

where My, ,, are EYM Feynman’s matrix elements with helicities ¢, and ¢, are the
normalization constants

[ g(A,) for £, ==£1,
¢n(Bn) _{ F(A,) for 6, = 2,

*These OPEs have been discussed before in ref. [24] by using different methods.

(2.7)




see eq. (2.5). In eq. (2.6) €, = +1 or —1 depending whether the particles are incoming or
outgoing, respectively. We skipped the gauge group indices and the corresponding group
factors that can always be written in the basis of single or multiple trace Chan-Paton
factors.

OPEs can be extracted from the correlators (2.6) by considering the limits of coin-
ciding insertion points, which on the r.h.s. correspond to the collinear limits of scattering
amplitudes. Furthermore, in the cases of operators with A = 1 and 0, the zeros of nor-
malization constants ¢, must be canceled by “soft” poles. Indeed, finite OPE coefficients
appear from such singular soft and collinear limits.

In ref. [15], we derived the OPE coefficients of the products of spin 1 operators rep-
resenting gauge bosons. They follow from the well-known collinear limits of Yang-Mills
amplitudes. For two gauge bosons labeled by gauge indices a and b, with identical helici-
ties, we obtained

_ C(++ A1;A2
w) =

O}, +(2,2) (’)bAZ’Jr(w Z f“bc(’)(AlJrAz 1)+ (w, W) + regular, (2.8)

with
C(A- (A1)

C(+,+)+(A17A2) = A]_AQ

(2.9)

and a similar expression with (z — w)™! pole and the same OPE coefficient for two —1
helicities.

Two gauge bosons of opposite helicities can fuse into a single operator in the same way
as in the case of identical helicities. The form of the corresponding OPE terms [15] follows
from the collinear limit of gauge interactions. In the case of opposite helicities, however,
gravitational interactions allow the fusion of two gauge bosons into a graviton operator [18].
As explained in appendix A, EYM amplitudes involving gravitational couplings do not
blow up in the collinear limit but contain another type of singularity. It is due to a phase
ambiguity reflecting an azimuthal asymmetry. In appendix A, we show that when z; — 29,

1 1
M@1+,27,3,.. . N) = — L M(P+,3,... N) + — 2 M(P,3,...,N)
Z12 WQWP 212 wlwp
- “;M(P++ 3,...,N) — @ﬁM(P" 3,....N)
212 wWp Z12 wP
+ regular. (2.10)
Here, P is the combined momentum of the collinear pair:
P =p1 +p2 =wpgp, (2.11)
with
Wp = w1 + Wy gp=q =q (2p=21=2, Zp =2 = %), (2.12)
and
Zij = 2 — 25, Zij = % — Zj . (2.13)



In eq. (2.10), the last two terms, which originate from gravitational couplings,® contain the
phase factors z12/z12 and Zj2/z12 depending on the direction from which z; approaches zo
or equivalently, on the azimuthal angle of the plane spanned by the collinear pair about
the axis of the combined momentum P. The “regular” part does not contain either z19 nor
Z12 in denominators and is well-defined, finite in the z; = 25 limit. By following the same
steps as in ref. [15], we obtain

Ce)-(A1, Ag)
Z—w

Cr_yt Al, As)

0%, _(2,2)0%,  (w,w) = Z FOlN 4y (w, D) (2.14)

+

Z fabCO A1+A2 1 (w H_J)

" D gab O(a1+44),—2(w, W)

+ C_4y——(Aq, Az) T

zZ —
+ C—ty++ (A1, A2)Z

6 O(A14+A0),+2(w, W) + regular,

with
C-(B1,80) = 5 A?I—I—_At 5 (2.15)
Co (A1, Ag) = A1(A?1_A12 —9) (2.16)
SRR T
Clepir (A1, Ag) = Z(jil_j)iﬁf(zlll(iz : 11)) : (2.18)

The above result agrees with refs. [15, 18].
The OPEs involving gravitons can be extracted in a similar way. For two gravitons
with identical helicities, we show in appendix A that

2 —
M@ATT 2Tt 3 . N) = wi@M(PJr*, 3,...,N) +regular. (2.19)
wiw2 212
As a result,
_ _ Z—w _
Op, +2(2,2)0p, 42 (w, w) = C’(+2’+2)+2EO(AHAQ)#Q(U), w) + regular, (2.20)
with

c _(A1+A2—2)(A1+A2+1)
(+2,+2)4+2 — Q(Al + 1)(A2 + 1)

(2.21)

and a similar expression with the conjugated phase factor and the same OPE coefficient
for two —2 helicities.

3In our units, the gravitational and gauge coupling constants x = 2 and gym = 1, respectively.



The collinear limit of two gravitons with opposite helicities is also derived in appendix
A. Tt reads:

3 —
M1 243 N) = 2 M(P s, N)
wpw22:12
wg’ Z192
2 ;M(P++,3,...,N)—i—regular. (2.22)
pW1 212

The corresponding OPE is

zZ—w

Ony,-2(2,2) Oz 42(w, W) = Gl g)2-——Oar1a,),-2(w, 0) (2.23)
Z—Ww
+ C(—2,+2)+22 — wO(A1+A2),+2(w’ w) + regular,
with
1 Ar(Ay — 1)(Aq +2)
C_ o = — , 2.24
(724227 5 (A, + 1) (A1 + Ay — 1)(A1 + Ay) (2.24)
1 As(As — 1)(Ag +2)
C_ = — . 2.25
(24242 7 5 (A, + 1)(A1 + Ay — 1) (A1 + Ay) (2.25)

We close this section by listing the OPEs of gauge bosons with gravitons. They follow
from the collinear limits of EYM amplitudes discussed in appendix A:

M@, 2%, 3, N) = PPE2 (Pt 3, N) + regular, (2.26)
w1 212

w% Z192
M@, 27.3,... N) = ZEM(PT,3,...,N) + regular, (2.27)

wpwi 212

which lead to
_ _ zZ—w _
Oy +(2,2)Ony 2(w,w0) = C4 1)+ o wO(A1+A2)7+(w7 w) + regular,  (2.28)
z—w

Oy, 1(2,2)0n,,—2(w,w) = C(y _9) ¢ - wO(AﬁAZ)nL(w, w) + regular,  (2.29)

with
1AL - 1)(AL+ Ay)
C(+,+2)+ - 5 Al(AQ + 1) ’ (230)
1 (A - 1)(A 1Y)
U2t = 0, s (A 2 Ay - 1) (2:31)

The OPEs of operators with + and — interchanged have the phase factors (z — w)/(z — w)
conjugated and the same coefficients.

3 OPEs of superrotations and supertranslations with spin 1 and spin 2
operators

In this section, we discuss the OPEs of superrotations generated by the energy momentum
tensor 1" and of supertranslations generated by the operator P, with the operators asso-
ciated to gauge bosons and gravitons. We know what to expect from the OPE of T" with



primary fields. In ref. [13], we showed that the operators Of% , representing gauge bosons
are indeed such primary fields. To that end, we used the energy-momentum tensor defined
in [16, 17] as the shadow [25] of dimension A = 0 graviton operator Op _s:

~ |
T(2) = Op o2 2) = 237 / d2z’(zl_1z)4 Oo_a(, %) (3.1)
and took the collinear limit of the shadow with gauge bosons as in eq. (2.27). The limit
of A — 0 was taken at the end. Actually, as we will see in this section, there is a fast way
of deriving and generalizing the results of ref. [13]. We will first take the A — 0 limit and
then take the shadow transform in order to extract the OPEs. We will proceed in the same
way in the case of P:

P(Z, 2) = 8§OA4)17+2 s (32)
by taking the A — 1 limit first.

3.1 Superrotations

We start by inserting 7'(z) into the correlator (2.6):

Al i (B 3,1
<T(z)goAn,zn(zn,zn)> = Jim, (gcn(An))% / S Tomr,
X Agy=—241...t5 (Bn, 2n, Zn) (3.3)
where we used the definition (3.1) and
Avg=—2.01.tn (D20, 2n) = A_2(Ao,Aq,...,AN) (3.4)

N N
= <H /dwnwf"_1> 5(4) (Zenann> Mﬁ0:—2,£1...é1\7 (wnvznazn)>
n=0 n=0

which is the Mellin-transformed amplitude with a “soft” graviton. Its Ag — 0 limit has
been studied in refs. [21-23], with the following result:

N _
A a(Bo, A, Ay) — > (20 — 2) (€= fl’) (20 — 20, — 20| AA, ., Ay)

(3.5)
where A on the r.h.s. is the Mellin transform of the amplitude without the graviton.
Here, h; is the chiral weight of the ith operator and £ is an arbitrary reference point on
CS? reflecting the gauge choice for the graviton. When the reference point is varied, the
variation of eq. (3.5) vanishes as a consequence of conformal (Lorentz) Ward identities. In
our case, it is convenient to set £ — oo. The shadow transform can be performed by writing

1 _ 1 1
(20— 2)% 3!(920(20—,2) (3.6)

and integrating by parts three times. After repeatedly using the identity

@O(_ ! ) — 276® (2 — 2), (3.7)

20 — %



we obtain

3 co(Ao)
W\ 0(Ao
(1) T O on20) = Alélg0< N ) (3.5)
N 2 N
8 z; [ (z —z)2 z—ziazi}<T[[10A”’Z"(Zn’zn)>'
Note that (Ao) F(2) .
. co(Bo) ) _ . o)y _ 1
dmy (527) = dim, (P8 =4 39
see eq. (2.5). As a result, we obtain
T(2) O (w0, @) = —— On 4w, @) + —— 0y On o(w, @) + regula (3.10)
2 W, W) = ————— w, W w w,w) + regular. .
AW, (z =yt T w A g

Following the same route for the antiholomorphic T'(z), one obtains

h 1

T(2)O0p (w, @) = Op(w, w) + ﬁ@@@A,g(w,w) + regular. (3.11)

(2 —w)?
The OPEs (3.10) and (3.11), which are valid for both spin 1 and spin 2 particles, prove
that the respective CCFT operators are primary fields.

3.2 Supertranslations

We start by inserting P(zp) into the correlator (2.6):

A()*)l

N
<P(ZO) H OAn,Zn (zna Zn > = lim <H Cn n ) 820A€:+2,€1..‘EN (ATM Zn, 271) (312)
n=1

where we used the definition (3.2). In this case, the relevant Ag — 1 soft limit is [21-23]:

N

1 (%0 — Z) (€ — =)
A+Q(A0,A1,...,AN)—> AO—].;(ZO—Zi) (5_20) .A(Al,...,A +1,...,AN)

(3.13)
In this case, varying the reference point £ does not change the form of eq. (3.13) because
its variation vanishes a consequence of Ward identities associated to momentum conserva-
tion [26]. Here again, as in eq. (3.5), we can set £ — oco. From egs. (3.12) and (3.13) it
follows that

N N
N\ . co(Ao) ci(Ag) 1
i-1 N
><< [H OAm,em(Zm,Zm)]OA,-+1,£1-(Z¢,Z')[ 11 OA7L,Zn(ZnaZn):| >

m=1 n=i+1
Note that (Ao) (A) )
. co(Ao)\ .. o)\ _1

Am, <A0—1> = Jim, <A0—1> ~ 1 (3.15)



and

g(Ai)  _ (Ai—1)(A+1) o
CZ(A’l) _ g(Ai+1) - A fOI' E - :l:l (3 16)
A FA)  (Ai—1)(Ai+2 :
ci(Ai +1) s = B YGH) for 4 = 42,

As a result, we obtain

(A—1)(A+1) 1

P(2)Op o(w,w) = w(’)AH,g(w,ﬂ)) +regular (£ ==£1), (3.17)

4A z—
_ A—-1)(A+2 1 _
P(2)Op ¢(w, w) = ( 4(A):- 0 ) o wOAJrl,Z(U%W) +regular (£ =+2), (3.18)

and similar expressions for P(Z), with complex conjugate poles.* Note the presence of
(A — 1) factors in the above OPE coefficients. They imply that the products P(z)J%(w),
P(2)J%w), P(2)P(w) and P(z)P(w) are regular.

P(z) is not a holomorphic current: it is a dimension 2 descendant of a primary field,
with SL(2,C) weights (3/2,1/2). Nevertheless, the r.h.s. of eq. (3.14) implies the same
Ward identity as translational symmetry of scattering amplitudes discussed in refs. [26]
and [27]. In fact, P contains the Py 4+ P; component of the momentum operator which
generates translations along the light-cone directions. The remaining components can be
obtained by superrotations of P. This will be discussed in section 5.

4 OPEs of BMS generators

4.1 TT

The product of energy-momentum tensors involves two shadow transforms. Let us define

=~ 1 1
A(w, Zy 22y ) = /d2zo(u))4 / d22’1 m‘AﬂO:_Zgl:_ZEQ---ZN . (41)

Then

<T(w)T(Z)nﬂ20An7£n (Zn, 5n)> _ <237T>2 AI}IEO Al(i)rgo < ﬂ cn(An)> .Z(w, 2,29,...). (4.2)

We take the limit Ay — 0 first, as in eq. (3.5):

Lo (20— 2) (€= 7)
Af0:—2,€1:—2,€1...€1\7 — Z _0 _z = ,Z) |:(ZO - Zi)azi - 2hl] A€1:—2,42...€N ) (43)

which leads to

= 22 2Z 20— R —Z
A(w, z,29,...) N/( ) 4/( @21 (,0 ,1)(§ 1)[(20 21)0z, 2h]__:|A51:72,52...€N

Zp—w)

d?zy al (z0—2i) g Zi) _
+</ (20— 11)42 (F0—2) (E—Z0) [(Zo—zi)azi—2hi} A(z,22,...), (4.4)

“The same result can be obtained from egs. (2.20), (2.23) and (2.28), derived in the previous section by
considering the collinear instead of soft limits, by taking the limit of Ay — 1.




where h] = —1 because {1 = —2, Ay =0 and

~ d?
A(Z, 29y . ) = / %Aflzfzfg..[]\] . (45)

21— 2)

In eq. (4.4), the integrals over zy can be performed by using the conformal integrals of
ref. [28], see appendix B. With the reference point £ — oo, the result is

.3 =~ d? hy 1
lim —co(Ag)A(w, z, 29, ...) :/( 1 T <(w 1 5+ 8Z1> Av=—20..05

Ag—0 2T z—21) —21) w— 21

N
hi 1 ~
+; <(w—zl)2 +w_2182’1> A(Z,ZQ,...), (46)

The same result can be obtained by a direct application of Ward identity (3.8).

It is clear from eq. (4.6) that the second term (involving the sum over ¢ > 2) is non-
singular in the limit of w — z, therefore only the first term needs to be included in the
derivation of OPE:

) [ Oz = gim 2 [ P2 (L L Yo,
ny<n)) = 1IN —— 21T 7 o ) )
WIS ot o A—=021 ) (z—z2)f \w—21 7" (w—2)? “
(4.7)
where
N
G (21,---) = (Oay,-2(21,21) [ [ Oz 20)) -
n=2
In order to simplify notation, we introduce the following variables:
Z =z-z, W=w-—z. (4.8)

We anticipate a single pole term of the following form:

N
1 31 d’z
OT [] O(zn. 20)) = lim az/ Zjlg (21,...)
n=2

im —
w— z A0 2T W — 2

3l 1 , 1\
_Alirgo%<_w—z>/dzl <ale‘1)g (z1,--)

. 311 d?z _
— lim /Z;azlg (z1,...), (4.9)

im —
A—02Tw — 2

where in the last step we used integration by parts. Indeed, we can rewrite the r.h.s. of (4.7)
as

~ fm O ;+ RO SR NS S - - o)
_AiI—nm 27 ZAW?2 74 73 — % 2y ) = )

w
AR 11 .
__Alililo%r<24w2+w—zz3wazl)g (ot ) 5 0T (R) )

,10,



In the last line, the first term can be written as

3! 2 d*z 2 11 1
lim — “(z21,...)— d’ - (21,
A 50 2n [(w—z)Q/ zZ4 G (1,-) w—z/ “ <w—z Z3W Z5W2>g (21, )]

2 .30 2 5 1
=@U_Z)Q<T(z)--->—A1g02w(w_z)2/d A aad (). (4.11)
After combining egs. (4.10) and (4.11), we obtain:
2) 711:[20(27”,2”» = W_Z)Q(T(z)g(’)(zn,zn)) +— z<aT(Z)}:I20(Z”’ E)
_AI}IEO;W—QZ')Q/dZZIZ;Wg(ZI"")' (4.12)

The final step is to show that the last term vanishes due to global conformal invariance.
To that end, we take the soft limit A; — O:

_ c(Ay) al 21— 20— % A o, N _
G (z1,...) — A Zzl—zic‘r—zl[(zl 2)0; = 20 (] [ O(zn, 2n)) - (4.13)

i=2
After choosing the reference point o = z, the derivative terms become

/ Pz (21— =) (% — z)8»<ﬁ O(2n, 2n)) = (4.14)
Z2W?2 (5 — z) (51— 2) Z > e |

—T(0) (—@_110)3(21- — )20 +

(z —w

where we used conformal integrals of ref. [28], see appendix B, in particular eq. (B.3).5
The remaining terms can be written as

2, S - )
il / ;21/11/ (z1 — ;)(zl —2) (zi — Z)<H O(2n; Zn)) (4.15)

N
— 2h;1(0) < ! 2 Zi3> (T O(zns 20)) - (4.16)

(2 — w)

In this way, the last term of eq. (4.12) becomes

N
2I(0) [ o wp Z w)?0; + 2hi(z — w)|(] | O(Zn,zn»] (4.17)

1 N N
+2I'(0) [2 D lzi = w)d; + b (][ Ozm, zn)>] =0, (4.18)

(2 —w) i=2 n=2

®The integrals are divergent as it is obvious from the presence of the T'(0) prefactor. We can regularize
the divergence by taking the soft limit on the shadow transform at the end. In other words use

/ d221
(z _ zl)4+i)\(2 _ 51)1')\

and take A — 0 at the end. Our results will be the same.
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with both terms vanishing separately as a consequence of global conformal (Lorentz) in-
variance [26]:

N N N N
> 0[] Ozn 20)) =D (230 + ha) (]| Oz 20)) =
=2 n=2 i=2 n=2
N N
= (270 + 2zih) (]| O(zn, 7)) = 0.
i=2 n=2
The final result is the expected T(w)T(z) OPE
2T T
T(w)T(:) = ¢, _(Z))Z + aw _(? + regular . (4.19)
42 TT
By repeating the steps leading to eq. (4.7), we obtain
N
— 3! d*z 1 1
T(w)T e Zn)) = lim - 2 Fz,-0),
(2T [[ O ) = fim, 5 [ e e e LA
(4.20)
where
N
G (21,...) = (OF, oz, 2) [] Ozn, 20)) (4.21)
n=2
which can be simplified to
N
= _ 3! d221 + _ _\—4
<T<w)T(Z)J;I20(Znazn)> == dm o- [ o Zlg (21,...)0: (2 — 21)
After using
1 = 1 21 =
_ —\—4 3 3 (2
Ou (7= 2)"" = 510,08 = = 5720 —2), (4.22)
we obtain
N d’z
T(w)T naZn)) = — 1 L g+ 53 5@ (4 _
(T (w) (z)EzO(z ) = = Jim [ G000 (= )
TGt
— lim &3 [g(z)} (4.23)
A1—0 w—z
Note that in the soft limit
1 z—%0—2 N
li + )= —= - Z— 2;)0; — 2h; Ny 2n 4.24
Jim 0% ren) = =5 T2 T2 - - 2 [[ Oz (420

therefore the derivative 02 acting on the r.h.s. of eq. (4.23) gives zero modulo delta-function
terms localized at z = w and z = z,. These terms do not affect the Virasoro algebra
following from eq. (4.19). We conclude that up to such delta functions,

T(w)T(z) = regular . (4.25)

— 12 —



4.3 TP and TP

Recall (3.2) that the supertranslation current is defined as
P(Z) = 62017+2(Z, 2) . (426)

The graviton primary field operator O; yo has chiral weights (%, —%) We start from
N N 3l
D TG0 = i (T[ea0)

1
X /d220WGZAZO:—Z,Elz—s-Z,KQ...EN- (4-27)

In the Ay — 0 limit, cf. eq. (4.3) with £; = +2 and the reference point & — oo,

> lim Hc ) ) Avy=—2.0,=+2,05..0
A0H0 0 1=+2,62..4N

1, (20— 2)
_—587(22_2)[@ 0—2)0, —2h1]G 1 (2, 22,...)
_13, EN:(ZO_Zi)[(zo—z-)@ —2M)G T (2, 2, . ..) (4.28)
QZZZQ(ZO_zi) 1)Uz i 922y 000 )y .

with G* defined in eq. (4.21) and h; = % As in previous cases, the sum over ¢ > 2 is
non-singular at z = w, therefore we are left with

0z Al(l)ng(HC >Afo—2€1 =+2,02..4N (4-29)
1, w2 _(zo—z) z, (20— z)?
_2[ i (o A 00| G )

Upon inserting the above expression into the shadow integral of eq. (4.27), the first two
terms give rise to delta-function singularities at z = w, but vanish for z # w. In particular,

d2ZQ zZ0 — % — 2z
3 =7 ~ 902 : 4.30
/ (20 —w)* (Z0 — 2) / (20 — (20 — 2)? (z—w) (4.30)
where we used conformal integrals (B.1) and (B.5) from appendix B. Similarly,
d’zy (20 — 2)?
~ 0P (z - 4.31
| e e~ ) (4.31)

In this way, we obtain

N
2) [ Oen. 20)) = (4.32)
=2

2
— lim 3/d2z0( 1w)4 {320 2p, 0 =2) Bzaz}g+(z,22,...)+~‘

A1—1 27 Zo— 2 (20 — 2)

3 1 20—z | (20— 2)
= = | &2 3 ||O ns An
27‘(’/ ZO(Z()—U))4[ 20—5+ (Zo—Z :| “ 7Z
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After performing the shadow integrals, we obtain

T(w)P(2) = 2(w3_z)2p(z) + ﬁazp(z) + regular, (4.33)

modulo delta-function singularities at z = w. Next, we consider

N
A 1L otn=0 = lgﬁogiﬂl(ﬂc )
/ dQZo 3 LAl =12, 0= 42,000y - (4.34)

After taking the Ag — 0 limit, we obtain

N
Z) H O(zna Zn» = (4.35)
n=2

1 1 20— 2 Z0 — 2)?
= lim ;/d2zo_ 4[ + 2 Zag—(zo ?) 02 G (2,20, .. ) + ...

20 — % 20 — % 20 — %
where, as in the previous case, we ignored delta-function singularities at z = w. As a result,

O1,42(2, 2) 1

T@)P) =-=—0"25 Tom_2p2

1
P(z) + magp(Z) + regular, (4.36)
which is the OPE expected for a level one descendant of a primary field.

5 Extended BMS algebra

In this section, we discuss connections between the OPEs and extended BMS algebra
bms,; we also make contact with ref. [29]. The OPEs of the stress energy tensor confirm
the presence of Virasoro subalgebra with zero central charge.’ Here, we concentrate on the
role of supertranslations and derive the complete form of the algebra based on the OPEs.

It will be convenient to work with primary fields normalized in a slightly different way.
Up to this point, we considered

7 . A+l A—Y
Onsls2) = (D) (5,2),  (hF) = (; 2) | (5.1)
The correlation functions of “bare” ¢ fields are given directly by Mellin-transformed am-
plitudes:
N —
(TL 0" s 20) ) = A (B 20, Z0) (5:2)
n=0

In the following discussion, the primary field operators will be identified with thﬁ(z, zZ),
although the normalization of soft graviton operators Op 12 and O; 12, and of the related
T and P will remain unchanged.

®This may change once EYM quantum corrections are taken into account [24].
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The four-momentum (translation) operators were constructed in ref. [26]. Anticipating
their placement in bms,, we define

P.i1 1=FP+PFP;= e(On+07)/2 Pi1i1=P —iP= Ze(0n+05)/2 -
22 22
Pi 1 =P +iPy=2e0t%)/2 P, | =Py~ Py =220 t)/2 |° (5.3)
27 2 Eb)
so that
Rbr, =\ _ i+l 141l pilgl B
[Pr1s1,¢""(2,2)] = 2272225240122 (2, 7). (5.4)

We will use P_1 _1 as a starting point for constructing all supertranslation generators.
27 2
To that end, we will utilize the extended BMS algebra [29]. In addition to the Virasoro
subalgebra, bms, consists of

[P;j, Py) =0,

1
(L, P (271 — k) Pyiky +n(n® = 1)Chiks, (5.5)

_ 1 _
[Lin, Pri] = (2n - l) Pyt +n(n® = 1)Crnia

with m,n € Z and i, j, k,l € Z+ % Here C and C' are possible central extension operators.

The subset P, _1 _1 can be generated in the following way:
27 2
Poa= dww" T(w),P_1 _1]. (5.6)
"2z gm(n41) T

In order to find out how these operators act on a generic primary field, we first determine
the OPE of [T(w),P_1 _1] and ¢""(z,z). We use
2

2

[P,%’,%, 00,72(23 2)] = _201,72(23 2) ’ (57)

where the factor —2 is coming from the ratio of normalization factors, f(0)/f(1) = —2,
and take the A =1 soft limit as in eq. (3.13), to show that

_ 1 .. _
]gbhiahi(zi’ Zi) — uthi"'%’hﬁ'%(zi, 2@') + regular . (5.8)

Op.— o), P -
[Oo,—2(wo, Wo), 5T — 7

1_1
272

After taking the shadow transform, we obtain

T(w), P 1 1]¢"h(,2) = % S 5P (2, 7) + regular . (5.9)

1
2

373 (w— 2)

Finally, after combining eq. (5.6) with the above OPE, we obtain

[Proy 36"z, 2)] = 22 (2, 2), (5.10)

which agrees with eq. (5.4) for n = 0,1 and is in agreement with supertranslations of
primary field operators proposed in ref. [29]. The remaining bms, generators can be con-
structed as
P 1= 1%dwwm+l [T(?D) P 1]. (5.11)
T dgr(m+ 1) ’ 273
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By following the same steps as before, it is easy to show that

[Pt 1,00 (2,2)] = 2n2mhta itz z). (5.12)

Following ref. [29], we can combine all supertranslation generators into one primary
field operator

Plz2) = ) Py i1z "tz (5.13)
n,me”Z
P is a scalar operator with dimension 3, (h,h) = (2,2). The commutators (5.12) are
equivalent to the OPE
— 1 1 _
Pw, )" (2, 2) = 7gbh+%’h+%(z, Z) + regular . (5.14)

w—zWwW—2
At this point, we can make connection to the supertranslation operator P(z) discussed
in sections 3.2 and 4.3. For bare fields, the OPEs of egs. (3.17) and (3.18) read
1 1 7
P(w)g"h(z,2) = ~———¢" T2 M 3 (2, 2) + regular. (5.15)
dw—z
If we expand

=>"P ! (5.16)
2

nel
and compare eq. (5.15) with (5.12), we find 4]3n_7 =P, 1 _1, therefore

1
2 27 2

P(z) = ! j{dzp(z zZ) (5.17)

8mi

and a similar expression for P(z). Note that both P(z) and P(Z) miss the “mixed” oper-
ators Prh%m%% with n # 0 and m # 0 simultaneously. This is to be contrasted with the
primary conformal field operator P(z, z) of eq. (5.13) which includes all BMS supertrans-
lations.

The operator P_ 11= = Py + P3 plays a special role in our construction of BMS

generators. With a prlmary field expanded as

oM (2, 2) Z¢> ymmmhgn=h (5.18)
P 1 1 shifts the modes as:
27 2
nh h+3.h+1
[Py g o] =0, 55 (5.19)

Four-dimensional Minkowski space can be foliated by using Euclidean AdSs3 slices [7, 17].
On the other hand it is known that string theory on AdS3 has a spectrum generated by using
a spectral flow transformation on the standard representations of SL(2;R). This transfor-
mation shifts conformal dimensions and the mode expansions of primary fields. The trans-
formation in (5.19) is akin to the spectral flow encountered in string theory on AdSs3 [30].

To summarize, we used the correlators of primary fields, obtained from tree-level, four-
dimensional scattering amplitudes, to derive the extended BMS algebra (5.5). The method
employed here shows that the central charges C' = C' = 0. We cannot exclude though that
these charges are non-zero after we take into account quantum loop corrections.
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6 Conclusions

Extended BMS is the symmetry of asymptotically flat spacetime and consequently, of its
hologram on CS?. According to Strominger’s proposal of flat holography, four-dimensional
physics is encoded in two-dimensional CCFT. In particular, Mellin-transformed four-
dimensional scattering amplitudes are equivalent to the correlators of primary field op-
erators on CS?. In this work, we followed this link. We investigated the structure of OPEs
of the operators generating BMS transformations by using the relation of the collinear
limit to the limit of coinciding points on CS? and the relation of the usual soft limit to the
conformally soft limit of operators with integer dimensions. We established a connection
between these OPEs and the extended BMS algebra bms,. We also showed how the OPEs
of the operators representing gauge bosons and gravitons follow directly from the Feynman
diagrams of Einstein-Yang-Mills theory.

BMS superrotations are implemented in a rather straightforward way as diffeomor-
phisms of CS?. They are generated by the energy-momentum tensor 7'(z) given by a shadow
transform of the soft graviton operator with dimension 0. Although general shadow trans-
formations are non-local, we found that for soft gravitons, the shadow integrals become
localised at operator insertions. As a result, we recovered the standard OPEs which are
equivalent to the Virasoro subalgebra without central extension.” Our analysis was based
on the tree-level approximation in Einstein-Yang-Mills theory, hence it is possible that a
Virasoro central charge will appear after taking into account loop corrections.

BMS supertranslations are more subtle. We investigated the OPEs of the supertransla-
tion operator P(z), a dimension 2 descendant of the soft graviton operator with dimension
1. Indeed, the OPEs of this operator generate shifts of primary field dimensions, as ex-
pected from translations and supertranslations. In particular, it contains the momentum
component Py + P3 which generates a flow of chiral weights, (h,h) — (h + %, h + %) By
comparing with BMS algebra, we found however that P(z) and P(Z) contain only a subset
of supertranslations. They miss not only the non-holomorphic Py — P but also an infinite
set of supertranslations. Nevertheless, we were able to generate the full set by commuting
T(z) and T(z) with Py + P3 which we identified with the P_ 11 spectral flow generator of
bms,. All supertranslations can be assembled into a single primary field operator P(z, z)
of dimension 3.

In CCFT, 2D correlators of primary fields arise from 4D scattering amplitudes ex-
pressed in the basis of conformal primary wavefunctions. As shown by Pasterski and
Shao [12], the continuum of conformal wavefunctions with dimensions A = 1 + iR spans
the complete set of integer spin solutions of wave equations, normalizable with respect to
the Klein-Gordon norm. The primary fields associated to gauge bosons and gravitons have
complex dimensions, therefore the theory is not unitary with respect to the usual radial
quantization. It is important to keep in mind that the notion of unitarity always relies
on a choice of time direction and a norm: radial quantization (where the “time” is the
Euclidean radial direction) is not natural on the celestial sphere.® The questions what is

"This is also known as Witt algebra.
8We are grateful to Andy Strominger and Shu-Heng Shao for an illuminating correspondence on this
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the relation between unitarity in 2D and 4D and what is the role of central charges need
to be addressed in the future.

There are many directions for future investigations of CCFT. Since the present dis-
cussion relies on the properties of tree-level Einstein-Yang-Mills theory, it would be very
interesting to see how four-dimensional quantum corrections are implemented in CCFT.
But first and foremost, it is very important to understand the spectrum of CCFT. It is
clear that supertranslations generate states very different from conformal wave packets of
stable particles. This sector, together with the role of the spectral flow, are certainly worth
investigating.
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A Collinear limits in EYM theory

In this appendix, we use the notation and conventions of ref. [31]. In order to give a precise
definition of the leading and subleading collinear parts, we need to specify how the collinear
limit is reached from a generic kinematic configuration. Let us specify to generic light-like
momenta pi, p2 and introduce two light-like vectors P and r such that the momentum
spinors decompose as [32]:

Al = Apcost — e\, sinf, A = Apcosf — e\ sinf, (A.1)
Ao = Apsinf + e\, cos@, Ao = Apsin® + e\, cosf, (A.2)
hence
p1 = c?P — sc(e)\,j\p + E)\pj\,«) + eés’r, (A.3)
py =s’P + SC(E)\TS\p + €)\p5\r) + eéc?r, (A.4)
where

c=cosl =z, s=sinf =v1—u. (A.5)

We also have
(12) = €(Pry, [12] = €[Pr] . (A.6)

The total momentum is:

p1 + po = P + eér, (;m +P2)2 = 2Prec. (A.7)

issue.
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The collinear configuration will be reached in the limit of ¢ = € = 0. With the momenta

parametrized by celestial sphere coordinates as in eq. (2.1), this limit corresponds to z; =

22, i.e.
p1+p2=P=wpqp, (A.8)
with
wp = wy + ws gp=q=q (2p=2z2 =2, Zp =721 = 22), (A.9)
therefore
w w
71 :C27 72252' (AlO)
wp wp

Yang-Mills amplitudes are singular in the collinear limit. They contain 1/e and 1/€é
poles while subleading terms are of order 1 [32]. Here, we are interested in gravitational
couplings. These contain singular ratios

(12) _e(Pr) = 212 [12] _e[Pr] = Z12

[12] g [P’l“] - 512 ’ <12> n E<P7‘> N 212 '

(A.11)

We will extract them from EYM Feynman diagrams. To that end, it is convenient to
rewrite egs. (A.3), (A.4) as

p1 = 2P — ——(ech(rP) + éep[Pr]) + eés®r
(e5(12) — €p[12]) + ees?r (A.12)

po = s°P + —=(eep(rP) + ép[Pr]) + eéc’r
= s’P — ——(e5(12) — €p[12]) + eéc?r (A.13)

Here, elig are the polarization vectors of a massless vector boson with momentum P with

the gauge reference vector r. Note that

& =¢€p— ﬂch(fP} , € =€p+ \@erc[; K (A.14)
€3 =€+ \@gTs(rLP) , €y = €p — \/iers[: 7 (A.15)
For all polarization vectors labeled by i = 1,2, P,
6}'63!::—1, 6f'e]i:6ii-r:€i'pi20. (A.16)
Other scalar products are also easy to obtain:
e po= —\2 [li]s : € P = \2 [lz]c : (A.17)
PRREEN.L G- g

The singularities (A.11) appear only in Feynman diagrams involving “splitting” of a
massless virtual particle into the collinear pair. They originate from the propagator poles
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Figure 1. Feynman diagrams leédiflg to collinear graviton singularities.

1/(p1 + p2)? ~ (¢€)~!. The vertices describing gravitational splitting “soften” these poles
by terms which are quadratic in € and €. Diagrams without such splitting are non-singular,
therefore collinear singularities have a universal form that can be extracted from three-point

vertices. In our discussion, we will be using the graviton polarization tensors
(0 = £2) = eHet” (A.19)

A.1 Collinear gravitons

EYM amplitudes with external gravitons are singular when two gravitons become collinear.
Feynman diagrams contributing to collinear singularities must necessarily contain a virtual
graviton splitting into two external gravitons, as shown in figure 1. We will be considering
the “splitting” tensor

§ = &P D (p1+ p2)VLG . 5(p1.p2) (A.20)

«
where Vo% » (p1,p2) is the three-graviton vertex three-graviton vertex

, 1
Vg ns.pr(P1,02) = M{ - g(pf +p5+ (p1+p2)%) X | % pr 15,08

1 1
+ Iaﬂ,pq—lwiaa + ngfgaﬁg'yts - 5 (gp‘rlaﬂ,'y& +gaﬂlp7,75 +976Ip7',a6):| (A21)

1
+PC1rP%\ [Iaﬁ,vé—rmﬂ)\ D) (IpTﬁrfIaBm/)\ +1prnolapsr+1vs80lpran=+ I‘r&aolm,ﬂ/\)]

1
- (pl +p2)UP§\ |:Ip‘r,'y(5]a,3,0')\ - 5 (Ia,ﬁ,éo'Ip‘r,'y)\ + Ioz,B,'yaIpT,é)\ + I’y&,pO'Iaﬁ,T)\ + I’yé,TUIaB,p/\)]
- 1
_(pl +p2) pi\ |:Ip7',a,8-[75,cr)\ - 5(176,7')\]0(5,;)0 +I'y6,p)\-[a6,7-o +I'y§,ﬁa-[p7,a)\ +Iy5,aalp’r,ﬁ)\):| }7

with 1
IpT,aA = Q(gpagTA + gpAg‘ro) > (A'22)
see refs. [33] and [34]. For the graviton propagator, we use de Donder gauge with

) 1

OHOY + 6807 — " gpr) ————— A.23
(p‘r+‘rp ggp)(p1+p2)2 ( )

N =

ijpT(pl +p2) -
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We first consider the (simpler) case of identical helicities with the polarization tensors
e‘lw(f =42) = ETQGTﬁ, 635(5 = 42) =€ ef?. (A.24)
In the corresponding splitting tensor, most of terms disappear due to egs. (A.16). As result,

SHY(4+2,42) = 2 ( 1 62 1 ef“ef” — 61 o 62 1 ef“e;”) +(1+2).

(p1 + p2

By using eqgs. (A.12)-(A.18) and neglecting terms of order O(¢?), we obtain

2 —
SHY(+2,42) = il N e L 212 pet (A.25)

€Ep € =
2(12> 0252 L 2w1w2 Z12 PP

which leads to eq. (2.19) after setting x = 2. The result agrees with ref. [35].
The case of opposite helicities, with

G?B(ﬁ =-2) = 61_0‘61_’8, 635(6 =42) =€ 7ef?. (A.26)

is a little bit more complicated. The corresponding splitting tensor reads

SH(=2,42) = m (1 'P2)2€;Mfiw - %(61_ : f;)QpﬁLpg
e e e + (e e pnted”
—%(af GG ke — e ) Pt
‘paes pre et + %(pl +p2)’e e te”
+(1,— < 2,4). (A.27)

We are interested in terms with e~! or €~ poles only. These come from

6 6
pv(_ :_fi<12> vy ke [12] L
3 3 -
:ﬂwz 212 0 4\p K WY 212, gy Ao
2 whwy Z12 ERGOACOhs 2 whwa 212 P ep)” (A.28)

which leads to eq. (2.22) after setting k = 2.

A.2 Collinear graviton and gauge boson

The amplitudes involving gauge bosons and graviton are singular in the limit when the
graviton becomes collinear with the gauge bosons. In singular Feynman diagrams, virtual
gauge bosons radiate gravitons, as shown in figure 2. We define the splitting vector

St = ez, D" (p1 + p2) V. (p1,p2) (A.29)
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Figure 2. EYM Feynman diagrams leading to'singularities for collinear gauge bosons and gravitons.
where VOZ % (p1, p2) is the EYM vertex which couples two gauge bosons (with identical gauge
group indices) to the graviton:

1K
V25(01,p2) = 5 |gasl (01 + 0203 + (014 02)°pY] = (01 + p2) (0], + 162)
—p1al(p1 + p2)70% + (p1 +p2)° 53] + p1 - (1 + p2) (5205 + 267)

—g"°[(p1 - (P1 + P2)Gap — Pra(p1 + p2)g] (A.30)

and the gauge boson propagator

—1
DF(p1 + pa) = EESE +p2)29”a (A.31)

We first consider the case of all-plus helicities:
die=+1)=¢",  QU=+2) =", (A.32)

The corresponding splitting vector reads

1 [12] Z1o Wp
SH(19 11) — et e (2T tuo_ +u
(+ o ) (pl +p2)2[ €2 1P1el P26 +(61 p2) 2 ] 2¢c? <12>6P Z12 W1 P
(A.33)

For opposite helicities, we obtain

K

24D = o6 m e (6 )G G (A3)
4 2
e et = _BUDS” K22 W)
TP P26 66 ] 2 [12] C26P 2 Z19 wleGP '

where we omitted terms without € ! or € ! poles. Eqgs. (A.35) and (A.35) lead to eqs. (2.26)
and (2.27), respectively.

A.3 Gravitational corrections to the collinear limit of two gauge bosons

A virtual graviton can split into two gauge bosons, as in Feynman diagrams shown in
figure 3. In the collinear limit, the corresponding contributions are “softer” than single ¢!
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Figure 3. EYM Feynman diagrams leading’ to gravitational corrections to Yang-Mills collinear
singularities.

or é! poles due to Yang-Mills interactions [31]. They contain the same type of €/¢ and
€/€ singularities as the gravitational interactions discussed in part A.1.
The gravitational splitting tensor of two gauge bosons is defined as

v 6
S = eteq VI 5(p1,p2) D 5(p1 + p2) (A.35)

with the vertex related by crossing to eq. (A.30):

5 1K
Va(pr,p2) = =5 | = 9ap(pYp5 + p103) + p1s(p30e + P307) + p2a (P10 + P10))

—p1 - pa(670% + 050%) — g7 [—(p1 - P2)gas + P2oprs] |- (A.36)

It is easy to see that S§”(+1,41) and S§”(—1,—1) are non-singular. On the other hand,

K
S (41, —1) = ————[e5 - € ppy + €5 - € Pyl — € - paplies”
5 ( ) 2(p1+p2)2[2 1P1P2 T € "€ PPy — € 162

- - - +
—el papie” — ey -piphel” — €5 - piphe ]
K (12) 4 tu +v | R [12] 4 - _—v

—2[12]C€P€P 5@5613 EP =+ e

2 5 2
R 2192 W R 212 Wy ., _
— —f_——;e;g“ejg" e e 2T T (A.37)
22’12 wP 2212w

After setting k = 2, the above splitting tensor yields the last two terms of eq. (2.10).

B Conformal integrals

In the present paper, several integrals over celestial sphere positions have been performed
by using the formulas given in [28]. They have the general form

1 n n

L=~ / &z fu(2)fa(2), fn<z>=H(Z_1zi)q, fn<2>=H<Z_12i>qi’ (B.1)

=1 =1

where

n n
da=) =2, G-GEL. (B.2)
i=1 i—1
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The two conditions above are necessary for I,, to be covariant under the group SL(2; C) of
global conformal transformations and single valued. Convergence of the integral requires
g + q; < 2 for all ¢, but we can always extend it by using analytic continuation. When
n = 3, assuming that all z; are different, the result is given by
“1_q1—1_go—1-Gz—1-q1—1_-ga—1
I3 = Kipg 25 233 251 205 733 231 (B.3)
where the normalization factor

F(1—q)I'(1—g)l'(1—g3) T'(1—-q)'(1—a)'(1-3qs)

K93 = s = B.4
(g1 (q2)T(q3) I'(g1)T'(g2)T (g3) (B4)
If two z;’s are coincident, the integral becomes
12 = Klg(*l)ql_mﬂ'éa(ql — C]2> 5 (B5)
where
'l —q)l'(1 - I'lt—q)ra—gq
Ko = ( Q1) ( QZ) _ ( Q1) ( QQ). (BG)

L(@)T(@)  T(@)T(g)
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