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1 Introduction and summary of results

Yang-Baxter (YB) deformations were first introduced by Klimčik in [1]. It was later under-

stood that they have the remarkable property of preserving integrability [2]. If one starts

from an integrable sigma model and performs a YB deformation the resulting model is

also integrable. This made people interested in applying them in string theory, which was

done for the AdS5×S5 superstring in [3, 4]. The YB deformation is based on an R-matrix

for which there are two basic possibilities — R can solve either the classical Yang-Baxter

equation (CYBE) or the modified classical Yang-Baxter equation (mCYBE). The former

case is often referred to as homogeneous YB deformations and is the case we consider here.

It was shown in [5] that these models typically have a Weyl-anomaly1 unless the R-matrix

is unimodular, i.e. its contraction with the structure constants of the isometry algebra of

the original model vanishes RIJfIJ
K = 0. This is similar to the anomaly encountered in

non-abelian T-duality (NATD) [8] on a non-unimodular group [9–11]. Indeed it was argued

in [12] that homogeneous YB deformations should have a realization in terms of NATD and

this was then proven in [13] (see also [14]). While the original YB deformations were de-

fined only for sigma models of the symmetric space type, the realization of the homogeneous

1This manifests itself, in the superstring case, as a target space solving the generalized supergravity

equations [6, 7] rather than the standard ones.
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models using NATD meant that they could be defined for a general string sigma model

with isometries. This was carried out for the Green-Schwarz superstring in [15] and rules

for writing the supergravity background directly in terms of the R-matrix were derived.2

The simplest class of such YB deformations is when R is defined on an abelian

subalgebra of the isometry algebra. In this case the deformation is equivalent to a

T-duality-shift-T-duality (TsT) transformation [19]. These are also known as O(d, d)-

transformations [20, 21] and they have been argued to map a consistent string background

to another consistent string background, i.e. there should exist corrections to the back-

ground fields such that the corrected background solves the α′-corrected supergravity equa-

tions to all orders in α′ [22–27].3 Here we want to ask what happens for YB deformations in

general at the quantum level.4 Unimodular YB deformations are known to give a conformal

theory at one loop, i.e. the background solves the (super)gravity equations. Here we will

analyze the two-loop equations in the bosonic string case. For simplicity we will restrict

to deformations of backgrounds with vanishing NSNS-flux. We will show, to second order

in the deformation parameter, that the deformed background can be corrected so that it

solves the 2-loop equations. Furthermore the correction to the background fields can be

cast in a relatively simple form. Using the knowledge of the full corrections in special cases

derived using T-duality (see below), we write an expression to all orders in the deformation

parameter, which works in some simple cases but not in general.

Since the homogeneous YB deformations can be constructed using NATD, our results

indicate that also NATD should preserve conformality at two loops, and possibly all or-

ders in α′. A convincing argument for the preservation of conformality for NATD would

follow from a generic analysis to all orders in the deformation parameter η, since NATD

is recovered in a η → ∞ limit. Another piece of evidence for this comes from the recent

analysis of renormalizability of deformed sigma models with two-dimensional target space

in [30], and very recently [31] (see also [32]). Some of the deformations considered have a

limit where they reduce to NATD and it was found that the models behave nicely beyond

lowest order in α′ suggesting that things should work out to all orders in α′.

For YB deformations of TsT-type we can also exploit another method to obtain explicit

α′-corrections and to promote those backgrounds to two-loop solutions. We can in fact use

the known α′-corrections to the T-duality rules when doing the chain of T-duality-shift-

T-duality. This strategy will automatically bring in the needed α′-dependence into the

deformed background, and will make sure that the deformed background is a solution to

the two-loop equations. The interplay between T-duality and higher α′-corrections was

studied in various works [26, 33–37]. In this paper we will use the α′-corrections for the

T-duality rules of [34], to obtain explicit α′-corrections for YB deformed models. This

strategy allows us to start from any background with isometries (it is not necessary to set

the NSNS-flux to zero), and to keep the dependence on the deformation parameter exact.

2These rules were first guessed, at the supergravity level and restricted to the case of vanishing NSNS

flux, in [16] (see also [17] and [18]).
3Note however that the form of the α′-corrections are only known in special cases and to low loop order,

e.g. [26].
4Homogeneous YB deformations also have an O(d, d) interpretation as so called β-shifts [28, 29].
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Certain YB deformations, while they cannot be understood as simple TsT trans-

formations, can still be obtained as a non-commuting sequence of TsT’s [5]. The non-

commutativity is related to the fact that certain isometries needed to perform one TsT

transformation may be broken by the application of another TsT. Therefore, in certain

cases a sequence of TsT transformations can be implemented only in one precise order.

Non-commuting sequences of TsT transformations are nice examples to study, because we

can obtain explicit results by applying what is known about abelian T-duality and TsT, and

at the same time be able to say something about NATD and more general YB deformations.

In the remaining part of the introduction, we will summarize the main results obtained

when expanding the two-loop equations to second order in the deformation parameter.

1.1 First α′-correction to deformed backgrounds

The (homogeneous) Yang-Baxter deformation of a bosonic string background G,B,Φ is

given by [15–18]

G̃− B̃ = (G−B)(1 + ηΘ(G−B))−1 , Φ̃ = Φ− 1

2
ln det (1 + ηΘ(G−B)) . (1.1)

Here η is the deformation parameter and Θ is constructed by taking an anti-symmetric

R-matrix solving the classical Yang-Baxter equation (CYBE), R[I|L|RJ |M |fLM
K] = 0, on

a subalgebra of the isometry algebra of the original background (with structure constants

fIJ
K) and contracting with the corresponding Killing vectors

Θij = kI
iRIJkJ

j ≡ ki × kj , ∇(ikIj) = 0 , (1.2)

where we simplify the notation by introducing the anti-symmetric product ‘×’. Assuming

that G,B,Φ define a one-loop conformal bosonic string sigma model, the same is true of

G̃, B̃, Φ̃ if R is unimodular, i.e. RIJfIJ
K = 0 [5].5

Here we want to ask what happens at two loops, i.e. the next order in α′. We will

work in an expansion in the deformation parameter up to order η2. To simplify the calcu-

lations we will assume that the starting background has B = 0 which gives the deformed

background

G̃ij =Gij+η
2(Θ2)ij+O(η4) , B̃ij = ηΘij+O(η3) , Φ̃ = Φ− 1

4
η2ΘijΘ

ij+O(η4) . (1.3)

We find that to this order in η the first α′-correction (i.e. two-loop correction) to the

background is given by (in the scheme of Hull and Townsend [40])

δG̃ij = δGij + 2η2(δGΘ2)(ij) + η2(ΘδGΘ)ij − 2η2Θk(iRj)
klmΘlm + η2Θmn∇i∇jΘmn ,

δB̃ij = 2η(δGΘ)[ij] − ηRijklΘkl , (1.4)

δΦ̃ = δΦ− 1

2
η2(δGΘ)mnΘmn +

1

16
η2∇kΘmn∇kΘmn −

3

8
η2∇kΘmn∇mΘnk

+
1

4
η2∇iΦ∇i(ΘmnΘmn) .

5The unimodularity condition is sufficient but not necessary in general. Relaxing it one finds at or-

der η, assuming B = 0, the necessary condition dK = 0 where Kn = ∇mΘmn. This is equivalent to

∇mknI fJKIRJK = 0 which is in general weaker than the unimodularity condition knI fJK
IRJK = 0. The

reason for this is that sometimes the anomalous terms generated by a non-unimodular R can be removed

by a field redefinition [38] (see also [39]). Here we will take R to be unimodular for simplicity.
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Here δG, δΦ denote the α′ corrections to the undeformed background with B=δB=0. Note

that the terms involving δG just come from correcting the undeformed metric in (1.3), while

the terms involving the Riemann tensor in δG̃ and δB̃ are obtained simply by replacing

Θij → Θij − α′RijklΘkl in (1.3). The correction to the dilaton does not look nice in this

scheme but by changing the scheme one can arrange it so that

e−2Φ̃
√

det G̃ = e−2Φ
√

detG , (1.5)

so that the correction to the dilaton just comes from the correction to the determinant of

the metric. This is achieved by the scheme change6

Φ→ Φ + α′
(
−1

2
∇2Φ + (∇Φ)2 − 1

16
HklmH

klm

)
. (1.6)

With a little help from the corresponding expressions derived to all orders in η for

a particular background in (5.30) and (5.31) one can write a completion of (1.4) to all

orders in the deformation. First of all it is natural to expect that one should correct the

undeformed metric and take Θij → Θij − α′RijklΘkl in the expressions in (1.1). On top of

this we need to extend the last term in the transformation of the metric and looking at the

example in (5.30) and (5.31) suggests the following form for the corrections to all orders in η

G̃ij−B̃ij =
[
G(1+η[Θ−α′R·Θ])−1

]
ij
− 1

2
α′∂i lndet(1+ηΘ)∂j lndet(1+ηΘ)

+
1

2
α′η
([
G(1+ηΘ)−1

]
ik
∇k∇jΘmn+

[
G(1−ηΘ)−1

]
jk
∇k∇iΘmn

)[
G(1+ηΘ)−1

]
nm

(1.7)

with the transformation of the dilaton read off from (1.5) (in the HT scheme after the

shift (1.6)). Here indices are raised and lowered with the undeformed metric including

its α′-corrections. We have also defined the contraction of Θ with the Riemann tensor

(R ·Θ)ij = RijklΘ
kl. Note that this expression can be thought of as an α′-corrected open-

closed string map, such as appears for example in the work of Seiberg and Witten on

non-commutative gauge theories [41]. While this result works for the rank 2 examples in

section 4 it unfortunately does not work in general.

2 Two-loop conformal invariance conditions

The conditions for two-loop conformal invariance of the bosonic string sigma model were

worked out in [42–44]. Following Hull and Townsend (HT) the conditions in their scheme

are [40]7

FGij = FG0,ij + α′FG1,ij = 0 , FBij = FB0,ij + α′FB1,ij = 0 , FΦ
ij = FΦ

0,ij + α′FΦ
1,ij = 0 , (2.1)

6On-shell this is equivalent to turning on the q parameter in the scheme of Hull and Townsend [40].
7To go from their conventions to ours one sends Φ→ 2Φ and H → 1

2
H.
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where the one-loop conditions are

FG0,ij = Rij −
1

4
HiklHj

kl + 2∇i∇jΦ ,

FB0,ij = ∇kHijk − 2∇kΦHijk ,

FΦ
0,ij = 2∇2Φ− 4∇iΦ∇iΦ +

1

6
HijkH

ijk

(2.2)

and the two-loop corrections are

FG1,ij =
1

2
RiklmRj

klm +
1

4
RikljH

kmnH l
mn +

1

4
Rklm(iHj)

mnHkl
n +

1

24
∇iHklm∇jHklm

− 1

8
∇kH lm

i∇kHlmj +
1

16
HikpHjlqH

klmHpq
m +

1

16
HikpHjl

pHkmnH l
mn , (2.3)

FB1,ij = ∇kH lm
[iRj]klm −

1

4
∇kHlijH

kmnH l
mn +

1

2
∇kH lm

[iHj]mnHkl
n , (2.4)

FΦ
1,ij = −1

4
RijklR

ijkl +
1

12
(∇iHjkl)(∇iHjkl) +

1

8
H ij

mH
klmRijkl +

1

4
Rij(H

2)ij

− 5

96
HijkH

i
lmH

jl
nH

kmn − 3

32
H2
ij(H

2)ij , (2.5)

where H2
ij = HiklHj

kl. Here we have set to zero the parameter q of [40].

3 Expansion in the deformation parameter

In this section we expand the conditions for two-loop conformal invariance in powers of

the deformation parameter η, and we find the explicit α′ corrections for the background

such that the conditions hold to the quadratic order in η. Here will not need to impose the

equation for the dilaton. It is known that when the equations for G and B are satisfied

the dilaton equation is satisfied up to a constant [40]. Since we assume the undeformed

background to solve all the two-loop equations and since there is no way to introduce a

constant at higher orders in η,8 the dilaton equation will not add anything.

3.1 First order in the deformation parameter

At order η1 we see, by looking at (1.3), that the metric is not deformed while9

H
(1)
ijk = 3∇[iΘjk] . (3.1)

Using this in (2.4) we find

F
B(1)
1,ij = ∇kH(1)lm

[iRj]klm = ∇k(H(1)
lm[iRj]k

lm) + 2H
(1)
lm[i∇

lRj]
m

=
3

2
∇k∇[i(Rjk]lmΘlm)− 1

2
∇k[Rijlm∇kΘlm]

+ 2∇k(R[i
klm∇|l|Θj]m)− 2∇kΦH

(1)
lm[iRj]k

lm , (3.2)

8The parameter η is always accompanied by Θ and it is not possible to construct a constant from a

general Θ.
9We indicate the order in η with a superscript in parenthesis. Since it is clear that this refers to the

deformed background we drop the tilde.
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where we have used the lowest order equations (2.2). Using the two derivative Killing

identity (A.2) we have

∇k(Riklm∇lΘjm) = ∇kRiklm∇lΘjm +Ri
klm∇k∇lΘjm

= ∇kRiklm∇lΘjm + 2Ri
klm∇k∇(lΘj)m −Riklm∇k∇jΘlm

= −3

2
∇k(Riklm∇jΘlm) + 2Ri

klmRjklnΘmn −RimklRjnklΘmn

+RklmnRklmiΘjn + 3Riklm∇kΦ∇jΘlm + 2Ri
klm∇kΦ∇lΘjm . (3.3)

Using this together with the identity (A.9) we find

F
B(1)
1,ij = 3∇k∇[i(Rjk]lmΘlm)− 6∇kΦ∇[i(Rjk]lmΘlm) + 2RklmnRklm[iΘj]n . (3.4)

Taking into account the α′-corrections to the classical background, α′δG and α′δΦ, and

the B-field at order η1, α′(δB̃)(1), we have

α′−1FBij = 3∇k∇[i(δB̃)
(1)
jk]−6∇kΦ∇[i(δB̃)

(1)
jk]+3∇k∇[i(Rjk]lmΘlm)−6∇kΦ∇[i(Rjk]lmΘlm)

+3δ(∇k)∇[iΘjk]−6δ(∇kΦ)∇[iΘjk]+2RklmnRklm[iΘj]n . (3.5)

In the case where the metric and dilaton do not receive corrections, δG = δΦ = 0, the

terms in the second line vanish, and the terms in the first line also vanish provided we take

(δB̃)
(1)
ij = −RijklΘkl . (3.6)

In the general case the assumption that the corrected original background solves the two-

loop equations implies that

RklmnRklmi = −2δ(Rin + 2∇i∇nΦ) = −∇k∇iδGkn −∇k∇nδGki +Gkl∇i∇nδGkl
+∇2δGin + 2∇kΦ(∇iδGkn +∇nδGki −∇kδGin)− 4∇i∇nδΦ , (3.7)

where we used the expressions for the variation of the Ricci tensor and Christoffel sym-

bols (3.10) and (3.13).

Using this it is not hard to see, noting that δΦ must respect the isometries, that the

δΦ-terms cancel without any further correction to B. With a little bit more work one can

show, using the fact that LkδGij = 0, i.e. that the correction to the undeformed metric

does not break any isometries, that all terms cancel if one takes

(δB̃)
(1)
ij = 2(δGΘ)[ij] −RijklΘkl . (3.8)

The first term is simply the correction induced by the correction to the undeformed metric,

i.e. δ(B(1))ij = δΘij , which comes from the fact that the indices on Θij were lowered with

the metric (note that the Killing vectors kmI , with an upper index, are not corrected by

assumption). Thus we have proven that a two-loop Weyl invariant sigma-model remains

two-loop Weyl invariant under a YB deformation, at least to first order in the deformation

parameter. We now consider what happens at second order.

– 6 –
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3.2 Second order in the deformation parameter

It is easy to see that at order η2 the B-field equation, F
B(2)
1,ij = 0, is trivially satisfied. For

the metric equation we find

F
G(2)
1,ij =R

(2)
(i

klmRj)klm−
1

2
R(i

klmRj)nlm(Θ2)k
n−R(i

klmRj)kl
n(Θ2)mn

+
1

4
RkijlH

(1)kmnH(1)l
mn+

1

4
Rklm(iH

(1)
j)

mnH(1)kl
n+

1

24
∇iH(1)

klm∇jH
(1)klm

− 1

8
∇kH(1)lm

i∇kH
(1)
lmj . (3.9)

Note that we choose to define all tensors to have lower indices, e.g. Rijkl, and then raise

indices with the undeformed metric Gij .

The last two terms do not involve the Riemann tensor and the calculations can be

simplified somewhat if we remove them by shifting the metric and dilaton. Under a shift

of the metric we have

δ(∇i∇jΦ) = −δΓkij∇kΦ = −1

2
∇kΦ(∇jδGki +∇iδGkj −∇kδGij) (3.10)

and

δRijkl = ∇k(δΓilj − Γmlj δGim) +
1

2
RmjklδGim − (k ↔ l) , (3.11)

so that in particular

R
(2)
ijkl = ∇k(Γ

(2)
[ij]l + Γml[i(Θ

2)j]m)− 1

2
(Θ2)m[iRj]mkl − (k ↔ l)

= −∇k∇[i(Θ
2)j]l +∇l∇[i(Θ

2)j]k − (Θ2)m[iRj]mkl . (3.12)

The variation of the Ricci tensor becomes (symmetrization in ij understood)

δRij = δGklRikjl +GklδRikjl

= δGklR
k
ij
l +RkjδGik +∇j [GklδΓikl −GklΓmklδGim]−∇k[δΓijk − ΓljkδGil]

= ∇k∇iδGkj −
1

2
Gkl∇i∇jδGkl −

1

2
∇2δGij . (3.13)

From this expression we see that the last two terms in (3.9) can be canceled by shifting

the metric and dilaton as

Gij → Gij −
1

8
α′HiklHj

kl , Φ→ Φ− 1

32
α′HklmH

klm . (3.14)

The two-loop contribution then becomes (symmetrization in ij understood)

F
′G(2)
1,ij =R

(2)
i

klmRjklm−
1

2
Ri

klmRjnlm(Θ2)k
n−RiklmRjkln(Θ2)mn+

1

8
RkijlH

(1)kmnH(1)l
mn

+
1

2
RklmiH

(1)
j

mnH(1)kl
n−

1

8
RklmnH

(1)
iklH

(1)
jmn−

1

24
H(1)klm∇i∇jH(1)

klm . (3.15)

Here we have used the Bianchi identity for H and the lowest order equations of motion,

which in particular imply

∇2Hklm = 3∇n∇[kHlm]n = −3Rnp[klHm]
np + 6∇nΦ∇[kHlm]n . (3.16)
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Note that terms with two derivatives of H(1) indeed give something involving the Riemann

tensor since they involve three derivatives acting on a product of two Killing vectors giving

at least two derivatives on one Killing vector.

Expressing all terms in terms of the basis defined in appendix B we have (symmetriza-

tion in ij understood)

R
(2)
i

klmRjklm = −∇ · (f12 + f20)−∇(2f̂5 − f̂6) + 2g32 + g34 − g35 + h7 −
1

2
h8

+
1

2
h10 + 2m7 + 2m9 (3.17)

RklmiH
(1)
j

mnH(1)kl
n = −g3 + 2g4 − 2g6 + g8 − 2g14 + g15 (3.18)

RklmnH
(1)
iklH

(1)
jmn = 4g16 + 4g17 + g19 , (3.19)

H(1)klm∇i∇jH(1)
klm = 3g3 − 6g4 − 6g6 + 3g8 − 18g14 + 9g15 + 6g28 − 6g29 − 3g31 + 12g32

− 12g33 + 12g34 . (3.20)

While the order η α′-correction to B̃ in (3.8) contributes the terms (for the moment

we assume that the undeformed background is not corrected) (symmetrization in ij under-

stood)

− 1

2
(δH̃)

(1)
iklH

(1)
j

kl =
3

2
∇[i(Rkl]mnΘmn)H

(1)
j

kl = g3 − g8 − g15 + g16 +
1

2
g19 . (3.21)

For the two-loop correction we therefore get 1
8 times

− 8∇ · (f12 + f20)− 8∇(2f̂5 − f̂6) + 3g3 + 10g4 − 6g6 − 5g8 − 2g14 − 7g15 + 4g16 − 4g17

+ 3g19 + 4g30 + 2g31 + 12g32 + 4g33 + 4g34 − 8g35 − 8h8 + 4h10 + 16m7 + 16m9 (3.22)

To this we have to add the terms arising from the α′-corrections to G̃ and Φ̃. We will

ignore the corrections to the undeformed background until the end of the section.

Consider the following possible α′-corrections to the metric at order η2 (symmetrization

in ij understood)

δ1G̃ij = ∇iΘmn∇jΘmn , (3.23)

δ2G̃ij = ki ×∇mkn kj ×∇mkn , (3.24)

δ3G̃ij = ∇iΘmn∇mΘnj , (3.25)

δ4G̃ij = Ri
klmΘjkΘlm . (3.26)

Note that we could write also the second one in terms of Θ as

δ2G̃ij =
1

2
∇mΘin∇mΘj

n− 1

2
∇nΘim∇mΘjn−∇iΘmn∇mΘnj+

1

4
∇iΘmn∇jΘmn , (3.27)
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but the above expression is more convenient for the following calculation. Using (3.13)

and (3.10) these variations give rise to the terms

δ1G̃ : −∇ · (2f3 + f28)−∇(f̂1 + 2f̂6) + g31 − 4m5 − 4m6 + 2m20

δ2G̃ :
1

2
∇ · (f1 + 2f7 − f14 − 2f17 + f22 + 2f23) +∇(−f̂1 + 2f̂2 + 2f̂3 − f̂4 + 2f̂5) + g28

− g29 − 2g30 +
1

2
g31 − 2m12 +m13 +

3

8
∇i∇j(2∇kΘmn∇mΘnk − 3∇kΘmn∇kΘmn)

δ3G̃ : − 1

2
∇ · (f1 + f3 + f10 − f11 + f22 + f28 + f30 − f31)

+
1

4
∇(f̂1 − 2f̂2 − 2f̂3 + f̂4 − 2f̂5 + 2f̂7 − 4f̂8) + g30 −m5 −m6 +m7 −m8 −m10

+m11 −m13 +m20 +m22 −m23

δ4G̃ :
1

2
∇ · (f9 + f14 − f26)− 1

4
∇(3f̂1 + 2f̂2 + 2f̂3 − 3f̂4 − 2f̂5 + 4f̂6) + h9 −m1 +m2

−m3 −m15 ,

where we used the identity (B.50) in calculating the last variation.

Taking the following correction to the metric and dilaton

(δG̃)
(2)
ij =

1

4
(−3δ1+2δ2+2δ3+6δ4)G̃ij , (δΦ̃)(2) =− 3

32
(2∇kΘmn∇mΘnk−3∇kΘmn∇kΘmn)

(3.28)

and using appendix B we are left with 1
8 times the following order α′ terms

12g1 + 8g2 + g3 − 6g4 + 4g5 − 6g6 − 12g7 + 3g8 + 12g10 − 9g12

+ 24g13 + 12g14 − 6g15 + 6g16 − 6g19 − 6g20 + 12g21 + 8g22 − 2g23 − 12g24 + 16g25

+ 6h1 + 8h2 − 16h3 − 4h5 + 16h6 − 4h8 + 12h9 + 8h10 − 4h11 + 4∇f̂7 (3.29)

Next we use the Yang-Baxter equation which, in terms of Θ, reads

Θk[l∇kΘmn] = 0 . (3.30)

Hitting this with Ripmn∇p we get the identity

0 = Rilmn∇l(Θkj∇kΘmn) + 2Ri
lmn∇l(Θkm∇kΘnj) = ∇ · (f19 − 2f11) . (3.31)

Adding −4 times the r.h.s. to our expression we are left with 1
8 times

12g1+8g2−3g3−6g4+12g5−6g6−12g7+3g8+12g10−9g12

+24g13+12g14−6g15+6g16−6g19−6g20+8g21+8g22−6g23−12g24+24g25

+6h1+8h2−16h3+24h6+12h9+8h10−4h11−8(m4−2m10+2m11)+4∇f̂7 , (3.32)

where the m-terms vanish by the Yang-Baxter equation. Using the identities (B.47)–

(B.49), (B.55) and (B.56) this reduces to (symmetrization in ij understood)

h10−
1

2
h11 +

1

2
∇f̂7 = RklmiR

klmn(Θ2)nj −
1

2
Rklm

nRklmpΘinΘjp +
1

4
∇i∇j(∇lΘmn∇lΘmn) .

(3.33)
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The first two terms vanish if the original background does not suffer α′-corrections, while

the last term can be canceled by shifting the dilaton.

To summarize we have found that with the following correction to the metric and

dilaton in the HT scheme at order η2, taking into account also (3.14), (symmetrization in

ij understood)

(δG̃)
(2)
ij = −3

4
∇iΘmn∇jΘmn −

1

2
∇mΘni∇jΘmn − 3

2
Ri

klmΘlmΘkj , (3.34)

(δΦ̃)(2) =
1

16
∇kΘmn∇kΘmn −

3

8
∇kΘmn∇mΘnk , (3.35)

the deformed model is Weyl invariant at two loops provided the undeformed model is. The

shift in the metric does not look particularly natural but it can be brought to a nicer form

by noting that (symmetrization in ij understood)

∇mΘni∇jΘmn = ∇mkn × ki∇jΘmn +
1

2
∇iΘmn∇jΘmn

= ∇ivj +Ri
klmΘkjΘlm +

1

2
∇iΘmn∇jΘmn , (3.36)

where vj = ∇mkn × kjΘ
mn. The first term represents a diffeomorphism, so it can be

dropped (note that the dilaton does not transform, vi∇iΦ = 0, since it is isometric). It

will be convenient to perform a further diffeomorphism generated by vi = 1
2Θmn∇iΘmn

after which we have (symmetrization in ij understood)

(δG̃)
(2)
ij = −2Ri

klmΘlmΘkj + Θmn∇i∇jΘmn , (3.37)

(δΦ̃)(2) =
1

16
∇kΘmn∇kΘmn −

3

8
∇kΘmn∇mΘnk +

1

4
∇iΦ∇i(ΘmnΘmn) . (3.38)

We will now consider what happens when the undeformed background receives α′-

corrections.

Taking into account the lowest order correction to the metric and dilaton as well as

the first order correction to B̃ (3.8) we have (symmetrization in ij understood)

δ(R
(2)
ij −

1

4
H

(1)
iklH

(1)
j

kl+2[∇i∇jΦ](2))+RklmiR
klmn(Θ2)nj−

1

2
Rklm

nRklmpΘinΘjp . (3.39)

Using (3.7) and the variations in (3.13) and (3.10) this becomes, after a tedious calculation,

− 3∇kδGni∇lΘ[nkΘj]l − δGinkk × [kl,∇lkj ]×∇kkn + 2δGknk
k × [kl,∇lkj ]×∇ikn

+ δGkn∇ikk × [kl,∇lkn]× kj − δGkn∇n(ki × [kl,∇lkj ]× kk)
− 2∇kΦ δGink

n × [kl,∇lkk]× kj + 2∇kΦ δGknki × [kl,∇lkn]× kj . (3.40)

The first term vanishes by the Yang-Baxter equation. Using the fact that klI∇lknJ −
klJ∇lknI = fIJ

KknK and the YB equation (i.e. RIJRKLfJK
M antisymmetrized in ILM

vanishes) this further reduces to

−1

2
RIJRKLfJK

MfIL
NδGinkMjk

n
N = RMJRKIfJK

LfIL
NδGinkMjk

n
N

= −1

2
RMJRKIfKI

LfJL
NδGinkMjk

n
N = 0 , (3.41)

– 10 –



J
H
E
P
0
3
(
2
0
2
0
)
1
2
6

where we have used first the YB equation, then the Jacobi identity and finally the uni-

modularity condition RKIfKI
L = 0.

This shows that the only additional corrections that arise are the ones coming from

correcting the undeformed metric in G̃(2) and Φ(2) so that

(δG̃)
(2)
ij = 2(δGΘ2)(ij)+(ΘδGΘ)ij−2Θk(iRj)

klmΘlm+Θmn∇i∇jΘmn , (3.42)

(δΦ̃)(2) =−1

2
(δGΘ)mnΘmn+

1

16
∇kΘmn∇kΘmn−

3

8
∇kΘmn∇mΘnk+

1

4
∇iΦ∇i(ΘmnΘmn) .

(3.43)

This completes the proof that, at least to second order in the deformation and when B = 0,

unimodular YB deformations preserve conformality at two loops.

4 α′-corrections from T-duality rules at two loops

Homogeneous Yang-Baxter deformations are closely related to non-abelian T-duality [12,

13] and it can be shown that the non-abelian T-dual model is in fact recovered in the

maximally deformed limit η → ∞ [13], see also [14, 15]. The simplest class of Yang-

Baxter deformations — the “abelian” one — is related to just abelian T-duality, and is

equivalent to doing TsT transformations [45, 46]. In general, a Yang-Baxter deformation

generated by Θ = k1 ∧ k2 where k1 = ∂x1 and k2 = ∂x2 are commuting Killing vectors,

is equivalent to doing first a T-duality x1 → x̃1, then a shift x2 → x2 + ηx̃1, and then a

T-duality back x̃1 → x1. Some “non-abelian” deformations are non-commuting sequences

of TsT’s [5, 47]. The non-abelian nature is related to the fact that the order in which the

TsT transformations are performed is important, as certain T-dualities would break the

isometries that are needed to perform the other T-dualities in the sequence. In this section

we want to exploit the relation to TsT transformations and combine it with the knowledge

of the first α′-corrections of the T-duality rules, to obtain two-loop corrections for all Yang-

Baxter deformations that are obtainable by TsT transformations, or more generically by

a non-commuting sequence of them. This strategy allows us to obtain backgrounds at two

loops that are exact in the deformation parameter η. Moreover, these tools can be applied

to any starting background with isometries, and it is not needed to restrict to B = 0 as we

assume in most of this paper.

Because at each step all that we are doing is (abelian) T-duality and coordinate trans-

formations, we are bound to preserve conformal invariance on the worldsheet to the very

end, and we can check explicitly that the solutions we generate do solve the two-loop equa-

tions. This argument can be repeated also to higher orders in the α′ expansion, and it is

enough to conclude that all Yang-Baxter deformations that are obtainable by a generically

non-commuting sequence of TsT transformations, do not break the conformality of the

original model to all orders in α′.

At leading order in α′ the T-duality rules are given by the Buscher rules [48]. At higher

loops these rules get corrected in α′. We will use the α′-corrections to the T-duality rules

derived by Kaloper and Meissner in [34]. The rules were obtained by carefully analysing the

two-loop effective action of the bosonic string, and identifying the terms that are symmetric
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or anti-symmetric under the Buscher rules. The α′-corrections of the T-duality rules were

then fixed by requiring that they give a symmetry of the full two-loop effective action,

compensating for the antisymmetry of those terms.10

Already at leading order in α′, the T-duality rules are more easily presented in terms

of fields of a dimensional reduction, where we reduce along the direction that we want to

T-dualize. We follow [34] and we rewrite the metric, Kalb-Ramond field and dilaton of the

D-dimensional spacetime in terms of the following (D − 1)-dimensional fields

ds2 = Gijdx
idxj = gµνdx

µdxν + e2σ(dx+ V )2 ,

B =
1

2
Bijdx

i ∧ dxj =
1

2
bµνdx

µ ∧ dxν +
1

2
W ∧ V +W ∧ dx ,

Φ = φ+
1

2
σ .

(4.1)

Here we are assuming that we have brought the solution in a form such that the isometry

we want to dualize is simply implemented by a shift of a coordinate, that we denote by

x. We use Greek indices for the (D − 1)-dimensional spacetime.11 We have introduced a

(D− 1)-dimensional metric gµν , and antisymmetric bµν , vectors Vµ and Wµ, and scalars φ

and σ. Above we also used form notation V = Vµdx
µ,W = Wµdx

µ. In components, the

relations to identify the fields of the dimensional reduction are

σ =
1

2
logGxx , Vµ =

Gµx
Gxx

, gµν = Gµν −
GµxGνx
Gxx

,

φ = Φ− 1

4
logGxx , Wµ = Bµx , bµν = Bµν +

Gx[µBν]x

Gxx
.

(4.2)

It is also useful to notice that Gµν = gµν , Gµx = −V µ, Gxx = e−2σ +V 2. The combination

hµνρ = 3

(
∂[µbνρ] −

1

2
W[µνVρ] −

1

2
V[µνWρ]

)
= Hµνρ − 3W[µνVρ] , (4.3)

is gauge invariant. In terms of these new fields the Buscher rules are simply

σ → −σ, V ↔W . (4.4)

All other fields remain unchanged under T-duality at leading order in α′.

In [34] Kaloper and Meissner derived the corrections to the T-duality rules in a par-

ticular scheme introduced by Meissner in [49]. We will call it the Kaloper-Meissner (KM)

scheme. In order to apply the T-duality rules of KM to our case, we will therefore first need

to implement the field redefinitions to go from the scheme of HT to that of KM. We can

do so by combining the formulas given in [40] (see their equations (61) and (64)) relating

the HT scheme to the Metsaev-Tseytlin (MT) scheme of [43], and those given in [49] (see

10In [34] the authors claim that their results can be applied also to the heterotic string, but the action they

start with is missing the Chern-Simons terms that are expected there. See [37] for α′-corrected T-duality

rules that encompass both the bosonic and the heterotic string.
11The discussion of the α′-corrected T-duality rules and their derivation simplifies if written in terms of

tangent-space indices, but we will not do so here.
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his equations (3.7), (4.1) and (4.7)) to go from MT to KM.12 The field redefinitions that

we will use are13

G
(HT)
ij = G

(KM)
ij + α′

(
Rij −

1

2
H2
ij

)
,

B
(HT)
ij = B

(KM)
ij + α′

(
−Hijk∇kΦ

)
,

Φ(HT) = Φ(KM) + α′
(
− 3

32
H2 +

1

8
R− 1

2
(∇Φ)2

)
.

(4.5)

Once we are in the scheme of KM we can use their α′-corrected T-duality rules [34]

σ→−σ+α′
[
(∇σ)2+

1

8
(e2σZ+e−2σT )

]
Vµ→Wµ+α′

[
Wµν∇νσ+

1

4
hµνρV

νρe2σ

]
(4.6)

Wµ→Vµ+α′
[
Vµν∇νσ−

1

4
hµνρW

νρe−2σ

]
bµν→ bµν+α′

[
Vρ[µW

ρ
ν]+

(
W[µρ∇ρσ+

1

4
e2σh[µρλV

ρλ

)
Vν]+

(
V[µρ∇ρσ−

1

4
e−2σh[µρλW

ρλ

)
Wν]

]
Indices are always raised/lowered using the (D− 1)-dimensional metric gµν , and the trans-

formations are written using also the following definitions

Vµν = ∂µVν − ∂νVµ , Zµν = VµρV
ρ

ν , Z = Z µ
µ ,

Wµν = ∂µWν − ∂νWµ , Tµν = WµρW
ρ
ν , T = T µ

µ .
(4.7)

In general, at higher loops, not only σ, V and W will change under T-duality. In fact, at

two loops in the scheme of KM also bµν gets modified.14 It is important to remark that

already before doing T-duality the fields will in general have an explicit α′-dependence. In

particular, σ, V and W that transform according to (4.6) may in general depend on α′, and

this must be taken into account already when implementing the leading order T-duality

rules (the Buscher rules).

One could in principle combine the T-duality rules of KM in (4.6) with the field

redefinitions in (4.5), to obtain the α′-corrections of the T-duality rules in the scheme of

12The field redefinitions given in [49] relate the KM and the MT schemes only on-shell, but this is enough

for our purposes, since we just want to make sure that we can generate solutions of the two-loop equations.
13These are the redefinitions needed when we set the parameter q of [40] to zero. Different values of q

would affect the coefficient of H2 that appears in the redefinition of the dilaton. Importantly, the coefficient

in front of H2
ij that appears in the redefinition of the metric has the opposite sign compared to what one

would expect from formulas in [40] or [49]. We have checked in various examples, some not included in

this paper, that we must have the sign that we use here, as this is fixed by requiring that we want to

have a solution of the two-loop equations after doing T-duality in the KM scheme and going back to the

HT scheme.
14In [34] the rules were given in terms of transformations of hµνρ. Here we preferred to rewrite them

as a transformation of bµν . Importantly, the α′-corrections to the T-duality rules of bµν (or equivalently

hµνρ) differ by an overall sign compared to those given in [34], and our formula corrects the one given there.

We thank A. Vilar López for discussions on this point. A future paper will contain also more details on

this [50].
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HT. We will not do so here, as the scheme of KM appears to be the minimal scheme for

what concerns the complexity of the corrections to the T-duality rules. In other schemes, all

other fields of the dimensional reduction will in general receive α′-corrections. Therefore,

to obtain Yang-Baxter deformations in the scheme of HT we will follow this strategy:

1. Start from a solution of the two-loop equations in the HT scheme. In general that

implies finding α′-corrections for this initial solution.

2. Go to the scheme of KM using (4.5).

3. Do TsT or sequences of TsT transformations, using the α′-corrected T-duality rules

in (4.6).

4. Go back to the scheme of HT using (4.5).

We have worked out examples to test this method and obtain explicit results for α′-

corrections of Yang-Baxter deformed models. This also allows us to relate to the results of

section 3 that are perturbative in η. We will provide an example in the next section.

5 Examples

In this section we consider two particularly simple examples.

5.1 Solvable pp-wave

We start with the pp-wave background considered in [51]

ds2 = 2dx+dx− − k

(x+)2
x2
m(dx+)2 + dx2

m , Φ = mx+ +
d

2
k lnx+ , (5.1)

where 0 < k < 1
4 is a constant, m is another constant and d is the number of transverse

dimensions. This background is known not to receive α′-corrections. This follows from the

fact that the only non-zero component of the Riemann tensor is R+m+n = δmnk(x+)−2.

Consider the following four Killing vectors

k1 = (x+)ν∂1 − ν(x+)ν−1x1∂− , k3 = (2ν − 1)∂− ,

k2 = (x+)1−ν∂1 − (1− ν)(x+)−νx1∂− , k4 = (x+)ν∂2 − ν(x+)ν−1x2∂− , (5.2)

where we have defined the parameter

ν =
1 +
√

1− 2k

2
. (5.3)

They form a Heisenberg algebra of isometries with the only non-trivial Lie bracket [k1, k2] =

k3. From the discussion of R-matrices in [5] we see that we can consider the non-abelian

rank 4 deformation

Θ = k1 ∧ k4 + sk2 ∧ k3 , (5.4)
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where we introduced the parameter s to keep track of the contribution from the second

term. We will show below that in this case this deformation is equivalent to the abelian

one obtained by setting s = 0. First we construct the matrix

Θij =


0 0 0 0

0 0 a b

0 −a 0 c

0 −b −c 0

 , (5.5)

where

a = ν(x+)2ν−1x2 − s(2ν − 1)(x+)1−ν , b = −ν(x+)2ν−1x1 , c = (x+)2ν . (5.6)

The deformed background takes the form

d̃s
2

= 2dx+

(
dx− + η2 ac

1 + η2c2
dx2 − η2 bc

1 + η2c2
dx1

)
−
(

k

(x+)2
x2
m + η2 a

2 + b2

1 + η2c2

)
(dx+)2 +

dx2
1 + dx2

2

1 + η2c2
+ dx2

m′ .

(5.7)

With the B-field and dilaton given by

B̃ = − η

1 + η2c2

[
(adx1 + bdx2) ∧ dx+ + cdx2 ∧ dx1

]
, Φ̃ = Φ− 1

2
ln(1 + η2c2) . (5.8)

One sees from this that

H̃ = 4ην(x+)2ν−1dx2 ∧ dx1 ∧ dx+ , (5.9)

which is independent of the parameter s. The fact that also Φ is independent of s suggests

that it might be possible to remove the s dependence also from the metric. Consider the

change of coordinates x2 → x2 + f and x− → x−+ gx2 +h where f, g, h are functions only

of x+. One finds that the choice

f =
s

2
η2(2ν − 1)(x+)ν+2 , g = −s

2
η2(2ν − 1)ν(x+)ν+1 ,

h =
s2

8
η2(2ν − 1)2

[
4(3− 2ν)−1(x+)3−2ν − η2ν(x+)3+2ν

]
, (5.10)

removes the dependence on s completely and reduces the background to the one obtained

by the TsT with

Θ = k1 ∧ k4 . (5.11)

Explicitly, the metric is

d̃s
2

= 2dx+
(
dx− + νη2c2(1 + η2c2)−1(x1dx1 + x2dx

2)/x+
)

− (x+)−2
(
kx2

m + ν2η2c2(1 + η2c2)−1(x2
1 + x2

2)
)

(dx+)2 +
dx2

1 + dx2
2

1 + η2c2
+ dx2

m′ .
(5.12)

From (1.4) we find the only correction to the deformed background is given by

δG++ = −4η2(2ν2 − ν)(x+)4ν−2 , (5.13)
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which can be canceled by a diffeomorphism δG++ = ∇+v+. In fact the change of coordi-

nates x− → x− + νη2c2 x21+x22
2x+(1+η2c2)

, x1,2 →
√

1 + η2c2 x1,2 brings the deformed metric to

the form

d̃s
2

= 2dx+dx−+(x+)−2

[
−kx2

m+η2c2[−3ν+5ν2−kη2c2]
x2

1+x2
2

1+η2c2

]
(dx+)2+dx2

m . (5.14)

Therefore this background is exact at two loops, as is easily checked directly, and possibly

to all loops.

5.2 Bianchi type II background

Next we consider the Bianchi type II background [52, 53] (the α′-corrections to Bianchi

type I were considered in [54])

ds2 = − cosh(τ)e(a+b+c)τdτ2 +
eaτ

cosh(τ)
(dx−zdy)2 +cosh(τ)e(a+b)τdy2 +cosh(τ)e(a+c)τdz2 ,

(5.15)

supported by a dilaton linear in τ

Φ = aτ/2 . (5.16)

This solves the Einstein equations provided that the parameters a, b, c are related as

bc = a2 + 1 . (5.17)

The solution has three Killing vectors

k1 = −∂z − y∂x , k2 = ∂y , k3 = ∂x , (5.18)

which again satisfy a Heisenberg algebra [k1, k2] = k3.

From now on we will simplify things by taking a = 0 and b = c = 1. The two-

loop equations are not automatically satisfied, and we need to find α′-corrections for this

background. It is convenient to introduce a new coordinate system {v, x, y, z} where v = eτ ,

since the metric then has a rational dependence on v

ds2 =
2v(dx− zdy)2

v2 + 1
+

(
v2 + 1

) (
v
(
dy2 + dz2

)
− dv2

)
2v

. (5.19)

We assume that the correction to the metric δGij respects the isometries of the background.

We turn on the diagonal components δGii and δG12 = −zδG11. We also allow for a

correction to the dilaton δΦ that, together with δGii, is allowed to depend only on v. The

two-loop equation for the B-field is already satisfied. First it is simpler to solve the two-

loop equation for the dilaton, because there only the correction δΦ contributes. One finds a

second order differential equation −3v6 +45v4−45v2 +3−
(
v2 + 1

)5
(vδΦ′′(v) + δΦ′(v)) = 0

solved by

δΦ =
v

2 (v2 + 1)
+

2v

(v2 + 1)3 +
1

2
arctan v + cΦ log v , (5.20)

where cΦ is a constant. Looking at the two-loop equations for the metric, one can find a

linear combination of those equations that gives an algebraic constraint imposing δG11 = 0.
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To find δG00, δG22, δG33, we first identify linear combinations of the equations that give

first order differential equations for δG00 and δG33, and we solve them obtaining results

written in terms of δG22. These are then used to get a third order differential equation for

δG22 only, that we also solve. The final result is

δG00 =
−2v8+20v4+8v2−2

(
v2−3

)(
v2+1

)3
varctanv+6

(v4−1)2

+

(
v2+1

)(
c00

(
v2−1

)2
+v2(c22−2f22)+c22−2f22−4cΦ

(
v2−3

)
v2 logv+8cΦ

)
v (v2−1)2 ,

δG22 =

(
3v2−1

)((
v2+1

)3
arctanv+v

(
v4+2v2+5

))
2(v2−1)(v2+1)2

+

(
v2+1

)(
v2(d22−c22)+3c22−d22+2logv

(
f22

(
v2−1

)
+4cΦ

)
−4f22+8cΦ

)
4(v2−1)

,

δG33 = δG22−
1

2

(
v2+1

)
(2c00−2c22+d22+2(f22−6cΦ) logv+2f22) . (5.21)

For simplicity in what follows we will set all integration constants cΦ = c00 = c22 = d22 =

f22 = 0. This background admits a non-abelian deformation with

Θ = αk1 ∧ k4 + βk2 ∧ k3 , (5.22)

where α, β are parameters and we have introduced an additional flat direction w so that

we can have a fourth Killing vector k4 = ∂w. If both α and β are non-zero, they can be

reabsorbed by redefining w and the deformation parameter η. For simplicity we set α = 0,

β = 1 and analyze the abelian deformation given by

Θ = k2 ∧ k3 . (5.23)

The Yang-Baxter deformation to lowest order in α′ yields the following deformed back-

ground15

ds2 =

((
v2+1

)2
+4vz2

)
dy2−8vzdxdy+4vdx2

2(v2+1)(1+η2v)
−
(
v2+1

)
dv2

2v
+

1

2

(
v2+1

)
dz2 ,

B=
ηvdx∧dy
1+η2v

,

Φ =−1

2
log
(
1+η2v

)
.

(5.24)

We can obtain the first α′-correction exactly in the deformation parameter η if we

follow the strategy outlined in section 4. The deformation generated by Θ = k2 ∧ k3 is

equivalent to doing first a T-duality along x, then shifting y → y − ηx̃ where x̃ is the dual

coordinate to x, and then T-dualising x̃ back.

We first start from the background given by the metric (5.19) and the α′-correc-

tions (5.21). This background solves the two-loop equations in the HT scheme, and we

15We remind that in this paper we use the convention B = 1
2
Bijdx

i ∧ dxj .
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need to apply (4.5) in order to find a solution in the KM scheme. Obviously, since the

corrections in (4.5) are multiplied by an explicit power of α′, it is enough to use the un-

corrected background to derive them, which simplifies the calculation. Because B = 0, we

can in principle get a non-trivial modification only for the metric from the Ricci tensor,

and for the dilaton from the Ricci scalar. But the Bianchi II background is also Ricci-flat,

therefore it is the same in the KM scheme and in the HT scheme. The next step is that

of identifying the fields of the dimensional reduction as in (4.1). Because we want to do

T-duality along x here, we are taking x = x. This is a straightforward exercise, and in-

stead of writing down all fields of the dimensional reduction, we only write those that can

potentially change under the corrected T-duality rules

σ =
1

2
log

(
2v

1 + v2

)
, V = −zdy , W = 0 , b = 0 . (5.25)

These particular fields of the dimensional reduction happen not to depend on α′ in this

particular example. We then implement the α′-corrected T-duality rules of KM as in (4.6)

and obtain the fields of the dimensional reduction after T-duality

σ = −1

2
log

(
2v

1 + v2

)
−α′

(
v4 − 6v2 + 1

)
2v (v2 + 1)3 , V = 0 , W = −zdy , b = 0 . (5.26)

After T-duality the scalar σ does depend explicitly on α′. The explicit form of the two-loop

background after performing this first T-duality along x is

ds2 =
1

2

(
v+v−1−

α′
(
v4−6v2+1

)
(v3+v)2

)
dx̃2

+
1

2

1+v2+
α′
(
3v2−1

)((
v2+1

)3
arctanv+v

(
v4+2v2+5

))
(v2−1)(v2+1)2

(dy2+dz2)

+

−v2+1

2v
−

2α′
(
v8−10v4−4v2+

(
v2−3

)(
v2+1

)3
varctanv−3

)
(v4−1)2

dv2 ,

B= zdx̃∧dy ,

Φ =−1

2
log

(
2v

v2+1

)
+α′

[(
2v6+3v4+16v2−1

)
4v (v2+1)3 +

1

2
arctanv

]
.

(5.27)

In the T-dual frame the metric is diagonal (even to two loops) at the cost of having a non-

vanishing B-field. We can now do the shift y → y − ηx̃, that here will have only the effect

of modifying the metric. To perform another T-duality along x̃ we have to first repeat the
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identification of the fields of the dimensional reduction. We find in particular

σ=
1

2
log

(
1

2

(
η2
(
v2+1

)
+v+v−1

))

+
1

2
α′

− (
v4−6v2+1

)
v (v2+1)3 (1+η2v)

+
η2v

(
3v2−1

)((
v2+1

)3
arctanv+v

(
v4+2v2+5

))
(v2−1)(v2+1)3 (η2v+1)

 ,
V =

−η dy
(1+η2v)2

v (1+η2v
)
+
α′
(
v
(
3v2−1

)(
v2+1

)2
arctanv+3

(
v6+v4+v2

)
−1
)

(v2−1)(v2+1)2

 ,

W =−zdy , b= 0 . (5.28)

At this point we can use again the T-duality rules of KM (4.6). After doing that we obtain

the following background

ds2 =−
(
v2+1

)
dv2

2v
+

2(dx−zdy)2

η2 (v2+1)+v+v−1
+

(
v2+1

)
dy2

2(1+η2v)
+

1

2

(
v2+1

)
dz2

+α′δG00dv
2−4α′η2v2

(
δG22

(v2+1)2 (1+η2v)2 +2v
v2−1

(v2+1)4 (1+η2v)2

)
(dx−zdy)2

+α′
(

δG22

(1+η2v)2−η
2 v4−6v2+1

2(v2+1)2 (1+η2v)2

)
dy2+α′δG22dz

2 ,

B̃=
α′ηdv∧dz

(v2+1)(1+η2v)

+ηvdx∧dy

(
1

1+η2v
+2α′

δG22

(v2+1)(1+η2v)2 +α′
2v(v2−3)+η2

(
3v2−1

)(
v2−1

)
(v2+1)3 (1+η2v)3

)
,

Φ̃ =−1

2
log
(
1+η2v

)
+α′δΦ−α′η2 4v(v2+1)2δG22+5v4−10v2+1

4(v2+1)3 (1+η2v)
, (5.29)

where δGij and δΦ are the corrections to the undeformed background given in (5.20)

and (5.21). This is a TsT of the initial Bianchi II that solves the two-loop equations in

the KM scheme. To go to the HT scheme we use again (4.5). Because of the deformation,

now the dictionary to go to the new scheme is non-trivial, and the background in the HT

scheme reads

ds2 = G̃ijdx
idxj ,

B̃=
α′ηdv∧dz

(v2+1)(1+η2v)

+ηvdx∧dy
(

1

1+η2v
+2α′

δG22

(v2+1)(1+η2v)2 +2α′v
v2−3

(v2+1)3 (1+η2v)2

)
,

Φ̃ =−1

2
log
(
1+η2v

)
+α′δΦ−α′η2 vδG22

(v2+1)(1+η2v)
−α′η2 3v4−14v2−1

4(v2+1)3 (1+η2v)
,

(5.30)
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where

G̃00 = −v
2 + 1

2v
+ α′δG00 − α′η2 η2 + 3η2v2 + 2v

2 (v2 + 1) (1 + η2v)2 ,

G̃11 =
2v

(v2 + 1) (1 + η2v)
− 4α′η2v2 δG22

(v2 + 1)2 (1 + η2v)2 − 4vα′η2v2 v2 − 3

(v2 + 1)4 (1 + η2v)2 ,

G̃22 =
v2 + 1

2 (1 + η2v)
− α′η2v2 v2 − 3

(v2 + 1)2 (1 + η2v)2 + α′
δG22

(1 + η2v)2 + z2G̃11 ,

G̃33 =
1

2

(
v2 + 1

)
+ α′δG22 − α′η2 v2

(v2 + 1) (1 + η2v)
,

G̃12 = −zG̃11 . (5.31)

Performing the redefinition of the dilaton given in (1.6) this background agrees precisely

with that obtained from the all order expression (1.7).

When we want to work out a deformation generated by Θ = k1 ∧ k4 following the

strategy of section 4, we first need to find a coordinate system in which k1 acts as a simple

shift of a coordinate. We can redefine

x = x′ + y′z′ , y = y′ , z = z′ , (5.32)

so that in the new coordinate system k1 = −∂z′ . As should be clear from the discussion at

the beginning of this section, the isometry generated by k1 is not broken by α′ corrections,

therefore the metric will not depend on z′ also at two loops. The deformation generated

by Θ = k1 ∧ k4 can be obtained by doing T-duality w → w̃, then the shift z′ → z′ − ηw̃,

and then T-duality back w̃ → w. We will omit the explicit results for this particular

deformation, since they involve very long expressions, and we have already presented our

method in the previous deformation generated by Θ = k2 ∧ k3. We have checked that

the resulting background again agrees with that obtained by the α′-corrected open-closed

string map (1.7).

The interesting point is that we can combine these two TsT transformations. We can

first do a TsT involving x and y corresponding to Θ = k2 ∧ k3. At the end of this result

the background is still invariant under isometries generated by k1 and k4, and we can do a

second TsT transformation involving z′ and w, equivalent to Θ = k1∧k4. The composition

of the two deformations is equivalent to the deformation given by Θ = k1 ∧ k4 + k2 ∧ k3, as

explained in [15]. The non-abelian nature of the deformation is related to the fact that if we

had started from Θ = k1 ∧ k4 instead, we would have broken the isometries that we would

need to perform the deformation with Θ = k2∧k3. As follows from the results of [15], in the

maximally deformed limit η →∞ we recover the non-abelian T-dual of the original Bianchi

II solution, where the isometries dualized are those corresponding to the Killing vectors

k1, k2, k3 forming a Heisenberg algebra, and k4. By this argument it follows that non-

abelian T-dual models related to this class of Yang-Baxter deformations remain conformal

on the worldsheet to two loops. Because T-duality remains a symmetry of the string at

higher orders in an α′-expansion, we can argue that this is true to all loops. Unfortunately

the all order expression (1.7) turns out not to give the correct answer in this case.
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6 Conclusions

We have argued that (homogeneous) YB deformed string σ-models that are conformal at

one loop remain conformal at two loops,16 i.e. including the first correction in α′. We showed

this to second order in the deformation parameter η for a generic unimodular deformation

of a background with vanishing B-field. We also argued that using the α′-corrected T-

duality rules of [34] one can verify this to all orders in the deformation parameter for the

cases that can be built from TsT transformations, and we explained that this strategy can

be used also for the non-abelian YB deformations that are equivalent to a non-commuting

sequence of TsT transformations.17 We exemplified our results in the case of a deformation

of a Bianchi type II background.

Our findings suggest that one-loop conformal YB σ-models should in fact remain con-

formal to first order in α′, and likely all orders. Since these models can be thought of as a

generalization of non-abelian T-duality [12, 13, 15] (which can be recovered in an appropri-

ate η → ∞ limit) our findings suggest that the same should be true for NATD. This was

also argued recently from a different perspective in [30, 31], studying renormalizability of

a different type of integrable deformation of σ-models.18 To test this idea one should start

from a model which is conformal to all orders in α′ and then deform it. A good candidate

is therefore the unimodular deformation of AdS3 × S3 constructed in [39].

We saw that the expression (1.7) for the all order in η form of the first α′-correction

to YB deformations works in simple cases but fails in general. It is an important problem

to fix it so that it holds in general. If a simple solution exists for the corrections, it is

also interesting in the special case of TsT transformations, whose corrections have, to our

knowledge, not been analyzed before. If, further more, this continues to work to higher

orders in α′ it could even help in determining the structure of higher α′-corrections to the

target space equations of motion. This approach could be said to be an example of using

O(d, d) symmetry to determine/constrain higher α′-corrections.

We plan to address some of these questions in the near future.
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A Killing identities

The Killing vectors satisfy the equations (suppressing the Lie algebra index)

∇(ikj) = 0 ∇i∇jkl = Rljink
n . (A.1)

Using this and the expression for Θ in (1.2) we can derive the useful two-derivative identity

2∇k∇(iΘj)l = 2∇kk(i ×∇j)kl + 2Rknl(iΘj)
n

= −∇(i∇j)Θkl + 2Rknl(iΘj)
n −Rk(ij)nΘl

n +Rl(ij)nΘk
n . (A.2)

A special case of this is

∇2Θij = −RijklΘkl +RikΘj
k −RjkΘi

k . (A.3)

In addition we have the unimodularity condition, which in terms of Θ, takes the form

∇kΘkl = 0 . (A.4)

We also know that the dilaton respects the isometries so that

ki∇iΦ = 0 . (A.5)

Using these facts we can prove the useful identity

∇k(RijlmΘlm) = −1

2
Riklm∇jΘlm +Rimkl∇mΘj

l −Rilmk∇mΘj
l − (i↔ j) . (A.6)

This follows by noting that

2Rijlm∇kΘlm = −4∇m∇jki ×∇kkm = −4∇m(∇jki ×∇kkm) + 4Rkl∇jki × kl

= −2∇m∇j(ki ×∇kkm) + 2∇m(RmkjlΘi
l) + 2Rkl∇jki × kl − (i↔ j)

= −∇m∇j∇kΘim +∇m∇j∇mΘik +∇m∇j∇iΘmk + 2∇m(RmkjlΘi
l)

+ 2Rkl∇jki × kl − (i↔ j)

=
1

2
Rijlm∇kΘlm − 1

2
∇kRijlmΘlm − 1

2
Riklm∇jΘlm +Rimkl∇mΘj

l

−Rilmk∇mΘj
l − (i↔ j) , (A.7)

where we have used the fact that

∇lΦ∇kΘlj +∇lΦ∇lΘkj +∇lΦ∇jΘkl = 0 , (A.8)

as is easily verified. Acting with ∇k, and using also ∇kΦ times the above identity, one

finds

4∇k(Rijlm∇kΘlm) = 3∇k∇[i(Rjk]lmΘlm)− 2RimklRjn
klΘmn + 4Ri

klmRjklnΘm
n

+ 2Rijlm∇kΦ∇kΘlm + 4Riklm∇kΦ∇jΘlm − (i↔ j) . (A.9)
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B Relations needed for second order calculation

For the second order calculations we define the following ‘basis’ of terms (for readability

we write all indices as lower indices)

f1 = Rilmn∇jΘmnΘkl f12 = Rimkn∇mΘljΘln f23 = Rklmn∇mΘinΘjl

f2 = Rilmn∇jΘklΘmn f13 = Rimkn∇lΘmjΘln f24 = Rklmn∇lΘimΘjn

f3 = Rikmn∇jΘmlΘln f14 = Rilmn∇kΘmnΘlj f25 = ∇lRikmnΘjlΘmn

f4 = Rimnk∇jΘmlΘln f15 = Rilmn∇lΘmnΘkj f26 = ∇kRilmnΘjlΘmn

f5 = Rilmn∇lΘmjΘnk f16 = Rilmn∇lΘkmΘnj f27 = ∇i∇jΘmn∇kΘmn

f6 = Rilmn∇mΘljΘnk f17 = Rilmn∇mΘknΘlj f28 = ∇i∇kΘmn∇jΘmn (B.1)

f7 = Rilmn∇mΘnjΘlk f18 = Rikmn∇mΘlnΘlj f29 = ∇i∇jΘmn∇mΘnk

f8 = Rilmn∇lΘkjΘmn f19 = Rikmn∇lΘmnΘlj f30 = ∇i∇kΘmn∇mΘnj

f9 = Rilmn∇kΘljΘmn f20 = Rimkn∇mΘlnΘlj f31 = ∇i∇mΘnk∇jΘmn

f10 = Rikmn∇mΘljΘln f21 = Rklmn∇iΘjlΘmn f32 = ∇i∇mΘnk∇mΘnj

f11 = Rikmn∇lΘmjΘln f22 = Rklmn∇iΘmnΘjl f33 = ∇i∇mΘnk∇nΘmj

where we suppress the free indices ijk and assume symmetry in ij throughout. We also

define the terms with only one free index

f̂1 = Rklmn∇jΘklΘmn f̂4 = Rjlmn∇kΘmnΘkl f̂7 = ∇j∇lΘmn∇lΘmn

f̂2 = Rklmn∇kΘljΘmn f̂5 = Rjlmn∇mΘnkΘkl f̂8 = ∇j∇lΘmn∇mΘnl (B.2)

f̂3 = Rklmn∇mΘklΘnj f̂6 = Rjlmn∇lΘkmΘkn

We will denote for example∇kf1ijk as∇·f1, again suppressing the indices, and similarly

for example ∇(if̂1j) as ∇f̂1. Using the Killing vector identities, unimodularity and isometry

of the dilaton one finds

∇ · f1 =
1

2
g12 + g23 − 2h6 (B.3)

∇ · f2 =
1

2
g12 + g15 −

1

2
h1 + 2m1 (B.4)

∇ · f3 = g13 − g25 − h5 − h7 − 2m5 − 2m6 (B.5)

∇ · f4 = g14 − g24 + g25 +
1

2
h5 + h7 −

1

2
h8 + 2m6 (B.6)

∇ · f5 = −1

2
g1 +

1

2
g23 − g25 +

1

2
h3 − h5 − h6 −

1

2
h8 (B.7)

∇ · f6 = −1

2
g1 −

1

2
g10 −

1

2
g23 + g24 − g25 −

1

2
h3 − h5 +

1

2
h8 (B.8)

∇ · f7 = −1

2
g10 − g23 + g24 − h3 + h6 + h8 (B.9)

∇ · f8 = g1 + g3 +
1

2
h1 + 2m2 (B.10)

∇ · f9 = g1 + g8 + g10 + h1 + 2m1 − 2m2 (B.11)
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∇ · f10 = g4 + g7 + g24 − 2g25 + h4 −
1

2
h5 − h6 − h7 +

1

2
h8 + 2m7 − 2m8 (B.12)

∇ · f11 = g5 −
1

2
g23 + g25 − h4 +

1

2
h5 + h6 +

1

2
h8 + 2m10 − 2m11 (B.13)

∇ · f12 = g4 + g24 − 2g25 −
1

2
h3 + h4 −

1

2
h5 − h6 − h7 + 2m7 (B.14)

∇ · f13 = g6 +
1

2
g23 − g24 + g25 +

1

2
h3 − h4 + h5 − h6 +

1

2
h8 + 2m10 (B.15)

∇ · f14 = g2 + g8 + h2 + 2m3 (B.16)

∇ · f15 = g2 − g11 + g21 (B.17)

∇ · f16 = −1

2
g2 − g5 +

1

2
g11 −

1

4
h2 + 2m16 (B.18)

∇ · f17 =
1

2
g2 + g6 +

1

2
h2 −m3 (B.19)

∇ · f18 = g4 −
3

2
g21 + h3 + h4 − h10 + 2m9 + 2m17 (B.20)

∇ · f19 = g3 + g21 − 2h4 + 2m4 (B.21)

∇ · f20 = g4 + g7 −
3

2
g21 +

3

2
h3 + h4 −

1

2
h10 + 2m9 (B.22)

∇ · f21 = g9 −
1

2
g20 −

1

2
h2 + h9 + 2m14 (B.23)

∇ · f22 = −g16 − g22 + 2h4 − 2m13 (B.24)

∇ · f23 = g17 +
3

2
g22 − h3 − h4 − h11 + 2m12 (B.25)

∇ · f24 = −g18 −
1

2
h3 +

1

2
h11 + 2m18 (B.26)

∇ · f25 = g11 − g1 − g2 −
1

2
h2 − 2h4 − 4m2 + 2m19 (B.27)

∇ · f26 = −g1 − g2 − g10 − h2 − 4h4 − 2m15 (B.28)

∇ · f27 = 2g5 − 2g6 + 2g7 − 2g13 − 2g14 − g20 + 2g28 + 2g32 + 4m21 (B.29)

∇ · f28 = −g12 + 2g13 − g19 − 2g25 + g26 + 2m20 (B.30)

∇ · f29 =
1

2
g3 − g4 − g5 − g7 +

1

2
g8 + g13 +

1

2
g15 +

1

2
g20 − g29 + g30 − g33 + g34 + 2m21

(B.31)

∇ · f30 = g4 − g5 + g7 − g10 − g16 − g22 + g23 − g25 + g26 − g27 + 2m22 (B.32)

∇ · f31 =
1

2
g12 − g13 − g14 +

1

2
g15 +

1

2
g19 −

1

2
g23 − g24 + g25 + g27 + 2m23 (B.33)

∇ · f32 = −g7 +
1

2
g8 +

1

2
g10 +

1

2
g16 +

1

2
g22 − g23 + g24 + g25 − g26 + g27 + 2m24 (B.34)

∇ · f33 =
1

2
g3 − g5 + g6 −

1

2
g10 −

1

2
g16 −

1

2
g22 −

1

2
g23 + 2m25 (B.35)

and

∇f̂1 = g12+g19+g20 (B.36)

∇f̂2 = g10+g16+
1

2
g20+h2 (B.37)
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∇f̂3 =−g9+g11+g22 (B.38)

∇f̂4 = g15+g23−2g33 (B.39)

∇f̂5 =−g14+g24+g32+g34 (B.40)

∇f̂6 = g13+g25+g34+g35 (B.41)

∇f̂7 =−g4−g6−3g14+g26+g28−g29−g30+2g32+2g34 (B.42)

∇f̂8 =
1

2
(g3−g4−g6+g8−3g14+3g15+2g27+g28−g29+g30−g31+2g32−4g33+2g34)

(B.43)

where we have defined the ∇2RΘ2-terms

g1 = ∇kRilmn∇lΘkjΘmn g13 = Rilmn∇jΘmk∇lΘkn g25 = Rilmn∇j∇lΘkmΘkn

g2 = ∇kRilmn∇kΘmnΘlj g14 = Rilmn∇jΘkl∇mΘkn g26 = ∇i∇kΘmn∇j∇kΘmn

g3 = Rilmn∇lΘkj∇kΘmn g15 = Rilmn∇jΘkl∇kΘmn g27 = ∇i∇kΘmn∇j∇mΘnk

g4 = Rilmn∇lΘkj∇mΘkn g16 = Rklmn∇iΘmn∇kΘlj g28 = Rkijl∇mΘnk∇mΘnl

g5 = Rilmn∇kΘmj∇lΘkn g17 = Rklmn∇kΘli∇mΘnj g29 = Rkijl∇mΘnk∇nΘml

g6 = Rilmn∇kΘlj∇mΘkn g18 = Rklmn∇kΘmi∇lΘnj g30 = Rkijl∇kΘmn∇mΘnl (B.44)

g7 = Rilmn∇mΘkj∇nΘkl g19 = Rklmn∇iΘkl∇jΘmn g31 = Rkijl∇kΘmn∇lΘmn

g8 = Rilmn∇kΘlj∇kΘmn g20 = Rklmn∇i∇jΘklΘmn g32 = ∇mRkijl∇mΘnkΘnl

g9 = Rklmn∇iΘjl∇kΘmn g21 = Rilmn∇k∇lΘmnΘkj g33 = ∇mRkijl∇nΘmkΘnl

g10 = ∇iRklmn∇kΘljΘmn g22 = Rklmn∇i∇kΘmnΘlj g34 = ∇mRkijl∇kΘmnΘnl

g11 = ∇iRklmn∇kΘmnΘlj g23 = Rilmn∇j∇kΘmnΘkl g35 = ∇mRkijl∇kΘlnΘmn

g12 = ∇iRklmn∇jΘklΘmn g24 = Rilmn∇j∇mΘnkΘkl

the R2Θ2-terms

h1 = RipklRjpmnΘklΘmn h5 = RilmnRjlkpΘmkΘnp h9 = RkijpRklmnΘmnΘpl

h2 = RilmnRmnkpΘkpΘjl h6 = RikmpRjlnpΘklΘmn h10 = RklmiRklmn(Θ2)nj (B.45)

h3 = RilmnRmnkpΘklΘjp h7 = RilmnRjlmk(Θ
2)nk h11 = RklmnRklmpΘinΘjp

h4 = RilmnRklmpΘnpΘjk h8 = RilmnRjkmn(Θ2)lk

and the terms involving the dilaton

m1 = Rilmn∇kΦ∇jΘklΘmn m10 = Rilmn∇mΦ∇kΘljΘkn m19 = ∇kRilmn∇lΦ ΘkjΘmn

m2 = Rilmn∇kΦ∇lΘkjΘmn m11 = Rilmn∇mΦ∇kΘnjΘkl m20 = ∇kΦ∇i∇kΘmn∇jΘmn

m3 = Rilmn∇kΦ∇kΘmnΘlj m12 = Rklmn∇kΦ∇mΘniΘlj m21 = ∇kΦ∇i∇jΘmn∇mΘnk

m4 = Rilmn∇lΦ∇kΘmnΘkj m13 = Rklmn∇kΦ∇iΘmnΘlj m22 = ∇kΦ∇i∇kΘmn∇mΘnj

m5 = Rilmn∇mΦ∇jΘnkΘkl m14 = Rklmn∇kΦ∇iΘjlΘmn m23 = ∇kΦ∇i∇mΘnk∇jΘmn

m6 = Rilmn∇mΦ∇jΘklΘkn m15 = ∇kRilmn∇kΦ ΘmnΘlj m24 = ∇kΦ∇i∇mΘnk∇mΘnj

m7 = Rilmn∇mΦ∇lΘkjΘkn m16 = Rilmn∇kΦ∇lΘkmΘnj m25 = ∇kΦ∇i∇mΘnk∇nΘmj

m8 = Rilmn∇mΦ∇nΘkjΘkl m17 = Rilmn∇mΦ∇nΘlkΘkj

m9 = Rilmn∇mΦ∇lΘknΘkj m18 = Rklmn∇kΦ∇lΘmiΘnj (B.46)
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B.1 Additional identities

Contracting (A.6) with Θ and one covariant derivative, or the derivative of the dilaton, in

all possible ways gives the identities

0 = g12 − 4g13 − 2g14 + g15 + g19 , (B.47)

0 = 2g1 + g3 − 2g4 − 4g7 + 2g8 + 2g10 + g16 + 2g17 − 4g18 , (B.48)

0 = 2g1 + 2g3 − 4g5 + 2g6 + g8 − g16 + 2g17 − 4g18 , (B.49)

0 = f̂1 + f̂4 + 2f̂5 − 4f̂6 +∇iRklmnΘmnΘkl , (B.50)

0 = 2m4 + 2m12 −m13 + 4m16 + 4m18 + 2m19 , (B.51)

0 = 2m3 +m4 − 2m9 + 2m12 +m13 + 2m15 + 2m17 + 4m18 , (B.52)

0 = 2f14 + 2f18 + f19 − 4f20 − f22 + 2f23 + 4f24 − 2f26 , (B.53)

0 = f14 + 4f16 + 2f17 + 2f19 + f22 + 2f23 + 4f24 − 2f25 . (B.54)

The last two imply, using the previous ones, that m19 = m2 and

0 = g2 + g21 + g22 + h2 − 2h3 (B.55)

In addition we can derive the following identity

2h5 = 2RiklpRjkmnΘpmΘnl = −2∇l∇kki ×∇n∇kkjΘnl

= −2∇l(Rjknm∇kki × kmΘnl) +Rlnkm∇kki ×∇mkjΘnl +Rlnjm∇kki ×∇kkmΘnl

= ∇l(Rjknm∇kΘmiΘnl) +∇l(Rjknm∇mΘkiΘnl) +∇l(Rjknm∇iΘkmΘnl)

− 1

2
RklmnΘkl∇i∇jΘmn −RlnkmRmijpΘkpΘnl −

1

2
RklpiRjpmnΘklΘmn

= −1

2
∇ · f1 −∇ · f5 −∇ · f6 −

1

2
g20 +

1

2
h1 + h9 . (B.56)
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