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Abstract: This is a sequel to our recent work [1] in which we calculated the lepton num-

ber violating (LNV) K± decays due to contact dimension-9 (dim-9) quark-lepton effective

interactions that are induced at a high energy scale. In this work we investigate the long-

distance contribution to the decays arising from the exchange of a neutrino. These decays

can probe LNV interactions involving the second generation of fermions that are not reach-

able in nuclear neutrinoless double-β decays. Our study is completely formulated in the

framework of effective field theories (EFTs), from the standard model effective field the-

ory (SMEFT) through the low energy effective field theory (LEFT) to chiral perturbation

theory (χPT). We work to the first nontrivial orders in each effective field theory, collect

along the way the matching conditions and renormalization group effects, and express the

decay branching ratios in terms of the Wilson coefficients associated with the dim-5 and

dim-7 operators in SMEFT. Our result is general in that it does not depend on dynamical

details of physics at a high scale that induce the effective interactions in SMEFT and in

that it does not appeal to any hadronic models. We find that the long-distance contri-

bution overwhelmingly dominates over the contact or short-distance one. Assuming the

new physics scale to be around a TeV, the branching ratios are predicted to be below the

current experimental upper bounds by several orders of magnitude.
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1 Introduction

The origin of neutrino mass and the nature of neutrinos remain a challenging issue in

physics beyond the standard model. If neutrinos are Majorana fermions, the lepton number

is violated by two units. In that case it is desirable to explore lepton number violating

(LNV) signals beyond the Majorana neutrino masses. At a high energy collider such

as the LHC, the LNV signals usually manifest themselves as like-sign multileptons that

supposedly originate from the decays of new heavy particles engaged in neutrino mass

generation [2]. The null search result then sets a lower bound on the masses of new

particles under some simplifying assumptions. Complementary to these direct searches

are high-precision experiments at low energy that seek the imprints of new physics in

rare or forbidden processes. The most extensively studied so far are the so-called nuclear

neutrinoless double β (0νββ) decays, X → X ′e∓e∓, in which a parent nucleus X decays

into a daughter nucleus X ′ with the release of a pair of like-sign electrons or positrons [3, 4].

The null result in current experiments can be then used to set a strong bound on the relevant

LNV physics [5, 6].

Other nuclear processes proposed to search for include, for instance, the muon to

positron or antimuon conversion µ−X → e+(µ+)X ′ in the upcoming Mu2e experiment [7].

On the other hand, there is a plethora of flavor physics experiments in recent years that

search for LNV decays in flavored and charged mesons such as K±, D±, D±s , B
± and the

τ lepton [8–21], and the bounds on some of the decays are expected to be considerably

improved in future experiments [22, 23].

From the theoretical point of view the LNV decays of the flavored mesons and the τ

lepton are sensitive to the effective interactions of the fermions beyond the first generation

that cannot be probed in the nuclear 0νββ decays due to kinematical limitations, and can
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thus provide complementary information on underlying new physics. These decays can

be best investigated with the aid of various effective theories while avoiding theoretical

uncertainties associated with nuclear physics. In a recent publication [1] we started the

endeavor with the decays K± → π∓l±l± arising from effective contact interactions among

light quarks and charged leptons l = e, µ. In this work we make a comprehensive analysis

on the decays by incorporating the long-distance contribution due to the exchange of neu-

trinos. Before diving into technical details we describe briefly the strategy of our study in

the framework of effective field theory (EFT).

In the low energy region defined by the kaon and pion masses, the relevant dynamical

degrees of freedom are the octet of the pseudo-Nambu-Goldstone bosons (π, K, η), charged

leptons, neutrinos, and the photon, if we assume there are no new very light particles. The

low-energy manifestations of lepton number violation from any high-scale new physics are

reflected in the effective interactions of those light particles, which can be systematically

organized in chiral perturbation theory (χPT) formulated in terms of external sources [24–

26]. In particular, working to the leading order in χPT and in LNV effects, lepton number

violation could manifest itself through the neutrino mass (shown in figure 1(a)), effective

interactions of a single meson with a charged lepton and neutrino pair (figure 1(b)) or

of the two mesons with a pair of likely-charged leptons (figure 1(c)). The short-distance

(SD) contribution in figure 1(c) was thoroughly studied in [1], and this work will focus

on the long-distance (LD) terms in figure 1(a, b) due to the exchange of neutrinos. It

is easy to parameterize the above effective interactions, but our aim is to work them out

systematically in the EFT approach by matching sequentially to EFTs closer to new physics

at a high scale. In this manner we are able to express the decay branching ratios in terms

of the Wilson coefficients in the EFT defined at the electroweak scale or an even higher

scale when necessary.

The paper is organized as follows. We start in section 2 with the low energy effec-

tive field theory (LEFT) defined between the electroweak scale ΛEW and chiral symmetry

breaking scale Λχ [27, 28]. We collect the relevant dimension-3 (dim-3), -6 and -7 LNV

effective operators and discuss their one-loop QCD running effects. (The dim-3, -4, and

-5 operators are the mass, kinetic, and electromagnetic (transition) moment terms.) We

then match them to other EFTs along the ladder of scales. In section 3, the dim-6 and

-7 operators in LEFT are matched at the scale Λχ to χPT, thus determining the vertices

in figure 1 in terms of the Wilson coefficients in LEFT and low energy constants (LECs)

of QCD strong dynamics. Then in section 4 we match LEFT upwards the scale to the

standard model effective field theory (SMEFT), assuming that there are no new particles

with a mass of order ΛEW or lower. The relevant leading LNV operators in SMEFT are

the dim-5 and -7 ones known in the literature [29–32] and reproduced in appendix A. We

express the branching ratios in terms of the Wilson coefficients in SMEFT and the LECs

of strong dynamics through the above two-step matching, whose complete expressions can

be found in appendix B, and make some numerical estimates. Our main findings are finally

recapitulated in section 5.
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Figure 1. Generic Feynman diagrams for the decay K− → π+l−α l
−
β in χPT, where the heavy blob

stands for effective LNV interactions. Diagrams with the two charged leptons crossed are not shown

in (a, b).

2 LNV effective interactions in LEFT

The low energy effective field theory is an EFT defined between the electroweak scale

ΛEW ∼ 102 GeV and chiral symmetry breaking scale Λχ = 4πFπ ∼ 1 GeV. The dynamical

degrees of freedom include five quarks (u, d, s, c, b), all charged leptons (e, µ, τ) and

neutrinos (νe, νµ, ντ ), the photon and gluons, and enjoy QED and QCD gauge symmetries.

LEFT has been fruitfully applied particularly in flavor physics [27]. As a low energy effec-

tive theory, it is an organized and infinite series of effective interactions whose importance

is relatively measured by canonical dimensions of effective operators with similar symmetry

properties. For our purpose here we focus on the effective operators that violate the lepton

number L by two units and potentially contribute to the decays under consideration at the

leading orders.

We work without losing generality in the convention that quarks and charged leptons

have been diagonalized while neutrinos are in their flavor states. Different conventions

amount to different ways to incorporate quark and lepton mixing matrices in generally

unknown Wilson coefficients. We first recall that the SD contribution in figure 1(c) arises

at leading order from dim-9 operators involving two like-sign leptons and four quarks which

have been thoroughly analyzed in ref. [1]. In the following we investigate systematically the

effective operators that could finally dominate the LD contribution in figure 1(a,b). The

dim-3 operator is unique, i.e., the Majorana neutrino mass term in the effective Lagrangian:

−1

2
mαβνCα νβ , (2.1)

where mαβ is the neutrino mass matrix in the flavor basis of the neutrinos να = νe, νµ, ντ
and the superscript C refers to charge conjugation. For the LNV interactions in figure 1(b),

the relevant operators in LEFT involve one charged lepton, one neutrino, and a pair of

quarks. These operators first appear at dimension six and have been classified in ref. [28].

– 3 –



J
H
E
P
0
3
(
2
0
2
0
)
1
2
0

Following our notations in [1], we denote them as follows:

ORL,Sprαβ = (upRd
r
L)(lLαν

C
β ), OLR,Sprαβ = (upLd

r
R)(lLαν

C
β ), (2.2)

OLL,Vprαβ = (upLγµd
r
L)(lRαγ

µνCβ ), ORR,Vprαβ = (upRγµd
r
R)(lRαγ

µνCβ ), (2.3)

OLR,Tprαβ = (upLσµνd
r
R)(lLασ

µννCβ ). (2.4)

Here the Latin letters p, r indicate the flavors of the up- and down-type quarks up, dr whose

chiralities (L, R) are shown by their subscripts and by the first two superscripts of the

operators O. Since νCβ is right-handed, the chirality of the charged lepton field in a lepton

bilinear is automatically determined by the type of the operators, S, V, T . In addition we

also require the SM effective operators due to charged-current interactions between leptons

and quarks:

O(SM)
prαβ = Vpr(u

p
Lγµd

r
L)(lLαγ

µνβ)δαβ , (2.5)

where the Vpr is the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

At the next order LNV operators carry a covariant derivative Dµ to become dimension

7. Considering the restrictions and reductions due to gauge symmetry, equations of motion,

integration by parts, and Fierz identities, we obtain the following LNV operators relevant

to our purpose here [33]:

OLL,V Dprαβ = (upLγµd
r
L)(lLαi

←→
D µνCβ ), ORR,V Dprαβ = (upRγµd

r
R)(lLαi

←→
D µνCβ ), (2.6)

OLR,TDprαβ = (upLσµνd
r
R)(lRαγ

[µ←→D ν]νCβ ), ORL,TDprαβ = (upRσµνd
r
L)(lRαγ

[µ←→D ν]νCβ ), (2.7)

where A
←→
D µB = A(DµB) − A

←−
DµB and γ[µDν] = γµDν − γνDµ. The operators in equa-

tions (2.2)–(2.7), as well as the dim-3 Majorana mass term (2.1), make up the main body

for the LD contribution. These operators will be matched in the next section to those in

χPT where the lepton bilinears act as external sources.

Since we will match the effective interactions in LEFT to those in SMEFT at the scale

ΛEW and to those in χPT at the scale Λχ, it is necessary to sum the large logarithms

between the two scales using renormalization group equations. In our case the leading

effect arises from the 1-loop QCD renormalization. While the vector-type operators are

free of renormalization, the scalar- and tensor-type operators are indeed renormalized,

whose Wilson coefficients satisfy the renormalization group equations:

µ
d

dµ
CS = −αs

2π
3CFC

S , CS ∈
{
CRL,Sprαβ , C

LR,S
prαβ

}
, (2.8)

µ
d

dµ
CT =

αs
2π
CFC

T , CT ∈
{
CLR,Tprαβ , C

LR,TD
prαβ , CRL,TDprαβ

}
, (2.9)

where CF = (N2 − 1)/(2N) = 4/3 with N = 3 being the color number. The solutions

between the scales µ1 and µ2 are

CS(µ1) =

(
αs(µ2)

αs(µ1)

)3CF /b

CS(µ2), CT (µ1) =

(
αs(µ2)

αs(µ1)

)−CF /b

CT (µ2), (2.10)
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where b = −11 + 2nf/3 with nf being the number of active quark flavors. Incorporating

quark threshold effects, we obtain the numerical results between the scales Λχ and ΛEW:

CS(Λχ) = 1.656CS(ΛEW), CT (Λχ) = 0.845CT (ΛEW). (2.11)

Thus the scalar-type interactions are enhanced while the tensor-type ones are suppressed

when evolving down from the high scale ΛEW to the low scale Λχ.

3 Matching onto effective interactions in χPT

While the charged leptons and neutrinos retain their identities at low energy, the quark

and gluon degrees of freedom will condense into hadrons due to strong dynamics. Since

the process K− → π+l−α l
−
β in question involves only the light quarks q = u, d, s, its

transition matrix element due to effective interactions in LEFT can be beautifully evaluated

by matching to chiral perturbation theory, which is the low energy effective field theory

of QCD. χPT is based on the fact that the QCD Lagrangian has the approximate chiral

symmetry SU(3)L × SU(3)R for the three light quarks which is spontaneously broken by

the quark condensate 〈q̄q〉 = −3BF 2
0 to the diagonal SU(3)V . The symmetry breakdown

brings about eight pseudo-Nambu-Goldstone bosons (pNGBs), which are identified with

the octet of the lowest-lying pseudoscalars π±, π0, K±, K0, K0, η. In the χPT formalism

they are represented by the element in the coset space SU(3)L× SU(3)R/SU(3)V and take

the matrix form,

U(x) = exp

(
i
√

2Π(x)

F0

)
, Π =


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 −
√

2
3η

 , (3.1)

where F0 is the decay constant in the chiral limit. Corresponding to chiral transformations

of quarks qL → LqL and qR → RqR, U transforms as U → LUR† with L ∈ SU(3)L and

R ∈ SU(3)R.

The interactions of pNGBs with leptons due to dim-6 and dim-7 operators in equa-

tions (2.2)–(2.7) can be realized through the external source method in which the global

chiral symmetry is promoted to a local one [24–26]. At the quark-gluon level, the QCD

Lagrangian with all possible external sources is parameterized as follows,

L = LQCD + qLlµγ
µqL + qRrµγ

µqR +
[
qL(s− ip)qR + qLt

µν
l σµνqR + h.c.

]
, (3.2)

where LQCD is the QCD Lagrangian for massless u, d, s quarks. The external sources,

lµ = l†µ, rµ = r†µ, s = s†, p = p†, tµνr = tµν†l , are 3 × 3 matrices in flavor space, and

transform under chiral group as lµ → LlµL
†+ iL∂µL

†, rµ → RrµR
†+ iR∂µR

†, χ→ LχR†,

tµνl → Ltµνl R†, where χ = 2B(s− ip). By comparing the external sources in equation (3.2)

with the effective interactions in LEFT formed with the operators in equations (2.2)–(2.7)

multiplied by their Wilson coefficients, one singles out the terms in external sources specific
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to the K− → π+ transition:

(lµ)ui = −2
√

2GFVui(lLαγ
µνα)

+CLL,Vuiαβ (lRαγ
µνCβ ) + CLL,V Duiαβ (lLαi

←→
D µνCβ ) + · · · , (3.3)

(rµ)ui = CRR,Vuiαβ (lRαγ
µνCβ ) + CRR,V Duiαβ (lLαi

←→
D µνCβ ) + · · · , (3.4)

(χ†)ui = CRL,Suiαβ (lLαν
C
β ) + · · · , (3.5)

(χ)ui = CLR,Suiαβ (lLαν
C
β ) + · · · , (3.6)

(tµνl )ui = CLR,Tuiαβ (lLασ
µννCβ ) + CLR,TDuiαβ (lRαγ

[µ←→D ν]νCβ ) + · · · , (3.7)

(tµνr )ui = CRL,TDuiαβ (lRαγ
[µ←→D ν]νCβ ) + · · · , (3.8)

where i can be either d or s quark, and the ellipsis denotes terms not relevant to the

transition. In χPT the vector and scalar sources already appear at order O(p2) [24, 25]

L(2)
χPT =

F 2
0

4
Tr
(
DµU(DµU)†

)
+
F 2

0

4
Tr
(
χU † + Uχ†

)
, (3.9)

where

DµU = ∂µU − ilµU + iUrµ, (3.10)

while the tensor sources first appear at O(p4) [26]

L(4)
χPT ⊃ iΛ2Tr

(
tµνl (DµU)†U(DνU)† + tµνr DµUU

†DνU
)
, (3.11)

where Λ2 is a low energy constant (LEC). Since the tensor structure in equation (3.11)

involves at least two pNGBs, one charged and one neutral, it cannot contribute at tree

level to the process under consideration and will be ignored below. The expansion of

equation (3.9) yields the following terms relevant to the LD contribution to the decay

K− → π+l−α l
−
β :

L(2)
χPT ⊃ F0

[
GF

(
Vud∂µπ

− + Vus∂µK
−) (lLαγµνα)

+ iB
(
cαβπ1π

− + cαβK1K
−
) (
lLαν

C
β

)
−
(
cαβπ2∂µπ

− + cαβK2∂µK
−
) (
lRαγ

µνCβ
)

−
(
cαβπ3∂µπ

− + cαβK3∂µK
−
)(

lLαi
←→
D µνCβ

) ]
, (3.12)

where the parameters defined at the scale Λχ are

cαβPi1
=

√
2

2

(
CRL,Suiαβ − C

LR,S
uiαβ

)
,

cαβPi2
=

√
2

4

(
CLL,Vuiαβ − C

RR,V
uiαβ

)
,

cαβPi3
=

√
2

4

(
CLL,V Duiαβ − CRR,V Duiαβ

)
, (3.13)
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with Pi = π, K for i = d, s (and sometimes i = 1, 2). We note in passing that the

leading LD contribution does not introduce new LECs of QCD strong dynamics. The

above results show that the dim-6 vector-type operators are suppressed by O(p/B) relative

to their scalar-type counterparts while dim-7 vector-type operators are further suppressed

by O(p/ΛEW). To put it in short, among the dim-6 and -7 LNV operators in LEFT, the

scalar-type dim-6 operators generically dominate the LD contribution.

4 Matching onto SMEFT and decay branching ratios

Now we make connections between the effective interactions in SMEFT and LEFT, so

that we can parameterize the decay branching ratios as a function of the SMEFT Wilson

coefficients. The dim-5 and -7 LNV operators in SMEFT are reproduced in appendix A

where we slightly improve the basis of dim-7 operators over ref. [31]. At the scale ΛEW

where the electroweak symmetry spontaneously breaks down, we integrate out the heavy

SM particles (W, Z, h, t) to induce effective interactions in LEFT. The matching results

at ΛEW for the Wilson coefficients of the relevant dim-3, -6, and -7 operators in LEFT are,

in terms of those of the dim-5 and -7 operators in SMEFT,

mαβ = −v2Cαβ∗LH5 −
1

2
v4Cαβ∗LH , CLR,Tprαβ =

v√
2
Crpαβ∗
d̄QLLH2

, (4.1)

CRL,Sprαβ =
v√
2
VwrC

wpαβ∗
Q̄uLLH

, CLR,Sprαβ =
v√
2
Crpαβ∗
d̄QLLH1

, (4.2)

CLL,Vprαβ =
v√
2
VprC

βα∗
LeHD, CRR,Vprαβ =

v√
2
Crpβα∗
d̄uLeH

, (4.3)

CLL,V Dprαβ = Vpr

(
4Cαβ∗LHW + Cαβ∗LDH1

)
, CRR,V Dprαβ = 2Crpαβ∗

d̄uLDL
, (4.4)

where v ≈ 246 GeV is the vacuum expectation value of the Higgs field and we have

neglected contributions suppressed by small Yukawa couplings. Incorporating the 1-loop

QCD running effect in equation (2.11), the ci parameters in equation (3.12) defined at Λχ
are expressed in terms of the SMEFT Wilson coefficients defined at ΛEW:

cαβPi1
=
v

2
(1.656)YαβPi1

, cαβPi2
=
v

4
YαβPi2

, cαβPi3
=

√
2

4
YαβPi3

, (4.5)

where

YαβPi1
= VwiC

w1αβ∗
Q̄uLLH

− Ci1αβ∗
d̄QLLH1

,

YαβPi2
= VuiC

βα∗
LeHD − C

i1βα∗
d̄uLeH

,

YαβPi3
= Vui

(
4Cαβ∗LHW + Cαβ∗LDH1

)
− 2Ci1αβ∗

d̄uLDL
. (4.6)

We are now in a position to employ equation (3.12) to calculate the LD contribution

to the K− decay shown in figure 1(a,b). To make our answer complete, we include the SD

contribution in figure 1(c) which takes the form [1],1

LSD

F 2
0GF

= cαβ1 K−π−lLαl
C
Lβ + cαβ5 ∂µK−∂µπ

−lLαl
C
Lβ , (4.7)

1The convention of ci differs from that in ref. [1] by a factor 2F0G
2
F .
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where

cαβ1 = −2
√

2
(

0.62ga8×8 + 0.88gb8×8

)
Xαβ1 ,

cαβ5 = −2
√

2(1.3g27×1)VudVusXαβ2 . (4.8)

The X parameters are sums of the Wilson coefficients of the dim-7 operators in SMEFT

defined at ΛEW,

Xαβ1 = 2
(
VusC

11αβ∗
d̄uLDL

+ VudC
21αβ∗
d̄uLDL

)
,

Xαβ2 = 2Cαβ∗LHW + 2Cβα∗LHW + 2Cαβ∗LDH1 + Cαβ∗LDH2, (4.9)

while the QCD LECs determined in [34] are, in our notation [1], g27×1 = 0.38 ± 0.08,

ga8×8 = (5.5 ± 2) GeV2, and gb8×8 = (1.55 ± 0.65) GeV2. The complete amplitude for the

decay K−(k)→ π+(p)l−α (p1)l−β (p2) is,

M
F 2

0GF
= TSDuαPRu

C
β + T1µνuαγ

µγνPRu
C
β

+T2µνρuαγ
µγνγρPRu

C
β + T3µνρuαγ

µγνγρPLu
C
β , (4.10)

where TSD stands for the SD term and the others are the LD ones:

TSD = 2cαβ1 + 2cαβ5 k · p, (4.11)

T1µν = GFVudVusmαβ

(
kµpνt

−1 + pµkνu
−1
)

+t−1
[
Vud

(
BcαβK1 − c

αβ
K3(t− p2

1)
)

(k − p1)µpν

+ Vus

(
Bcβαπ1 − c

βα
π3 (t− p2

2)
)
kµ(k − p1)ν

]
+u−1

[
Vud

(
BcβαK1 − c

βα
K3(u− p2

2)
)
pµ(k − p2)ν

+ Vus

(
Bcαβπ1 − c

αβ
π3 (u− p2

1)
)

(k − p2)µkν

]
, (4.12)

T2µνρ = Vudc
αβ
K2kµ(k − p1)νpρt

−1 − Vuscαβπ2 pµ(k − p2)νkρu
−1, (4.13)

T3µνρ = Vusc
βα
π2 kµ(k − p1)νpρt

−1 − VudcβαK2pµ(k − p2)νkρu
−1, (4.14)

with s = (p1 + p2)2, t = (k − p1)2, and u = (k − p2)2. The amplitude has the correct

antisymmetry under interchange of the two leptons upon using the relations for bilinear

spinor wavefunctions

uαPRu
C
β = −uβPRuCα , uαγ

µγνPRu
C
β = −uβγνγµPRuCα ,

uαγ
µγνγρPRu

C
β = uβγ

ργνγµPLu
C
α , (4.15)

and obvious relations for TSD and Ti tensors. The decay width is calculated as

Γ =
1

1 + δαβ

1

2mK

1

128π3m2
K

∫
ds

∫
dt |M|2, (4.16)
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where the first factor removes double counting in phase space integration for identical

particles, and the integration domains are

s ∈
[
(mα +mβ)2, (mK −mπ)2

]
, (4.17)

t ∈
[
(E∗2 + E∗3)2 −

(√
E∗22 −m2

β +
√
E∗23 −m2

π

)2

,

(E∗2 + E∗3)2 −
(√

E∗22 −m2
β −

√
E∗23 −m2

π

)2 ]
, (4.18)

with mK,π,α,β being the masses of the K−, π+, lα, and lβ respectively and

E∗2 =
1

2
√
s

(s−m2
α +m2

β), E∗3 =
1

2
√
s

(m2
K − s−m2

π). (4.19)

Now we make some numerical analysis. The values of the SM parameters are taken

from the Particle Data Group [35]:

Γexp
K = 5.3166× 10−14 MeV, GF = 1.1664× 10−5 GeV−2,

Vud = 0.9743, Vus = 0.2253,

mK = 493.677 MeV, mπ = 139.570 MeV,

me = 0.511 MeV, mµ = 105.658 MeV, (4.20)

together with the χPT parameters F0 = 87 MeV [36] and B = 2.8 GeV [37]. Our master

formulae for the branching ratios of the decays K− → π+l−α l
−
β are

B(e−e−)

GeV6
=

1.7× 10−33

GeV6

|mee|2

eV2
+ 80 |YeeK1|

2 + 4.3 |Yeeπ1|
2

+10−3 ×
(

48 |X ee1 |
2 + 45 |YeeK2|

2 + 2.4 |Yeeπ2|
2
)

+10−8 ×
(

29 |YeeK3|
2 + 23 |X ee2 |

2 + 1.6 |Yeeπ3|
2
)

+ int., (4.21)

B(µ−µ−)

GeV6
=

4.5× 10−34

GeV6

|mµµ|2

eV2
+ 16

∣∣YµµK1

∣∣2 + 2.2 |Yµµπ1 |
2

+10−3 ×
(

17 |X µµ1 |
2

+ 19
∣∣YµµK2

∣∣2 + |Yµµπ2 |
2
)

+10−9 ×
(

67 |X µµ2 |
2

+ 49
∣∣YµµK3

∣∣2 + 6.6 |Yµµπ3 |
2
)

+ int., (4.22)

B(e−µ−)

GeV6
=

2.1× 10−33

GeV6

|meµ|2

eV2
+ 26

∣∣YµeK1

∣∣2 + 17
∣∣YeµK1

∣∣2 + 2 |Yeµπ1 |
2

+ 1.4 |Yµeπ1 |
2

+10−3 ×
(

61 |X eµ1 |
2

+ 35
∣∣YµeK2

∣∣2 + 24
∣∣YeµK2

∣∣2 + 1.9 |Yeµπ2 |
2

+ 1.3 |Yµeπ2 |
2
)

+10−9 ×
(

280 |X eµ2 |
2

+ 110
∣∣YeµK3

∣∣2 + 55
∣∣YµeK3

∣∣2 + 6.7 |Yµeπ3 |
2

+ 5.7 |Yeµπ3 |
2
)

+int., (4.23)

where int. stands for interference terms between any pair of Wilson coefficients, whose

complete forms are displayed in appendix B. We can see a few features from the above

results. First of all, since the neutrino mass scale is at most O(eV) [39, 40], the contribution
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K− → π+e−e− K− → π+µ−µ− K− → π+e−µ−

names bounds names bounds names bounds names bounds

|YeeK1|
− 1

3 84.5 |YµµK1|
− 1

3 85.1 |YµeK1|
− 1

3 61.1 |YeµK1|
− 1

3 56.9

|Yeeπ1|
− 1

3 51.9 |Yµµπ1 |
− 1

3 61.2 |Yeµπ1 |
− 1

3 39.8 |Yµeπ1 |
− 1

3 37.5

|X ee1 |
− 1

3 24.5 |X µµ1 |
− 1

3 32.3 |X eµ1 |
− 1

3 22.3

|YeeK2|
− 1

3 24.3 |YµµK2|
− 1

3 27.7 |YµeK2|
− 1

3 20.3 |YeµK2|
− 1

3 19.1

|Yeeπ2|
− 1

3 14.9 |Yµµπ2 |
− 1

3 17 |Yeµπ2 |
− 1

3 12.5 |Yµeπ2 |
− 1

3 11.7

|X ee2 |
− 1

3 3.2 |X µµ2 |
− 1

3 3.4 |X eµ2 |
− 1

3 2.9

|YeeK3|
− 1

3 3.3 |YµµK3|
− 1

3 3.2 |YeµK3|
− 1

3 2.6 |YµeK3|
− 1

3 2.2

|Yeeπ3|
− 1

3 2 |Yµµπ3 |
− 1

3 2.3 |Yµeπ3 |
− 1

3 1.5 |Yeµπ3 |
− 1

3 1.5

Table 1. Lower bounds (in units of GeV) are shown for inverse cubic roots (|Xi|−1/3 or |Yi|−1/3)

of combinations of Wilson coefficients for dim-7 operators in SMEFT. Note that Xαβi = X βαi .

from the neutrino mass matrix is negligible for any measurable branching ratios in a collider-

type experiment. Second, if we assume the Wilson coefficients associated with the dim-7

operators in SMEFT are similar in size, all of X and Y parameters will be of a similar

order of magnitude. Their relative importance is measured by their prefactors, which have

the rough ratios:

Y1 : X1 : Y2 : X2 : Y3 ∼ 101 : 10−2 : 10−3∼−2 : 10−7 : 10−8∼−7. (4.24)

Generically speaking, a long-distance contribution (YPi,j term) due to a neutrino exchange

in figure 1(b) dominates over its similar short-distance one (Xj term) in figure 1(c), which

in turn is similar to a YPij+1 term.

The current experimental upper bounds on the above decays are

Bexp(e−e−) < 2.2× 10−10 [9], Bexp(µ−µ−) < 4.2× 10−11 [9],

Bexp(e−µ−) < 5× 10−10 [10]. (4.25)

To get some numerical feel on what these bounds would imply and considering the limited

number of experimental bounds compared to that of Wilson coefficients, we assume only

one of the Xi or Yi is nonzero. The above upper bounds on branching ratios then translate

into the lower bounds on their inverse cubic roots as displayed in table 1. The bounds

are rather weak, especially when compared with those from nuclear 0νββ decays [32, 38].

This relative weakness originates from much smaller data samples accumulated in kaon

experiments than the number of nuclei available in a ton-level experiment of 0νββ decays

as we estimated roughly in ref. [1]. Thus the weak bounds should not be interpreted as

if the SMEFT approach would be valid for a new particle with a mass as low as tens or
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10-16

10-11

Λ[TeV]
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nc
hi
ng
ra
tio

Excluded by the current experimental search

mν≈1 eV

mν≈0.1 eV

Figure 2. Branching ratios for K− → π+l−α l
−
β are shown as a function of the new physics scale

Λ in the SMEFT framework. Also shown are the current experimental bounds (upper horizontal

line) and the neutrino mass contribution alone (lower horizontal lines).

even a few GeV; on the contrary, if there are such particles, they must be incorporated

explicitly into the expanded version of SMEFT and even LEFT. Nevertheless, we stress

that however weak the bounds are, they are the first ones worked out in a systematic

effective field theory approach that involve the second generation of fermions and are thus

complementary to those obtained from nuclear 0νββ decays. Conversely, if we assume

the dim-7 Wilson coefficients are all of order Λ−3 where Λ is the new physics scale, the

branching ratios are dominated by the terms with the largest coefficients, i.e., the long-

distance terms of YαβPi1
. In figure 2 we plot our theoretical predictions as a function of

Λ, together with the current experimental bounds; also shown are the contributions from

the neutrino mass matrix alone assuming mν ≈ 0.1 or 1 eV. For instance, if Λ > 1 TeV

as the current LHC searches and the null results in nuclear 0νββ decays imply, we have

for SMEFT:

B(e−e−) < 8.0× 10−17, B(µ−µ−) < 1.6× 10−17, B(e−µ−) < 2.6× 10−17. (4.26)

These branching ratios are several orders of magnitude smaller than the current experi-

mental upper bounds.
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5 Conclusion

We have accomplished a comprehensive analysis on the lepton number violating decays

K± → π∓l±α l
±
β in the effective field theory approach. We focused in this work on the

long-distance contribution due to an exchange of neutrinos, and incorporated the short-

distance contribution obtained in our previous work [1]. It turns out that the long-distance

contribution overwhelmingly dominates over the short-distance one by about three orders

of magnitude in the decay branching ratios. Assuming there are no new particles with a

mass of the order of or below the electroweak scale, we related the decay branching ratios

to the leading LNV effective interactions in SMEFT due to dim-5 and dim-7 operators.

Our results are general in that subject to the above loose assumption they are independent

of dynamical details at an even higher new physics scale; instead, different dynamics are

hidden in the Wilson coefficients in SMEFT. Our results do not employ any hadronic

models, but are completely based on the well-established symmetries and effective field

theories from SMEFT through LEFT to χPT. While the hadronic LECs entering in the

short-distance contribution were fixed previously by experimental measurements and lattice

calculations, the long-distance contribution involves no parameters other than the pion

decay constant and quark condensate making our results very robust. Unfortunately, the

current experimental upper bounds on the decay branching ratios are too weak to set a

useful bound on the scale of new physics that is responsible for lepton number violation.
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A Baryon number conserving dim-7 operators in SMEFT

The dim-5 operator in SMEFT is well-known [29]:

O5 = εijεmn(LC,iLm)HjHn. (A.1)

The dim-7 operators were first systematically studied in ref. [30], and corrected by ref. [31].

In this appendix we improve further over the basis of operators in ref. [31] so that flavor

symmetries are apparently realized as advocated in ref. [32]. This only concerns the subset

of operators that violate lepton number but conserve baryon number. In table 2 the

newly chosen basis operators are indicated by (∗), which replace the following old basis
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ψ2H4 + h.c. ψ2H3D + h.c.

OLH εijεmn(LC,iLm)HjHn(H†H) OLeHD εijεmn(LC,iγµe)H
j(HmiDµHn)

ψ2H2D2 + h.c. ψ2H2X + h.c.

OLDH1(∗) εijεmn(LC,i
←→
D µL

j)(HmDµHn) OLHB g1εijεmn(LC,iσµνL
m)HjHnBµν

OLDH2(∗) εimεjn(LC,iLj)(DµH
mDµHn) OLHW g2εij(ετ

I)mn(LC,iσµνL
m)HjHnW Iµν

ψ4D + h.c. ψ4H + h.c.

OduLDL(∗) εij(dγµu)(LC,ii
←→
D µLj) OeLLLH εijεmn(eLi)(LC,jLm)Hn

OdQLLH1(∗) εijεmn(dQi)(LC,jLm)Hn

OdQLLH2(∗) εijεmn(dσµνQ
i)(LC,jσµνLm)Hn

OduLeH(∗) εij(dγµu)(LC,iγµe)Hj

OQuLLH εij(Qu)(LCLi)Hj

Table 2. Basis of dim-7 lepton number violating but baryon number conserving operators in

SMEFT. L, Q are the SM left-handed lepton and quark doublet fields, u, d, e are the right-handed

up-type quark, down-type quark and charged lepton singlet fields, and H denotes the Higgs doublet,

respectively. DµHn is understood as (DµH)n.

operators [31]:

OprLHD1 = εijεmn(LC,ip DµL
j
r)(H

mDµHn), (A.2)

OprLHD2 = εimεjn(LC,ip DµL
j
r)(H

mDµHn), (A.3)

Oprst
d̄uLLD

= εij(dpγµur)(L
C,i
s iDµLjt ), (A.4)

Oprst
d̄LQLH1

= εijεmn(dpL
i
r)(Q

C,j
s Lmt )Hn, (A.5)

Oprst
d̄LueH

= εij(dpL
i
r)(u

C
s et)H

j , (A.6)

Oprst
d̄LQLH2

= εimεjn(dpL
i
r)(Q

C,j
s Lmt )Hn. (A.7)

The relations between the new (left) and old (right) operators are as follows,

OprLDH1 = OprLHD1 +OrpLHD1, (A.8)

OprLDH2 = −
(
OprLHD2 +OrpLHD2

)
+

1

2

(
OprLHD1 +OrpLHD1

)
+ EoM, (A.9)

Oprst
d̄uLDL

= Oprst
d̄uLLD

+Oprts
d̄uLLD

, (A.10)

Oprst
d̄QLLH1

= Opsrt
d̄LQLH1

+Optrs
d̄LQLH1

−Optrs
d̄LQLH2

, (A.11)

Oprst
d̄uLeH

= 2Opsrt
d̄LueH

, (A.12)

Oprst
d̄QLLH2

= −4
(
Opsrt
d̄LQLH1

−Optrs
d̄LQLH1

+Optrs
d̄LQLH2

)
, (A.13)

where EoM refers to equations of motion terms.
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B Complete results for branching ratios in SMEFT

In this appendix we show the complete results for the branching ratios in terms of the

Wilson coefficients in SMEFT:

B(e−e−)

GeV6
(B.1)

= 2.3× 104v−8 |mee|2 + 2.7× 103v−4< (meeYee∗K1 ) + 6.3× 102v−4< (meeYee∗π1 )

+8× 10 |YeeK1|
2 − 6.6× 10v−4< (meeX ee∗1 ) + 3.7× 10< (YeeK1Yee∗π1 ) + 4.3 |Yeeπ1|

2

−3.9< (YeeK1X ee∗1 )− 9× 10−1< (Yeeπ1X ee∗1 ) + 4.2× 10−1v−4< (meeYee∗K2 )

−1.6× 10−1v−4< (meeYee∗K3 )− 1.4× 10−1v−4< (meeX ee∗2 )− 6.3× 10−2v−4< (meeYee∗π2 )

+4.8× 10−2 |X ee1 |
2 + 4.5× 10−2 |YeeK2|

2 − 3.8× 10−2v−4< (meeYee∗π3 )

−2.1× 10−2< (YeeK2Yee∗π2 ) + 2.0× 10−2< (YeeK1Yee∗K2 )− 9.6× 10−3< (YeeK1Yee∗K3 )

−8.6× 10−3< (YeeK1X ee∗2 ) + 6.8× 10−3< (Yeeπ1Yee∗K2 )− 2.7× 10−3< (YeeK1Yee∗π2 )

+2.4× 10−3 |Yeeπ2|
2 − 2.2× 10−3< (Yeeπ1Yee∗K3 )− 2.2× 10−3< (YeeK1Yee∗π3 )

−2.0× 10−3< (Yeeπ1X ee∗2 )− 1.1× 10−3< (Yeeπ1Yee∗π2 )− 6× 10−4< (YeeK2X ee∗1 )

−5.1× 10−4< (Yeeπ1Yee∗π3 ) + 2.3× 10−4< (X ee1 Yee∗K3 ) + 2.1× 10−4< (X ee1 X ee∗2 )

+9× 10−5< (Yeeπ2X ee∗1 ) + 5.4× 10−5< (X ee1 Yee∗π3 )− 1.4× 10−6< (YeeK2X ee∗2 )

−1.4× 10−6< (YeeK2Yee∗K3 ) + 5.2× 10−7< (YeeK3X ee∗2 )− 4.4× 10−7< (YeeK2Yee∗π3 )

+2.9× 10−7 |YeeK3|
2 + 2.3× 10−7 |X ee2 |

2 + 2.3× 10−7< (X ee2 Yee∗π2 )

+1.9× 10−7< (Yeeπ2Yee∗K3 ) + 1.4× 10−7< (YeeK3Yee∗π3 ) + 1.2× 10−7< (X ee2 Yee∗π3 )

+7.3× 10−8< (Yeeπ2Yee∗π3 ) + 1.6× 10−8 |Yeeπ3|
2

B(µ−µ−)

GeV6
(B.2)

= 6.1× 103v−8 |mµµ|2 + 6.1× 102v−4<
(
mµµYµµ∗K1

)
+ 2.3× 102v−4<

(
mµµYµµ∗π1

)
−2× 10v−4<

(
mµµX µµ∗1

)
+ 1.9× 10v−4<

(
mµµYµµ∗K2

)
+ 1.6× 10

∣∣YµµK1

∣∣2
+1.1× 10<

(
YµµK1Y

µµ∗
π1

)
− 3.2v−4<

(
mµµYµµ∗π2

)
+ 2.2 |Yµµπ1 |

2 −<
(
YµµK1X

µµ∗
1

)
+8.4× 10−1<

(
YµµK1Y

µµ∗
K2

)
+ 3.8× 10−1<

(
Yµµπ1 Y

µµ∗
K2

)
− 3.8× 10−1<

(
Yµµπ1X

µµ∗
1

)
−1.2× 10−1<

(
YµµK1Y

µµ∗
π2

)
− 7.1× 10−2<

(
Yµµπ1 Y

µµ∗
π2

)
− 4× 10−2v−4<

(
mµµX µµ∗2

)
−3.4× 10−2v−4<

(
mµµYµµ∗K3

)
− 3.1× 10−2<

(
X µµ1 Y

µµ∗
K2

)
+ 1.9× 10−2

∣∣YµµK2

∣∣2
+1.7× 10−2 |X µµ1 |

2 − 1.2× 10−2v−4<
(
mµµYµµ∗π3

)
− 7.9× 10−3<

(
Yµµ∗π2 Y

µµ
K2

)
+5.1× 10−3<

(
Yµµπ2X

µµ∗
1

)
− 2.0× 10−3<

(
YµµK1X

µµ∗
2

)
− 1.7× 10−3<

(
YµµK1Y

µµ∗
K3

)
+1× 10−3 |Yµµπ2 |

2 − 7.5× 10−4<
(
Yµµπ1X

µµ∗
2

)
− 6.1× 10−4<

(
Yµµπ1 Y

µµ∗
K3

)
−6× 10−4<

(
YµµK1Y

µµ∗
π3

)
− 2.4× 10−4<

(
Yµµπ1 Y

µµ∗
π3

)
+ 6.7× 10−5<

(
X µµ1 X

µµ∗
2

)
−6.2× 10−5<

(
YµµK2X

µµ∗
2

)
+ 5.6× 10−5<

(
X µµ1 Y

µµ∗
K3

)
− 4.7× 10−5<

(
YµµK2Y

µµ∗
K3

)
−2.1× 10−5<

(
YµµK2Y

µµ∗
π3

)
+ 2× 10−5<

(
X µµ1 Y

µµ∗
π3

)
+ 1.1× 10−5<

(
Yµµπ2X

µµ∗
2

)
+7.2× 10−6<

(
Yµµπ2 Y

µµ∗
K3

)
+ 4.0× 10−6<

(
Yµµπ2 Y

µµ∗
π3

)
+ 1.1× 10−7<

(
X µµ2 Y

µµ∗
K3

)
+6.7× 10−8 |X µµ2 |

2
+ 4.9× 10−8

∣∣YµµK3

∣∣2 + 4.1× 10−8<
(
X µµ2 Y

µµ∗
π3

)
+3.4× 10−8<

(
YµµK3Y

µµ∗
π3

)
+ 6.6× 10−9 |Yµµπ3 |

2
,
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B(e−µ−)

GeV6
(B.3)

= 2.8× 104v−8 |meµ|2 + 1.7× 103v−4<
(
meµYµe∗K1

)
+ 1.3× 103v−4<

(
meµYeµ∗K1

)
+4.7× 102v−4<

(
meµYeµ∗π1

)
+ 3.9× 102v−4<

(
meµYµe∗π1

)
− 8.2× 10v−4<

(
meµX eµ∗1

)
+4.5× 10v−4<

(
meµYµe∗K2

)
+ 4× 10<

(
YµeK1Y

eµ∗
K1

)
+ 2.6× 10

∣∣YµeK1

∣∣2 + 1.7× 10
∣∣YeµK1

∣∣2
+1.4× 10<

(
YµeK1Y

eµ∗
π1

)
+ 1.2× 10<

(
YµeK1Y

µe∗
π1

)
+ 9.9<

(
YeµK1Y

eµ∗
π1

)
+9.3<

(
YeµK1Y

µe∗
π1

)
− 5.9v−4<

(
meµYµe∗π2

)
+ 3.2<

(
Yeµπ1Y

µe∗
π1

)
−2.5<

(
YµeK1X

eµ∗
1

)
+ 2 |Yeµπ1 |

2 − 1.9<
(
YeµK1X

eµ∗
1

)
+ 1.4 |Yµeπ1 |

2
+ 1.3<

(
YµeK1Y

µe∗
K2

)
+6.9× 10−1<

(
YeµK1Y

µe∗
K2

)
− 6.7× 10−1<

(
X eµ1 Y

eµ∗
π1

)
− 5.8× 10−1<

(
X eµ1 Y

µe∗
π1

)
+4.6× 10−1<

(
Yeµπ1Y

µe∗
K2

)
+ 3× 10−1<

(
Yµeπ1Y

µe∗
K2

)
+ 2.4× 10−1v−4<

(
meµYeµ∗K2

)
−1.7× 10−1v−4<

(
meµX eµ∗2

)
− 1.6× 10−1<

(
YµeK1Y

µe∗
π2

)
− 9.7× 10−2v−4<

(
meµYeµ∗K3

)
−7× 10−2v−4<

(
meµYµe∗K3

)
− 6.9× 10−2<

(
Yeµπ1Y

µe∗
π2

)
− 6.3× 10−2<

(
X eµ1 Y

µe∗
K2

)
+6.1× 10−2 |X eµ1 |

2 − 5.5× 10−2<
(
YeµK1Y

µe∗
π2

)
− 4.6× 10−2v−4<

(
meµYeµ∗π2

)
−3.7× 10−2<

(
Yµeπ1Y

µe∗
π2

)
+ 3.5× 10−2

∣∣YµeK2

∣∣2 − 2.6× 10−2v−4<
(
meµYµe∗π3

)
+2.4× 10−2

∣∣YeµK2

∣∣2 − 2.3× 10−2v−4<
(
meµYeµ∗π3

)
− 1.3× 10−2<

(
YeµK2Y

eµ∗
π2

)
−1.3× 10−2<

(
YµeK2Y

µe∗
π2

)
+ 7.8× 10−3<

(
X eµ1 Y

µe∗
π2

)
+ 6.8× 10−3<

(
YeµK1Y

eµ∗
K2

)
−5.3× 10−3<

(
X eµ2 Y

µe∗
K1

)
+ 5× 10−3<

(
YµeK1Y

eµ∗
K2

)
− 4.1× 10−3<

(
X eµ2 Y

eµ∗
K1

)
−3× 10−3<

(
YµeK1Y

eµ∗
K3

)
− 2.6× 10−3<

(
YeµK1Y

eµ∗
K3

)
+ 2.3× 10−3<

(
Yµeπ1Y

eµ∗
K2

)
−2.2× 10−3<

(
YµeK1Y

µe∗
K3

)
+ 2× 10−3<

(
Yeµπ1Y

eµ∗
K2

)
+ 1.9× 10−3 |Yeµπ2 |

2

−1.6× 10−3<
(
YeµK1Y

µe∗
K3

)
− 1.4× 10−3<

(
X eµ2 Y

eµ∗
π1

)
+ 1.3× 10−3 |Yµeπ2 |

2

−1.3× 10−3<
(
YeµK1Y

eµ∗
π2

)
− 1.2× 10−3<

(
Yµeπ1X

eµ∗
2

)
− 7.9× 10−4<

(
YµeK1Y

µe∗
π3

)
−7.4× 10−4<

(
Yeµπ1Y

eµ∗
K3

)
− 7.3× 10−4<

(
YµeK1Y

eµ∗
π2

)
− 6.9× 10−4<

(
Yµeπ1Y

eµ∗
K3

)
−6.9× 10−4<

(
YµeK1Y

eµ∗
π3

)
− 6.3× 10−4<

(
YeµK1Y

µe∗
π3

)
− 5.9× 10−4<

(
Yeµπ1Y

µe∗
K3

)
−5.1× 10−4<

(
Yµeπ1Y

µe∗
K3

)
− 5× 10−4<

(
Yµeπ1Y

eµ∗
π2

)
− 4.6× 10−4<

(
YeµK1Y

eµ∗
π3

)
−4.5× 10−4<

(
Yeµπ1Y

eµ∗
π2

)
− 3.8× 10−4<

(
X eµ1 Y

eµ∗
K2

)
+ 2.6× 10−4<

(
X eµ1 X

eµ∗
2

)
−2.1× 10−4<

(
Yeµπ1Y

µe∗
π3

)
− 2× 10−4<

(
Yeµπ1Y

eµ∗
π3

)
− 1.8× 10−4<

(
Yµeπ1Y

µe∗
π3

)
−1.6× 10−4<

(
Yµeπ1Y

eµ∗
π3

)
+ 1.5× 10−4<

(
X eµ1 Y

eµ∗
K3

)
− 1.4× 10−4<

(
YµeK2X

eµ∗
2

)
+1.1× 10−4<

(
X eµ1 Y

µe∗
K3

)
+ 9.5× 10−5<

(
YeµK2Y

µe∗
K2

)
+ 7.3× 10−5<

(
X eµ1 Y

eµ∗
π2

)
−6.2× 10−5<

(
YµeK2Y

µe∗
K3

)
− 5× 10−5<

(
YµeK2Y

eµ∗
K3

)
+ 3.8× 10−5<

(
X eµ1 Y

µe∗
π3

)
+3.4× 10−5<

(
X eµ1 Y

eµ∗
π3

)
− 2.4× 10−5<

(
YµeK2Y

eµ∗
π3

)
− 2.1× 10−5<

(
YµeK2Y

eµ∗
π2

)
−1.9× 10−5<

(
YµeK2Y

µe∗
π3

)
+ 1.8× 10−5<

(
Yµeπ2X

eµ∗
2

)
− 1.2× 10−5<

(
YeµK2Y

µe∗
π2

)
+8.5× 10−6<

(
Yµeπ2Y

µe∗
K3

)
+ 5.1× 10−6<

(
Yeµπ2Y

µe∗
π2

)
+ 3.8× 10−6<

(
Yµeπ2Y

eµ∗
π3

)
+3.6× 10−6<

(
Yµeπ2Y

eµ∗
K3

)
+ 2.4× 10−6<

(
Yµeπ2Y

µe∗
π3

)
− 8.7× 10−7<

(
X eµ2 Y

eµ∗
K2

)
−6.1× 10−7<

(
YeµK2Y

eµ∗
K3

)
+ 3.1× 10−7<

(
X eµ2 Y

eµ∗
K3

)
+ 2.8× 10−7 |X eµ2 |

2

+2.3× 10−7<
(
X eµ2 Y

µe∗
K3

)
− 1.8× 10−7<

(
YeµK2Y

µe∗
π3

)
− 1.7× 10−7<

(
YeµK2Y

µe∗
K3

)
+1.7× 10−7<

(
X eµ2 Y

eµ∗
π2

)
+ 1.2× 10−7<

(
Yeµπ2Y

eµ∗
K3

)
+ 1.1× 10−7<

(
YeµK3Y

µe∗
K3

)
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+1.1× 10−7
∣∣YeµK3

∣∣2 − 9.1× 10−8<
(
YeµK2Y

eµ∗
π3

)
+ 8.3× 10−8<

(
X eµ2 Y

µe∗
π3

)
+7.2× 10−8<

(
X eµ2 Y

eµ∗
π3

)
+ 5.5× 10−8

∣∣YµeK3

∣∣2 + 5.1× 10−8<
(
YeµK3Y

µe∗
π3

)
+3.9× 10−8<

(
Yeµπ2Y

µe∗
π3

)
+ 3.4× 10−8<

(
YµeK3Y

eµ∗
π3

)
+ 3.2× 10−8<

(
YeµK3Y

eµ∗
π3

)
+3× 10−8<

(
YµeK3Y

µe∗
π3

)
+ 2.2× 10−8<

(
Yeµπ2Y

µe∗
K3

)
+ 1.9× 10−8<

(
Yeµπ2Y

eµ∗
π3

)
+9.6× 10−9<

(
Yeµπ3Y

µe∗
π3

)
+ 6.7× 10−9 |Yµeπ3 |

2
+ 5.7× 10−9 |Yeµπ3 |

2
.

Some interference terms have a smaller coefficient than their separate terms because of

phase space integration.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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