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1 Introduction

In this paper we study the operator product expansion (OPE) in general conformal field

theories (CFTs) in momentum space, and formulate a bootstrap equation for the CFT data.

There have been a number of studies of aspects of CFT in momentum space, including

formal developments [1–5], but also following physical motivations, such as the study of

anomalies [6–9], the formulation of Hamiltonian truncation [10–12], and early-universe

cosmology [13–15]. Correlation functions in momentum space exist as the Fourier transform

of correlation functions in position space. However, time-ordered correlation functions in

momentum space are not expected to have a convergent OPE. (This includes Euclidean

correlation functions, which are radially ordered in the operator formalism.) The reason is

that when the OPE converges, it corresponds to an insertion of a complete set of states in

some quantization. The Fourier transform involves an integral over all possible positions

of the operators, and hence all possible time orderings. Therefore the Fourier transform of

time-ordered correlators cannot be written as a vacuum expectation value of a product of
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operators in any simple sense. For this reason, we focus on Wightman functions, products

of operators with fixed ordering:

〈0|Õn(pn) · · · Õ1(p1)|0〉 ≡ (2π)dδd(pn + · · ·+ p1)〈〈Õn(pn) · · · Õ1(p1)〉〉. (1.1)

These correlation functions are well-defined in Minkowski space, but not in Euclidean space.

The reason is that in Euclidean space, correlation functions of operators do not make sense

if the operators are out of time order. For example, for the conventional quantization where

x0 is the time variable, we have

〈0|On(xn) · · · O1(x1)|0〉E
= 〈0|On(0, ~xn)e−H(x0

n−x0
n−1)On−1(0, ~xn−1) · · · O2(0, ~x2)e−H(x0

2−x0
1)O1(0, ~x1)|0〉E. (1.2)

Unless the time differences in the exponents are all positive, the time evolution operators

are ill-defined because the Hamiltonian H is not bounded above. On the other hand, in

Minkowski space the time evolution operators are unitary, and Wightman correlation func-

tions have a sensible operator interpretation. We therefore study the correlation functions

eq. (1.1) in Minkowski space. Our work differs from most of the existing literature on

4-point functions in Euclidean momentum space [16–18], as well as other approaches to

the conformal bootstrap in momentum space that are based on the existence of crossing-

symmetric correlators [19–21].

Instead, our work follows the approach of the modern bootstrap program [22, 23],

which makes use of the OPE. For example, for a 4-point function we can insert a complete

set of states to write

〈0|Õ4(p4) · · · Õ1(p1)|0〉 =
∑
n

〈0|Õ4(p4)Õ3(p3)|n〉〈n|Õ2(p2)Õ1(p1)|0〉. (1.3)

The states |n〉 are naturally chosen to be eigenstates of the translation generator Pµ and

the quadratic Casimir of the conformal group. These eigenstates are in one-to-one corre-

spondence to the operators of the theory [24]. In fact, since ∂µ ∝ pµ in momentum space,

a complete set of states is given by |ψ̃(p)〉 ∝ ψ̃(p)|0〉 where ψ is a primary operator, and

the completeness relation can be written [8, 9, 25]

1 = |0〉〈0|+
∑
ψ 6=1

∫
ddp

(2π)d
Θ(p0)Θ(p2)

|ψ̃(p)〉〈ψ̃(p)|
〈〈ψ̃(−p)ψ̃(p)〉〉

, (1.4)

where

|ψ̃(p)〉 =

∫
ddxe−ip·xψ(x)|0〉, 〈ψ̃(p)| = |ψ̃(p)〉† = 〈0|ψ̃(−p). (1.5)

Because eq. (1.3) involves only the sum over primary operators, this is already the con-

formal block expansion. In other words, the conformal blocks in momentum space are

proportional to products of 3-point functions of primary operators.1 In this sense, they

1This is true even for operators with spin, as will be discussed in the main text.
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Figure 1. The series defined in eq. (1.6) converges to the delta function in a distributional sense,

but at any given point p 6= 0 the partial sums of the series oscillate with an amplitude that is fixed

by the value of p. The envelope of this oscillation is given by ±1/ sin(p/2).

are conceptually simpler than the conformal blocks in position space. In this work, we will

explicitly construct the conformal blocks and study the OPE in two dimensions.

A remarkable feature of the OPE (1.3) is that its convergence is apparently independent

of the kinematics, since the insertion of a complete set of states is always possible in

a Wightman function. However, this convergence comes with an important caveat: the

sum is guaranteed to converge only in the sense of a distribution, and generally does not

converge pointwise. (For a discussion of the convergence of the Wightman OPE from a more

mathematical point of view, see ref. [26].) Convergence in the sense of a distribution means

that the sum over states is guaranteed to converge only when the correlation is smeared

with a smooth test function in all variables. An elementary mathematical example that

illustrates this is the representation of the delta function on the interval −π < p ≤ π as a

Fourier sum:

2πδ(p) = 1 + 2

∞∑
n= 1

cos(np). (1.6)

We might hope that the sum on the right-hand side converges to zero for p 6= 0, but this

is not the case. The sum oscillates rapidly with a fixed envelope that is a function of p,

as shown in figure 1. However, when integrated against any periodic test function, the

sum does converge. In this work, we focus on CFT in 2 dimensions and show that the

momentum-space OPE converges only in this distributional sense for general kinematics.

However, for certain kinematic regions (see figure 2), we show that the momentum space

OPE in fact converges pointwise. This means that in this kinematic regime we can regard

the correlator as an ordinary function rather than a distribution. Our proof follows directly

from the known convergence properties of the OPE in Euclidean position space; it does

not depend on recent results on bounding OPE coefficients [27–29].
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We also formulate a bootstrap equation using the OPE (1.3). There are a number of

motivations to study the conformal bootstrap in momentum space. The first is simply that

this has not been previously explored. Also, the momentum space bootstrap is sensitive to

correlation functions in a new kinematic regime where Minkowski space physics is essential.

For example, the contribution of the identity operator can be projected out by a simple

choice of kinematics, and one may hope that the momentum space bootstrap allows us to

obtain more detailed information about higher-dimension operators. A longer-term hope

is to make contact with the study of scattering amplitudes, which are naturally formulated

in momentum space. For example, the use of the optical theorem in momentum space has

been useful in the study of CFT at large spin [30], and in the derivation of a positive sum

rule for the c anomaly in 4D CFT [9].

We propose a bootstrap equation based on the microcausality condition for Wightman

functions,

〈0|O4(x4)
[
O3(x3),O2(x2)

]
O1(x1)|0〉 = 0 for x3 − x2 spacelike. (1.7)

In order to obtain a bootstrap equation in momentum space, we write this as

f(x3 − x2)〈0|O4(x4)
[
O3(x3),O2(x2)

]
O1(x1)|0〉 = 0, (1.8)

where f(x) is any function with support only for spacelike x. Taking the Fourier transform

of eq. (1.8) gives a bootstrap equation for the momentum-space Wightman correlation

functions in terms of a convolution integral over the function f . This equation must be

smeared over suitable test functions in order to obtain a relation among ordinary functions

that can be implemented numerically. (The kinematic region where the OPE converges

pointwise does not encompass the region over which the convolution integrand is nonzero.)

We will not attempt a numerical study of this bootstrap equation in this paper, but provide

all the necessary ingredients in 2D CFT.

This paper is organized as follows. In section 2, we compute the momentum space

conformal blocks for Wightman functions in 2D CFTs. In section 3, we prove that the

conformal block expansion converges pointwise in a specific kinematic regime. In section 4,

we present the results of calculations in specific CFTs that illustrate the convergence of

the OPE. In section 5, we formulate the bootstrap equation in momentum space using

this OPE. Section 6 contains our conclusions. Technical details are given in a number of

appendices.

2 Conformal blocks for momentum-space Wightman functions

The basic objects of our study are the momentum-space Wightman correlation functions

defined in eq. (1.1). (Our conventions are given in appendix A.) The OPE for these correla-

tion functions comes from the Hilbert space completeness relation eq. (1.4), where the sum

is over all primary operators ψ. Descendant operators are multiples of primary operators

in momentum space, so no sum over descendants is required to define the conformal blocks.

Eq. (1.4) holds as written even for operators with spin in arbitrary spacetime dimensions,

provided that the basis of intermediate operators is chosen so that

〈〈ψ̃(−p)ψ̃′(p)〉〉 = 0 for ψ̃′ 6= ψ̃. (2.1)
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For example, for a vector operator Ṽ µ(p) we can choose the independent operators to be

Ṽ 0 and Ṽ i in the frame where ~p = 0.2 This implies that the conformal blocks in momentum

space are simply products of momentum space correlation functions of primary operators.

For a 4-point function of primary operators, this gives the OPE

〈〈Õ(p4)Õ(p3)Õ(p2)Õ(p1)〉〉 = 〈〈Õ(p4)Õ(p3)〉〉〈〈Õ(p2)Õ(p1)〉〉(2π)dδd(p)

+
∑
ψ 6=1

〈〈Õ(p4)Õ(p3)ψ̃(p)〉〉〈〈ψ̃(−p)Õ(p2)Õ(p1)〉〉
〈〈ψ̃(−p)ψ̃(p)〉〉

, (2.2)

where we define p = p1 + p2 = −p3 − p4.3 The 3-point functions that appear in eq. (2.2)

contain the dependence on the OPE coefficients that define the theory. Note the additional

momentum conserving delta function from the identity contribution. An interesting differ-

ence between this OPE and the position space OPE is that the identity contribution can

be distinguished kinematically from the remaining contributions.

The momentum space conformal blocks have a conceptually simple structure, but in

practice the 3-point functions are difficult to compute in general d, especially for operators

with spin. There are two approaches that can be used. One is a direct calculation of

the Fourier transform of the position-space 3-point functions. The other is to solve the

conformal Ward identities directly in momentum space, subject to boundary conditions

arising from OPE limits. A detailed discussion on computing 3-point functions with the

second approach in general spacetime dimension d was given recently in [5]. In this paper,

we will focus on 2D CFT, where we can simply perform the Fourier transforms for arbitrary

operators, including spin.

2.1 Momentum-space conformal blocks in two dimensions

In 2D Minkowski space we use the standard lightcone coordinates x± = x0 ± x1. The

quantum numbers of an operator are given by the dimension ∆ and the spin s, and we

define (as usual) the conformal weights h = 1
2(∆ + s), h = 1

2(∆− s). In terms of these the

2- and 3-point Wightman functions of general operators are given in position space by

〈0|O2(x2)O1(x1)|0〉 =

(
e−iπ/2

x+
21 − iε

)2h(
e−iπ/2

x−21 − iε

)2h

, (2.3)

〈0|O3(x3)O2(x2)O1(x1)|0〉 = λ123

(
e−iπ/2

x+
21 − iε

)h12|3
(
e−iπ/2

x+
31 − iε

)h13|2
(
e−iπ/2

x+
32 − iε

)h23|1

×
(
e−iπ/2

x−21 − iε

)h12|3
(
e−iπ/2

x−31 − iε

)h13|2
(
e−iπ/2

x−32 − iε

)h23|1

, (2.4)

2In general one can use the projection onto spin eigenstates as in ref. [31].
3Here and in the following, momentum space correlation functions are understood to be defined only if

the total momentum vanishes, and the momentum flowing between each pair of operators is in the forward

light cone. For example, for the 4-point function 〈〈Õ(p4)Õ(p3)Õ(p2)Õ(p1)〉〉 we require that the momenta

p1, p1 +p2, and p1 +p2 +p3 are all in the forward light cone. (This is known as the spectral condition [32].)
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where xab = xa−xb and hab|c = ha+hb−hc. The phases and the iε prescription in eqs. (2.3)

and (2.4) can be understood from the analytic continuation from Euclidean space; this is

explained in appendix A.2.

The factorization of the 2- and 3-point functions eqs. (2.3) and (2.4) in position space

implies a similar factorization for the momentum space 2- and 3-point functions in terms

of light-cone coordinates p± (where p · x = p+x
+ + p−x

−). We write

〈〈Õ(−p)Õ(p)〉〉 = D2h(p+)D2h(p−), (2.5)

〈〈Õ3(p3)Õ2(p2)Õ1(p1)〉〉 = λ321Vh3h2h1(p3+, p2+, p1+)Vh3h2h1
(p3−, p2−, p1−). (2.6)

This implies also a factorization of conformal blocks

〈〈Õ4(p4)Õ3(p3)Õ2(p2)Õ1(p1)〉〉 = (2π)dδd(p)〈〈Õ4(p4)Õ3(p3)〉〉〈〈Õ2(p2)Õ1(p1)〉〉
+
∑
ψ 6=1

λ2
φφψWhψ(p4+, p3+, p2+, p1+)Whψ

(p4−, p3−, p2−, p1−).

(2.7)

We will refer to the objects Wh(k4, k3, k2, k1) as holomorphic conformal blocks. Note that

eq. (2.7) defines the conformal blocks only for the global conformal symmetry, not the

Virasoro blocks of ref. [22]. We will generally use the letter k to denote the lightcone

components of 2D momenta p± in the following.4

To evaluate the Fourier transforms, we use the identity

∞∫
−∞

dxeikx

(
e−iπ/2

x− iε

)α
= Θ(k)

2π

Γ(α)
kα−1. (2.8)

The integral is convergent for Reα > 0, but the right-hand side provides an analytic

continuation of the integral for general complex α. Analytic continuation of this kind is

justified by the fact that the functions we are computing are uniquely determined by the

conformal Ward identities. (up to the OPE coefficients). We have

〈〈Õ(−p)Õ(p)〉〉 =

∫
1
2dx

+dx− ei(p+x++p−x−)

(
e−iπ/2

x+ − iε

)2h(
e−iπ/2

x− − iε

)2h

, (2.9)

which gives

D2h(k) = Θ(k)
2π√

2Γ(2h)
k2h−1. (2.10)

To compute the 3-point function, we can view the factors(
e−iπ/2

x12 − iε

)2h

= =

∞∫
−∞

dk

2π
e−ikx12

√
2D2h(k), (2.11)

4In our conventions, the condition that the momentum p is in the forward light cone is p± ≥ 0. We

therefore understand that holomorphic quantities such as Wh(k4, k3, k2, k1) are nonzero only if k1+· · ·+k4 =

0, and k1, k1 + k2, k1 + k2 + k3 > 0.
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as propagators in position space, so that eq. (2.8) gives the momentum space propagator.

In this way, we obtain

Vh3h2h1(k3,k2,k1) =

k

k1 − k−k3 − k

k1k3 k2

=
√

2

∞∫
−∞

dk

2π
Dh12|3 (k1−k)Dh13|2 (k)Dh23|1 (−k3−k)

= Θ(−k3)Θ(k1)
1

2
(2π)2

×


Θ(k2)

(−k3)h23|1−1(k1)2h1−1

Γ
(
h23|1

)
Γ(2h1)

2F1

(
1−h23|1,h13|2;2h1;−k1

k3

)
+Θ(−k2)

(−k3)2h3−1(k1)h12|3−1

Γ
(
h12|3

)
Γ(2h3)

2F1

(
1−h12|3,h13|2;2h3;−k3

k1

)
 .

(2.12)

Note that the above calculation is performed with the aid of analytic continuation. Certain

intermediate steps hold only for the regime hij|k < 0, but the final result can be analytically

continued to all physical values of the hi. These 3-point function agree with the recent

results of ref. [12]. The holomorphic conformal block is then given by

Wh(k4, k3, k2, k1) =
Vh4h3h(k4, k3, k)Vhh2h1(−k, k2, k1)

D2h(k)
, (2.13)

where k = k1 + k2 = −k3 − k4.

These conformal blocks are analytic functions of the conformal weights as long as

h > 0. In the special case where one of the conformal weights is zero, they vanishes for

generic kinematics.5 The conformal blocks also have zeroes when the conformal weights

obey special relations, namely when some of the hij|k are negative integers. The simplest

situation in which this happens is generalized free field theory, where hψ = h1 + h2 + n =

h3 + h4 + n with n ∈ N. In this case the block is identically zero whenever p2± < 0 or

p3± < 0, i.e. when either p2 or p3 (or both) do not lie in the forward light cone. This will

be relevant in section 4.1.

3 Pointwise convergence of the OPE

The Wightman 4-point function is non-zero only if all three momenta p1, p and −p4 lie

in the forward light cone, shown as the shaded regions in figure 2. Our expansion de-

rived by inserting a complete set of momentum eigenstates is guaranteed to converge as

5When one of the external weights h1 to h4 vanishes, the corresponding operator is holomorphic and

the 4-point function can in general be simplified. An example of correlation function with 4 holomorphic

operators is given later in section 4. If instead it is the conformal weight of the exchanged operator that

is zero, then W0(k4, k3, k2, k1) ∝ δ(k2 + k1). This is the case for instance if the exchanged operator is a

Virasoro descendant of the identity.
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p

Figure 2. Two possible configurations of momenta. The Wightman 4-point function is non-zero

only if all three momenta p1, p and −p4 lie in the forward light cone (shaded region), which is the

case here. The criterion for pointwise OPE convergence is that p lies in the diamond delimited by

p1 and −p4 (green region). The OPE is therefore pointwise convergent for the configuration in the

left panel, but not for the configuration in the right panel.

a distribution everywhere in this region. In this section, we prove that in the subregion

p± < max (p1±,−p4±) (the green region in figure 2) the momentum-space conformal block

expansion is in fact pointwise convergent. Therefore, in this kinematic regime the correla-

tor defines an ordinary function rather than a distribution. The convergence follows from

the fact that the partial sums of this series expansion are bounded by the partial sums

of the Euclidean position-space conformal block expansion, which we know is pointwise

convergent. Concrete examples that show the absence of pointwise convergence outside

this region will be presented in section 4.

The convergence of the sum (1.3) is determined by the asymptotics of the terms for

large h and/or h. This can be obtained directly from the results of section 2. Applying

the formulas of appendix B to the definition (2.13), we find6

Wh(k4, k3, k2, k1)
h→∞' (2π)3/2

(
4∏
i=1

|ki|hi−3/4

)
22h−1

hh1+h2+h3+h4−3/2
S12(k1, k2)S43(−k4,−k3),

(3.1)

where

S12(k1, k2) =


sin [π(h1 + h2 − h)]

( √
k1 + k2√

k1 +
√
−k2

)2h−1

if k2 < 0,

sin

[(
h− 1

2

)
arccos

(
k2 − k1

k1 + k2

)
− π

(
h1 − 3

4

)]
if k2 ≥ 0,

(3.2)

with a similar expression being valid for S43. Note that |S12| ≤ 1, with an important

difference between the cases k2 < 0 and k2 ≥ 0: in the latter S12 oscillates in the interval

(−1, 1) when h increases, while in the former case S12 is exponentially suppressed.

6The notation A
h→∞' B in this and later equations means lim

h→∞
A/B = 1.
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This asymptotic behavior can be compared with that of the Euclidean position space

holomorphic conformal block (A.13), for which

Gh(η)
h→∞' √

η(1− η)(h4−h3−h2+h1−1/2)/222h−1

( √
η

1 +
√

1− η

)2h−1

(3.3)

in terms of the cross-ratio η. This expression shares with (3.1) the exponential growth

factor 22h. Moreover, the last term resembles the suppression factor present in S12 when

k2 < 0 with the identification η = (k1 + k2)/k1. In fact, when k2 < 0 or k3 > 0 (or both),

it is always possible to choose a point η∗ in the interval

min

(
k1 + k2

k1
,
k3 + k4

k4

)
< η∗ < 1 (3.4)

so that

lim
h→∞

Wh (k4, k3, k2, k1)

Gh(η∗)
= 0. (3.5)

This choice of η∗ is such that Wh decays exponentially faster than Gh as h→∞. For this

reason, the presence of numerical factors or powers of h in eqs. (3.1) and (3.3) does not

affect the result, which is independent of the scaling dimension and spin of the external

operators. Since for generic kinematics the holomorphic conformal block Wh remains finite

for all values of h, and since Gh is real and positive over the interval 0 < η < 1, we have

moreover ∣∣∣∣Wh (k4, k3, k2, k1)

Gh(η∗)

∣∣∣∣ <∞ for all h ≥ 0. (3.6)

It is well known that the conformal block expansion in Euclidean position space is absolutely

convergent for any η = C \ (1,∞) [33], and in particular on the real interval 0 < η < 1.

Thus, eqs. (3.5) and (3.6) together prove that the momentum-space OPE is pointwise

convergent as long as k2 < 0 or k3 > 0 (or both), corresponding to the green region in

figure 2.

4 Examples

In this section we provide three examples in which all the OPE data is known and the

convergence of the momentum space conformal block expansion can be studied explicitly.

These examples show that the OPE in general converges only as a distribution outside the

region for which we proved pointwise convergence.

4.1 Generalized free field theory

We consider first the simplest CFT: generalized free field theory. By definition, the 4-point

function of a generalized free scalar field φ with scaling dimensions ∆φ obeys

〈〈φ̃(p4)φ̃(p3)φ̃(p2)φ̃(p1)〉〉 = (2π)2δ2(p1 + p2)〈〈φ̃(p4)φ̃(p3)〉〉〈〈φ̃(p2)φ̃(p1)〉〉
+ (2π)2δ2(p1 + p3)〈〈φ̃(p4)φ̃(p2)〉〉〈〈φ̃(p3)φ̃(p1)〉〉
+ (2π)2δ2(p1 + p4)〈〈φ̃(p4)φ̃(p1)〉〉〈〈φ̃(p3)φ̃(p2)〉〉.

(4.1)
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Using eq. (2.5), this amounts to

〈〈φ̃(p4)φ̃(p3)φ̃(p2)φ̃(p1)〉〉= (2π)6

24∆φ−2 [Γ(∆φ)]4
(p2

4p
2
3p

2
2p

2
1)(∆φ−1)/2

×
[
δ2(p1+p2)+δ2(p1+p3)+δ2(p1+p4)Θ(p2+)Θ(p2−)

]
.

(4.2)

Of the three delta functions on the right-hand side, the first one arises from the identity

term in the OPE. We now show that the other two are reproduced by the conformal block

expansion as a distribution.

In generalized free field theory, all the operators that enter the OPE φ×φ are schemat-

ically of the form φ∂m+ ∂
m
− φ. Their conformal weights obey (h, h) = (∆φ +m,∆φ +m) for

some m,m ∈ N, and the OPE coefficients are given in ref. [34]. We can therefore study

the convergence of the OPE using the known CFT data. The contribution of an operator

with large conformal weights is given by

λ2
m,mWh(pi+)Wh(pi−)

m,m→∞'
[
1 + (−1)m+m

] (2π)4

24∆φ−7Γ(∆φ)4
(p2

4p
2
3p

2
2p

2
1)(2∆φ−3)/4S12S43S12S43.

(4.3)

Here Sab is defined in eq. (3.2) in terms of pi+ and h, while Sab is its equivalent for the

anti-holomorphic part depending on pi− and h. It turns out that the Sab are identically

zero in generalized free field theory whenever p2± < 0 or p3± > 0, which is consistent with

the vanishing of eq. (4.2) in the same kinematic range. On the other hand, when both p2

and p3 lie inside the forward light cone, each of the Sab is a phase and all the operator give

a contribution of similar magnitude. It is clear in this case that the OPE is not pointwise

convergent. In appendix C we show that it in fact converges in the distributional sense to

give the delta functions in eq. (4.2).

4.2 Ising model

The Ising model is the simplest minimal model for which all correlation functions are known

in position space. There are two Virasoro primary operators σ and ε with conformal weights

(h, h) =
(

1
16 ,

1
16

)
and

(
1
2 ,

1
2

)
respectively. Focusing on the 4-point function of the operator

σ, we have, in the notation of eq. (A.10) [22, 35],

G〈σσσσ〉(η, η) =
1

(1− η)1/8(1− η)1/8

[(
1 +
√

1− η
2

)1/2(
1 +
√

1− η
2

)1/2

+

(
1−√1− η

2

)1/2(
1−√1− η

2

)1/2
]
.

(4.4)

The conformal weights and OPE coefficients of all the operators entering the OPE σ×σ can

be extracted from the expansion of G around (η, η) = (0, 0). Using this data together with

our momentum-space conformal blocks allows to study the convergence of the expansion.

Figure 3 shows the result of such an analysis for the first 100 operators in the OPE with the

two configurations of momenta of figure 2. Considering more configurations of momenta, we
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Figure 3. Contribution to the conformal block expansion of the 4-point function 〈σσσσ〉 in the

Ising model, for two different configurations of momenta corresponding to those of figure 2. Only

the absolute value of the contributions is shown, not their sign. The horizontal axis indicates the

scaling dimension of the operators and the color encodes the spin (from violet for spin s = 0 to red

for spin s = ∆). In the convergent case (left panel) the contributions decrease exponentially with

the scaling dimension, while in the divergent case (right panel) operators of all scaling dimensions

give contributions of similar size.

are able to verify empirically that the momentum-space OPE converges in the diamond-like

region p± < max(pi±, pf±) and diverges otherwise.

This example is important because it shows that the OPE is not convergent pointwise

in configurations such as the right-hand side of figure 2, where the generalized free field

theory example is trivial since all conformal blocks vanish. It also shows that the absence

of pointwise convergence is not necessarily associated with disconnected contributions that

give rise to delta functions in momentum space. For example, the double commutator

〈0|[φ4, φ3][φ2, φ1]|0〉 has no disconnected contributions, and yet when both p3 and p2 are

spacelike it is equal to the Wightman function, and it has an OPE that does not converge

pointwise.

4.3 Energy-momentum tensor

The energy-momentum tensor is an operator present in any local CFT. It has two com-

ponents T and T with conformal weights (h, h) = (2, 0) and (0, 2) respectively. T and

T are Virasoro descendants of the vacuum, and therefore their correlation functions are

completely fixed in terms of the central charge c. In Euclidean position space, the 2- and

4-point functions of T are given by7

〈T (x+
2 )T (x+

1 )〉 =
c/2

(x+
21)4

, (4.5)

〈T (x+
4 )T (x+

3 )T (x+
2 )T (x+

1 )〉 =
c2/4

(x+
43)4(x+

21)4
+

c

(x+
42)2(x+

41)2(x+
32)2(x+

31)2
+ permutations.

(4.6)

7We do not use the convention (A.8) because T is a conserved current and its normalization is fixed by

a Ward identity.
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In the 4-point function, the term quadratic in c corresponds to a generalized free field

theory correlator and will be referred to as the ‘disconnected’ part of the correlator, while

the term linear in c is the ‘connected’ part. This partition corresponds to the distinction

between disconnected and connected Feynman diagrams in the free fermion (c = 1
2) and

the free boson (c = 1) theories.

Correspondingly, the OPE coefficient associated to an intermediate operator with con-

formal weight (h, 0) in the T × T OPE obeys

λ2
h =

c2

12

[
(2h− 1)(h− 3)(h− 2)(h− 1)h!(h+ 2)!

3(2h)!
− δh,0

]
+ 2c

(h2 − h− 1)(h− 2)!(h− 1)!

(2h− 3)!
,

(4.7)

where h can take any even integer value. The disconnected part of this OPE coefficient

(the term proportional to c2) is the generalized free field theory expression, and we know

that it leads to a momentum-space OPE that does not converge in a pointwise manner.

On the other hand, the connected part (term in c) decays faster than the disconnected part

at large h, and therefore its OPE is expected to be convergent. Indeed, we find that the

Fourier transform of the connected part of eq. (4.6) does not involve delta functions but is

piecewise polynomial:

〈〈T (k4)T (k3)T (k2)T (k1)〉〉conn

=
(2π)3c

3
√

2



k3(k1 − k2)(k3 − k4) if 0 ≤ k < k1,

k3
1(k3 − k4)(k2 − k3 − k4) if k1 ≤ k < −k4,

k3
1(k2 − k3)(k2 + k3 − k4)

if − k4 ≤ k < k1 − k4,−(k1 − k3)(k2 − k4)(k2 + k4)3

k3
1(k2 − k3)(k2 + k3 − k4) if k ≥ k1 − k4,

(4.8)

where we have assumed for simplicity of notation that k1 < −k4 and split the different

cases according to the value of k ≡ k1 + k2 = −k3 − k4. This function of k is continuous

everywhere but not differentiable at k = k1, −k4 and k1 − k4. It can be compared with

the conformal block expansion using the OPE coefficients (4.7). In the kinematic range

0 < k < −k4, we find that the sum is saturated by the first term, i.e. the contribution

of T itself, while the contributions of all other operators vanish. In the range k > −k4,

on the contrary, all operators contribute to the expansion.8 The expansion is found to be

convergent over the full kinematic range, although the rate of convergence varies depending

on the ratios k1/k and k4/k. Figure 4 illustrates this convergence in two particular cases.

5 Momentum-space bootstrap

In this section we formulate the bootstrap equations for Wightman functions in momentum

space. We begin by considering Wightman 4-point functions in position space. We can

8This had to be the case since the conformal blocks are analytic over the entire range k ∈ [−k4,∞)

whereas the full correlation function (4.8) is not differentiable at the point k = k1 − k4.
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Figure 4. The connected part of the 4-point correlation function 〈TTTT 〉 given by eq. (4.8) as a

function of the momentum k = k1 + k2 (red dashed line), compared with different truncations of

the conformal block expansion (blue lines, with hmax = 2, 4, 6, 8, 10 from lightest to darkest). Two

different kinematic configurations are shown, one in which k1 � −k4 (left panel) and the other in

which k1 ' −k4 (right panel).

write bootstrap equations for these correlation functions by using the microcausality con-

dition, namely that local operators commute at spacelike separation. Considering identical

scalars for simplicity, this is

〈0|φ(x4)
[
φ(x3), φ(x2)

]
φ(x1)|0〉 = 0 for x3 − x2 spacelike. (5.1)

Inserting a complete set of states in both terms in the commutator gives a crossing equation.

We obviously cannot simply Fourier transform this equation because the Fourier trans-

form integrates over values of the position where x3 − x2 is timelike. But we can write

〈0|φ(x4)
[
φ(x3), φ(x2)

]
φ(x1)|0〉f(x3 − x2) = 0, (5.2)

where f(x) has support only for spacelike x. This equation is valid for all positions, and

we can obtain a bootstrap equation in momentum space by Fourier transforming it. One

simple choice for f is

f(x) = δ(x0). (5.3)

To write the bootstrap equation explicitly, it is convenient to introduce the momentum

variable q = 1
2 (p2 − p3), and define

W (p4, p1|q) = 〈〈φ̃(p4)φ̃
(
−q − p4+p1

2

)
φ̃
(
q − p4+p1

2

)
φ̃(p1)〉〉. (5.4)

In terms of this∫
ddxe−iq·x 〈0|φ̃(p4)[φ(−1

2x), φ(1
2x)]φ̃(p1)|0〉 = W (p4, p1|q)−W (p4, p1|−q). (5.5)

Using eq. (5.3) for f(x) then gives the momentum space bootstrap equation∫
dq0
[
W (p4, p1|q)−W (p4, p1|−q)

]
= 0. (5.6)
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As a check, we verify that eq. (5.6) is satisfied in generalized free field theory. Using

the explicit form of the 4-point function (4.2), we find

W (p4, p1|q)−W (p4, p1|−q) =
(2π)6

24∆φ−2 [Γ(∆φ)]4
(p2

1)∆φ−1δ2(p1 + p4)

× (q2)∆φ−1 [Θ(q+)Θ(q−)−Θ(−q+)Θ(−q−)] .

(5.7)

This is an odd function of q0, so eq. (5.6) is satisfied.

For more general choices of f(x), we get a similar equation involving the convolution

of the 4-point function with the Fourier transform of f(x). This can be used to regularize

the integral in eq. (5.6) when needed. For instance, when ∆φ ≥ 1 the integral of each

conformal block diverges as q0 → ∞. This can be seen with the correlator 〈TTTT 〉 of

eq. (4.8). In this case, one can choose f(x) = (x2)nδ(x0) for some sufficiently large integer

n, so that the bootstrap equation becomes∫
dq0

(
∂2

∂qµ∂qµ

)n [
W (p4, p1|q)−W (p4, p1|−q)

]
= 0. (5.8)

It would be nice if the bootstrap equation could be restricted to the kinematics where

the momentum space OPE is pointwise convergent. However, this is not the case for

eqs. (5.6) and (5.8), since the integral over q includes regions where p is arbitrarily large

and timelike, which is outside the region of pointwise convergence. We expect that this

generalizes to other functions f(x). The reason is that vanishing conditions in position

space lead to analyticity in momentum space, and analytic functions cannot vanish in any

finite region. Nonetheless, the momentum space OPE is expected to converge in the sense

of a distribution. This means that we can use equations like eq. (5.6) provided that we

smear the external momenta with smooth test functions. We leave the investigation of

these equations for future work.

One motivation to further study the momentum space bootstrap equation is that we

can kinematically project out the contribution of the identity operator contribution to the

OPE because it contributes only if p1 + p2 = 0 or p1 + p3 = 0. For example, in a reference

frame where ~p1− ~p4 = 0 we can choose ~q 6= 0. In that case, the integral over q0 in eq. (5.6)

does not include contributions from the identity operator in either channel.

6 Conclusions

In this paper we have studied the operator product expansion (OPE) of conformal field the-

ory (CFT) in momentum space, focusing on two spacetime dimensions. General principles

of quantum field theory imply that there is an OPE for Wightman functions in Minkowski

space that converges for arbitrary kinematics. However, this convergence is guaranteed to

hold only in the sense of a distribution, meaning that the OPE converges only after the

correlation functions are smeared with suitable smooth test functions. In this paper, we

worked out the conformal blocks for this OPE for 2D CFT. We find that the OPE in fact

converges pointwise in a specific kinematic region, shown in figure 2. We also formulated

a bootstrap equation directly in momentum space that makes use of this convergent OPE

(see for example eq. (5.6)).
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There are a number of important open questions that we leave for future work. First,

it would be interesting to explore whether the momentum space bootstrap equation can

be used to obtain new bounds on CFT data. This equation involves a convolution of

the correlation functions that requires integration over the region where the correlation

functions do not converge pointwise. This means that it must be interpreted in the sense

of distributions, and additional smearing with test functions is required to give equations

that can be implemented numerically. These test functions define the kinematics of the

correlation function. It would be very interesting to explore the space of kinematics and

see whether there are regions where we can obtain information about the CFT data, for

example using the numerical bootstrap or extremal functional methods [36, 37].9 All the

tools required for such a study in 2D are provided in this paper.

Another important open question is the generalization of our results to higher dimen-

sions. As emphasized in this paper, the conformal blocks in momentum space are concep-

tually very simple: they are products of 3-point functions. This holds in any dimension,

even for correlation functions involving operators with spin. The obstacles to generalizing

this work to higher dimensions are purely technical. First steps in resolving generic 3-point

functions have been taken in refs. [4, 5], and conformal blocks have been constructed in

special cases [8, 9, 38]. One interesting question in higher dimensions is whether there is

a generalization of the region of pointwise convergence. More generally, we would like to

have a better understanding of the convergence of the OPE in momentum space.

We hope that this work will open up new directions in the exploration of conformal

field theory.
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A Notation and conventions

We work in Minkowski space with the ‘mostly minus’ metric ηµν = diag(+,−, . . . ,−). In

two dimensions we use lightcone coordinates

x± = x0 ± x1, (A.1)

9An interesting feature of the conformal blocks in momentum space is the presence of double zeroes

when the scaling dimension of the exchanged operator is equal to a double-trace dimension. Such zeroes

are also found in extremal functionals.
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in terms of which

x2 = (x0)2 − (x1)2 = x+x−. (A.2)

The metric in lightcone coordinates is

η+− = η−+ = 1
2 , η++ = η−− = 0. (A.3)

Fourier transforms are defined by

Õ(p) =

∫
ddxe−ip·xO(x). (A.4)

We parameterize 2D momenta using the lightcone coordinates p± = η±∓p
∓ = 1

2(p0 ∓ p1),

so that

p · x ≡ pµxµ = p+x
+ + p−x

−, (A.5a)

d2x = 1
2dx

+dx−, (A.5b)

d2p = 2dp+dp−, (A.5c)

δ2(p) = 1
2δ(p+)δ(p−), (A.5d)

Θ(p0)Θ(p2) = Θ(p+)Θ(p−), (A.5e)

where Θ is the step function.

A.1 Correlation functions in Euclidean position space

For 2D conformal field theory we make contact with the Euclidean formulation as follows.

We use

z = x0
E + ix1

E, z = x0
E − ix1

E, (A.6)

and label operators by their conformal weights h and h, related to the scaling dimension

∆ and spin s by

h = 1
2(∆ + s), h = 1

2(∆− s). (A.7)

2- and 3-point correlation functions are fixed by conformal symmetry and take the form

〈O(z2)O(z1)〉 =
1

(z21)2h(z21)2h
, (A.8)

〈O3(z3)O2(z2)O1(z1)〉 =
λ321

(z21)h12|3(z31)h13|2(z32)h23|1(z21)h12|3(z31)h13|2(z32)h23|1
, (A.9)

where λ321 is an OPE coefficient, zab = za − zb and hab|c = ha + hb − hc. The 4-point

correlation functions can be parametrized as

〈0|O4(z4)O3(z3)O2(z2)O1(z1)|0〉 =
G(η, η)

(z43)h4+h3(z21)h2+h1(z43)h4+h3(z21)h2+h1

×
(
z41

z42

)h2−h1
(
z41

z31

)h3−h4
(
z41

z42

)h2−h1
(
z41

z31

)h3−h4

(A.10)
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in terms of a function G of the cross-ratios

η =
z43z21

z42z31
, η =

z43z21

z42z31
. (A.11)

This function G admits the expansion

G(η, η) =
∑
ψ

λ43ψλψ21Ghψ(η)Ghψ(η) (A.12)

where Gh are the conformal blocks [39]

Gh(η) = ηh2F1 (h− h4 + h3, h+ h2 − h1; 2h; η) . (A.13)

Note that for each operator ψ with scaling dimension ∆ and spin s 6= 0, there is another

operator with identical scaling dimension and opposite spin −s by CPT symmetry: one

has conformal weights (h, h) =
(

∆+s
2 , ∆−s

2

)
and the other

(
∆−s

2 , ∆+s
2

)
. In this way the sum

in eq. (A.12) can be viewed as a double sum over conformal weights, without restrictions

regarding the relative size of h and h.

A.2 Analytic continuation from Euclidean to Minkowski space

Coordinates in 2-dimensional Minkowski space are related to Euclidean ones by

x0
E = ix0, x1

E = x1. (A.14)

Under this analytic continuation, the 2- and 3-point functions (A.8) and (A.9) become

〈0|O(x2)O(x1)|0〉 =
(e−iπ)h+h

(x+
21 − iε)2h(x−21 − iε)2h

, (A.15)

〈0|O3(x3)O2(x2)O1(x1)|0〉 = λ321
(e−iπ/2)h1+h2+h3

(x+
21 − iε)h12|3(x+

31 − iε)h13|2(x+
32 − iε)h23|1

× (e−iπ/2)h1+h2+h3

(x−21 − iε)h12|3(x−31 − iε)h13|2(x−32 − iε)h23|1
.

(A.16)

This gives the standard iε prescription for Wightman functions. It can be understood from

the fact that the Wightman functions 〈0|On(xn) · · · O1(x1)|0〉 are analytic in the region

where Imx0
ij < 0 for i > j by positivity of energy.

It is worth checking that the phases on the right-hand sides of eqs. (A.15) and (A.16)

are compatible with reflection positivity in Euclidean space. For a 2-point function, we have

〈0|O(x0 = −iτ, x1 = 0)O(0)|0〉 = 〈0|O(0)e−HτO(0)|0〉 = 〈Ψ|Ψ〉 > 0, (A.17)

where H is the Hamiltonian and |Ψ〉 = e−Hτ/2O|0〉. Note we require τ > 0 (time ordering)

for this to make sense. We now evaluate eq. (A.15) by analytic continuation:

x0 = lim
θ→ π

2

e−iθτ, x1 = 0. (A.18)

This gives

〈0|O(−iτ)O(0)|0〉 =
(e−iπ)h+h

(τe−iπ/2)2h(τe−iπ/2)2h
> 0, (A.19)

in agreement with eq. (A.17).
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B Asymptotic behavior of hypergeometric functions

In order to compute the limit (3.1) of the holomorphic conformal block, we use the asymp-

totic expansions of the hypergeometric functions appearing in eq. (2.12) under h → ∞.

Working specifically with 0 < z < 1, we obtain

2F1 (h+ a, h+ b; 2h; z)
h→∞' (1− z)−(a+b)/2−1/4

(
2

1 +
√

1− z

)2h−1

(B.1)

and

2F1 (1 + a− h, a+ h; 2b; z)

h→∞' Γ(2b)√
π
h1/2−2bz1/4−b(1− z)b−a−3/4 Re

[
eiπ(b−1/4)

(
1− 2z − 2i

√
z(1− z)

)h−1/2
]

(B.2)

Note that the term in square bracket has modulus one, so its real part is bounded in the

interval [−1, 1].

C OPE convergence in generalized free scalar theory

We detail in this appendix the results of section 4.1 for the 4-point function of a scalar

operator φ in generalized free field theory. We show in particular that the OPE converges

to the expected result, but only in a distributional sense.

The operators that contribute to the expansion have conformal weights

h = ∆φ +m, h = ∆φ +m, m,m ∈ N. (C.1)

Plugging these values in the definition (2.13) of the holomorphic conformal blocks, one gets

W∆φ+m(k4,k3,k2,k1) =
(2π)3

2
√

2
(k1k2k3k4)(∆φ−1)/2(k1+k2)−1Θ(k2)Θ(−k3)

×Γ(2∆φ+2m)

Γ(∆φ+m)2
P

1−∆φ

∆φ+m−1

(
k2−k1

k1+k2

)
P

1−∆φ

∆φ+m−1

(
k3−k4

k3+k4

)
(C.2)

where Pµλ is the associated Legendre function.10 As indicated by the Θ-functions, the

conformal block vanishes when k2 < 0 or k3 > 0.

These blocks can be combined with the known OPE coefficients [34]

λ2
m,m =

[
1 + (−1)m+m

] Γ (2∆φ +m− 1) Γ (2∆φ +m− 1) [Γ (∆φ +m) Γ (∆φ +m)]2

m!m!Γ (2∆φ + 2m− 1) Γ (2∆φ + 2m− 1) [Γ (∆φ)]4

(C.3)

10The associated Legendre function is a special case of the hypergeometric function:

P
1−∆φ

∆φ+m−1

(
k2 − k1

k1 + k2

)
=

1

Γ(∆φ)

(
k2

k1

)(1−∆φ)/2

2F1

(
1−∆φ −m,∆φ +m; ∆φ;

k1

k1 + k2

)
.
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to write the expansion as

〈〈φ̃(p4)φ̃(p3)φ̃(p2)φ̃(p1)〉〉 =
(2π)6

24∆φ−2 [Γ(∆φ)]4
(p2

4p
2
3p

2
2p

2
1)(∆φ−1)/2

×
[
δ2(p1 + p2) + 2

f+(pi+)f+(pi−) + f−(pi+)f−(pi−)

(p1 + p2)2

]
,

(C.4)

where we have denoted

f±(ki) =
∞∑
m=0

(±1)m
(2∆φ + 2m− 1)Γ(2∆φ +m− 1)

m!

× P 1−∆φ

∆φ+m−1

(
k2−k1
k1+k2

)
P

1−∆φ

∆φ+m−1

(
k3−k4
k3+k4

)
.

(C.5)

As emphasized in section 4.1, this series does not converge in a pointwise manner. However,

it converges in a distributional sense to the delta function, by use of the identity

∞∑
m=0

(±1)m
(2∆φ + 2m− 1)Γ(2∆φ +m− 1)

m!
P

1−∆φ

∆φ+m−1(x)P
1−∆φ

∆φ+m−1(y) = 2δ(x± y), (C.6)

so that we have

f+(ki) = (k1 + k2)δ(k1 + k3), f−(ki) = (k1 + k2)δ(k1 + k4). (C.7)

Using this in eq. (C.4) precisely reproduces eq. (4.2).
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[16] C. Corianò and M.M. Maglio, On Some Hypergeometric Solutions of the Conformal Ward

Identities of Scalar 4-point Functions in Momentum Space, JHEP 09 (2019) 107

[arXiv:1903.05047] [INSPIRE].

[17] A. Bzowski, P. McFadden and K. Skenderis, Conformal n-point functions in momentum

space, arXiv:1910.10162 [INSPIRE].
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