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1 Introduction

Superconformal Field Theories (SCFTs) in diverse dimensions, and with different number

of supersymmetries, have been object of intense study in the past years and still constitute

a rich and fruitful subject. Aside from being interesting in their own right, they play a

crucial role in the AdS/CFT duality. In 1997, Maldacena [1] conjectured that d-dimensional

SCFTs are dual to AdSd+1 backgrounds and since then the AdS/CFT duality has provided

a powerful tool to make strongly coupled CFTs more tractable.

Over the years, very useful has proved to be the correspondence between SCFTs in

d > 2 with 8 Poincaré supercharges and their holographic duals. For instance, the N = 4

three-dimensional field theories studied in [2, 3] have been explored from a holographic

perspective in e.g. [4–7]. In four dimensions, the A-type of quivers of [8] corresponding

to N = 2 supersymmetry, already solved in [9], found a holographic realisation in [10].

Further holographic studies were given in e.g. [11–13]. Also five dimensional SCFTs with

8 supercharges have found a holographic realisation, see for instance [14–17] while in six

dimensions N = (0, 1) SCFTs were addressed from a QFT and holographic point of view

in many papers, see for instance [18–20].

The case of two-dimensional SCFTs is particularly interesting, as they are intrinsically

different from SCFTs in d > 2. First of all, their (superconformal) algebra is infinite-

dimensional [21]. This makes them much more easy to analyse and, sometimes, they can
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even be solved exactly [22]. Secondly, they find many applications in string and quantum

field theory, e.g. two-dimensional SCFTs make their appearance when quantising the super-

Polyakov action, but they also offer a description of several critical phenomena.

In the present work we focus on two-dimensional SCFTs with N = (0, 4) supersym-

metry. Their (infinite-dimensional) superconformal algebra was constructed in [23], and

studied further in the subsequent papers [24, 25]. By virtue of AdS/CFT, N = (0, 4) two-

dimensional SCFTs are supposed to be dual to type II supergravity backgrounds with an

AdS3 factor. In fact, an infinite family of new solutions in type IIA supergravity with an

AdS3 × S2 factor, preserving N = (0, 4) supersymmetry, was recently built in [26, 27] and

further explored in [28]. All these solutions relied on the local construction given in [29]

which classify local solutions in massive IIA with an AdS3×S2 factor and an SU(2) struc-

ture. The authors of [26–29] identified the backgrounds that are dual to the IR limit of a

special class of long quivers. These quivers are, in turn, made of two families of N = (4, 4)

linear quivers coupled by matter fields. We will introduce such quantum field theories and

review their main features in section 2 and appendix C.

An important part of the study of a class of SCFTs is the spectrum of operators, and

understanding how they fit into representations of the superalgebra is a challenging and

stimulating problem. In a recent work [30], multiplets for the two-dimensional N = 4

superconformal algebra have been built. These multiplets fall into short and long multi-

plets. The authors of [30] were mainly interested in applications of two-dimensional N = 4

superconfomal algebra to a numerical bootstrap study. Here, we will rely on their results

concerning representations of the N = 4 superconfomal algebra to study holographically

the spectrum of operators.

In AdS/CFT, the linearised fluctuations of the supergravity background capture the

spectrum of the dual gauge-invariant superconformal operators. Therefore, the main mo-

tivation of the present work is to study (some) fluctuations around the backgrounds first

presented in [26], in order to holographically reproduce (some of) the spectrum of oper-

ators already found in [30]. Constructing linearised fluctuations for the full supergravity

background is not an easy task.1 However, as noticed in [33], for the case of sole spin

2 fluctuations the problem simplifies considerably. It turns out that spin 2 fluctuations,

which are given in terms of perturbations of the backgroud metric, solve an equation that

depends only on the underlying geometry of the background. This strategy has been ap-

plied succesfully in e.g. [34–42] for the case of four-, five- and six-dimensional SCFTs. We

will follow a similar path for the case of a warped AdS3.

The paper is organised as follows. In section 2 we briefly review the background

presented in [26] along with the dual CFT interpretation further explored in [27, 28]. In

section 3 we derive an equation for spin 2 fluctuations of the metric background. These are

transverse and traceless fluctuations along the AdS3 part of the geometry and correspond

to massive rank-2 tensors. In section 4 we identify a particular class of solutions. These

are the universal type of solutions, as they are independent of the background data. As

1See the seminal papers [31, 32] where the full Kaluza-Klein spectrum was obtained for the non-warped

cases of AdS5 × S5 and AdS3 × S3.
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we will see, they are also minimal solutions as they correspond to spin 2 fluctuations for

which the mass of the graviton is the minimum possible in terms of the angular momentum

on the S2. In section 5 we discuss the implications for the dual field theory. In particular,

we will see that the universal solution corresponding to massless gravitons is dual to the

energy momentum tensor operator of the dual field theory. Finally, in section 6, we will see

how to compute the central charge for the N = (0, 4) long quiver of [27] from the action of

the spin 2 fluctuations. We give our conclusions in section 7. In the appendices, we give

an example of non universal solution (dependent on the background data) and spell out

the algebra and superfield construction of N = (0, 4) two-dimensional superconformal field

theories.

2 The gravity backgrounds and dual field theories

In this section we review the global class of solutions first presented in [26] as well as

the proposed dual field theories. These new backgrounds are solutions to massive IIA

supergravity and have the structure of a warped AdS3×S2×CY2×Iρ, with Iρ an interval

parametrised by a coordinate labelled ρ.

The holographic backgrounds. The NS sector of the global class of solutions of [26]

reads

ds2 =
u

√

ĥ4h8

(

ds2(AdS3)+
ĥ4h8

4ĥ4h8+(u′)2
ds2(S2)

)

+

√

ĥ4
h8

ds2(CY2)+

√

ĥ4h8
u

dρ2 ,

e−Φ =
h
3/4
8

2ĥ
1/4
4

√
u

√

4ĥ4h8+(u′)2 , H =
1

2
d

(

−ρ+
uu′

4ĥ4h8+(u′)2

)

∧Vol(S2)+
1

h8
dρ∧H2 .

(2.1)

Here Φ is the dilaton, H the NS three-form and the metric is given in string frame. H2

is a two form whose explicit form was given in [29]. The functions u, ĥ4, h8 are functions

only of the ρ coordinate.2 A prime denotes a derivative with respect to ρ.

The RR sector reads

F0 = h′8 , F2 = −H2 −
1

2

(

h8 −
h′8u

′u

4h8ĥ4 + (u′)2

)

Vol(S2) ,

F4 =

(

d

(

u′u

2ĥ4

)

+ 2h8dρ

)

∧Vol(AdS3)− ∂ρĥ4Vol(CY2)−
u′u

2(4ĥ4h8 + (u′)2)
H2 ∧Vol(S2) .

(2.2)

Higher RR fluxes are related to F0, F2 and F4 as usual as F6 = − ⋆ F4, F8 = ⋆F2,

F10 = − ⋆ F0, where ⋆ is the ten-dimensional Hodge-dual operator.

It was shown in [29] that supersymmetry is mantained when

u′′ = 0 , H2 + ⋆4H2 = 0 , (2.3)

2A complication of this system is when ĥ4 has support on (ρ,CY2). The more general backgrounds

deriving from this assumption are discussed in the original paper [29].
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where ⋆4 is the Hodge-dual on the CY2. In the following we will consider only that class

of geometries with H2 = 0. Away from brane sources, the Bianchi identities imply

h′′8 = 0 , ĥ′′4 = 0 . (2.4)

Thus the three functions u, ĥ4 and h8 that appear as warping factors are at most linear in

ρ.3 This will lead to considerable simplifications in the following sections.

Following [27], we will be interested in the case of a finite interval Iρ where both

ĥ4 and h8 vanish at both ends of the interval. So, to start fixing conventions, let us set

Iρ = [0, ρ∗] and ĥ4(ρ̄) = h8(ρ̄) = 0, when ρ̄ is equal to 0 and ρ∗. It is convenient [27] to set

ρ∗ = 2π(P + 1), with P a large integer. On the other hand, u vanishes only at ρ = 0. The

general form for ĥ4, h8 and u is then found to be

ĥ4(ρ) = Υ



















β0

2πρ 0 ≤ ρ ≤ 2π

β0 + · · ·+ βk−1 +
βk

2π (ρ− 2πk) 2πk < ρ ≤ 2π(k + 1) , k = 1, · · · , P − 1

αP − αP

2π (ρ− 2πP ) 2πP < ρ ≤ 2π(P + 1) ,

(2.5)

h8(ρ) =















ν0
2πρ 0 ≤ ρ ≤ 2π

ν0 + · · ·+ νk−1 +
νk
2π (ρ− 2πk) 2πk < ρ ≤ 2π(k + 1) , k = 1, · · · , P − 1

µP − µP

2π (ρ− 2πP ) 2πP < ρ ≤ 2π(P + 1) ,

(2.6)

and

u =
b0
2π

ρ . (2.7)

Here αP =
∑

βk and µP =
∑

νk by continuity of ĥ4 and h8.

The dual field theories. The background given in (2.1), (2.2) with ĥ4, h8 and u as

in (2.5), (2.6) and (2.7) was found [27] to be dual to the IR limit of the quiver in figure 1.

More precisely, the quiver in figure 1 is supposed to flow in the IR to a fixed point whose

dynamics is captured by the background above with the warping functions just described.

Let us spell out what the building blocks of such a quiver are.4 An SU(N) gauge node

of the quiver is denoted by (N): (β0) stands for an SU(β0) gauge node, (β0 + β1) for an

SU(β0 + β1) gauge node, and so on. There are two rows of gauge groups for the quiver in

figure 1. Associated with each gauge node there is a (4, 4) vector multiplet. SU(F ) flavour

groups are denoted by [F ]. Blue lines represent (4, 4) hypermultiplets. They transform in

the bifundamental representation of the groups they are attached to. Red lines represent

(0, 4) hypermultiplets, while dashed lines are (0, 2) Fermi multiplets. They also carry one

3Again, this is true away from brane sources. In the presence of branes, the rhs’ of the two equations

in (2.4) receive infinite contributions in the form of delta functions. This causes ĥ4 and h8 to be piecewise

linear functions.
4Basics of N = (0, 2) and N = (0, 4) superconformal field theories in 2 dimensions are reviewed in

appendix B. For a complete treatment see [43]. Very useful are also [44–47].
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[F0] [F1] [F2] [Fk−1]

(β0) (β0 + β1) (β0 + β1 + β2) (αk)

(ν0) (ν0 + ν1) (ν0 + ν1 + ν2) (µk)

[F̃0] [F̃1] [F̃2] [F̃k−1]

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 1. The generic quiver whose IR is captured by the background in (2.1) and (2.2). Each

gauge node is associated with a (4, 4) vector multiplets. Blue lines represent (4, 4) hypermultiplets.

Red lines represent instead (0, 4) hypermultiplets and dashed lines (0, 2) Fermi multiplets.

fundamental and one anti-fundamental index of the groups they are attached to. The F ’s

and F̃ ’s are not independent of the other numbers of the quiver: as noticed in [27] the

theory is chiral and might suffer from gauge anomalies. The F ’s and F̃ ’s can be chosen in

such a way gauge anomalies cancel out at each gauge node of the quiver. A straightforward

calculation (see [27]) leads to

Fk−1 = νk−1 − νk , F̃k−1 = βk−1 − βk . (2.8)

3 Spin 2 fluctuations on AdS3 × S2 × CY2 × Iρ

In this section we aim at studying massive spin 2 fluctuations of the AdS3 metric in (2.1).

As we will see, they are composed of a transverse, traceless part along the AdS3 direction

and a scalar mode along the internal manifold. The goal of this section is to find the

equation that such a metric fluctuation should solve. Explicit solutions will be given in the

following sections.

As mentioned in the introduction, the study of the full KK-spectrum of the warped

AdS3 background in (2.1) and (2.2) is not an easy task. However, in [33] it has been

shown that, in the case of a warped AdS4, the equations for the fluctuation of the metric

decouple from all other fluctuations. Moreover, they solve a ten dimensional Laplace

equation which depends only on the background metric (such equation will be given later

in this section). The analysis done in [33] can be extended to any warped background with

an AdS factor, and it is straightforward to apply it to the case we are interested in, namely

spin 2 fluctuations of the warped AdS3 × S2 × CY2 × Iρ.

Equation for spin 2 fluctuations. To begin with, let us consider the background metric

of (2.1) in the Einstein frame. This is achieved, as usual, by multiplying the “string frame”

metric of (2.1) by e−Φ/2, being Φ the dilaton. A useful and compact form for it is

ds2 = f1e
−Φ/2ds2AdS3

+ ĝabdz
adzb , (3.1)

– 5 –
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where the warping factor f1 and the “internal” metric are given by the following expressions

f1 =
u√
h4h8

, ĝabdz
adzb = e−Φ/2

(

u
√
h4h8

4h4h8+(u′)2
ds2(S2)+

√

h4
h8

ds2(CY2)+

√
h4h8
u

dρ2

)

.

(3.2)

In the following we will take the CY to be a four-torus T4 parametrised by 4 angles

θi, (i = 1, . . . , 4). Here, of course, θi ∼= θi+2π. Let us then consider a symmetric fluctuation

h along the AdS3 part of the ten-dimensional metric

ds2 = f1e
−Φ/2(ds2AdS3

+ hµνdx
µdxν) + ĝabdz

adzb . (3.3)

h can be decomposed into a transverse traceless fluctuation on AdS3 and a mode on the

internal manifold in the following manner

hµν(x, z) = h[tt]µν (x)ψ(z). (3.4)

Following [33], the transverse traceless fluctuation h
[tt]
µν (x) satisfies the following equation

of motion on AdS3

�
(2)
AdS3

h[tt]µν (x) = (M2 − 2)h[tt]µν (x) , (3.5)

where �
(2)
AdS3

is the Laplace operator acting on massive rank-two tensors in AdS3, see

e.g. [48]. The authors of [33] have shown that the linearised Einstein equations reduce to

the ten dimensional Laplace equation

1√−g
∂M

√−ggMN∂Nhµν = 0 . (3.6)

For the background metric in (2.1), and with h
[tt]
µν satisfying the equation (3.5), we get the

following equation for the “internal mode” ψ(z)

(f1e
−Φ/2)−1/2

ĝ1/2
∂a

[

(f1e
−Φ/2)3/2

√

ĝĝab∂b

]

ψ(z) = −M2ψ(z) . (3.7)

Expanding out equation (3.7) we find
[(

4 +
(u′)2

ĥ4h8

)

∇2
S2 +

u

ĥ4
(∂2

θ1 + ∂2
θ22

+ ∂2
θ3 + ∂2

θ4) +
1

ĥ4h8

d

dρ

(

u2
d

dρ

)

+M2

]

ψ(z) = 0 .

(3.8)

The function ψ can be conveniently decomposed into spherical harmonics on the S2 and

into plane waves on the T4 in the following fashion

ψ =
∑

l,m,n

ψlmnYl,mein·θ . (3.9)

Here n is a shorthand notation for (n1, n2, n3, n4) and n ·θ = n1θ1+n2θ2+n3θ3+n4θ4. The

ni’s are of course integers, in order for ψ to be single valued. Substituting (3.9) into (3.8)

we get an equation for ψlmn which reads

1

ĥ4h8

d

dρ

(

u2
dψlmn

dρ

)

−
[(

4 +
(u′)2

ĥ4h8

)

l(l + 1) +
u

ĥ4
n2 −M2

]

ψlmn = 0 . (3.10)
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It turns out to be useful to redefine ψlmn = ulφlmn. In this way, equation (3.10)

becomes an equation for φlmn, which reads5

d

dρ

(

u2(l+1)dφlmn

dρ

)

− n2ĥ4h8u
2l

(

u

ĥ4

)

φlmn = −(M2 − 4l(l + 1))ĥ4h8u
2lφlmn , (3.11)

or, in a more compact form,

Sφlmn + q(ρ)φlmn = −λw(ρ)φlmn , (3.12)

with the differential operator S and the functions q and w given by

S =
d

dρ

(

p(ρ)
d

dρ

)

, p(ρ) = u2(l+1) , q(ρ) = −n2ĥ4h8u
2l

(

u

ĥ4

)

, w(ρ) = ĥ4h8u
2l ,

(3.13)

while the “eingenvalue” λ is

λ = M2 − 4l(l + 1) . (3.14)

The equation (3.12), together with the definitions (3.13), defines a Sturm-Liouville prob-

lem.6 As we discussed in section 2, the variable ρ takes values in the finite interval

Iρ = [0, 2π(P + 1)] and the function u vanishes only at ρ = 0. Therefore we have what in

the mathematical literature is known as a singular Sturm-Liouville problem.

Notice also that with the substitution dρ/dt = u2(l+1), with t a new variable, the

equation (3.11) reduces to a Schrödinger-like equation. We will not be studying (3.11) in

its Schrödinger form. Our starting point will be equation (3.11) and, as we will see in

coming sections, solutions to that equation can be found.

4 Unitarity and a special class of solutions

In this section we will show how a bound for M2 emerges from equation (3.11). For this

bound, we find a particular class of solutions which will be dubbed “universal”. Regularity

conditions for the mode ψ will also be discussed.

A bound for M2. To begin with, let us multiply (3.11) by φlmn and then integrate over

ρ. The equation we get is

∫

Iρ
dρφ

d

dρ

(

u2(l+1)dφ

dρ

)

− n2ĥ4h8u
2l

(

u

ĥ4

)

φ2 + (M2 − 4l(l + 1))ĥ4h8u
2lφ2 = 0 , (4.1)

where φ stands for φlmn. Now, if we integrate by parts the first term we get

∫

Iρ
dρ

(

−φ′2u2(l+1) − n2h8u
2l+1φ2 + (M2 − 4l(l + 1))ĥ4h8u

2lφ2
)

= −φφ′u2(l+1)
∣

∣

∣

ρ∗

0
.

(4.2)

5To get the equation (3.11), we need to use u′′ = 0, which is globally true.
6The three functions u, ĥ4 and h8 are, of course, always positive definite, in order for the background

metric in (2.1) to have the correct signature. Therefore w(ρ) is always positive definite. This condition is

necessary to have a well defined Sturm-Liouville problem.
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Notice that φφ′u2(l+1) vanishes when evaluated at ρ = 0 (as u does vanish at ρ = 0) as

long as φ and φ′ are regular there, while it doesn’t when evaluated at ρ = ρ∗. In the

following, we will focus on the Hilbert space of functions φ for which φφ′u2(l+1) vanishes

also at ρ = ρ∗. Thus, the equation (4.2) reduces to
∫

Iρ
dρ

(

φ′2u2(l+1) + n2h8u
2l+1φ2

)

= (M2 − 4l(l + 1))

∫

Iρ
dρ ĥ4h8u

2lφ2 , (4.3)

Given that u, ĥ4 and h8 are non-negative, and the integrals finite, we find the following

lower bound for M2

M2 ≥ 4l(l + 1) . (4.4)

Universal minimal solution. Let us consider the case where M2 = 4l(l+1) and n = 0.

Then, equation (3.11) simply reduces to

d

dρ

(

u2(l+1)dφlm

dρ

)

= 0 , (4.5)

which can be integrated to give φ′
lm = constant/u2(l+1). However, for the class of geometries

discussed in section 2, u vanishes at ρ = 0 (it is in fact linear in ρ) and therefore φ′
lm is

not finite at ρ = 0. This, in turn, implies that both φlm and ψlm = ulφlm are not finite at

ρ = 0 for any l. As we are looking for fluctuations that remain finite everywhere, the only

acceptable solution to (4.5) is φlm = constant. This in turn implies that

φlm = constant , ψlm = constant× ul , M2 = 4l(l + 1) . (4.6)

This class of solutions is independent of the form of u, ĥ4 and h8 and in this sense they

are “universal”. Moreover, they are the solutions with minimal M for a given l, saturating

the bound (4.4), and therefore correspond to “minimal” solutions.

The bound (4.4) for the mass of spin 2 excitations will prove to be very important when

discussing quantum field theory implications. In particular, anticipating the discussion in

section 5, the spin 2 fluctuations considered are dual to operators in the field theory with

dimension ∆ given by the usual AdS/CFT formula, M2 = ∆(∆− 2). The inequality (4.4)

implies for the conformal dimension the following lower bound

∆ ≥ ∆min , ∆min = 2l + 2 . (4.7)

We leave a further discussion of the bound (4.7) for later.

For the case of non universal solutions, i.e. solutions for which M2 > 4l(l + 1), it is

necessary to specify what the three functions u, ĥ4 and h8 are. The general form of these

functions has been given in section 2. An example of non universal solution to (3.11) will

be discussed in the appendix A.

5 Implications for the dual field theory

In this section we identify the operators dual to the spin 2 fluctuations that we have studied

in the previous sections. Crucial for this would be the comparison of the spectrum of

– 8 –
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fluctuations with the spectrum of multiplets built in [30]. The analysis of [30] uses insights

developed in [49, 50] for the construction of supermultiplets in d ≥ 3 and is sketched in

appendix B.

Superconformal multiplets. For each fluctuation of the metric introduced above there

is an operator in the dual SCFT. Therefore, we should aim at understanding what kind

of operators these metric fluctuations correspond to. As already mentioned, the represen-

tations of N = 4 superconformal algebra in two dimensions were worked out in [30] and

briefly sketched in appendix B. These representations are labelled by the conformal weight

h and h̃ of the SL(2,R)×SL(2,R) conformal algebra and the Dynkin index r of the SU(2)R
R-symmetry. In particular, the scaling dimension ∆ of any operator is usually given as the

sum of its conformal weights, ∆ = h+ h̃. The spin of such operators is determined as the

difference between their conformal weights, s = h− h̃. Thus, a state in the superconformal

algebra can be represented schematically as

[h, h̃]
(r)

∆=h+h̃
. (5.1)

The SU(2)R is realised on the supergravity side as the isometries of S2. Thus, the

quantum number on the S2, l and m, are related to the R-charges of the corresponding

dual operators. In particular, the Dynkin r, which is always an integer, is related to l by

r = 2l. Therefore, in our construction r will always be a positive, even-integer.

As noted earlier, the mass of a spin 2 bulk field and the scaling dimension of the dual

operator are related by the formula M2 = ∆(∆ − 2). Thus, the minimal solution (4.6),

for which M2 = 4l(l + 1), corresponds to operators with scaling dimension ∆ = 2l + 2.

Finally, we should stress that, for the type of fluctuations that we are studying, h and h̃ are

not really independent. The SL(2,R)× SL(2,R) isometry of AdS3 (plus gauge invariance)

classifies hµν to have h− h̃ = ±2.

Having identified all the quantum numbers using the standard holographic map, the

(complex) spin 2 fluctuations correspond to operators labelled as

[h, h± 2]
(2l)
∆=2h±2=2l+2 . (5.2)

For h = 2, (5.2) comprises of [2, 0]
(0)
∆=h=2. These are the quantum numbers of the holomor-

phic stress energy tensor. As explained in [30] and in appendix B, such a state arises as

top component descendant in the short multiplet whose conformal primary has r = 2l = 2

and h = r/2 = 1. Notice also that choosing h = 0, (5.2) leads to [0, 2]
(0)

∆=h̃=2
, the quantum

numbers of the anti-holomorphic stress energy tensor.

For massive solutions with l > 0 the spin 2 universal fluctuations (4.6) either correspond

to operators which sit as top components in a multiplet whose primary field has dimension

∆ = 2l + 1, very much as explained in [30] and in appendix B, or to operators obtained

by tensoring chiral primaries in short multiplets with the anti-holomorphic sector of the

algebra, just like the anti-holomorphic energy momentum tensor above.

It would be nice to understand how this operators are built from the fields of the SCFT

at hand (the SCFTs represented by the quiver in figure 1). More in particular, we expect
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the operators dual to (4.6) to be given by single traces of products of elementary fields

in our SCFT. A step forward for this would be to identify the scalar primary T in the

stress-energy tensor multiplet. This, in turn, can be “dressed” by other fields in order to

get an operator whose scaling dimension ∆ is equal to 2l + 1 and whose R-charge under

the SU(2)R symmetry is 2l+2. However, we should also take into account that the SCFTs

at hand are inherently strongly coupled and a Lagrangian description for them might not

be suitable.

6 Central charge from the spin 2 fluctuations

In this section we will briefly show a possible way to compute the central charge for the

theories in (2.1), (2.2). To this end, we should compute the normalisation of the two-point

function of the operators dual to the graviton fluctuations studied in section 4. We have

seen in section 4 that the universal, minimal solution with l = m = n = 0 corresponds to a

massless graviton and, therefore, the dual operator is the energy momentum tensor. The

normalisation of the two-point function for the energy momentum tensor is read off from

the effective action for the three-dimensional graviton.

Let us start from the type IIA action written schematically in the Einstein frame as

SIIA =
1

2κ210

∫

d10x
√−gR+ · · · . (6.1)

Expanded to second order, and following [40], it leads to an action for hµν which reads

S[h] =
1

κ210

∫

d10x
√−g hµν

1√−g
∂M

√−ggMN∂Nhµν + boundary term . (6.2)

Expanding out (6.2) and dropping the boundary term which is not necessary in what

follows, we get

S[h] =
1

κ210

∫

d10x(−gAdS3)
1
2 (ĝ)

1
2

(

f1e
−Φ

2

) 1
2
hµν

{

�
(2)
AdS3

+ 2 + �̂

}

hµν , (6.3)

where �̂ is the operator on the left-hand side of (3.7). Using the Ansatz7 hµν = (h
[tt]
lmn)µνYlm

· ψlmne
in·θ we find

S[h] =
∑

lmn

Clmn

∫

d3x
√

−gAdS3 (h
[tt]
lmn)

µν {

�
(2)
AdS3

+ 2−M2
}

(h
[tt]
lmn)µν (6.4)

where the coefficients Clmn are given by8

Clmn =
16π4

κ10

∫

Iρ
dρ

√

ĝ
(

f1e
−Φ

2

) 1
2 |ψlmn|2 . (6.5)

7Notice that we are using the subscripts l, m and n under h. This is because in some solutions (like the

“universal” solution above)M2 depends on those quantum numbers and so does h[tt] through equation (3.5).
8Using the standard normalisation

∫

YlmYl′m′ = δll′δmm′ .
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The integral in (6.5) is finite for the class of solutions discussed in this paper, namely

those fluctuations that are finite everywhere. In particular, if we specialise to the universal,

minimal solution (4.6) with l = m = n = 0, i.e. ψlmn = 1, (6.5) evaluated on (2.1) gives9

C0 =
1

4κ210
Vol(CY2)

∫

Iρ
dρ ĥ4h8 . (6.6)

The effective three-dimensional gravitational coupling κ3 is related to C0 by C0 = 1/κ23.

The quadratic action for hµν computes the two point function of the dual stress tensor,

whose coefficient is well known to be proportional to the central charge of the 2d CFT. In

fact, (6.6) is equal, modulo an irrelevant numerical factor, to the central charge computed

on p. 12 of [27].

7 Conclusions

In this paper we have investigated aspects of spin 2 fluctuations around the background

AdS3 × S2 × CY2 × Iρ of [29]. An equation for these spin 2 fluctuations has been derived

in section 4, following the general analysis of [33], and we have seen that they fall into two

classes, universal and non universal solutions.

The universal solutions, discussed in section 4, turned out to be particularly interesting,

as they are independent of the background data. These fluctuations, and therefore the dual

operators, are expected to be present for any of the backgrounds given in (2.1) and (2.2). As

we have seen in the main text, they are dual to operators with scaling dimension ∆ = 2l+2,

where l is the angular-momentum-charge on the S2 which realises holographically the

SU(2)R symmetry of the dual field theory.

The non universal solutions are more difficult to analyse as they depend on background

data, namely on a specific choice of the functions u, ĥ4 and h8 given in (2.5), (2.6), (2.7).

An example of these is worked out in appendix A.

Finally, we have seen in section 6 that the central charge c for the 2d dual quiver field

theory can be read off from the normalisation of the action for the spin 2 fluctuations, hµν .

The central charge c is essentially determined from the 3-dimensional gravitational coupling

constant κ3, c ∝ κ−2
3 . The quadratic actions for l > 0 modes compute the two point

functions for the corresponding dual operators and, more in particular, the holographic

normalisations of these operators. Moreover, computing higher order interaction terms,

one can then compute three point and higher point functions of these operators.
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A Example of non universal solution

In this appendix we consider a particular solution to (3.11) which is not universal, namely

a solution that does not saturate the bound M2 = 4l(l + 1), still with n = 0. In order to

solve (3.11), we will have to choose some particular u, ĥ4 and h8 which, in turn, correspond

to a particular background. Let us start off by considering the case of10

ĥ4(ρ) = β0







ρ/2π 0 ≤ ρ ≤ πP

P − ρ/2π πP < ρ ≤ 2πP
, h8 = ĥ4 , u =

β0
2π

ρ .

A solution to (3.11) must be split into two solutions in the two intervals II = [0, πP ] and

III = (πP, 2πP ], as both ĥ4 and h8 are only piecewise continuous. Moreover, in order to

get a smooth solution for the fluctuations, we need to impose continuity of the solution

and of its derivative at ρ = πP .

Equation (3.11) for u, ĥ4, h8 as before looks like

φ′′(ρ) +
2l + 2

ρ
φ′(ρ) + λφ(ρ) = 0 in II ,

φ′′(ρ) +
2l + 2

ρ
φ′(ρ) + λ

(P − ρ/2π)2

ρ2
φ(ρ) = 0 in III ,

(A.1)

where again λ = M2 − 4l(l + 1). The general solution of (A.1) in II reads φ = c1φ1(ρ) +

c2φ2(ρ), with

φ1 = ρ−
2l+1
2 J 2l+1

2

(
√
λρ

)

and φ2 = ρ−
2l+1
2 Y 2l+1

2

(
√
λρ

)

. (A.2)

J and Y are Bessel functions of the first and second kind, respectively and c1 and c2 are

integration constants. In order for the solution (and its derivative) to be regular at ρ = 0

we must set c2 = 0. On the other hand, the general solution to (A.1) in III can be given

in terms of the complex function φ = c̃3φ̃3 + c̃4φ̃4, with

φ̃3 = e−i
√
λ ρ

2π ρ−(l+1/2−i γ
2 )U

(

α, γ, i
√
λρ/π

)

φ̃4 = e−i
√
λ ρ

2π ρ−(l+1/2−i γ
2 )M

(

α, γ, i
√
λρ/π

)

,
(A.3)

where U and M are the Kummer’s hypergeometric functions, respectively, and α and γ

are two complex numbers given by11

α =
γ

2
− i

√
λ , γ = 1 + i{4M2P 2 − 4l(l + 1)(1 + 4P 2)− 1}1/2 . (A.4)

10This is of course a particular example of equations (2.5), (2.6), (2.7).
11The argument of the square root appearing in the definition of γ is positive in the limit of very large

P . This is the regime well described by supergravity. Moreover, for generic M and l with M2 > 4l(l + 1),

γ is never a negative integer. Thus the Kummer’s functions are always well defined.
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The functions φ̃3 and φ̃4 are always well defined in III . Therefore neither c̃3 nor c̃4 must

be set to zero. Moreover, we can always consider two independent real combinations of φ̃3

and φ̃4. Let us call them φ3 and φ4. Thus, in III the general solution reads φ = c3φ3+c4φ4,

with φ3 and φ4 two real linearly independent functions built from φ̃3 and φ̃4 above.

We should now match the solution φ = c1φ1 with φ = c3φ3 + c4φ4 at ρ = πP . This

leads to two conditions

φ
∣

∣

πP−
= φ

∣

∣

πP+ , φ′∣
∣

πP−
= φ′∣

∣

πP+ (A.5)

As a further condition, we would like to impose that either φ or φ′ vanishes at ρ = 2πP .

This is nothing but the condition discussed around (4.2). Say, for instance, that is φ that

vanishes at ρ = 2πP

φ
∣

∣

2πP
= 0 . (A.6)

We therefore get a system of three equations, (A.5) and (A.6), for three integration con-

stants, c1, c3 and c4. A straightforward calculation shows that such a system has a non

trivial solution if and only if the following equation is satisfied

detM = 0 with M =













φ1

∣

∣

πP
−φ3

∣

∣

πP
−φ4

∣

∣

πP

φ′
1

∣

∣

πP
−φ′

3

∣

∣

πP
−φ′

4

∣

∣

πP

0 φ3

∣

∣

2πP
φ4

∣

∣

2πP













. (A.7)

Such an equation could be solved numerically for M2. Even though we will not attempt

at solving it, the expectation is to find a solution of the form

M2 = 4l(l + 1) + jf(j, l) , j ∈ Z≥0 , (A.8)

where f is a generic positive function of j and l such that f(0, l) is regular.

B N = 4 superconformal algebra

In this appendix we review the small N = 4 superconformal algebra that was first derived

in [23]. We will follow section 2 of [30].

The algebra we are considering is a graded Lie algebra with an internal SU(2)R sym-

metry and reads

[Ln, Lm] = (n−m)Ln+m +
1

2
kn(n2 − 1)δn,−m ,

{Ga
r , G

b
s} = {Ḡa

r , Ḡ
b
s} = 0 ,

{Ga
r , Ḡ

b
s} = 2δabLr+s − 2(r − s)σab

i J i
r+s +

1

2
k(4r2 − 1)δr,−sδ

ab ,

[Ln, J
i
m] = −mJn+m ,

[Ln, G
a
r ] = −

(

1

2
n− r

)

Ga
n+r ,

[J i
n, G

a
r ] =

1

2
σi
abG

b
n+r ,

[J i
n, J

j
n] = iǫijkJk

n+m +
1

2
knδn,−m .

(B.1)
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Here Ln and Ga
r are the generators of superconformal symmetry. Ga

r ’s carry an SU(2)R
fundamental index, a, and therefore they form an SU(2) complex doublet. J i

n (i = 1, 2, 3)

are the SU(2)R Kac-Moody currents generating the corresponding Kac-Moody loop algebra.

σab
i are Pauli matrices. Indices n andm run over integer numbers while r belongs to Z+1/2:

only for the NS-sector there exists a finite dimensional subalgebra generated by L0, L±1,

Ga
±1/2 and J i

0 (see below).

In the following we will mainly be interested in the global part of the superconformal

algebra. This reads

[L+1, L−1] = 2L0 , [L±1, L0] = ±L± ,
{

Ga
± 1

2

, Gb
± 1

2

}

=
{

Ḡa
± 1

2

, Ḡb
± 1

2

}

= 0 ,

{

Ga
+ 1

2
, Ḡb

− 1
2

}

= 2δabL0 − 2σab
i J i

0 ,
{

Ga
± 1

2
, Ḡb

± 1
2

}

= 2δabL±1

{

Ga
− 1

2

, Ḡb
+ 1

2

}

= 2δabL0 + 2σab
i J i

0 ,

[

L0, G
a
± 1

2

]

= ∓1

2
Ga

± 1
2

,

[

L±1, G
a
∓ 1

2

]

= ±Ga
± 1

2

,

[

J i
0, G

a
± 1

2

]

= −1

2
σi
abG

b
± 1

2

,

[J i
0, J

j
0 ] = iǫijkJk

0 .

(B.2)

A highest weight state of the superconformal algebra can be specified by the eigenvalues

of the mutually commuting operators L0, ~J
2

0 and J3
0 , |Oh,l〉, satisfying

L0|Oh,j〉 = h|Oh,j〉 , ~J
2

0|Oh,j〉 = j(j + 1)|Oh,j〉 J3
0 |Oh,j〉 = j|Oh,j〉 , (B.3)

as well as

Ln|Oh,j〉 = Ga
r |Oh,j〉 = Ḡa

r |Oh,j〉 = J i
n|Oh,j〉 = 0 , n, r > 0 . (B.4)

The correspondence between the heighest weight state |Oh,j〉 and the corresponding oper-

ator of conformal weight h and SU(2)R spin j is made as usual |Oh,j〉 = Oh,j |0〉, where
|0〉 is the conformal vacuum. In the following, it will make no difference the use of Oh,j

or |Oh,j〉.
The operators Ga

1
2

and Ḡa
− 1

2

can be used to derive the full module Lr from a supercon-

formal primary state |Oh,j〉. Being fermionic operators, they can act on a state |Oh,j〉 until
they annihilate. Thus the length of a module is finite and determined by Fermi statistics.

In deriving the full modules, we should also make sure that the various representations are

unitary. This will lead to shortening conditions and constraints on the allowed values of h

and j, as we now shall see.
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Singular vectors, short and long multiplets. The superconformal algebra constrains

the values the conformal weight h can assume. In particular, in (super)conformal theories

unitarity implies a lower bound for the scaling dimension of operators as a function of the

other quantum numbers in the algebra. The details of the bound depend of course on the

particular theory and corresponding algebra. Let us see how this works in our case.12

Consider a superconformal primary state of conformal weight h and SU(2)R spin j and

the fact that13

0 ≤ |Ḡa
− 1

2

|Oh,j〉|2 + |Ga
1
2

|Oh,j〉|2 = 〈Oh,j |
{

Ga
1
2

, Ḡa
− 1

2

}

|Oh,j〉 , no sum over a . (B.5)

The superconformal algebra implies

0 ≤ 〈Oh,j |
{

Ga
1
2

, Ḡa
− 1

2

}

|Oh,j〉 = 〈Oh,j |2L0 − 2σaa
i J i

0|Oh,j〉 = 2(h∓ j)〈Oh,j |Oh,j〉 . (B.6)

To have a unitary theory we should then impose h ≥ j. Sometimes it is customary to

use the Dynkin index (r say) of the representation of the internal group SU(2)R. In our

case it is related to the spin j by r = 2j. In particular r is always an integer. This is the

convention that has been used in [30].

Thus, the algebra implies a lower bound for the conformal weight h in terms of the

other quantum number j. When h = j, the module gets shortened as there are null-states

that need to be modded out. In particular, when the bound is satisfied there are two states

that satisfy

Ḡ1
− 1

2

|Oh,j〉 = G2
− 1

2

|Oh,j〉 = 0 . (B.7)

Therefore, only Ḡ2
− 1

2

and G1
− 1

2

will produce new states. Multiplets of this kind are short.

Following [30], we just state the result of considering h = j when j = 1 (or equivalently

r = 2). This is the case of most relevance for our purposes as it will lead us to identify the

supermultiplet to which the holomorphic energy momentum tensor belongs. A state with

h = j = 1 can be labelled as [h](j) = [1](1). The structure of the resulting short multiplet is

[1](1)

[

3
2

]( 1
2)

[

3
2

]( 1
2)

[2](0)

where ր stands for the action of G− 1
2
, while ց stands for the action of Ḡ− 1

2
.

As noticed in [30], the top component [2](0) corresponds to the holomorphic energy

momentum tensor.

Let us conclude by briefly mentioning the case where h > j. In this case there are no

null-states and the supermultiplets do not get shortened. All the G’s and Ḡ’s contribute

to produce new states from the corresponding conformal primary. Such multiplets are

therefore long. We will not discuss long multiplets any further. A careful analysis can be

found in [30].

12Unitarity for N = 2 and N = 4 algebras in two dimensions were also discussed in [52–54].
13Notice that the same conclusion can be reached by sandwiching

{

Ga

−
1

2

, Ḡa
1

2

}

.
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C N = (0, 2) and N = (0, 4) theories

In this appendix we review some basic facts about N = (0, 4) gauge theories. N = (0, 4)

superfields are made from N = (0, 2) superfields, therefore we start by reviewing N = (0, 2)

gauge theories. For a complete discussion see [43].

N = (0, 2) multiplets Let us list the field components of three types of N = (0, 2)

multiplets, namely the vector U , chiral Φ and the Fermi Ψ multiplets

U : (uµ, ζ−, D) , Φ : (φ, ψ+) , Ψ : (ψ−, G) . (C.1)

The subscript on the fermions refers to their chiralities under SO(1, 1) Lorentz group. D

is a real and G a complex auxiliary field. The vector U has the following expansion

U = u0 − u1 − 2iθ+ζ̄− − 2iθ̄+ζ− + 2θ+θ̄+D . (C.2)

The corresponding field strength is formed in the following way

Υ = [D+,D−] = −ζ− − iθ+(D − iu01)− iθ+θ̄+(D0 +D1)ζ− , (C.3)

where D+ and D− are the supercovariant gauge derivatives [43]. The chiral field Φ satisfies

the following equation

D+Φ = 0 , (C.4)

and therefore expands out in components as

Φ = φ+
√
2θ+ψ− − iθ+θ̄+(D0 +D1)φ , (C.5)

where D0 and D1 stand for the time- and space-components of the usual covariant deriva-

tive. A Fermi superfield instead satisfies the following equation

D+Ψ = E(Φi) , (C.6)

where E(Φi) is a holomorphic function of the chiral superfields Φi. E should be chosen in

such a way it transforms as Ψ under all symmetries. Solving (C.6) leads to the following

expansion for Ψ

Ψ = ψ− −
√
2θ+G− iθ+θ̄+(D0 +D1)ψ− −

√
2θ̄+E(φi)− 2θ+θ̄+

∂E

∂φi
ψ+i , (C.7)

where G is an auxiliary complex field. The holomorphic function E can be shown to appear

in the Lagrangian as a potential term.

There is also another type of superpontential we can consider for N = (0, 2) theories.

For each Fermi multiplet Ψa we can introduce a holomorphic function Ja(Φi) such that

SJ =

∫

d2xdθ+
∑

a

Ja(Φi)Ψa + h.c. . (C.8)

We see that, in analogy to N = 1, d = 4, W = J ·Ψ is integrated over half superspace.

– 16 –



J
H
E
P
0
3
(
2
0
2
0
)
0
7
9

It must be stressed that the superpotentials E and J cannot be introduced indepen-

dently without impunity. It turns out that, in order for supersymmetry to be mantained,

they have to satisfy

E · J =
∑

a

EaJ
a = 0 . (C.9)

Let us now move on to listing N = (0, 4) supermultiplets. They are built from N =

(0, 2) supermultiplets.

N = (0, 4) multiplets N = (0, 4) supermultiplets are usually given in terms of N =

(0, 2) supermultiplets, pretty much as in 4 dimensions N = 2 superfields are built from

N = 1 superfields. Again, let us list them first.

Multiplets N = (0, 2) building blocks component fields SU(2)L × SU(2)R

Vector Vector + Fermi (U,Θ) (uµ, ζ
a
−) (1, 1), (2, 2)

Hyper Chiral + Chiral (Φ, Φ̃) (φa, ψb
+) (2, 1), (1, 2)

Twisted hyper Chiral + Chiral (Φ′, Φ̃′) (φ′a, ψ′b
+) (1, 2), (2, 1)

Fermi Fermi + Fermi (Γ, Γ̃) ψ′a
− (1, 1)

The N = (0, 4) vector multiplet is made of an N = (0, 2) vector multiplet and an adjoint

N = (0, 2) Fermi multiplet Θ. The field content is that of a gauge field uµ and two left-

handed fermions ζa−, a = 1, 2. The gauge field is a singlet under the SU(2)L × SU(2)R
R-symmetry while the two fermions transform as (2, 2).

There are two different types of hypermultiplets, the hypermultiplet and the twisted

hypermultiplet. Both of them are formed by two N = (0, 2) chiral multiplets, therefore

they both contain two complex scalars (φa) and two right-handed fermions (ψb
+). They

differ from each other because of the different representations under the R-symmetry group,

as we can see from the table above.

If we want to couple the hypermultiplet to the vector multiplet, we should consider

the following coupling between the hyper (Φ, Φ̃) and the adjoint Fermi field Θ

JΘ = ΦΦ̃ ⇒ W = Φ̃ΘΦ . (C.10)

This looks very much like the coupling between the hypermultiplet and the chiral adjoint

for four dimensional N = 2 theories. On the other hand, coupling a twisted hypermultiplet

to the gauge sector requires an E-type of superpotential

EΘ = Φ′Φ̃′ , (C.11)

with indices in Φ′Φ̃′ set to have EΘ transforming in the adjoint of the gauge group.

Finally, we can have an N = (0, 4) Fermi multiplet, which is made of two N = (0, 2)

Fermi multiplets. It contains two left-handed fermions which are singlets of SU(2)L ×
SU(2)R R-symmetry.

As the nodes of the quiver of interest, figure 1, contain N = (4, 4) vector multiplets

and are connected by N = (4, 4) hypermultiplets, it is probably worth it to mention how

N = (4, 4) superfields decompose.
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N = (4, 4) multiplets There are two types of N = (4, 4) superfields, the vector and the

hypermultiplet.

Multiplets N = (0, 4) building blocks N = (0, 2) building blocks

Vector Vector + Twisted Hyper (U,Θ), (Σ, Σ̃)

Hyper Hyper + Fermi (Φ, Φ̃), (Γ, Γ̃)

The N = (4, 4) vector multipled is comprised of an N = (0, 4) vector multiplet and

a N = (0, 4) twisted hypermultiplet. The twisted hypermultiplet is usually denoted as

(Σ, Σ̃). They are coupled to the gauge sector via the E-type potential

EΘ = [Σ, Σ̃] . (C.12)

N = (4, 4) hypermultiplets are made of an N = (0, 4) hypermultiplet and an N = (4, 4)

Fermi multiplet, all in all (Φ, Φ̃), (Γ, Γ̃). As before, Φ and Φ̃ are coupled to the gauge

sector via

W = Φ̃ΘΦ . (C.13)

Let us conclude by saying that there are couplings between N = (0, 4) Fermi multiplets

Γ, Γ̃, hypermultiplets Φ, Φ̃ and twisted hypers Σ, Σ̃. They involve both superpotential and

E-terms

W = Γ̃Σ̃Φ + Φ̃Σ̃Γ , (C.14)

and

EΓ = ΣΦ , EΓ̃ = −Φ̃Σ . (C.15)

It is easy to see that

E · J = Φ̃[Σ, Σ̃]Φ + Φ̃Σ̃ΣΦ− Φ̃ΣΣ̃Φ = 0 . (C.16)
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[26] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, 1/4 BPS solutions and the

AdS3/CFT2 correspondence, Phys. Rev. D 101 (2020) 026014 [arXiv:1909.09636]

[INSPIRE].
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