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graphic QCD model within the Einstein-Dilaton-Maxwell framework. By calculating the

corresponding order parameters, i.e., the chiral condensate and Polyakov loop, it is shown

that the transition lines of these two phase transitions are separated in the T−µ plane. The

deconfinement phase transition is shown to be always of crossover type and the transition

line depends weakly on the baryon number density. Differently, the chiral transition is of

crossover at small baryon number density and it turns to be of first order at sufficient large

baryon number density. A critical endpoint (CEP), at which the transition becomes second

order type, appears in the chiral transition line. This is the first time to realize the CEP of

chiral phase transition in the (T, µ) plane using the holographic EMD (Einstein-Maxwell-

Dilaton) model for two flavour case. It is observed that between these two phase transition

lines, there is a region with chiral symmetry restored and color degrees still confined, which

could be considered as the quarkyonic phase. Qualitatively, this behavior is in consistent

with the result in the Polyakov-loop improved Nambu-Jona-Lasinio (PNJL) model.
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1 Introduction

Quantum Chromodynamics (QCD) is widely accepted as the fundamental theory of the

strong interaction with two most important properties in the vacuum, i.e., the spontaneous

chiral symmetry breaking and color confinement. At sufficient high temperature or/and

baryon chemical potential, it is believed that the system will undergo phase transitions,

involving the restoration of chiral symmetry and the release of color degrees of freedom.

The interplay of chiral symmetry breaking and color confinement as well as the relation

between chiral and deconfinement phase transitions at finite temperature and density re-

veal the fundamental property of quark dynamics and gluon dynamics, thus it attracts

continuous interests [1–7]. In the limit of large number of colors Nc, the quarkyonic phase

was expected [8–10] in certain baryon number density region, where the chiral symmetry

is restored but color degrees of freedom are still confined.

It requires more efforts to understand the full properties of QCD, since chiral symme-

try breaking and color confinement have a non-perturbative origin, when the traditional

perturbative methods face enormous challenges. Lattice QCD, starting from the first prin-

ciple at zero and small quark chemical potential [11–14], is regarded as an important tool

to overcome the non-perturbative problem. Besides lattice QCD, other non-perturbative

methods such as Dyson-Schwinger equations (DSEs) [15, 16], functional renormalization

group equations (FRGs) [17–19] and QCD effective models have been developed. Among

QCD low energy effective models, Nambu-Jona-Lasinio (NJL) model [20, 21] offers the

mechanism of spontaneous chiral symmetry breaking and has been widely used in describ-

ing chiral phase transition and investigating QCD phase structures under variant extreme

conditions. In this model, the QCD gluon-mediated interactions are replaced by effective

interactions among quarks, which are built according to the global symmetries of QCD.
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The NJL model does not contain dynamical gluons, which can be improved by adding the

Ginzburg-Landau type potential of the traced Polyakov loop to the lagrangian to describe

gluon dynamics and an interaction term of the Polyakov loop with the quarks. The im-

proved model is usually named the Polyakov-loop improved Nambu-Jona-Lasinio (PNJL)

model [22–38].

In recent decades, the discovery of the anti-de Sitter/conformal field theory (AdS/CFT)

correspondence and the conjecture of the gauge/gravity duality [39–41] leads a new way to

solve the strong coupling problem of gauge theory. Comparing with the original AdS/CFT

correspondence, it is necessary to break the conformal symmetry at low energy to describe

QCD. Many efforts have been made towards more realistic holographic description of low

energy phenomena of QCD in hadron physics [42–57] and hot/dense QCD [58–72], in-

cluding the top-down approaches and bottom-up approaches (see [73–77]for reviews). The

deconfinement phase transition [78–100] has been widely discussed with the expectation

value of Polyakov loop is the order parameter of deconfinement phase transition. How-

ever, till recently, the dynamical spontaneous chiral symmetry breaking and chiral phase

transition have been realized [101–108] with the chiral condensate as the order parameter.

In large Nc limit, it has been proposed that the chiral symmetry and deconfinement

phase transition can be splitting and there would be a quarkyonic phase [8], where the

chiral symmetry is restored but still in confinement. The free energy of a heavy test

quark added to the system is e−βFq = 1
Nc

< L > and the baryon number density is

< NB >∼ e−β(MB−µB) with β the inverse of temperature. The deconfinement temperature

is around Td ∼ ΛQCD. When the baryon number chemical potential is small compared to

the baryon mass, i.e. µB � MB, the number of baryons < NB >∼ e−κ1Nc tends to zero

at large Nc for temperatures of T ∼ ΛQCD and with MB ∼ Nc. Here, κ1 is a number of

order one. When µB ≥ MB, the baryons begin to populate the system and the baryon

number density becomes nonvanishing. Ref. [8] argues that there are at least three phases

in the QCD phase diagram at large Nc: the deconfinement phase with T > Td, and in

the region of T < Td, there will be the mesonic phase which is confined and has vanishing

baryon number density and the quarkyonic phase which has finite baryon number density

and is confined [10]. However, in the real QCD case with Nc = 3, we normally call

the chiral symmetric and confined phase as the quarkyonic phase as shown in the PNJL

model [10, 109].

In this paper, we make a step towards investigating the interplay between the de-

confinement phase transition and chiral phase transition in a quenched dynamical holo-

graphic QCD model [55, 56, 72]. In this quenched dynamical holographic QCD model,

the dilaton background describes the gluodynamics and the flavor/meson background de-

scribes the chiral dynamics, respectively, thus one can simultaneously realize the con-

finement/deconfinement phase transition and chiral symmetry breaking/restoration phase

transition at finite temperature and chemical potential. However, it is worthy of men-

tioning that in the quenched dynamical holographic QCD model, the flavor background

is added on the dilaton background as a probe, and the full QCD dynamics including

the backreaction from the flavor background on the dilaton background or gluodynamics

background has not been self-consistently solved yet, which is left for future work.
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To extend the quenched dynamical holographic QCD model to finite chemical potential,

the quark chemical potential is introduced by a U(1) field in the Einstein-Dilaton-Maxwell

framework. Except to fix the chemical potential dependence of the flavor background, one

has also to fix the chemical potential dependence of the dilaton/gluodynamics potential,

which can be determined by higher order baryon number fluctuations especially the kurtosis

of baryon number fluctuations. From the experience in the PNJL model [110] as well

as in the holographic QCD model [111], the kurtosis of baryon number fluctuations is

dominated by contribution from gluodynamics. Therefore, we fix the chemical potential

dependence of the dilaton field by fitting the lattice results of the kurtosis of baryon number

fluctuations [112] at zero chemical potential. It is found that the deconfinement phase

transition in the (T, µ) plane is always a crossover, this is in agreement with the result in

the PNJL model [110]. By adding the coupling of χ6 with chemical potential, the critical

end point (CEP) shows up along the chiral phase transition line. It is also found that

the chiral symmetry restoration and deconfinement phase transitions are separated. More

interestedly, it is observed that there exists a region where chiral symmetry is restored

but color degrees of freedom are still confined. This is similar to the quarkyonic phase

obtained in the PNJL model [110]. The possible reason for the separation of the chiral and

deconfinement phase transitions is due to the quenched gluodynamical background, where

the flavor dynamics is added as a probe.

The remainder of the paper is organized as follows: we give a review on the quenched

dynamical holographic QCD model in section 2. In section 3, we fix the chemical potential

dependence of the dilaton potential which describes gluodynamics through the baryon

number susceptibilities and investigate the deconfinement phase transition in the (T, µ)

plane. In section 4 we investigate the chiral phase transition and the phase diagram in the

quenched dynamical holographic QCD model. In section 5, a brief summary is given.

2 Setup for the quenched dynamical holographic QCD model at finite

baryon chemical potential

The deconfinement phase transition has been widely investigated in bottom-up holographic

models [78–98]. Besides, it is possible to describe the chiral symmetry breaking and its

restoration in the soft-wall model [101–103]. In this work, we investigate the interplay

between the chiral and deconfinement phase transitions by using the dynamical holographic

QCD model [55–57, 72, 113, 114]. We emphasize that though the original AdS/CFT

correspondence is in the large Nc limit, the holographic QCD model is trying to describes

phenomenology of real QCD in the case of Nc = 3. In some sense, this is under a more

general holographic conjecture for gauge/gravity duality [115, 116].

The full QCD contains quark dynamics and gluodynamics, and it is known that light

flavor quark dynamics are responsible for the spontaneous chiral symmetry breaking, and

gluodynamics are responsible for the color confinement. The dynamical holographic QCD

model is constructed in the graviton-dilaton-scalar framework with the dilaton field and

scalar field responsible for the gluodynamics and chiral dynamics, respectively. This dy-

namical holographic QCD model naturally resembles the renormalization group from ultra-
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violet (UV) to infrared (IR): at UV boundary, the theory goes to the limit of AdS/CFT, and

the 5-dimension (5D) field in the bulk and 4D operator obeys the principle of AdS/CFT cor-

respondence [42], and the model at IR is determined by QCD non-perturbative properties

such as chiral condensate and gluon condensate or glueball properties. In [55–57, 71, 72],

we see that the graviton-dilaton system can describe the pure gluon system including the

glueball spectra, thermodynamical properties as well as transport properties quite well.

After adding the flavor background and solving the deformed metric self-consistently, the

total dynamical system can describe the meson spectra very well and the results are in

agreement with experimental data [56].

However, it is not an easy task to solve the full system at finite temperature and chemi-

cal potential. Therefore, in this work, we use the quenched dynamical model with the flavor

background added on the dilaton background as a probe. The chiral and deconfinement

phase transitions at finite temperature in the quenched dynamical holographic QCD model

has been investigated in ref. [104]. Here, we extend this scenario to finite chemical potential

case, and try to study chiral and deconfinement phase transition in the T − µ plane.

To extend the quenched dynamical holographic QCD model in refs. [55, 56, 72] to

finite chemical potential, we introduce an extra U(1) field in the Einstein-Dilaton-Maxwell

framework, and the action in the string frame takes the form of:

Sstotal = SsG + SsM , (2.1)

SsG =
1

16πG5

∫
d5x
√
−gse−2Φ

[
Rs + 4∂µΦ∂µΦ− V s

G(Φ)− h(Φ)

4
e

4Φ
3 FµνF

µν

]
, (2.2)

SsM = −
∫
d5x
√
−gse−ΦTr[∇µX†∇µX + V s

X(|X|, FµνFµν)]. (2.3)

Here Stotal is the full 5D action, SG is the 5D action for dilaton background describing

gluodynamics, and SM is the 5D action for matter sector describing chiral dynamics, re-

spectively. The lower-case s represents the string frame, gs is the determinant of metric

gµν , G5 is the 5D Newton constant, Φ is the dilaton field, and X is the bulk scalar field

which corresponds to q̄q condensate of QCD. VG represents the dilaton potential, and VX
is the bulk scalar potential coupled with the strength tensor of gauge field. The leading

term in VX is the mass term m2
5XX

†, which can be determined as m2
5 = −3 from the

AdS/CFT prescription m2
5 = (∆ − p)(∆ + p − 4) by taking ∆ = 3, p = 0 [41, 79]. h(Φ)

is a gauge kinetic function constraining the µ dependence of the system and will be fixed

by fitting the lattice data on baryon number susceptibilities. Fµν are the strength tensor

of gauge field dual to the baryon number current. If Fµν = 0, the system is reduced to

zero chemical potential case, and Fµν 6= 0 corresponds to finite baryon number chemical

potential case of the system.

To consider the gravity dual of QCD at finite temperature and baryon number density,

we can take the following metric ansatz in the string frame:

ds2 =
e2As(z)

z2

[
−f(z)dt2 +

1

f(z)
dz2 + d~x2

]
. (2.4)

As discussed in ref. [93], it is more convenient to work out thermodynamics in the Einstein

frame, therefore we transform the action into Einstein frame by a conformal transformation
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of metric:

gsµν = e
4Φ
3 geµν , (2.5)

then the action of the dilaton background part becomes:

SeG =
1

16πG5

∫
d5x
√
−ge

[
Re − 4

3
∂µΦ∂µΦ− V e(Φ)− h(Φ)

4
FµνF

µν

]
, (2.6)

with

V e(Φ) = e4/3ΦV s(Φ). (2.7)

In the Einstein frame, the metric ansatz becomes:

ds2 =
e2Ae(z)

z2

[
−f(z)dt2 +

1

f(z)
dz2 + d~x2

]
. (2.8)

Here, the two metric warp factors in two frames follow the relationship of As = Ae + 2Φ
3 .

When considering finite chemical potential, the only non-vanishing component of the gauge

potential Aµ of the strength tensor Fµν is the time component At, i.e. A = Atdt.

Inserting the above ansatz, one can derive the following equations of motion after

certain simplifications [104]:

A′′e −A′2e +
2

z
A′e +

4Φ′2

9
= 0, (2.9)

A′′t +

(
h′

h
+A′e −

1

z

)
A′t = 0, (2.10)

f ′′ +

(
3A′e −

3

z

)
f ′ − e−2Aez2h(Φ)A′2t = 0. (2.11)

The Hawking temperature of the black hole solution can be evaluated numerically by

T =
f ′(zh)

4π
. (2.12)

Following [56], we take the dilaton field in the form of

Φ(z) = α tanh(β2z2 + γ4z4), (2.13)

which tends to z2 power thus goes to the AdS5 limit at the UV boundary and approaches

a positive constant for a possible crossover transition at IR. Then one can solve eqs. (2.9)–

(2.11) by imposing the following boundary conditions at the boundary z = 0 and the

horizon z = zh:

At(zh) = f(zh) = 0, (2.14)

f(0) = 1, (2.15)

At(0) = µ+ ρz2 + . . . . (2.16)

Here, µ is the quark chemical potential and ρ is quark number density.
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Following the procedure in ref. [93], we can calculate the pressure of the system through

the entropy density

s =
e3A(zh)

4z3
h

. (2.17)

For fixed values of the chemical potential, the pressure density can be calculated by the

integral

p =

∫
[sdT + ρdµ] =

∫ [
s

(
∂T

∂zh
dzh +

∂T

∂µ
dµ

)
+ ρdµ

]
(2.18)

and the energy density of the system can be derived:

ε = −p+ sT + µρ. (2.19)

At zero chemical potential µ = 0, by fitting the lattice results of equation of state

for Nf = 2 QCD [117], one can fix parameters α = 1.8, β = 0.4 GeV, γ = 0.42 GeV as

in ref. [104]. With these parameters, the pseudo critical temperature for the crossover is

around T0 = 217 MeV [104].

In order to describe the system at finite chemical potential, we also need to fix h(Φ)

in eq. (2.2) and (2.6), which describes the chemical potential dependence of the gluon-

dynamical potential of the system. From the experience in the PNJL model [110], we

can use the higher order baryon number fluctuations especially the ratio of fourth over

second order cumulants of baryon number fluctuations to determine h(Φ). The kurtosis

of baryon number fluctuations is given by κσ2 = CB4 /C
B
2 with the variance σ2 = CB2 and

the kurtosis κ = CB4 /(σ
2)2, and the cumulants of baryon number distributions are given

by CBn = V T 3χBn , where the baryon number susceptibilities are defined as:

χBn =
∂n[P/T 4]

∂[µB/T ]n
, (2.20)

and P, V are the pressure and volume of the system, and µB = 3µ is the baryon num-

ber chemical potential. The calculation of baryon number fluctuations in the holographic

QCD model of [96] has been investigated in ref. [111]. The baryon number fluctuations in

the PNJL model has been investigated in ref. [110] and it is observed that in the PNJL

model [110] that the ratio of fourth over second order cumulants of net-baryon number fluc-

tuations κσ2 at zero baryon number density is dominated by contribution from gluodynam-

ics. Therefore, we fix the chemical potential dependence of the dilaton field by fitting the

lattice results of the kurtosis of baryon number fluctuations [112] at zero chemical potential.

The kurtosis κσ2 as a function of the normalized temperature T/T0 with T0 = 217 MeV

comparing with lattice result [112] is shown in figure 1. It is found that when h(Φ) = 7
10 , the

result of kurtosis from the dilaton background, i.e., from the gluodynamical contribution in

the quenched dynamical holographic QCD model is in good agreement with lattice results.

With the setup in this section, we are ready to investigate the deconfinement and chiral

phase transitions in the quenched dynamical holographic QCD model at finite temperature

as well as finite chemical potential.
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Figure 1. κσ2 as functions of the normalized temperature T/T0 with T0 = 217 MeV the pseudo

critical temperature at zero chemical potential µ = 0. The black line is for h(Φ) = 7/10 which is in

agreement with lattice results in ref. [112].

3 Deconfinement transition at finite baryon density

In order to investigate the deconfinement phase transition, the expectation value of the

Polyakov loop is often used as an order parameter, which is defined as

L(T ) =
1

Nc
TrP exp

(
ig

∫ 1
T

0
Â0(τ, ~x) dτ

)
. (3.1)

Here Nc is the color number, P indicates path ordering, g is the coupling, the trace Tr

is computed over the fundamental representation of SU(Nc) and Â0 is the non-Abelian

gauge field potential operator. The expectation value 〈L(T )〉 vanishes in the confined

phase guaranteed by the center symmetry, and it is nonzero 〈L(T )〉 6= 0 in the deconfined

phase, which indicates the center symmetry is broken. From the holographic dictionary,

the expectation value of the Polyakov loop is related to the Nambu-Goto action SNG for

the string world sheet [41]

SNG =
1

2παp

∫
d2η
√

det(gsµνX
µ
a X νb ) (3.2)

in the following way

〈L(T )〉 =

∫
DX e−SNG , (3.3)

where 1
2παp

is the string tension, gsµν is the metric in the string frame, and X µa is the

embedding function of the worldsheet in the target space, µ, ν are the five dimensional

space-time indices and a, b represent the worldsheet coordinates. From the metric of (2.4),

we have

SNG =
1

2παp

∫ zh

0
dz
e2As

z2

√
1 + f(z)(~x′)2, (3.4)

with gp = 1
2αp

the redefinition of the string tension. The prime denotes the derivative with

respect to z. Then, the equation of motion for ~x can be derived as[
e2As

z2
f(z)~x′/

√
1 + f(z)(~x′)2

]′
= 0. (3.5)
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(a)
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(b)

Figure 2. The expectation value of the Polyakov loop < L > (a) and its derivative d<L>
dT (b) as

a function of the temperature in the cases of µ = 0 (solid line) and µ = 0.5 GeV (dashed line),

respectively.

Substituting the ~x′ into the action SNG, the minimal world sheet can be obtained as

S0 = cp + S′0 = cp +
gp
πT

∫ zh

0
dz

(
e2As

z2
− 1

z2

)
, (3.6)

where cp is a normalization constant. Finally, we can get the expectation value of the

Polyakov loop:

〈L(T )〉 = ωe−S0 = eCp−S′
0 , (3.7)

with Cp another normalization constant and ω a weight coefficient. By fitting two-flavor

lattice results from [118], we take Cp = −0.25, gp = 0.86.

The expectation value for the Polyakov loop 〈L〉 at the chemical potentials µ = 0 and

µ = 0.5GeV are given in figure 2(a). We can see that at low temperature the system is

in confined phase with vanishing 〈L〉, while at large temperature it tends to a constant

showing a deconfinement phase transition. The transition from the confined phase to the

deconfined phase is smooth, showing a crossover type transition. Usually, one can extract

the corresponding pseudo critical temperatures through the derivative of d〈L〉
dT , and the

location of the peak gives the pseudo critical temperature. In figure 2(b), the results for
d〈L〉
dT are given, which shows a weak dependence of critical temperature on the chemical

potential. We then calculate the temperature dependent Polyakov loop up to the chemical

potential µ = 0.8 GeV, and obtain the T − µ phase diagram for deconfinement phase

transition as shown in figure 3. From this figure, one can see that the deconfinement

transition temperature is always a crossover and its critical temperature depends weakly

on the chemical potential. This finding is consistent with that in the PNJL model [110].

4 Chiral phase transition and the quarkyonic phase

In previous sections, we have fixed the chemical potential dependence of the dilaton back-

ground from the equation of state and baryon number susceptibilities, and we have in-
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Figure 3. The deconfinement phase transition line in the (T, µ) plane in the quenched dynamical

holographic QCD model.

vestigated the deconfinement phase transition in the (T, µ) plane. In this section, we will

discuss the chiral phase transition at finite temperature and chemical potential.

4.1 Building V (χ, F 2)

We will consider the action part in eq. (2.3), which includes the dynamics of the scalar

field X, corresponding to the chiral condensate σ ≡ 〈q̄q〉. When the scalar field X obtains

a vacuum expectation value X0, the SU(2)L × SU(2)R symmetry of the matter sector SM
would be broken. We consider the two-flavor case Nf = 2 with mu = md, and we set

X0(z) = χ(z)I2/2 with I2 the 2× 2 identity matrix. From eq. (2.3), the action reduces to

the form of

Sχ = −
∫
d5x
√
−gse−Φ

[
1

2
gzzχ′2 + V (χ, F 2)

]
, (4.1)

where V (χ, F 2) ≡ Tr(VX(X,F 2)). The equation of motion can be easily derived as

χ′′(z) +

(
−3

z
+ 3A′s(z)− φ′(z) +

f ′(z)

f(z)

)
χ′(z) +

e2As(z)

z2f(z)
∂χV (χ(z), F 2) = 0. (4.2)

Generally, the potential VX could be of any form satisfying the SU(2)L × SU(2)R
symmetry. In previous studies [102, 103], it is taken as a simple form VX(X,F 2) =

M2
5X

+X + α(X+X)2 with M2
5 = −3 from the AdS/CFT prescription, or equivalently

V (χ, F 2) = −3

2
χ2 + v4χ

4. (4.3)

It is shown that v4 should be positive in order to have chiral symmetry breaking at low

temperature in chiral limit. Therefore, firstly, we would have a test on this simple form

of potential. Inserting this potential into eq. (4.2), one can obtain the leading UV(z → 0)

expansion of χ(z) as

χ(z) = mqζz + . . .+
σ

ζ
z3 + . . . , (4.4)

where σ is the chiral condensate (order parameter) and ζ =
√

3
2π is the normalization

constant obtain by matching correlation function〈q̄q(p)q̄q(0)〉 with 4D calculation (for

details, please refer to [119]). Near the horizon, the regular condition of χ requires

– 9 –
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(a) (b)

Figure 4. Chiral condensate σ in chiral limit (mq = 0) as a function of the temperature T for

different potentials V (χ, F 2) and chemical potentials. Panel (a) gives the results for V (χ, F 2) =

− 3
2χ

2 + v4χ
4 when v4 = 2, µ = 0.1 GeV (black solid line), v4 = 2, µ = 0.5 GeV (black dashed line),

v4 = 10, µ = 0.1 GeV (blue solid line), v4 = 10, µ = 0.5 GeV (blue dashed line). Panel (b) gives

the results for V (χ, F 2) = − 3
2χ

2 + v6χ
6 when v6 = 20, µ = 0.1 GeV (black solid line), v6 = 20,

µ = 0.5 GeV (black dashed line), v6 = 100, µ = 0.1 GeV (blue solid line), v6 = 100, µ = 0.5 GeV

(blue dashed line).

1
f(z)(f ′χ′ + e2As∂χV (χ)/z2) to be finite at z = zh. Taking the metric solved in previ-

ous sections and imposing the above UV and IR boundary conditions, one can solve σ with

respect to mq, T and µ.

Firstly we check whether the spontaneous symmetry breaking is described well. There-

fore, we take mq = 0, i.e. in chiral limit. Then, we take different values of v4 and µ and

solve out σ as a function of temperature in figure 4(a) (v4 = 2, µ = 0.1 GeV (black solid

line), v4 = 2, µ = 0.5 GeV (black dashed line), v4 = 10, µ = 0.1 GeV (blue solid line),

v4 = 10, µ = 0.5 GeV (blue dashed line)). From the figure, one could see that, for different

values of v4, the qualitative results for σ are the same. At low temperature, chiral symme-

try is broken by finite condensate σ, while above a certain temperature Tc, σ turns to zero

and chiral symmetry is restored. The phase transition is of second order type. It could also

be seen that Tc is not depend on v4 for a fixed µ.1 Also, we find that a larger v4 leads to a

smaller σ at the same temperature when v4 > 0, while there is no condensate when v4 ≤ 0.

Up to finite temperature, it seems chiral phase transition could be well described by

such a simple model. However, when one analyze the effect of baryon chemical potential µ

one finds that the phase transition is always second order for any value of µ. There is no

first order transition region for any value of µ. It is inconsistent with the expected phase

diagram in T −µ plane for real QCD. Therefore, additional term in VX might be necessary.

A direct extension is including the higher power (X+X)3 which satisfies the symmetry and

considering effective potential

V (χ, F 2) = −3

2
χ2 + v4χ

4 + v6χ
6. (4.5)

1Actually, this could be easily understood by expanding eq. (4.2) to the leading order near Tc. (For

details, see [120]).
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Figure 5. Chiral condensate σ in chiral limit (mq = 0) as a function of the temperature T for

V (χ, F 2) = − 3
2χ

2 + v4χ
4 + v6χ

6 with v4 = −2, v6 = 100 and µ = 0.5 GeV.

Similarly, we take chiral limit to study the phase structure first. We take v4 = 0 and

different values of v6 = 20, µ = 0.1 GeV (black solid line), v6 = 20, µ = 0.5 GeV (black

dashed line), v6 = 100, µ = 0.1 GeV (blue solid line), v6 = 100, µ = 0.5 GeV (blue dashed

line) in figure 4(b). From the figure, we find that the effect of v6 is very similar to v4. It

will not affect the location of Tc, while it suppresses chiral condensate for a given value of

T and µ. The transition order of chiral transition is still kept as second order one for any

value of µ.

Then we turn on the effect of v4, v6 simultaneously, and we find that when both v4

and v6 are positive, the qualitative results are almost the same as the above two cases.

But if v4 become negative, the solution structure near the transition point where σ turns

to zero becomes different. As an example, we take v4 = −2, v6 = 100, µ = 0.5 GeV and

show the results in figure 5. In this situation, we could see that a triple-valued region of

σ appears in a narrow temperature region 0.222 GeV < T < 0.223 GeV, which indicates a

first order phase transition. Though the transition order depends only on the sign of v4

and is independent on µ, we see the possibility of constructing a model to describe different

transition orders in different region of µ by changing the sign of the sub-leading power term

v4. If v4 effectively changes its value from positive at small µ to negative at large µ, one

might expect a change of transition order. It is easy to see that if one adds a term like

αF 2(X+X)2 (4.6)

to the action, effectively, the coefficient of χ4 term becomes

− λ4A
′2
t

z4

e4As
+ v4. (4.7)

Here, we have inserted At = At(z), Az = 0 and Ai = 0 for spatial components of the

gauge potential. When µ = 0, we take v4 > 0, the transition is second order; while

when µ is sufficient large, −λ4A
′2
t

z4

e4As
+ v4 will effectively become negative dominant at
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(a) (b)

Figure 6. Chiral condensate σ as a function of the temperature T for µ = 0 and mq = 5 MeV,

with V (χ, F 2) taking the form of eq. (4.8). Panel (a) gives results for v4 = 2, v6 = 100 (solid line)

and v4 = 10, v6 = 100 (dashed line). Panel (b) gives results for v4 = 2, v6 = 100 (solid line) and

v4 = 2, v6 = 20 (dashed line). Here, since µ = 0, the values of λ2, λ4, λ6 will not affect σ.

certain region and the transition order might turn to first order. Of course, generally, we

can consider any power obeying the symmetry. Here we only consider the first powers

F 2(X+X), F 2(X+X)2, F 2(X+X)3 and assume the effect of higher power term would be

suppressed by certain mechanism.

According to the above discussion, we will consider the following general form of po-

tential V (χ, F 2)

V (χ,F 2) =

(
3

2
+λ2A

′2
t

z4

e4As

)
χ2+

(
λ4A

′2
t

z4

e4As
−v4

)
χ4+

(
λ6A

′2
t

z4

e4As
−v6

)
χ6. (4.8)

Here, v4, v6 terms are corresponding to (X+X)2, (X+X)3 term, λ2, λ4, λ6 terms are cor-

responding to F 2X+X,F 2(X+X)2, F 2(X+X)3 terms. We have imposed that at finite µ

only At(z) is non-vanishing and replaced F 2 with it.

Therefore, up to now, from the analysis in chiral limit, we have introduced five param-

eters v4, v6 and λ2, λ4, λ6 to describe chiral phase transition. Now we can start to describe

the phenomenology of real QCD. So in the rest part we will take mq = 0.005 GeV, close

to the physical value of u, d quarks. Note that when µ = 0, At ≡ 0 and λ2, λ4, λ6 will not

enter the equation of motion of χ. In this situation, only v4, v6 affect the behavior of σ. In

figure 6, we show the effects of v4, v6 on σ when µ = 0. From the figure, we could see that,

since mq 6= 0, the phase transition turns from second order to crossover type. Different

from chiral limit, σ approaches to zero at high temperature instead of being exactly zero

at Tc. Here, we simply define the pseudo transition temperature Tc as ∂2σ
∂2T
|Tc = 0. From

the figure, we can see that the larger value of v4 or v6 leads to a smaller value of σ. Also,

they would change the pseudo transition temperature. Thus, changing v4, v6 we can get

different values of vacuum condensate σ0 ≡ σ(T = 0, µ = 0) and Tc. Therefore, by fitting

σ = (0.340 GeV)3,Tc = 0.238GeV, close to the results with vanishing µ from previous

studies [10, 118], we can fix v4 = 2, v6 = 100 firstly. Then, only three free parameters

λ2, λ4, λ6 are left.
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Figure 7. The chiral condensate σ as a function of T for different parameters at µ = 0.1GeV . (a)

The solid line is for λ2 = 0, the dashed line is for λ2 = −50 and the dot-dashed line is for λ2 = 50

for fixed λ4 = 200 and λ6 = − 1000
3 , respectively. (b) The solid line is for λ4 = 0, the dashed line

is for λ4 = −250 and the dot-dashed line is for λ4 = 250 for fixed λ2 = −25 and λ6 = − 1000
3 ,

respectively. (c) The solid line is for λ6 = 0, the dashed line is for λ6 = − 2000
3 and the dot-dashed

line is for λ6 = 2000
3 for fixed λ2 = −25 and λ4 = 200, respectively.

Generally, if one works in the full back-reaction scenario, the parameters λ2, λ4, λ6 will

back-reacting the background geometric and also the equation of states. It could affect the

baryon number susceptibilities χBn even at µ = 0, since χBn depends on the derivative with

respect to µ. In this way, one might fix λ2, λ4, λ6 by fitting the lattice results at µ = 0.

However, in this work, we neglect the back-reaction. Therefore, we can not fix these three

parameters in this way. In figure 7, we show the effects of λs on chiral condensate in

wide parameter regions, −50 ≤ λ2 ≤ 50, −250 ≤ λ4 ≤ 250, −−2000
3 ≤ λ6 ≤ 2000

3 . From

figure 7, we could see that the parameters λ is the coupling strength of chiral condensate

with chemical potential and the sensitivity of λ is presented. It is found that the effect of λ2

is dominated, comparing with high order coupling term λ4 and λ6. The positive/negative

sign in front of λ will increase/decrease the transition temperature at the same chemical

potential, which also means the location of CEP will appear at lower/higher chemical

potential in T−µ plane. Without the coupling of chiral condensate with chemical potential,

the deconfinement transition and chiral phase transition line will almost overlap. Thus,
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Figure 8. The chiral condensate σ as a function of the temperature T for three different quark

chemical potentials µ. The solid line is for µ = 0 GeV, the dashed-dotted line is for µ = 0.2 GeV

and the dashed line is for µ = 0.3 GeV, respectively. The crossover becomes first order transition

at high chemical potential.

we choose these certain set of λ to show the qualitative behavior of coupling strength in

this model. Therefore, in the later calculation we will take a specific group of parameters

λ2 = −25, λ4 = 200, λ6 = −1000
3 to show the qualitative results and the approximate

quantitative results to get a close CEP position of PNJL model. But we emphasize that

the exact value of this parameters could be fixed in a full back-reaction scenario and the

position of CEP could be predicted in that model, which will be left for the future study.

4.2 Interplay of chiral and deconfinement phase transition: quarkyonic phase

According to the above discussion, finally, we will take the parameters λ0 = 0, λ2 = −25,

λ4 = 200, λ6 = −1000
3 , v4 = 2, v6 = 100 in our calculation. Taking the physical quark mass

mq = 5 MeV, we could solve out chiral condensate σ as function of T and µ. We find that

at small chemical potential, the phase transition is of crossover type, like the dashed line

for µ = 0 in figure 8. At large chemical potential, it is found that the phase transition turns

to first order one, with multi-valued region appears, like the solid line for µ = 0.3 GeV in

figure 8. In between the two cases, there is a critical point, where the phase transition turns

to second order type, like the dotdashed line with µE = 0.21 GeV in figure 8. One could

define the second order transition temperature at ∂σ
∂T =∞, and we get TE = 0.20 GeV. So,

we get when µ < µE , the phase transition is crossover type while when µ > µE it turns to

be first order one. In between them, it is the critical end point (TE , µE) = (0.20, 0.21) GeV

or (TE , µEB) = (0.20, 0.63) GeV. One could see that the critical baryon chemical potential

at CEP in the quenched dynamical holographic QCD model is in good agreement with

that in the realistic PNJL model [110]. Finally, varying chemical potential and extracting

the corresponding critical temperature, one could draw the phase transition line for chiral

phase transition in the black lines in figure 9.

We summarize the chiral and deconfinement phase transitions in the (T, µ) plane in fig-

ure 9. Both the deconfinement and chiral phase transitions are realized in the quenched dy-

namical holographic QCD model. The deconfinement phase transition is always a crossover

and it shows weak dependence on the quark chemical potential, and the chiral phase tran-

sition is a crossover at low chemical potential and turns to a first order phase transition at
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Figure 9. The (T, µ) phase diagram for chiral and deconfinement phase transitions. The blue

dashed line is for deconfinement phase transition and the black line is for the chiral phase transition,

respectively.

high chemical potential, and a CEP shows up at (TE , µE) = (0.20, 0.21) GeV on the chiral

phase transition line. The chiral phase transition has much stronger dependence on the

quark chemical potential than the deconfinement phase transition, thus one can observe

the quarkyonic phase showing up in the region of large chemical potential. This phase

diagram is in agreement with that in the PNJL model [10, 110, 121].

5 Conclusion

In this work, we investigate both the chiral and deconfinement phase transitions at finite

temperature and chemical potential in the quenched dynamical holographic QCD model.

In this quenched dynamical holographic QCD model, the dilaton background describes the

gluodynamics and the flavor/meson background describes the chiral dynamics, respectively.

To extend the quenched dynamical holographic QCD model to finite chemical potential,

the quark chemical potential is introduced by a U(1) field in the Einstein-Dilaton-Maxwell

framework. The chemical potential dependence of the dilaton/gluodynamics is fixed by

higher order baryon number fluctuations especially the kurtosis of baryon number fluctu-

ations. For the matter sector, we introduce a sextic term in the scalar potential to realize

the first order phase transition at high chemical potential.

The chiral and deconfinement phase transitions in the (T, µ) plane is qualitatively

consistent with that in the PNJL model. The deconfinement phase transition is always

a crossover in the (T, µ) plane and it shows weak dependence on the quark chemical po-

tential. The chiral phase transition is a crossover at low chemical potential and turns

to be a first order phase transition at high chemical potential with a CEP showing up at

(TE , µE) = (0.20, 0.21) GeV. The chiral phase transition has much stronger dependence on

the quark chemical potential, therefore a quarkyonic phase with chiral symmetry restora-

tion but still in confinement showing up in the region of large chemical potential. It is not

surprising that the quenched dynamical holographic QCD model shows qualitatively con-

sistent result with the PNJL model, because the PNJL model is also a model of quenched

gluon background plus quark dynamics.
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Naturally, we will consider the back reaction of the matter part action on the quenched

gluodynamic background. Due to the complexity of numerical calculations of the coupling

of two actions, we will try to solve the phase structure of the full dynamical holographic

QCD model in the future.
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