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1 Introduction

Gravity in three-dimensional asymptotically anti-de Sitter (AdS) spacetimes and two di-

mensional conformal field theories (CFT) have a long common history, predating even the

AdS/CFT correspondence [1–9]. Rather than being derived from a top-down approach as

in string theory, the early relationship between gravity in 2+1 dimensions and CFTs was

based on semi-classical gravitational arguments, such as asymptotic symmetry analysis.

The relationship between AdS3 gravity and Liouville theory was made explicit in [9] and

generalized to supersymmetry in [10]. These works are based on a Hamiltonian reduction

of the Chern-Simons theory for SL(2,R) × SL(2,R) and supersymmetric generalizations

thereof, under the AdS3 boundary conditions devised in [3].

From the point of view of Chern-Simons theory on manifolds with the topologyM2×R
(withM2 the spatial sections and R the time), the first step of the reduction utilizes the re-

lation between Chern-Simons theory and two chiral SL(2,R) Wess-Zumino-Witten (WZW)

models, well known from [11–13]. Imposing the standard AdS3 boundary conditions was

then shown in [9] to be equivalent to the implementation of a Drinfeld-Sokolov (DS) re-

duction [14] of the WZW models.

The resulting action contains, in addition to local fields on the boundaries, global “zero

modes” that are shared by the boundaries. These zero modes are the holonomies around

non-contractible circles and their canonically conjugates. While the form of the action

for the boundary fields depends only on the boundary conditions at the corresponding

boundaries, with the property that the action on a given boundary does not depend on the

local fields on the other boundaries, the zero modes do couple the various boundaries. The

exact form of the coupling of the boundaries due to zero modes depend on the number of

boundaries, the topology of space and the boundary conditions at each boundary. It cannot

therefore be addressed completely if one focuses only on a single boundary without the full

information. This is the reason why zero modes were not treated in the articles [9, 10],

the purpose of which was to understand the universal form of the symmetry algebra on a

boundary with AdS-type boundary conditions, independently of the number and properties

of the other boundaries or of the topology. Paper [9] did not treat them at all (as explicitly

mentioned there), while paper [10] kept them up to the point where the extra information

is needed (see the appendix of that reference).

The holonomy is trivial and non-dynamical only for manifolds of topology “disk ×
time”. This situation eliminates for instance the black hole solutions [15, 16]. It is therefore

necessary to go beyond that simple case. In order to allow non-trivial holonomies, one

must consider other topologies, such as the annulus × time. It is actually exactly this

topology which is relevant for describing the three-dimensional black holes. The eternal

three-dimensional black holes have two asymptotic regions where standard AdS3 boundary

conditions hold and can support non-trivial holonomies along the non-contractible closed

paths. Since three-dimensional gravity is topological, we are free to deform the manifold to

our liking, as long as we do not change topology or boundary conditions. Any fixed time-

slice of the eternal BTZ black hole can then be deformed as shown in figure 1 to look like

an annulus with boundaries at finite values of the “radial” coordinate, with one asymptotic

boundary as the inner boundary and another asymptotic boundary as the outer boundary.
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Figure 1. A fixed time slice of the eternal black hole solution is an infinite cylinder, which is

topologically equivalent to the annulus. The two asymptotically AdS3 boundaries are mapped on

the two boundaries of the annulus.

The three-dimensional black hole provides therefore a specific system where the zero

modes can be handled precisely. In this work we consider this setup and completely carry

the reduction of the theory taking special care of the dynamics of the holonomy. One finds

that AdS3 gravity can then be reduced to a theory on both boundaries with a specific

coupling to the global zero modes which we derive.

An interesting feature of the analysis is that the holonomy is dynamical and possesses

a conjugate momentum. This conjugate momentum can be related to the radial Wilson

lines connecting the boundaries.1 The phase space of the system is therefore not just two

copies of the phase spaces of the boundary theories, but there is in addition the global

dynamical zero modes described by the holonomy and the radial Wilson lines. In the

quantum theory, the Hilbert space does not factorize into the mere tensor product of the

boundary Hilbert spaces, but involves also the zero modes. The non-trivial link between

the boundary Hilbert spaces does not need to be implemented by hand since it follows

from the action, which is not given by mere multiple copies of one boundary action, but

possesses an extra piece coupling the dynamical global zero modes to the boundary fields.

It turns out that the resulting reduced boundary theory can be viewed as a dynamical

theory of the boundary Virasoro charges, which, together with the zero modes, completely

capture the physics of the system. These charges transform in the coadjoint representation

of the Virasoro group and the boundary dynamics takes place on the coadjoint orbits.

This leads to two different descriptions of the boundary dynamics. One is in terms of

chiral bosons, which can be viewed as providing Darboux-like coordinates on the coadjoint

orbits. Since there are two SL(2,R) factors and two boundaries, one ends up with four chiral

bosons theories, one per SL(2,R) factor and boundary. We show that the chiral bosons

corresponding to the same SL(2,R) at two different boundaries are linked by the fact that

the conjugate momentum to the holonomy (which is the same at the two boundaries) is

the difference between the zero modes of the chiral fields at the two boundaries.

One can combine the fields corresponding to the two different SL(2,R) factors at

the same boundary into non-chiral Liouville fields, as in [9, 10], but the couplings to

the holonomies take then a more intricate form. As we shall explain, it turns out to

1The radial Wilson line has been discussed previously in the context of the eternal BTZ black hole in [17]

as computing probe operators in a thermofield double state.
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be more natural and advantageous, however, to combine instead the fields corresponding

to the same subgroup SL(2,R) at the two different boundaries of the annulus (when the

boundary conditions there have opposite chiralities, see below), because the fields share

the same zero modes.

The other description of the reduced action is obtained by parametrizing the boundary

fields in terms of Virasoro group elements, leading to the geometric action on the coadjoint

orbits of the Virasoro group. That the Drinfeld-Sokolov reduction of the SL(2,R) WZW

model gives the geometric action on the coadjoint orbit of the Virasoro group was shown

long ago in [18, 19], and discussed in the AdS3 context in [20]. This latter approach was

recently revived in [21, 22]. With two boundaries, one gets two copies of the geometric

action per SL(2,R), coupled through the fact that it is the same holonomy (which char-

acterizes the coadjoint orbits) that appears in both of them. The holonomy is one of the

dynamical variables and changes under the canonical transformation generated by its con-

jugate momentum. In the quantum theory, the path integral would involve a sum over

the orbits.

Our paper is organized as follows: As a warm-up exercise, we review first in section 2

the simplest case of a U(1) Chern-Simons theory, which illustrates the main point. This

is in fact standard material developed in [11–13], where a more profound analysis going

much beyond the considerations below can be found. We explicitly construct the conjugate

variable to the non-trivial holonomy in the annulus case and show how it is simply related to

the radial Wilson lines connecting the two boundaries. The connection with the non-chiral

free boson on the cylinder is then established. We also discuss the extension to the non-

abelian case, and in particular how the abelian condition that the holonomy is the same at

both boundaries becomes a matching condition expressing that the boundary holonomies

are in the same conjugacy class. We further recall that the radial Wilson lines connecting

the boundaries have now more complicated Poisson brackets with the boundary fields and

the holonomy, but remain crucially related to the conjugate momenta to the holonomy

in the sense that radial Wilson lines and holonomies around the non-trivial circles have

non-vanishing Poisson brackets. A complete description of the system is given by the

boundary Kac-Moody algebras (constrained by the matching condition that they should

define holonomies in the same conjugacy class) and one radial Wilson line.

We then turn to gravity in section 3, where in addition to the Chern-Simons reduction

to a WZW model at the boundary, the asymptotic conditions impose the Drinfeld-Sokolov

Hamiltonian reduction [9, 10]. As shown in [11–13], the reduction of the Chern-Simons

theory to a boundary chiral WZW theory involves a gauge redundancy. The DS reduction

conditions, which are expressed in terms of gauge invariant currents, preserve this gauge

invariance. Thus, the reduction of AdS3 gravity on the annulus, leading to two boundary

theories coupled through the zero modes (holonomy and radial Wilson line), has that gauge

symmetry. As explained in the appendix of [10], the gauge symmetry can be partly fixed

by choosing a particular form of the holonomy. The residual gauge symmetry will then be

given by the gauge transformations that preserve the form of the holonomy.

Now, the holonomy in SL(2,R) can be of three different types: hyperbolic, elliptic or

parabolic. The (partly) gauged fixed form of the holonomy will be different in each case.

– 3 –
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In the hyperbolic case, considered in [10], the holonomy can be assumed to be diagonal

(exponential of a Cartan subalgebra element). This case, which covers the BTZ black hole,

is treated in full in subsection 3.3, where the Gauss decomposition of the SL(2,R) group

elements is found particularly convenient. We compute in particular the radial Wilson line

for the non-rotating black hole and show that its non-trivial value can be viewed as an

obstruction to going to the gauge Ar = 0 while preserving the DS reduction conditions

at the two boundaries (which are “twisted” with respect to one another, one taking the

highest weight form and the other the lowest weight one).

For the other types of holonomies, another classical decomposition of matrices is found

to be convenient, namely the Iwasawa decomposition. Elliptic holonomies are dealt with

in subsection 3.4, where we emphasize in particular the enlargement of the residual gauge

symmetry when the holonomy is in the center of SL(2,R) (for which the gauge is in fact

not fixed at all). The parabolic holonomy case is considered in subsection 3.5.

Section 4 is devoted to conclusions and comments. We mention there the extension to

supergravity and higher-spin gauge theories, where the fact that the asymptotic symmetry

algebras are non-linear forces one to formulate the geometric actions in terms of symplectic

leaves, which generalize the concept of coadjoint orbits when the Poisson manifold of the

boundary currents is endowed with a nonlinear Poisson bracket structure. The paper closes

with four appendices of a more technical nature.

2 U(1) Chern-Simons theory

We start with the Chern-Simons action for a single abelian field Aµ given by

S[CS] =
k

2π

∫
dtdrdϕ (Aϕ∂tAr +AtFrϕ) , (2.1)

up to boundary terms which are discussed below. The topology is R ×M where M is a

two-dimensional manifold with coordinates (r, ϕ).

The kinetic term in the action shows that Aϕ and Ar are canonically conjugate in the

Poisson bracket

[Ar(r, ϕ), Aϕ(r′, ϕ′)] =
2π

k
δ(r − r′)δ(ϕ− ϕ′) , (2.2)

(in general coordinates, this is [Ai(x), Aj(y)] = 2π
k εijδ

(2)(x − y), which is coordinate in-

variant).

The At-equation of motion implies the constraints Frϕ = 0, from which one gets

Ar = ∂rΛ , (2.3)

and

Aϕ = ∂ϕΛ + k , (2.4)

with Λ = Λ(r, ϕ) and k = k(ϕ) single-valued functions. These are also functions of time,

but we do not write systematically the t-dependence.

– 4 –
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2.1 Proper and improper gauge symmetries

The constraint generates gauge transformations, in the sense that

Q[ε] = − k

2π

∫
d2x εFrϕ +B∂M , (2.5)

is such that

δAr = [Ar, Q[ε]] = ∂rε, δAϕ = [Aϕ, Q[ε]] = ∂ϕε. (2.6)

Here, B∂M is a boundary term that must be added to the bulk term in order for the

transformation δAr = ∂rε, δAϕ = ∂ϕε, which is canonical (i.e., which leaves the symplectic

2-form invariant, dV (iXσ) = 0) to indeed be generated by Q[ε], (i.e., iXσ = −dVQ[ε]

exactly, and not just up to surface terms [23, 24]).2 It reads

B∂M =
k

2π

∮
∂M

dλ ε(λ)|∂M Aλ(λ)|∂M , (2.7)

where λ is a coordinate on the boundary. We have assumed that ε is field-independent.

So, in the case of a disk with boundary at r = r1, the surface term reads

B∂M =
k

2π

∮
dϕ ε(r = r1, ϕ)Aϕ(r = r1, ϕ) , (2.8)

while for an annulus r1 ≤ r ≤ r2, it becomes

B∂M =
k

2π

∮
dϕ ε(r = r2, ϕ)Aϕ(r = r2, ϕ)− k

2π

∮
dϕ ε(r = r1, ϕ)Aϕ(r = r1, ϕ). (2.9)

Now, there are two types of “gauge transformations” [25]: “proper ones” that corre-

spond to mere redundancies, and “improper ones” that do change the physical states of the

system. What distinguishes the two are the values of the generators, which reduce on-shell

to the boundary terms. Proper gauge transformations have generators that vanish (on-

shell) for all configurations under consideration. By contrast, the generators of improper

gauge transformations need not vanish (even when the constraints hold). This can clearly

happen only when the gauge parameter ε does not vanish at the boundary.

A direct computation shows that the algebra of the charges Q[ε] is given by

[Q[ε], Q[η]] =
k

2π

∮
∂M

dλε(λ)|∂M
d

dλ
η(λ)|∂M . (2.10)

The easiest way to check this relation is to observe that [Q[ε], Q[η]] = δηQ[ε], and use the

known gauge transformation rule of the vector potential at the boundary, which is the only

quantity that transforms in Q[ε] under Q[η].

It follows from this relation that [Q[ε], Q[η]] = 0 whenever η vanishes at the boundary.

This means that Q[ε] is invariant under proper gauge transformations, i.e. an observable

of the theory, which is non-trivial when ε does not vanish at the boundary. By expanding

2We follow the notations of [24]: dV is the exterior derivative in field space; X is the vector field in field

space defined by the infinitesimal transformations; iXσ is the inner contraction of the symplectic form σ by

X. Note that the Lie derivative LXσ of σ reduces to LXσ = (dV iX + iXdV )σ = dV iXσ because σ is closed.

– 5 –
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the boundary gauge parameter ε(λ) in terms of a basis of functions on ∂M , one gets an

infinite number of observables.

Two questions arise then: (i) Are these observables unconstrained? (ii) Are they

complete? The answers to both questions depend on the topology of space. This issue will

be addressed in the next sections.

It is sometimes convenient to fix the gauge. A good gauge choice eliminates the redun-

dancy of proper gauge transformations without factoring out the improper gauge transfor-

mations. After the gauge is fixed, the constraints can be used as strong equations and the

bracket to be used is the Dirac bracket. The relation (2.10) is equivalent to

[Aλ(λ), Aλ(λ′)] =
2π

k
∂λδ(λ− λ′) . (2.11)

The bracket is here the Dirac bracket. This is the familiar u(1) Kac-Moody algebra, with

the tangential components of the vector potential being the Kac-Moody currents.

2.2 Zero modes for disk topology (a single boundary)

2.2.1 Action

We now turn to specific examples to illustrate the key features of the above discussion. We

consider first the case of a disk. We assume that the disk is centered at the origin and has

radius r1. There is a single boundary at r = r1. The above boundary parameter is taken

to be equal to ϕ.

In this case,
∮
dϕAϕ = 0 for all values of r, since the circles r = const. are contractible.

This implies
∮
dϕk = 0, from which one derives k = ∂ϕλ with λ single-valued. We can

thus write

Ar = ∂rµ, Aϕ = ∂ϕµ , (2.12)

with µ = Λ + λ.

This parametrization of Ai has some redundancy since µ→ µ+ε with ε = ε(t) (writing

explicitly the time dependence) leaves Ai unchanged. This is a gauge symmetry.

As discussed in [9], the boundary condition relevant to AdS3 gravity with AdS bound-

ary conditions is3 A− = 0 with A− = At − Aϕ, i.e., At = Aϕ. Under this condition, the

variation of the action picks up the boundary term at r = r1

k

2π

∫
dt

∮
dϕAtδAϕ

∣∣∣∣
r=r1

=
k

4π

∫
dt

∮
dϕ δ(A2

ϕ)

∣∣∣∣
r=r1

, (2.13)

3Note a typo in (2) of [9], where the last term should be +2A0Frϕ, instead of −A0Frϕ. The subsequent

discussion of the boundary terms has the correct factors. Note also that the boundary condition A− = 0

should be viewed as a condition that expresses A0 in terms of Aϕ, which is not restricted by it. The

choice A0 = Aϕ is an (improper) gauge choice, which selects a definite evolution of the initial data. The

time evolution in Chern-Simons theory is indeed a gauge transformation with gauge parameter A0. The

choice A− = 0 leads to a simple evolution (as does A+ = 0). With A0 = Aϕ, the gauge parameter in

front of the constraints depends on Aϕ, which explains why there is a factor of 1/2 in front of (Aϕ)2 in

H, AϕδAϕ = δ( 1
2
A2

ϕ), as shown in the text. One could consider more general A0’s, which can generate an

arbitrary boundary symmetry, leading to different generators H of the dynamical evolution at the boundary.

– 6 –
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which must be compensated by adding the boundary term at r = r1

− k

4π

∫
dtH , (2.14)

with

H =

∮
dϕ (Aϕ)2

∣∣∣∣
r=r1

. (2.15)

Plugging the form of Ai in the action (with the surface term included at the spatial

boundary) and dropping a surface term at the time boundaries, one gets the free chiral

boson action [26]

S[Φ(t, ϕ)] =
k

4π

∫
dt

[∮
dϕ (∂ϕΦ∂tΦ)−H

]
, H =

∮
dϕ (∂ϕΦ)2 , (2.16)

where Φ is the value of µ at the boundary r = r1, Φ(t, ϕ) ≡ µ(t, r1, ϕ).

In agreement with the redundancy mentioned above, the action (2.16) is found to be

invariant under the transformation

Φ→ Φ + ε(t) . (2.17)

This gauge symmetry shows that the zero mode of Φ is pure gauge and can be set equal

to any value.

The global symmetry on the boundary is generated by the Kac-Moody currents j ≡
k

2πAϕ which are equal to Aϕ = ∂ϕΦ on the boundary, and reads

Φ→ Φ + ν(ϕ) , (2.18)

where ν(ϕ) is an arbitrary time-independent function of ϕ. The zero mode of this trans-

formation coincides with the gauge transformation (2.17) and can depend also on time.

Quotienting out this gauge symmetry, one sees that the actual global symmetry is thus

L̂G/G with G = U(1) [11–13]. Note that the zero mode of the Kac-Moody currents, which

is the holonomy, is identically zero when expressed in terms of Φ.

Comments

• The momentum π0 conjugate to the zero mode is zero. The constraint π0 ≈ 0 is first

class and generates the gauge symmetry.

• In fact, since U(1) is not simply connected, there are additional sectors [12] but these

will not be discussed here.

2.2.2 Do the Kac-Moody currents form a complete set of observables?

The Kac-Moody currents j(ϕ) ≡ k
2πAϕ(ϕ) fulfill the bracket relations

[j(ϕ), j(ϕ′)] =
k

2π
∂ϕδ(ϕ− ϕ′) . (2.19)

– 7 –
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They are constrained by the condition that their zero mode (the holonomy) be zero, a

condition which is compatible with the algebra since [
∮
dϕ j(ϕ), j(ϕ′)] = 0.

Although the bracket has been technically derived as a Dirac bracket, we shall often

refer to it as the “Poisson bracket”, since it will be the fundamental bracket between the

observables that will be the starting point for the geometric considerations. No confusion

should arise.

Do the (constrained) currents form a complete set of observables? By this we mean:

if we prescribe j(ϕ) on the boundary at a given “initial time”, are the initial data

(Ar(r, ϕ), Aϕ(r, ϕ)) completely specified up to proper gauge transformations? This amounts

to determining the general solution of Frϕ = 0 with the prescribed boundary conditions.

We have seen that the general solution of the constraint is given by (2.12), i.e., Ar = ∂rµ

and Aϕ = ∂ϕµ for some function µ(r, ϕ). If Aϕ(r1, ϕ) (without zero mode) is given, the

only allowed gauge transformations are

µ→ µ+ Λ(r, ϕ) , (2.20)

where the gauge parameter is constrained to reduce to a constant at the boundary,

Λ(r = r1, ϕ) = C , (2.21)

in order to match the given Aϕ(r = r1, ϕ). But this is a proper gauge transformation since

the corresponding charge vanishes,

k

2π

∮
dϕC Aϕ(r = r1, ϕ) =

k

2π
C

∮
dϕAϕ(r = r1, ϕ) = 0 . (2.22)

The solution is thus completely determined by the boundary value of Aϕ up to a

proper gauge transformation. The conclusion is therefore that the Kac-Moody currents

at the boundary form a complete set of observables when the spatial section have the

disk topology.

To summarize: the dynamics is completely captured by the dynamics of the Kac-

Moody currents j(ϕ) ≡ k
2πAϕ(ϕ), subject to the constraint

∮
j(ϕ) = 0 and fulfilling the

bracket (2.19). The Hamiltonian H is (2π
k )2

∮
j2(ϕ). One can equivalently parametrize

the current in terms of the chiral boson Φ(ϕ), which is unconstrained but has some gauge

redundancy (zero mode).

2.2.3 Connection with geometric action

This is precisely the setting of the geometric formulation of the dynamics in terms of

coadjoint orbits of the Kac-Moody group.

The currents (“charges”), which provide a complete physical description of the system

as we have just seen, parametrize the vector space dual to the Lie algebra and transform

in the coadjoint representation. The transformation is generated by the currents them-

selves acting through the canonical Poisson bracket (2.19) associated with the Lie algebra

structure. It preserves therefore the non-degenerate symplectic structure induced on the

coadjoint orbits [27–31].

– 8 –
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In our case, there is only one relevant orbit, namely, the orbit with zero holonomy

(two connections Aϕ with same holonomy can be mapped on one another by a Kac-Moody

transformation and the stability subgroup is just U(1) as the formulas (2.17), (2.18) show).

The parametrization of the orbits in terms of Φ is adapted to the group action since

the transformations are then just shifts of Φ. The symplectic structure can be read off

from the action and is
∮
dϕ d(∂ϕΦ) ∧ dΦ. It is non-degenerate when the zero mode of Φ is

quotiented out. The kinetic term is the so-called “geometric action”.

2.3 Zero modes for annulus topology (two boundaries)

2.3.1 Action

If the spatial manifold is an annulus with boundaries, say, at r = r1 and r = r2 (r1 < r2),

the holonomy
∮
dϕAϕ need not vanish. One thus has k = ∂ϕλ + k0, where k0 does not

depend on ϕ. This yields

Ar = ∂rµ, Aϕ = ∂ϕµ+ k0 , (2.23)

with µ = Λ + λ. There is again the redundancy µ→ µ+ ε with ε = ε(t).

The boundary term picked up at the spatial boundaries reads now

k

2π

∫
dt

∮
dϕAtδAϕ

∣∣∣∣
r=r2

− k

2π

∫
dt

∮
dϕAtδAϕ

∣∣∣∣
r=r1

. (2.24)

In order to have a positive Hamiltonian, we should impose the condition A− = 0 at the

outer boundary r = r2 as above, but A+ = 0 (⇔ At = −Aϕ) at the inner boundary r = r1,

so that the boundary term becomes

k

4π

∫
dt

∮
dϕ δ(A2

ϕ)

∣∣∣∣
r=r2

+
k

4π

∫
dt

∮
dϕ δ(A2

ϕ)

∣∣∣∣
r=r1

, (2.25)

to be canceled by adding to the action

− k

4π

∫
dtH , (2.26)

with

H =

∮
dϕ (Aϕ)2

∣∣∣∣
r=r2

+

∮
dϕ (Aϕ)2

∣∣∣∣
r=r1

, (A−(r = r2) = 0, A+(r = r1) = 0) . (2.27)

The boundary condition A− = 0 at the boundary r = r1 is also worth being considered

even though the corresponding Hamiltonian is not bounded from below. One then gets

H =

∮
dϕ (Aϕ)2

∣∣∣∣
r=r2

−
∮
dϕ (Aϕ)2

∣∣∣∣
r=r1

, (A−(r = r2) = 0, A−(r = r1) = 0) .

(2.28)

The two situations At = ±Aϕ can be thought of as differing by the orientation of time at

the inner boundary (At → −At).
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Inserting the expression for Ai into the action, one gets with the first boundary con-

ditions

S[Φ(t, ϕ),Ψ(t, ϕ), k0(t)] = S(2) + S(1) + S(0), (2.29a)

S(2) =
k

4π

∫
dt

[∮
dϕ (∂ϕΦ∂tΦ)−HΦ

]
, HΦ =

∫
dϕ (∂ϕΦ)2 , (2.29b)

S(1) =
k

4π

∫
dt

[
−
∮
dϕ (∂ϕΨ∂tΨ)−HΨ

]
, HΨ =

∫
dϕ (∂ϕΨ)2 , (2.29c)

S(0) =
k

2π

∫
dt

[∮
dϕ k0(∂tΦ− ∂tΨ)−H0

]
, H0 = 2π (k0)2 , (2.29d)

where Φ and Ψ are the fields at the boundaries, Φ(t, ϕ) = µ(t, r2, ϕ), Ψ(t, ϕ) = µ(t, r1, ϕ).

For the second boundary conditions, one ends up with the same expression but now HΨ =

−
∫
dϕ (∂ϕΨ)2 and H0 = 0.

In both cases, the action has the gauge symmetry

Φ→ Φ + ε(t), Ψ→ Ψ + ε(t), k0 → k0 , (2.30)

coming again from the redundancy of the parametrization of Ai. The zero mode of Φ−Ψ is

gauge invariant and conjugate to the holonomy k0 (up to a constant), which is a dynamical

variable. The phase space contains therefore configurations of the connection with different

holonomies, while the holonomy was fixed to be zero in the previous section and not a

dynamical variable.

More precisely, if we denote by π0 and p0 the momenta conjugate to the zero modes

of Φ and Ψ, we get from the action π0 = kk0 and p0 = −kk0. The fact that it is the same

holonomy k0 that appears in both expressions implies the first class constraint π0 +p0 ≈ 0,

which is actually the generator of the gauge transformation (2.30). At the same time, the

momentum Π0 conjugate to the holonomy k0 is explicitly equal to

−Π0 =
k

2π

∮
dϕ(Φ−Ψ) , (2.31)

since the relevant term in the kinetic term reads −
∫
dtk0Π̇0. There is only one zero mode,

which is shared by the two boundaries due to the condition d
dr

∮
dϕAϕ = 0 that follows

from the zero curvature condition (the second zero mode is pure gauge).

The global symmetry is generated by the two sets of Kac-Moody currents j(ϕ) at the

outer boundary and m(ϕ) at the inner boundary defined as

j(ϕ) ≡ k

2π
A(2)
ϕ (ϕ), m(ϕ) ≡ k

2π
A(1)
ϕ (ϕ) . (2.32)

The global symmetry is in fact L̂G×L̂G
G , with one copy of L̂G at each boundary. The

quotient by G accounts for the fact that the two algebras share the same zero mode,∮
dϕj(ϕ) =

∮
dϕm(ϕ) = k0. [If one changes the orientation of the inner boundary so that

the normal points outwards at both boundaries, one finds −k0 as holonomy at the inner

boundary, so that the sum of the boundary holonomies is zero.]
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It is easy to check that the equations of motion imply that the holonomy is time-

independent,

k̇0 = 0 . (2.33)

Depending on the choice of boundary conditions at the inner boundary, its conjugate

momentum Π0 either grows linearly with time (first choice, H0 = 2π(k0)2) or remains

constant (second choice, H0 = 0).

The two boundaries are coupled through the kinetic term in S(0), which involves the

zero modes. One may decouple them in the abelian case under study by choosing the gauge∮
dϕΨ = 0. The action on the outer boundary r = r2 becomes

S[Φ(t, ϕ), k0(t)] =
k

4π

∫
dt

[∮
dϕ (∂ϕΦ∂tΦ) + 2k0

∮
dϕ∂tΦ−H

]
, (2.34)

with

H =

∫
dϕ (∂ϕΦ)2 + 4π (k0)2 . (2.35)

It has no gauge symmetry and possesses global symmetry L̂G. It differs from the action

for the disk by the contribution of the zero modes. The zero mode k0 of the Kac-Moody

current (holonomy) is now not constrained to vanish and is conjugate to the zero mode

of Φ, which is not anymore pure gauge.

In this gauge, the action at the inner boundary is the same as the action for the disk

and has symmetry L̂G/G, but the zero mode of the Kac-Moody current is constrained to

be equal to k0 (instead of 0).

We can thus conclude that the description of the dynamics at the outer boundary

depends, in what concerns the zero modes, “on what is inside”. As announced above,

extra information on the presence of other boundaries and on the topology is necessary to

control the zero modes.

Note also that an equivalent way to treat the holonomy on the annulus is to insert a

dynamical source in a space with the disk topology [13].

2.3.2 Connection with non-chiral boson

The action S[k0,Φ,Ψ] given by (2.29a) contains two chiral bosons of opposite chiralities,

as well as a common zero mode that they share. By making the change of variables

φ = Φ−Ψ , Πφ =
k

2π

(
Φ′ + Ψ′ + 2k0

)
, a = Φ0 + Ψ0 , (2.36)

which is invertible, one can rewrite it as

S[φ,Πφ] =

∫
dt

(∫
dϕΠφφ̇−H

)
, (2.37)

with

H =

∫
dϕ

[
4π

k
Π2
φ +

k

16π
φ′2
]
. (2.38)

The variable a drops out because it is pure gauge and so, one can forget about it in the

action (2.37), which has then no gauge invariance left.
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The action (2.37) is just the Hamiltonian form of the action for a non-chiral boson.

Eliminating the conjugate momenta through their own equations of motion leads to the

standard action

S[φ] =
k

16π

∫
dtdϕ

[
(∂tφ)2 − (∂ϕφ)2

]
, (2.39)

for a free boson on a cylinder.

We thus see that with the boundary condition A− = 0 at one boundary and the

boundary condition A+ = 0 at the other boundary, the resulting theory is just that of

a non-chiral free boson. Crucial in the reconstruction is the fact that the chiral bosons

at the two boundaries have opposite chiralities and share the same zero mode. With the

boundary conditions A− = 0 at the two boundaries, the two chiral bosons would have the

same chiralities and the above construction could not be applied.

2.3.3 Do the Kac-Moody currents form a complete set of observables?

The Kac-Moody currents fulfill the bracket relations

[j(ϕ), j(ϕ′)] =
k

2π
∂ϕδ(ϕ− ϕ′) , (2.40a)

[m(ϕ),m(ϕ′)] =
k

2π
∂ϕδ(ϕ− ϕ′) , (2.40b)

[j(ϕ),m(ϕ′)] = 0 , (2.40c)

which follow from the kinetic term in the action, and obey the constraint∮
dϕ j(ϕ) =

∮
dϕm(ϕ) = k0 . (2.41)

In the case of the disk topology, the boundary Kac-Moody currents provided a complete

description of the system. Is the same true in the case of an annulus? Does the knowledge

of the two boundary Kac-Moody currents (j(ϕ),m(ϕ)) completely determine the gauge

potential Ai on the annulus up to a proper gauge transformation?

We know that the answer is negative, since the conjugate momentum Π0 to the holo-

nomy is gauge invariant and not determined by the boundary Kac-Moody currents (con-

trary to the holonomy). To completely specify the classical state of the system up to

irrelevant proper gauge transformations, one needs to give not only the two sets of Kac-

Moody currents at the boundaries (subject to equal zero mode) but also Π0.

One way to understand this is to observe that Φ −Ψ can be written as

Φ−Ψ =

∫ r2

r1

drAr , (2.42)

a quantity that is manifestly gauge invariant under all proper gauge transformations; it is a

Wilson line along a radial curve connecting the two boundaries. The momentum conjugate

to the holonomy can thus be expressed non-locally in terms of the radial component of the

gauge potential,

Π0 = − k

2π

∮
dϕ

(∫ r2

r1

drAr

)
. (2.43)
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While the Fourier modes (Φ−Ψ)n of Φ−Ψ with n 6= 0 are completely determined by the

boundary currents, this is not true for the zero mode Π0, which involves independent bulk

data through the integral of the vector potential along lines joining the two boundaries.

It is amusing to note that the radial component Ar of the Maxwell field plays a similar

role at infinity in the asymptotically flat context [24]. Note that instead of integrating

along a radial direction, one can take the integral along any curve joining the two bound-

aries. This will amount to shifting the momentum Π0 by a multiple of k0, which is a

canonical transformation.

The time derivative of Π0 follows from the equation Ftr = 0⇔ ∂tAr = ∂rAt,

Π̇0 = − k

2π

∮
dϕ

(∫ r2

r1

∂rAt

)
= −

∮
dϕ (j(ϕ)±m(ϕ)) , (2.44)

depending on whether At = ∓Aϕ at the lower boundary. Using the holonomy matching

condition between lower and upper boundaries we get Π̇0 = −2k0, or Π̇0 = 0, in agreement

with the Hamiltonian equation.

Finally, we observe that the brackets relation involving Π0 read

[Π0, j(ϕ)] = −1, [Π0,m(ϕ)] = −1, (2.45)

implying in particular [Π0, jn] = 0 and [Π0,mn] = 0 for n 6= 0.

One can again describe the dynamics of the fields at one boundary in terms of coad-

joint orbits of the Kac-Moody group and geometric actions. But there is an additional

feature compared with the disk topology, namely, that the holonomy k0, which is a con-

stant of the motion, was previously fixed to be zero but can now take arbitrary values.

Furthermore, there is a matching condition between the geometric dynamical description

at one boundary and the geometric dynamical description at the other boundary, namely,

that the holonomies are equal (or differ by the sign if one changes the orientation at the

inner boundary).

One can alternatively consider the coadjoint orbits of the full algebra (2.40a)–(2.40c)

and (2.45) given by two copies of the U(1) current algebra and the Heisenberg algebra for

(k0,Π0). The holonomy k0 can then be changed by acting with its conjugate, so that the

system is not confined to a single Kac-Moody orbit. The symplectic form is not degenerate

when including k0 because its conjugate Π0 also appears. The kinetic term of the above

action is just the corresponding geometric action.

2.3.4 Periodicity of µ

It is useful to rewrite (2.23) in terms of the U(1) group element eiµ as

Aj =
1

i
e−iµ∂je

iµ + k0 δjϕ . (2.46)

The group element eiµ is assumed to be periodic. This implies that the function µ, in fact,

need not be periodic but is only requested, a priori, to change by an integer multiple of 2π

as one makes a full turn.
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It follows that the pairs (µ, k0) and (µ + mϕ, k0 − m) (m ∈ Z) determine the same

connection Ai (the function eimϕ is well defined everywhere on the annulus and so the

redefinition eiµ → eiµeimϕ is perfectly acceptable). The holonomy k0 is thus defined up to

an integer.

By using this ambiguity, one can assume µ to be periodic. Indeed, if µ is periodic up

to 2πn, the function µ− nϕ is periodic. Taking µ to be strictly periodic (and not periodic

up to an integer multiple of 2π) is therefore not a restriction in the annulus case.

2.3.5 Gauge fixing

A good gauge condition should be a condition that freezes only the proper gauge transfor-

mations, without affecting the freedom of performing improper gauge transformations.

For that reason, a condition such as Ar = 0 is too strong. That it is incorrect to

impose Ar = 0 can be seen from many angles. To reach the condition Ar = 0 from a

configuration that does not obey it, one needs to add the gradient ∂iε of a function ε that

must obey a first-order differential equation with respect to r of the form ∂rε = · · · , the

solution of which will in general not vanish at the boundaries and will thus involve an

improper gauge transformation. It is also clear that Ar = 0 is a condition incompatible

with a non-vanishing radial Wilson line.

A gauge condition such as ∂ϕAr = 0 would also be too strong. By contrast, the

condition ∂rAr = 0 is acceptable since in order to reach it, one needs to perform a gauge

transformation that obeys a second-order differential equation with respect to r of the form

∂2
r ε = · · · , which can consistently be assumed to vanish at the boundaries. In fact, a proper

gauge transformation need not vanish at the boundaries but must reduce to a constant,

the same at both boundaries, so that the residual gauge symmetry in the gauge ∂rAr = 0

is given by ε =constant.

In the gauge ∂rAr = 0, the constraint Frϕ = 0 can be integrated as follows:

• One can give as boundary data the two sets of Kac-Moody currents j(ϕ) and m(ϕ)

as well as the radial Wilson line Π0. One gets from the gauge condition ∂rAr = 0

that Ar depends only on ϕ, and from the zero curvature condition ∂rAϕ = ∂ϕAr that

Aϕ(r, ϕ) = (r − r1)∂ϕAr(ϕ) +m(ϕ) so that

∂ϕAr(ϕ) =
j(ϕ)−m(ϕ)

r2 − r1
.

This equation is consistent because the matching condition implies that j(ϕ)−m(ϕ)

has no zero mode. It determines Ar up to a constant, which is then fixed by the

condition that the radial Wilson line should be equal to Π0. The boundary fields Φ

and Ψ are finally determined up to the addition of a constant, which is the residual

gauge symmetry in the gauge ∂rAr = 0.

• One can alternatively give “initial” (in r) data m(ϕ) and Ar(ϕ) at the inner boundary

and integrate outwards to the outer boundary. One gets the Kac-Moody current at

the outer boundary as j(ϕ) = (r2 − r1)∂ϕAr(ϕ) + m(ϕ), and the radial Wilson line

as Π0 = − k
2π (r2 − r1)

∮
dϕAr(ϕ).
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Finally, we note that although one cannot impose Ar = 0 throughout the annulus,

there exist consistent gauge conditions such that Ar = 0 at both boundaries (or even in

the vicinity of the boundaries). Indeed, if ε is the parameter of the gauge transformation

needed to implement the gauge condition, one finds that ε and its radial derivative ∂rε

are fixed at the two boundaries (ε(r1) = ε(r2) = 0 because it must be a proper gauge

transformation and ∂rε(ri) is determined by the condition that Ar = 0 at the boundaries).

There are clearly many functions that fulfill these rather weak conditions. For instance, if

Ar =
(
r−r1
r2−r1

)2
, one finds that Ār = Ar + ∂rF with F = 1

(r2−r1)2
(r − r1)2(r2 − r), differs

from Ar by a proper gauge transformation since F vanishes at r1 and r2 and is equal to

Ār = 2
(r2−r1)2

(r − r1)(r2 − r), an expression that vanishes at the boundaries.

2.4 Extension to the non-abelian case

The non-abelian case proceeds conceptually along the same general lines [13]. The orbits

of the coadjoint action of the group are again determined by the holonomy (monodromy)

up to conjugation.

Solution of (spatial) zero curvature condition. More explicitly, in the case of the

annulus, one solves the zero curvature condition Frϕ = 0 (at any given time) as

Ar = G−1∂rG, Aϕ = G−1∂ϕG+G−1KG , (2.47)

where G(r, ϕ) is a periodic group element and K is a Lie algebra element that can be taken

to be independent of r and ϕ, and which defines the holonomy. Both G and K depend

in general on t. There is some ambiguity in this decomposition since if R is a Lie algebra

element that commutes with K such that e2πR = I, then G ∼ eRϕG and K ∼ K−R. This

ambiguity can be used to impose convenient conditions if one so wishes.

As in the abelian case, the decomposition (2.47) involves a gauge redundancy, G→ ωG,

K → ωKω−1, where ω(t) is an arbitrary group element that depends only on time, and

which indeed drops from (2.47).

Kac-Moody currents. The Yang-Mills gauge symmetry Aµ → S−1∂µS+S−1AµS reads

G → GS and K → K and defines proper gauge transformations when S vanishes at the

boundary. When S does not vanish at the boundary (and has a non-vanishing charge),

it defines an improper gauge transformation that generically changes the physical state of

the system. The corresponding charge-generators are Aaϕ(r = r2) ≡ k
2π j

a (outer boundary)

or Aaϕ(r = r1) ≡ k
2πm

a (inner boundary). Both {ja(ϕ)} and {ma(ϕ)} form a Kac-Moody

algebra [11–13]. They are called boundary Kac-Moody currents.

The holonomy is dynamical in the annulus case. Its conjugate momentum is a global

degree of freedom that is not contained in the boundary Kac-Moody currents. It can be

related to Wilson lines connecting the two boundaries (see below).

Holonomy matching condition. The effect of the gauge redundancy is to impose a

matching condition between the currents at the two boundaries, expressing that the holo-

nomy (which is a functional of the currents), is the same at both boundaries. This matching

condition is a first class constraint, generating the gauge redundancy.
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(i)

(iv)
(iii)

(ii)

Figure 2. A contractible contour composed of (i) the outer boundary, (ii) the radial ray ρ joining

the outer boundary to the inner boundary at ϕ = 0, (iii) the inner boundary (traveled in negative

direction), (iv) the ray ρ traveled in the other direction.

When expressed in terms of the boundary Kac-Moody currents, the matching condition

explicitly reads

P exp

[
− k

2π

∮
0
j(ϕ)dϕ

]
= C P exp

[
− k

2π

∮
0
m(ϕ)dϕ

]
C−1 , (2.48)

where the closed integral around the circle has conventionally been taken to start at ϕ = 0

and where C is the radial path-ordered integral

C ≡ P exp

[
−
∫ r2

r1

Ar(r, ϕ = 0)dr

]
= G−1(r = r2, ϕ = 0)G(r = r1, ϕ = 0) . (2.49)

This condition expresses the triviality of the holonomy around the contractible contour

shown in figure 2.

It is important to realize that the Kac-Moody currents do not fix completely C, which

contains therefore extra information. Indeed, C is determined by (2.48) up to a transfor-

mation that commutes with the holonomy, C → CU , such that

U P exp

[
− k

2π

∮
0
m(ϕ)dϕ

]
U−1 = P exp

[
− k

2π

∮
0
m(ϕ)dϕ

]
. (2.50)

The extra information contained in C is accordingly a specification of U . If the holonomy

is put in the Cartan subalgebra, U itself will generically be in the Cartan subalgebra, which

means that the amount of extra information contained in C is parametrized by the rank

of the group.
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Radial Wilson lines. We have just seen that the Wilson lines joining the two bound-

aries play an important role in the description of the system. Through the zero curvature

condition, any such Wilson line can be expressed in terms of a radial Wilson line at fixed

angle ϕ̄, C(ϕ̄) ≡ P exp [−
∫ r2
r1
Ar(r, ϕ = ϕ̄)dr] and the Kac-Moody currents at the bound-

aries. There is thus only one independent Wilson line connecting the boundaries that must

be added to the Kac-Moody currents, to get a complete description of the system. We have

conventionally taken C ≡ C(ϕ̄ = 0). The radial Wilson line C is manifestly gauge invari-

ant under the ω-redundancy. It transforms as C → S−1(2)CS(1) under the Kac-Moody

symmetries, where S(2) = S(r = r2, ϕ = 0) and S(1) = S(r = r1, ϕ = 0). A non-trivial

radial Wilson line is again an obstruction to imposing the gauge Ar = 0.

The radial Wilson line C has a non-vanishing Poisson bracket with the holonomy

(see [32–34] for the explicit evaluation in 2+1 gravity). Including it gives a non-degenerate

symplectic structure, which is otherwise degenerate since the Casimirs of the group — in

number equal to the rank — do not have a conjugate momentum if we only consider the

Kac-Moody currents. This will be illustrated in the gravity case below. However, it should

be stressed that the Poisson brackets of the Wilson lines with the other canonical variables

do not take in general the simple canonical form that we found in the abelian case, i.e.,

the radial Wilson lines do not coincide with the canonically conjugate momentum to the

holonomy, but are more complicated phase space functions. To get Darboux coordinates

necessitates an appropriate and in general rather cumbersome redefinitions of the variables.

Time evolution. Finally, the time evolution of the fields is given by the temporal com-

ponents of the zero curvature condition. It takes the form of a Yang-Mills gauge transfor-

mation with gauge parameter equal to At. Specifying the dynamics requires therefore a

choice of At. Different boundary values of At define different physical Hamiltonians since

the Yang-Mills gauge symmetry is improper at the boundary. There is a great freedom in

the choice of At. The choices At = ±Aϕ turns out to be relevant for gravity [9].

Conclusion. A complete set of observables is given by the Kac-Moody currents at the

two boundaries and the conjugate to the holonomy. The Kac-Moody currents are subject

to the matching condition (2.48). This condition takes a more complicated form than in

the abelian case (where it reduces to the simple condition j0 = m0) because the group

elements do not commute. Another way to understand this more intricate form comes

from the dynamical role played by the matching condition, which generates the gauge

redundancy parametrized by ω(t). In the abelian case, the ω gauge redundancy simply

coincided with a particular choice of the Yang-Mills gauge symmetry, namely S = ω(t).

This is not true anymore in the non-abelian case. For that reason, the generator of the

ω-symmetry takes a more involved form when expressed in terms of the generators of the

Kac-Moody currents (and the Wilson lines along radial rays).

3 Pure gravity

We now turn to AdS3 gravity, which can be viewed as a Chern-Simons model with gauge

group SL(2,R)×SL(2,R) [4, 5]. The black hole was derived in [15] and its global structure

(Kruskal coordinates and Penrose diagrams) was analyzed in [16].
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In the eternal black hole case, there are two asymptotic regions and the spatial sections

have the topology of a cylinder with a “radial coordinate” (e.g., Kruskal coordinate u)

ranging from −∞ to +∞ (the two asymptotic regions are connected by a “wormhole”).

By a gauge transformation, one can eliminate the radial dependence from the SL(2,R)

connection in the asymptotic regions (but not everywhere as we have seen) so that the

problem can be effectively reformulated on a cylinder with finite “height”, or equivalently,

on the annulus ([9] and appendix B). This is precisely the context of the previous section.

We consider thus from the outset the case of a spacetime manifold M3 that has the

topology of the annulus × time. The analysis proceeds as above, but there is an extra

feature, namely, that the AdS3 boundary conditions imply a “Hamiltonian reduction”

at the boundary [9] (along Drinfeld-Sokolov lines [14, 18, 35–38]), leading to the AdS3

asymptotic Virasoro algebra found in [3].

As emphasized in the appendix of [10], in order to deal with the constraints imposed

by the AdS3 Hamiltonian reduction, one can either treat independently the two factor

subgroups SL(2,R), corresponding to opposite chiralities, or one can combine them prior

to enforcing the constraints in order to get the non-chiral Liouville model. This latter

method was the one initially followed in [9], but turns out to be cumbersome for dealing

with the zero modes. Accordingly, it is more convenient not to recombine the chiralities.

This is the approach that will be adopted here.

3.1 WZWN action

The two boundaries of the annulus, Σo for the outer boundary and Σi for the inner bound-

ary, are the two asymptotic boundaries of the eternal black hole and we will equip as above

spacetime with a coordinate system (r, t, ϕ) of orientation εrtϕ = 1. As we have seen, the

holonomy is dynamical for the annulus topology. This means that it is not fixed to some

definite value. In terms of the black hole charges, we allow accordingly in our phase space

black holes with different mass and angular momentum.

The Hamiltonian form of the Chern-Simons action

Scs[A] =
k

4π

∫
M

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (3.1)

is a direct generalization of the abelian one and reads

S[A] =
k

4π

∫
M
dtdϕdr tr

(
AϕȦr −ArȦϕ + 2AtFrϕ

)
+ IΣi + IΣo , (3.2)

with

Frϕ = ∂rAϕ − ∂ϕAr + [Ar, Aϕ] , (3.3)

and where IΣi,o are boundary terms adapted to the boundary conditions under considera-

tion.

We impose the boundary condition A− = 0 of [9] at the outer boundary. We also

choose for definiteness the Hamiltonians on the respective boundaries to have the same

sign, which one could interpret as having time evolution on both sides of the black hole run
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in the same direction. This is achieved by taking A+ = 0 at the inner boundary. These

choices lead to the boundary terms:

IΣi,o = − k

4π

∫
Σi,o

dtdϕ trA2
ϕ . (3.4)

The next step is to solve the constraint Frϕ = 0. Given that the spatial sections have

the annulus topology, they can support non-trivial holonomies along the non-contractible

closed loops around the hole. There are two ways to take the holonomy into account. One

is just the approach adopted previously, in which group elements G are requested to be

periodic and the holonomy appears explicitly,

Aϕ = G−1(∂ϕ +K(t))G , G(ϕ+ 2π) = G(ϕ). (3.5)

Here, K(t) is a Lie algebra valued function of time that parametrizes the holonomy.4

Another approach is to include the holonomy in the periodicity of the group element.

Denoting non-periodic group elements and functions by using tildes, we see that we may

equivalently take:

Aϕ = G̃−1∂ϕG̃ , G̃(ϕ+ 2π) = exp(2πK(t))G̃(ϕ) . (3.6)

Using this it is clear that the relation between G and G̃ is

G̃ = eK(t)ϕG . (3.7)

We will choose to take periodic group elements and represent the holonomy explicitly in

the action. We have verified that the other approach gives the same result, but for the

sake of brevity we will not carry out both here.5

The action with explicit holonomy can be obtained by substituting (3.5) into (3.2).

The result is (formula (A.7) of [10])

SCS[G,K(t)] = +
k

4π

∫
M
d3x tr

(
∂r(G

−1∂ϕGG
−1∂tG)

)
+

k

12π

∫
M

tr(G−1dG)3 (3.8)

+
k

4π

∫
M
d3x tr

(
2∂r(G

−1K∂tG)− ∂t(G−1K∂rG)
)

+ IΣi + IΣo .

Here we have discarded a total ϕ-derivative, which is allowed since G is periodic in ϕ. In

addition, we have also dropped boundary contributions at the time boundaries, and we

will continue to do so in the sequel, up to the point where we discuss them systematically.

The reason that we delay the discussion of the boundary terms at the time boundaries is

that their form depends on what is kept fixed there, i.e., with which representation one is

dealing (which complete set of commuting observables is fixed at the time boundaries). It

4 This choice is actually a restriction, as it is only possible to eliminate the ϕ-dependence in K(t) for

simply connected groups, which SL(2,R) is not.
5In the case of including the holonomy in the periodicity of the group element, one would have to keep

track of ϕ-boundary terms. These can be dealt with using the periodicity conditions (3.6), which reduces

them to a total r-derivative, leading to a non-trivial contribution at the r-boundary.
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is premature to discuss them already now without a better grasp of the structure of the

physical phase space.

The action now decomposes into two boundary contributions which are coupled

through the holonomy parameterized by K.

SCS[h, l,K(t)] = +
k

4π

∫
Σo

dtdϕ tr
(
h−1∂ϕhh

−1∂−h+ 2h−1K∂−h−K2
)

(3.9)

− k

4π

∫
Σi

dtdϕ tr
(
l−1∂ϕll

−1∂+l + 2l−1K∂+l +K2
)

+ IWZ [G] ,

where here:

h = G(t, r = router, ϕ), l = G(t, r = rinner, ϕ) . (3.10)

The Wess-Zumino term

IWZ [G] =
k

12π

∫
M

tr(G−1dG)3 , (3.11)

can be written as a total derivative and hence it also only depends on the boundary values

of the group element G.

The action (3.9) is invariant under the gauge symmetry G→ω(t)G, K→ω(t)Kω−1(t),

which implies in terms of the boundary fields,

h→ ω(t)h, l→ ω(t)l, K → ω(t)Kω−1(t) . (3.12)

This gauge invariance results from the redundancy of the parametrization of the group

element G [13] and can straightforwardly be verified to be present in the above action.6

3.2 More on the holonomy

With the boundary condition At = Aϕ, the equation of motion Ftϕ = 0 implies ∂−Aϕ = 0

at the outer boundary. Similarly, one gets ∂+Aϕ = 0 at the inner boundary.

The equation ∂−Aϕ = 0 at the outer boundary reads explicitly ∂−(h−1∂ϕh) +

∂−(h−1Kh) = 0 and can be rewritten as

h−1∂ϕ(∂−hh
−1)h+ ∂−(h−1Kh) = 0, (3.13)

or

K̇ = −∂ϕ(∂−hh
−1) + ∂−hh

−1K −K∂−hh−1. (3.14)

Integrating over ϕ yields

K̇ = [a,K] , (3.15)

with

a =
1

2π

∮
∂−hh

−1dϕ, (3.16)

6In that respect, the comments made in the literature that the gauge symmetry would have allegedly

been overlooked in [9, 10] make us somewhat perplexed since this gauge symmetry is manifestly present in

the action.
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an equation that makes sense since a transforms as a connection for the gauge transforma-

tions (3.12),

a→ ω̇ω−1 + ωaω−1 , (3.17)

so that

D
(a)
t K ≡ K̇ − [a,K]→ ω(D

(a)
t K)ω−1. (3.18)

Although transforming simply as a connection for the gauge transformations (3.12), the

transformation law of a is intricate under the Kac-Moody symmetry.

The equation (3.15) could of course have been derived directly from the action (3.9)

and is equivalent to the similar equation obtained at the inner boundary thanks to the zero

curvature condition Frϕ = 0. Its solution is

K(t) = S(t)K(0)S−1(t), S(t) = T exp

∫ t

0
a(τ)dτ, (3.19)

which shows that under time evolution, the holonomy of the bulk Chern-Simons connection

K stays in the same conjugacy class.

This holonomy is so far an arbitrary element of the SL(2,R) algebra. Due to the gauge

symmetry (3.12) we see that only the conjugacy class of K has any physical relevance,

and furthermore, we just proved that this conjugacy class is constant in time. By a gauge

transformation, we may always put K into a form where it is given by a “canonical” element

of either one of the three conjugacy classes of SL(2,R)

Hyperbolic: Conjugate to an element K(t) = k0(t)L0 ,

Elliptic: Conjugate to an element K(t) = 1
2ke(t)(L− − L+) ,

Parabolic: Conjugate to an element K(t) = kp(t)L+ . One can in fact set kp = 1 by

redefinitions, but we keep a general kp to check that it does indeed drops from the

final form of the action,

where Ln with n = −, 0,+, are generators of SL(2,R) algebra satisfying the algebra (A.1).

We will now analyze these three possibilities independently and thereby cover all cases.

This is technically more tractable than keeping K arbitrary.

3.3 Hyperbolic holonomy

We will first study the case of hyperbolic holonomy, i.e., we choose

K(t) = k0(t)L0 , k0 6= 0 . (3.20)

This choice not only forces the holonomy to be hyperbolic, but also partly freezes the

gauge freedom (3.12), since K(t) will not remain diagonal under arbitrary conjugation.

The gauge transformations that preserve the form of K(t) must be such that

ω(t)(k0L0)ω−1(t) = k′0L0 , (3.21)

and this imposes

ω(t) = eλ0(t)L0 . (3.22)

The residual gauge symmetry is abelian and non-compact, i.e., parametrized by R.
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One can insert the gauge condition K(t) ∈ {ξL0} inside the action because this is a

“canonical gauge” [39]. In that gauge, the holonomy K(t) = k0(t)L0 is constant, k̇0 = 0.

To continue, we decompose the dynamical matrix G in terms of simpler matrices.

A popular choice is the Gauss decomposition. Its advantage is that it is convenient for

highest-weight representations of SL(2,R) and suitable for hyperbolic holonomies. The

disadvantage of the Gauss decomposition is that it is not globally accessible, i.e. not all

SL(2,R) elements have a Gauss decomposition [40].

The group elements h and l are parameterized as

h = eY L−eΦL0eXL+ , l = eỸ L−eΦ̃L0eX̃L+ . (3.23)

The group element G depends on all coordinates, but its pullback to the r-boundaries is,

of course, r independent. The functions Y,Φ, X and Ỹ , Φ̃, X̃ depend on the boundary co-

ordinates t and ϕ. As we will be interested in imposing lowest-weight boundary conditions

at the inner boundary, it is much more convenient to work with a parametrization of l at

r = r1 such that

l = eV L+eΨL0eUL− . (3.24)

This can be achieved by following field redefinitions at the inner boundary:

Φ̃ = Ψ + 2 log(1 + e−ΨUV ), (3.25)

Ỹ =
e−ΨU

(1 + e−ΨUV )
, (3.26)

X̃ =
e−ΨV

(1 + e−ΨUV )
, (3.27)

where the functions V , Ψ, U depend on the boundary coordinates t and ϕ. We emphasize

that this field redefinition is only done at the inner boundary, such that the all SL(2,R)

elements are defined using a unique Gauss decomposition, not only at both boundaries,

but also in the bulk.

Using the Gauss decomposition, the action (3.8) becomes

SCS[G,K] = So − Si + Shol , (3.28)

with

So =
k

4π

∫
Σo

dtdϕ

(
1

2
∂−ΦΦ′ + 2eΦ∂−XY

′
)
, (3.29)

Si =
k

4π

∫
Σi

dtdϕ

(
1

2
∂+ΨΨ′ + 2e−Ψ∂+UV

′
)
, (3.30)

and

Shol =
k

4π

∫
dtdϕ

[
k0

(
∂−Φ− ∂+Ψ− 2eΦY ∂−X − 2e−ΨV ∂+U

)
− k2

0

]
(3.31)

(compare with formula (A.13) of [10]). Another way to split the action among the two

boundaries is to take

SCS[k0, Y,Φ, X, V,Ψ, U ] = SΣo
bdy[k0, Y,Φ, X]− SΣi

bdy[k0, V,Ψ, U ] , (3.32)
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with

SΣo
bdy[k0,Y,Φ,X] =

k

4π

∫
dtdϕ

(
1

2
∂−Φ(Φ′+2k0)+2eΦ∂−X(Y ′−k0Y )− 1

2
k2

0

)
,

SΣi
bdy[k0,V,Ψ,U ] =

k

4π

∫
dtdϕ

(
1

2
∂+Ψ(Ψ′+2k0)+2e−Ψ∂+U(V ′+k0V )+

1

2
k2

0

)
.

(3.33)

The Lagrangian is easily checked to be invariant up to total derivative terms under

the residual gauge symmetry,

Φ→ Φ̂ = Φ + λ0 , (3.34a)

Y → Ŷ = Y e−λ
0
, (3.34b)

X → X̂ = X , (3.34c)

k0 → k̂0 = k0 , (3.34d)

with similar expressions holding for Ψ, V and U with appropriate changes implemented,

i.e. if Ψ→ Ψ̂ = Ψ + λ0 then in order to compensate for that V → V̂ = V eλ
0
.

3.3.1 Boundary conditions

Next we impose the reduction conditions on the Chern-Simons connection that express

standard asymptotic AdS3 behaviour [9]. We consider explicitly one asymptotic boundary

only (the outer boundary). Similar considerations apply to the inner boundary. The only

difference in their treatment is the choice of SL(2,R) representation at each boundary.

While the boundary conditions on the fields at outer boundary are in accordance with

highest-weight representation, those on the fields at inner boundary are in accordance

with the lowest-weight representation. As shown in [9] and discussed in appendix B, the

boundary conditions on the fields at r = r2 ≡ ro are

Ar = 0, Aϕ = L− + L(t, ϕ)L+ . (3.35)

Similarly, the boundary conditions on the fields at r = r1 ≡ ri are

Ar = 0, Aϕ = L+ +M(t, ϕ)L− . (3.36)

In terms of the field appearing in the Gauss decomposition, this gives the conditions

eΦ(Y ′ − k0Y ) = 1 , (3.37a)

Φ′ + k0 = 2X , (3.37b)

and the expression for L (compare again with appendix of [10])

X ′ +X2 = L , (3.38)

with the similar expressions holding for Ψ, V and U at the inner boundary. One can find

them by the following substitutions Φ→ −Ψ, k0 → −k0 and Y,X,L → V,U,M.
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Since k0 6= 0, one can solve the first condition to express Y in terms of Φ and k0.

This can be verified by Fourier expansion of Y and e−Φ. Note that the equation would

be inconsistent if k0 were to vanish since one would have then Y ′ = e−Φ, yielding upon

integration over ϕ the contradictory statement 0 =
∮
e−Φdϕ > 0. Similarly, the second

equation enables one to express X in terms of Φ and k0.

If one inserts the resulting expressions into the action, as it is permissible (see ap-

pendix C for more information on this point), one gets

SΣo
bdy[k0,Φ] =

k

4π

∫
dtdϕ

(
1

2
∂−Φ(Φ′ + 2k0)− 1

2
k2

0

)
, (3.39)

where we have dropped a total derivative term. Reinstating the fields on the inner bound-

ary, for which similar steps can be taken, yields the total action

S[k0,Φ,Ψ] =
k

4π

∫
dtdϕ

(
1

2
∂−ΦΦ′ − 1

2
∂+ΨΨ′ + k0(∂−Φ− ∂+Ψ)− k2

0

)
. (3.40)

Note that while the kinetic terms for Φ and Ψ have opposing sign, their Hamiltonians have

the same sign and hence are positive definite for both fields. This action is equivalent

to the U(1) case studied in the previous section: two chiral boson actions, coupled to

the holonomy. Once again the action is gauge invariant under a diagonal abelian gauge

symmetry acting as (2.30), although here the symmetry is not compact (but this does not

affect the form of the action). The canonically conjugate momentum to the holonomy is

gauge invariant and given by

Π0 = − k

4π

∫
dϕ (Φ−Ψ) . (3.41)

One can notice that varying the action with respect to the conjugate Π0 will result in the

equation k̇0 = 0.

Having obtained the reduced action, one can work out the boundary term at the time

boundaries. Modulo the zero modes, the action is that of chiral bosons [26]. The kinetic

term for the zero modes has the standard pq̇ form; it is well known how the boundary term

at the time boundaries depends in that case on the chosen representation (pq̇ as such being

adapted to the q-representation where the q’s are fixed at the time boundaries). For the

chiral boson, which is self-conjugate, the boundary term at the time boundaries is discussed

in [41], to which we refer for details.

The other SL(2,R) leads to an action similar to (3.40) coupled to another, independent

holonomy, with its own independent conjugate momentum, so that in the end, we get four

chiral actions coupled through two different holonomies.

The action (3.40) contains two chiral bosons of opposite chiralities with a common zero

mode. As shown in the discussion of the U(1) case, these can be combined to yield the

action for a free boson on the cylinder. In turn, this action can be classically mapped on

the Liouville action by a Bäcklund transformation as shown in [42–44] (see also [10, 45, 46]

in the gravity context). The two SL(2,R) factors would lead to two Liouville models.

This procedure works only, however, if the boundary conditions at the two boundaries
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have opposite chiralities, which was a consequence of having positive Hamiltonians on both

boundaries. This is much more natural than the combination of the chiral bosons associated

with the different SL(2,R) factors at the same boundary considered in [9], because these

do not share the same zero modes.

3.3.2 Virasoro algebra

As shown in [9], the L’s form the Virasoro algebra of [3] with central charge c = 3`
2G . In

terms of the Fourier modes of L(ϕ)

[Lm,Ln] = (m− n)Lm+n +
c

12
n(n2 − 1)δm+n,0 . (3.42)

The classical state of the system at a given time is completely determined (for a single

SL(2,R)-factor) by giving:

1. The Virasoro generators L(ϕ) and M(ϕ) at the two boundaries, or equivalently, the

two SL(2,R) connections Aϕ of the form (3.35) and (3.36). These satisfy the matching

conditions (2.48), rewritten in (3.44) below.

2. One radial Wilson line along, say, ϕ = 0,

C ≡ P exp

[
−
∫ ro

ri

Ar(r, ϕ = 0)dr

]
, (3.43)

where this integral is evaluated in a gauge where Ar vanishes at both boundaries.

The matching condition reads

P exp

[
−
∮
o

(L− + L(ϕ)L+) dϕ

]
= C P exp

[
−
∮
i
(L+ +M(ϕ)L−) dϕ

]
C−1 . (3.44)

The physical phase space is spanned by (L(ϕ),M(ϕ), C) subject to (3.44). The Pois-

son bracket structure in this space is non-degenerate. Equivalently, one can describe the

physical phase space in terms of the chiral bosons Φ(ϕ),Ψ(ϕ), the holonomy k0 and its

conjugate Π0. There is a redundancy in the description, since the zero mode of Φ(ϕ)+Ψ(ϕ)

is pure gauge and its conjugate momentum constrained to vanish.

Given (L(ϕ),M(ϕ), C), one determines (Φ(ϕ),Ψ(ϕ), k0,Π0) as follows. First, one

determines X from L from (3.38). As explained in appendix C, the solution is unique

if one requests X to be a periodic function on the circle. Knowing X, one can then

determine k0 by integrating the second equation (3.37) over ϕ, getting πk0 =
∫
dϕX. A

similar procedure can be applied at the other boundary to yield the corresponding function

U . The matching condition guarantees that one gets the same k0 from U as from X. Once

k0 is known, one determines Φ through the second equation (3.37) (and Ψ through the

corresponding equation at the other boundary). These equations leave arbitrary the zero

modes of Φ and Ψ, but the difference of these zero modes is fixed by C (see below). Only

the non-gauge invariant sum is arbitrary, as it should.

A beautiful formula giving the metric in the bulk in the vicinity of one boundary in

terms of the Virasoro generators at that boundary has been derived in [47]. It provides
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the inward integration of the constraints starting from the boundary, in a gauge where grr
is fixed to be a constant (equivalent to fixing Ar to some prescribed value and valid in the

neighbourhood of the boundary).

In order to evolve the fields, one needs to choose At. The choices relevant to standard

anti-de Sitter asymptotics are, as we have seen, A− = 0 or A+ = 0 [9]. This leads to a

simple time evolution at the boundary, described by the chiral (or anti-chiral) Hamilto-

nian of (3.40), and yielding chiral (or anti-chiral) Virasoro generators L(x+) (or M(x−)).

Other choices of At, leading to different asymptotic dynamics with interesting integrable

structures, have been studied in [48–50].

3.3.3 The zero angular momentum black hole

We illustrate the previous derivation in the case of the eternal zero angular momentum

black hole [15] of mass M , the global structure of which was elucidated in [16]. In Rindler-

like coordinates, one of the SL(2,R) connections reads, on the t = 0 slice [22]

A = − 2

1− z2
L0dz +

1 + z

2(1− z)

√
ML+dϕ+

1− z
2(1 + z)

√
ML−dϕ , (3.45)

the asymptotic regions being at z = ±1 and our conventions for the SL(2,R) generators

are listed in appendix A. A similar expression holds for the other SL(2,R) connection and

we focus for that reason only on (3.45).

The connection is singular at the boundaries, and can be made regular by a gauge

transformation of the type considered in [9, 10] at each boundary. In order to implement

this procedure, we proceed in two steps. First, we regularize the connection everywhere by

the gauge transformation

B =


(

1+z
1−z

) 1
2

0

0
(

1−z
1+z

) 1
2

 , (3.46)

such that the new expression A′ = B−1AB +B−1dB for the connection reads

A′ =
1

2

√
M (L+ + L−) dϕ . (3.47)

This transformation, however, is not acceptable and must be corrected because it fails to

implement the highest (lowest) weight form of the connection at the boundaries. We thus

perform now the gauge transformation with group element

b =

(
F 0

0 F−1

)
, (3.48)

which brings the connection to the form

Aϕ(z = 1) = L− +
M

4
L+ , (3.49)

at the outer boundary and

Aϕ(z = −1) = L+ +
M

4
L− , (3.50)
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at the lower boundary provided the function F (z) is taken to fulfill

F ′(z = 1) = 0 = F ′(z = −1), F−2(z = 1) =

√
M

2
= F 2(z = −1) . (3.51)

This leads for the radial Wilson line

C = P exp

[
−
∫ z=−1

z=1
dz(b−1∂zb)

]
= b−1(z = −1)b(z = 1) =

(√
M
2 0

0 2√
M

)
. (3.52)

This non-trivial radial Wilson line arises because of the incompatibility of imposing simul-

taneously the radial gauge Az = 0 everywhere and the Hamiltonian reduction boundary

conditions at z = ±1. We see again very clearly the fact that the gauge condition Az = 0

is globally not appropriate.

We now derive the chiral fields from the boundary Virasoro algebras L(ϕ) = M
4 ,

M(ϕ) = M
4 and the radial Wilson line (3.52). It is obvious that these fields reduce to

their zero modes. Since the eigenvalues of the matrices L−+ M
4 L+ and L+ + M

4 L−, which

coincide, are equal to ±
√
M
2 , we conclude that the holonomy is equal to

k0 =
√
M , (3.53)

(recall that

(
1 0

0 −1

)
= 2L0 and that the holonomy in the diagonal gauge reads k0L0). This

is in agreement with the direct computation from X, which yields X2 = M
4 i.e., X =

√
M
2 .

Plugging this into the equation for Φ, one gets the above value of k0.

The zero modes Φ0 and Ψ0 are not fixed by the Hamiltonian reduction constraints.

While the sum is pure gauge, one determines the difference by relating it to the radial

Wilson line C and using the Gauss decomposition. This follows from the relation

Aϕ(z = 1) = CAϕ(z = −1)C−1 , (3.54)

which implies hC = l. In terms of the constrained zero-modes of the fields appearing in

the Gauss decomposition (3.23) and (3.24), this implies

V0 =
eΦ0X0

1 + eΦ0X0Y0
=
√
MeΦ0 ,

Ψ0 = Φ0 − 2 ln
2√
M

(1 + eΦX0Y0) = Φ0 + lnM,

U0 =
M

4

eΦ0Y0

1 + eΦ0X0Y0
= −
√
M

2
, (3.55)

and the difference Ψ0 − Φ0 is indeed fixed by C.

It is important to emphasize that the non-trivial holonomy, which can be viewed as an

obstruction to the gauge Az = 0, arises because the boundary conditions at two boundaries

are “twisted” with respect to one another; highest weight boundary condition at the outer

boundary and lowest weight boundary condition at the inner one.
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3.3.4 Relation to the geometric action

As in the U(1) example, the action on a single boundary is related to a geometric action,

but now of the coadjoint orbits of the Virasoro group. That it must be so follows from

the fact that the physics of the system is completely captured by the Virasoro generators

at each boundary, which transform in the coadjoint representation of the Virasoro group

(plus the global mode C). The dynamics of the system is just the dynamics of the Virasoro

algebras and of C. The brackets of the Virasoro generators that follow from the action

reproduce the Virasoro algebra, indicating that the symplectic structure coincides with the

natural symplectic structure on the coadjoint orbits.

To exhibit explicitly the connection with the geometric action, we recall that boundary

diffeomorphisms appear as residual gauge symmetries compatible with the Hamiltonian re-

duction constraints, and that these are naturally parametrized in the Gauss decomposition

by the L−-factor of the group gauge parameter. It is therefore no surprise that it turns

out to be convenient to express the action and the constraints in terms of a field f(t, ϕ)

directly related to Y (the field associated with the same generator L−), defined as:

Y (t, ϕ) = exp (−k0(t)(f(t, ϕ)− ϕ)) . (3.56)

The periodicity of f is

f(t, ϕ+ 2π) = f(t, ϕ) + 2π . (3.57)

In terms of this field, the constraints (3.37) become

− k0(t)f ′(t, ϕ)e−k0(f(t,ϕ)−ϕ) = e−φ(t,ϕ) , X(t, ϕ) =
1

2
k0(t)f ′ − f ′′

2f ′
, (3.58)

and the function L becomes

L =
k0(t)

4
f ′2 − 1

2
{f, ϕ} , (3.59)

where {f, ϕ} is the Schwarzian derivative of f

{f, ϕ} =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

. (3.60)

In terms of f(t, ϕ) the action (3.39) becomes (up to total derivatives):

SΣo
bdy =

k

8π

∫
Σo

dtdϕ

[
∂−f

′f ′′

f ′2
+ k0(t)2∂−ff

′
]
. (3.61)

The field equations of this action are explicitly

1

f ′
∂−

(
{f, ϕ} − 1

2
k2

0(t)f ′2
)

= 0 , (3.62)

which are proportional to ∂−L = 0.

The action (3.61) is exactly the geometric action on the coadjoint orbits of the Virasoro

group as found by the authors of [18]. The Virasoro orbits are here Diff(S1)/S1 (also

denoted Diff(S1)/R1 since the stability subgroup is non compact, see [31] page 79). The
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relationship between the Virasoro central charge c, the orbit representatives b0 and k and

k0(t) is

c = 6k , b0 =
c

48π
k0(t)2 . (3.63)

Coadjoint orbits of the Virasoro group with positive representatives have a U(1) little

group [51], reflecting the U(1) gauge invariance of the chiral boson action. The holonomy

is dynamical, so that one can contemplate initial data not restricted to a single orbit (but,

for any chosen set of initial data, the evolution stays on the orbit selected by these initial

data since k̇0 = 0). There is a similar geometric action at the other boundary, with the

same value for the orbit representative.

In general the action (3.61) of [18] can be defined for any real orbit representative b0,

but here this quantity is strictly positive. To obtain Alekseev-Shatashvili action for negative

orbit representatives, we have to consider bulk holonomies in the elliptic conjugacy class

of SL(2,R).

3.4 Elliptic holonomy

We will now consider the holonomy to be an element in the elliptic conjugacy class of

SL(2,R). Solutions with elliptic holonomies correspond to point particle sources and were

in fact the first to be studied [1]. They define conical singularities, of particular interest

when the excess angle is a multiple of 2π [52–54].

We choose the holonomy to have the form e2πK(t) with

K(t) =
ke(t)

2
(L− − L+) . (3.64)

In order to derive the action, it is convenient to use the Iwasawa decomposition to

parameterize the group element (see e.g. [55]). This is because the compact subgroup is

put in the limelight. All group elements g ∈ SL(2,R) can be parametrized as the product of

an element of the compact subgroup k, a diagonal group element a and a nilpotent element

n. Unlike the Gauss decomposition, the Iwasawa decomposition does hold globally.

We will again take G(r = router) = h and G(r = rinner) = l as before, but as we just

explained, we now decompose h as

h = k.a.n+ , (3.65)

with

k =

(
cos θ(t, ϕ) − sin θ(t, ϕ)

sin θ(t, ϕ) cos θ(t, ϕ)

)
= exp(θ(t, ϕ) (L− − L+)) , (3.66a)

a =

(
eΦ(t,ϕ) 0

0 e−Φ(t,ϕ)

)
= exp(Φ(t, ϕ)L0) , (3.66b)

n+ =

(
1 η(t, ϕ)

0 1

)
= exp(η(t, ϕ)L+) . (3.66c)
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For l we can find appropriate field redefinitions at inner boundary such that l = k.a.n−

with θ → ϑ, Φ→ Ψ and

n− =

(
1 0

ν(t, ϕ) 1

)
= exp(ν(t, ϕ)L−) . (3.67)

The matrices k, a and n± are periodic in ϕ. This implies that the fields Φ and η are

periodic, but θ can change by an integer multiple of 2π as one goes around the annulus.

By using the ambiguity described below eq. (2.47) if necessary, one can assume, however,

θ to be strictly periodic.

As it is well known, in the spinor representation of SO(2, 1) used here (i.e., SL(2,R)-

matrices), anti-de Sitter has ke = 1, corresponding to the holonomy e2πK = −I. Just as in

the hyperbolic holonomy case, there is no solution with ke = 0 as we shall see.

Inserting the Iwasawa decomposition in the action (3.9), and using also (3.64), leads

to the action

S = SΣo
bdy[θ,Φ, η, ke]− SΣi

bdy[ϑ,Ψ, ν, ke] , (3.68)

with

SΣo
bdy =

k

4π

∫
Σo

dtdϕ

{
1

2
∂−ΦΦ′ − 2∂−θ(θ

′ + ke) + 2eΦ∂−η

(
θ′ +

1

2
ke

)
+

1

2
k2
e

}
, (3.69)

(up to a total time derivative) and

SΣi
bdy =

k

4π

∫
Σi

dtdϕ

{
1

2
∂+ΨΨ′ − 2∂+ϑ(ϑ′ + ke)− 2e−Ψ∂+ν

(
ϑ′ +

1

2
ke

)
− 1

2
k2
e

}
. (3.70)

3.4.1 Boundary conditions and reduced action

The constraints imposed by the boundary conditions on the outer boundary are now

eΦ

(
θ′ +

1

2
ke(t)

)
= 1 , η =

1

2
Φ′ , (3.71)

and

L = −e−2Φ +
1

4

(
Φ′2 + 2Φ′′

)
. (3.72)

There are similar expressions for the constraints on the inner boundary fields with L →M,

θ → −ϑ, Φ → −Ψ, η → ν and ke → −ke. Again, the first constraint with ke = 0 is

incompatible with a periodic θ. We see that in fact ke > 0 (with our choice of conventions)

since 2πke = 2
∫
dϕe−Φ.

We can express the action in terms of a diffeomorphism of the circle f(t, ϕ) with

f(t, ϕ+ 2π) = f(t, ϕ) + 2π using the constraints and applying the field redefinition

θ(t, ϕ) =
ke(t)

2
(f(t, ϕ)− ϕ) . (3.73)

The function L now becomes

L = −ke(t)
4

f ′2 − 1

2
{f, ϕ} , (3.74)
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and the action is up to total derivative terms:

SΣo
bdy =

k

8π

∫
Σo

dtdϕ

[
∂−f

′f ′′

f ′2
− ke(t)2∂−ff

′
]
. (3.75)

The result is once again phrased in terms of the geometric action of [18], with holonomy

enhanced to be dynamical and fulfilling k̇e = 0 on shell, but now

b0 = − c

48π
ke(t)

2 . (3.76)

The difference between this action and (3.61) is the relative sign of the representative term.

So we have established that elliptic holonomies lead to negative orbit representatives. From

here we could obtain the hyperbolic holonomy by analytic continuation ke = ik0. This

implies that the action (3.75), when expressed as the chiral boson, would have purely

imaginary zero modes. The relevant Virasoro orbits are now Diff(S1)/S1, except for the

particular values of the holonomy discussed in the next subsection.

3.4.2 Gauge invariance

The gauge invariance of the action (3.9) is parametrized by a time-dependent SL(2,R)

element ω(t). Just as in the hyperbolic case, this gauge invariance is partly fixed by the

choice of the form of the holonomy and generically reduces to a U(1) gauge symmetry. In

the elliptic case, a new feature arises: there are exceptional values for which this is not the

case. These correspond to ke = integer, in which case K is equal to K = ±I and is an

element of the center of SL(2,R) commuting with all ω(t)’s. In that case, the direction of

the axis of rotation is irrelevant and one can get rid of that information contained though

the parametrization K = ke
2 (L− − L+).

To see how this comes about, let us we take the SL(2,R) element ω(t) to be

ω(t) =

(
d(t) c(t)

b(t) a(t)

)
, a(t)d(t)− b(t)c(t) = 1 , (3.77)

then the field θ(t, ϕ) in the Iwasawa decomposition transforms as

tan θ → tan θ̂(t, ϕ) =
a(t) tan θ(t, ϕ) + b(t)

c(t) tan θ(t, ϕ) + d(t)
. (3.78)

In terms of the field f(t, ϕ) the SL(2,R) invariance becomes manifest when ke(t) = n and

n ∈ Z. In that case there is a transformation to a periodic field Θ defined as

Θ(t, ϕ) = tan
(n

2
f(t, ϕ)

)
. (3.79)

In terms of Θ the action becomes

S(Θ) =
k

4π

∫
dtdϕ

[
∂tΘ

′′

Θ′
− 3

2

∂tΘ
′Θ′′

Θ′2

]
. (3.80)

The transformation (3.79) has the effect of removing the representative term on the orbit,

i.e., ke. When trying to remove the orbit representative term for ke 6= n, the same trick
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does not work as Θ is not periodic anymore, and the periodicity of Θ will reflect the value

of the holonomy (orbit representative).

The resulting action (3.80) corresponding to ke = n is manifestly invariant under

SL(2,R). Indeed, taking in the action

Θ→ Θ̂ =
a(t)Θ(t, ϕ) + b(t)

c(t)Θ(t, ϕ) + d(t)
, (3.81)

leads to

Ŝ(Θ̂) = S(Θ)− k

4π

∫
dtdϕ

{
∂ϕ

(
∂tΘ̂

′

Θ′

)
− ∂t

(
log(cΘ + d)∂ϕ log Θ′

)
(3.82)

+ ∂ϕ
(
log(cΘ + d)∂t log Θ′

)
− 2∂t∂ϕ log(cΘ + d) + 2∂ϕ

(
ċ

c
log(cΘ + d)

)}
.

The difference between the transformed action and the original one are only total derivative

terms. The Virasoro orbits are thus Diff(S1)/SL(2,R) in the degenerate case.

When ke 6= n, the gauge invariance is partially fixed to U(1) through the choice

of the form of the holonomy. The enhancement of the gauge symmetry for ke = n also

manifests itself in the dimension of the space of solutions of the constraint equations, which

is increased (see appendix D).

3.5 Parabolic holonomy

The final case we should consider are holonomies in the parabolic conjugacy class of

SL(2,R). We will parameterize these by taking

K(t) = kp(t)L+ , (3.83)

observing that kp can be absorbed through redefinitions and should thus disappear from

the final formulas as a consistency check.

To study the parabolic holonomy, we adopt the Iwasawa decomposition (3.65) but

invert the order and write:

h = n+.a.k , (3.84)

and likewise for l, with the appropriate field redefinition of the fields at inner boundary,

such that l = n−.a.k.

The action (3.9) again splits into two boundary actions:

S = SΣo
bdy[θ,Φ, η, kp]− SΣi

bdy[ϑ,Ψ, ν, kp] , (3.85)

with:

SΣo
bdy[θ,Φ, η, kp] =

k

4π

∫
dtdϕ

[
1

2
Φ′∂−Φ− 2θ′∂−θ + 2e−Φ∂−θ(η

′ + kp(t))

]
. (3.86)

The constraints from the boundary conditions now imply the following differential relations

Φ′ = 2(θ′ − 1) cot θ , η′ = −kp − eΦΦ′ cot 2θ , (3.87)
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and

L = −θ′ − 1

2
Φ′ cot θ (3.88)

Using the second relation in (3.87) we see that the dependence on kp(t) drops out of

the action

SΣo
bdy =

k

4π

∫
dtdϕ

[
1

2
Φ′(∂−Φ− 4∂−θ cot 2θ)− 2θ′∂−θ

]
. (3.89)

In order to express the action in terms of a single field, we must somehow find a way to

integrate the first relation in (3.87). A useful way to do so is to change variables to a

function φ(t, ϕ) defined as

cot θ = −1

2
φ′ . (3.90)

Then we can integrate the first of the relations (3.87) to obtain

Φ = φ− log(4 + φ′2) , (3.91)

where we have dropped the integration constant c(t), which reflects the gauge redundancy.

This parameterization of θ is useful, because it brings the stress-tensor L to a familiar form:

L =
1

4

(
φ′2 − 2φ′′

)
. (3.92)

This is the form of the stress tensor for a chiral boson φ. Indeed also the action (3.89)

turns into a familiar form. Up to total derivatives, we find

SΣo
bdy =

k

4π

∫
dtdϕ

[
1

2
φ′∂−φ− ∂−φ′

]
. (3.93)

This is the chiral boson action, but now without holonomy contribution. Similar arguments

hold on the other boundary. From the chiral boson, the map to the geometric action (3.61)

is performed by yet another field redefinition

eφ = f ′ , (3.94)

such that the action becomes

SΣo
bdy =

k

8π

∫
dtdϕ

f ′′∂−f
′

f ′2
, (3.95)

and likewise on the other boundary. This is the geometric action on the coadjoint orbit

of the Virasoro group with vanishing representative. As shown in the previous section,

in principle this action is invariant under the full SL(2,R), however not all f(t, ϕ) →
a(t)f(t,ϕ)+b(t)
c(t)f(t,ϕ)+d(t) are compatible with the periodicity condition on f(t, ϕ) inherited by the field

redefinitions (3.90) and (3.94). This reduces the full SL(2,R) to a one-dimensional abelian

subgroup, consistent with the fact that we have partly fixed the gauge by choosing the

holonomy to lie in the parabolic conjugacy class of SL(2,R).

The orbits are thus Diff(S1)/R1 in the parabolic case. Note that we do not find in our

analysis the exceptional orbits that do not contain constant Virasoro charges because of

our assumption (3.5), see footnote 4.
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4 Conclusions

The main result of this paper is the explicit derivation of the gravitational action for three-

dimensional gravity in the case when the topology of the spatial sections is that of the

annulus, with boundary conditions expressing asymptotic AdS3 behaviour at both bound-

aries. The action (3.40) is not a sum of boundary actions but involves in addition couplings

to the zero modes, which are additional degrees of freedom to be taken into account. These

are the holonomy and one radial Wilson line (3.43) connecting the boundaries (the other

radial Wilson lines being expressible in terms of any one of them and the boundary fields).

These global degrees can (and must!) be consistently varied in the action principle.

We also made the connection with the geometrical actions (3.61), (3.75) and (3.95),

and showed how the exceptional orbits with enhanced stability subgroups correspond to an

enhanced gauge symmetry of the action and a degeneracy of the solution of the Drinfeld-

Sokolov reduction constraints.

While we considered the specific example of two asymptotically anti-de Sitter regions,

most of our considerations on holonomies and radial Wilson lines qualitatively apply when-

ever there are two boundaries, independently of the form that the boundary conditions ex-

plicitly take there. So, in particular, one boundary can describe an asymptotically anti-de

Sitter region and the other can describe a black hole horizon, along the lines of [56, 57]

(see also [58, 59]). Although we have not explored the problem, similar features are also

expected to hold with more boundaries.

The results of this paper apply equally well to supergravity models, because these

are also Chern-Simons theories with boundary conditions of the Drinfeld-Sokolov type

implementing a Hamiltonian reduction at the boundary [10]. The resulting asymptotic

symmetry algebras are the N -extended superconformal algebras of [60–63], which are linear

for N ≤ 2.

In the annulus case, one can include explicitly the holonomies along the above lines.

This is most conveniently done by treating separately the two chiralities, leading, for each

chirality, to a supersymmetric chiral action at each boundary, coupled by radial Wilson

lines. One also finds that the system is physically described by two sets of generators of

the superconformal algebras, one at each boundary. These generators are constrained by

the holonomy matching condition and provide, together with the global modes, a complete

description of the system. The dynamics reduce to that of the dynamics of these generators

and of the global modes, and can therefore be expressed in terms of geometrical actions.

The details will be presented elsewhere [64].

There is one new ingredient that comes in, however, when the boundary algebras are

nonlinear (N > 2). It is that the geometrical actions should not be formulated in terms

of orbits of the coadjoint representation, since the phase space does not provide a linear

representation, but rather in terms of the more general concept of symplectic leaves [65, 66].

The generators of the asymptotic symmetry algebra form a Poisson manifold, with a Poisson

bracket that is degenerate if one focuses only on a single boundary algebra without including

the global radial Wilson lines. The symplectic leaves of this Poisson manifold have a

well-defined symplectic structure, which is the one that enters in the action. A similar
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phenomenon appears when including higher spins gauge fields, the asymptotic symmetry

algebras of which are the non-linear W-algebras [67, 68].

It is well known that combining two chiral bosons of opposite chiralities yields the

Liouville theory (this is e.g. recalled in the appendix of [10] where references are given).

This was used in [9] to formulate the boundary theory as a Liouville model, but the

zero modes were not handled there. This Liouville reformulation of AdS3 gravity was

the starting point of [69]. It would be interesting to investigate whether the inclusion of

holonomies and radial Wilson lines among the dynamical variables would lead to more

solutions and states than found in [69].

Note added. While this work was completed, the interesting preprint [70] came out,

which also explicitly considers two boundaries in AdS3 gravity, but with different goals

and along different lines.
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A Conventions

The sl(2,R) generators are noted by L0, L± and they satisfy the algebra

[L0, L±] = ±L± , [L+, L−] = 2L0 . (A.1)

Thorough the paper we use the following matrix representation of sl(2,R)

L0 =
1

2

(
1 0

0 −1

)
, L+ =

(
0 1

0 0

)
, L− =

(
0 0

1 0

)
. (A.2)

They enjoy the property that

tr(L0L0) =
1

2
, tr(L+L−) = tr(L−L+) = 1 . (A.3)

B From the infinite cylinder to the annulus

In this appendix, we consider the eternal black hole that has two asymptotic regions at

infinity, so that one can formally say that “router is at r → ∞ and rinner is at r → −∞”.

We show how one can assume the “radial” coordinate to have a finite range.

To reproduce metrics with local AdS3 asymptotics in the outer asymptotic region, we

must asymptotically take in that region [9]

Ar = b(r)−1∂rb(r), Aϕ = b(r)−1 (L− + L(t, ϕ)L+) b(r), b(r) = exp(L0 ln r) , (B.1)

in terms of the Schwarzschild radial coordinate r of the outer region. The asymptotic r

dependence of the connection in the outer asymptotic region can therefore be thought of as
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being induced from the asymptotically constant connection with purely angular component

aϕ = L− + LL+ by an r-dependent gauge transformation. This amounts to taking the

group element that appears in the solution of the zero curvature condition to be of the

form G = g(t, ϕ))b(r). If we undo that gauge transformation, the connection is simply aϕ,

and since it has no asymptotic r-dependence, we can trivially rescale the r-coordinate so

that the new radial coordinate takes a finite value at the “outer asymptotic boundary”. We

assume in the text that all these transformations have been performed and keep denoting

the resulting connection Ai.

Similarly, the connection in the inner asymptotic region takes the asymptotic form

Ãϕ = b̃(r̃)−1
(
L+ + L̃(t, ϕ)L−

)
b̃(r̃) , b̃(r̃) = exp(−L0 ln r̃) , (B.2)

where r̃ is now the Schwarzschild radial coordinate of the inner region. One can thus repeat

the same considerations as for the outer boundary.

By making a gauge transformation by a group element that interpolates between b(r)

in the outer region and b̃(r̃) in the inner region and following the above procedure, one can

simultaneously bring both boundaries at finite value of the radial coordinate and assume

that the field takes at the boundaries the simple form given in the text.

C Consistency of the Hamiltonian reduction

We consider in this appendix some aspects of the Hamiltonian reduction procedure that

leads to the chiral boson action starting from the SL(2,R) WZW model.

The equations obtained by varying (3.33) with respect to Φ, X and Y are

δΦ : ∂−Φ′ + k̇0 − 2eΦ∂−X(Y ′ − k0Y ) = 0 , (C.1a)

δX : −∂−(2eΦ(Y ′ − k0Y )) = 0 , (C.1b)

δY : −∂ϕ(2eΦ∂−X)− 2eΦ∂−Xk0 = 0 . (C.1c)

Of course, we have similar equations on the inner boundary, and one should also vary the

action with respect to the dynamical holonomy k0, which yields the time evolution of the

conjugate to the holonomy,

2π(Φ̇0 − Ψ̇0) =

∮
dϕ
(
2eΦY ∂−X − 2eΨV ∂+U

)
+ 2k0 . (C.2)

By using the constraints (3.37) in the field equations we see that the first two equations

vanish trivially, while the last equation becomes (for eΦ 6= 0):

∂−
(
X ′ +X2

)
= 0 . (C.3)

This equation is actually the statement that the stress tensor is holomorphic since it is

equivalent to ∂−L = 0.

By varying the action (3.39) with respect to Φ we obtain

∂−Φ′ + k̇0 = 2∂−X = 0 . (C.4)

– 36 –



J
H
E
P
0
3
(
2
0
2
0
)
0
6
4

While it is clear (C.4) certainly implies (C.3), the converse might at first sight seem not

necessarily to be true. However, it should be recalled that we are dealing with a field X

defined on the circle, i.e., periodic. This makes (C.4) and (C.3) equivalent.

To see this, we observe that the equation (C.3) implies that

X ′ +X2 = b(x+) , (C.5)

where b(x+) is an arbitrary function of t+ ϕ but does not depend on x− = t− ϕ.

This equation is a first order differential equation for X. According to general theorems,

the solution is unique on the real line up to an integration constant, which can be taken

to be the value of X at ϕ = 0, or which can be parametrized in any other convenient

way. On the circle, the solution is also unique, but this time at most up to an integration

constant, because the integration constant must be compatible with the fact that X should

be periodic, a requirement that might fix it and make the solution unique.

Our goal is to show that this is actually the case. Instead of considering the general

case, which was actually implicitly treated in [10] where it was shown that it was legitimate

to insert the Hamiltonian reduction constraints inside the action, we consider in turn two

illustrative cases, to exhibit the mechanism that makes the equations equivalent:

• b = constant = c2 (b > 0 because 2πb =
∫
dϕx2 ≥ 0 and if b = 0, then clearly x = 0

and involves no integration constant)

• b = c2 + ε(ϕ), where the periodic function ε is small with respect to b.

So, consider first the case b = c2 with c > 0. Since X(ϕ) is periodic, its derivative

vanishes somewhere, say at ϕ0. One has X(ϕ0) = c or X(ϕ0) = −c. Consider the

differential equation X ′ +X2 = c2 with initial condition X = c (or −c) at ϕ0. Its solution

is unique (it is first order and its initial condition X(ϕ0) = c or −c is given). This unique

solution is easily verified to be X = c (or −c). The reference to ϕ0 accordingly completely

disappears, i.e., one gets the same solution no matter what ϕ0 is. Therefore, X is uniquely

determined by b in this case, up to a sign. This implies ∂−X = 0 since X(x−) must

be equal to ±c and cannot jump from one value to the other during the time evolution

(by continuity).

Turn now to the case b = c2 + ε(ϕ) and write X = c + η(ϕ). The equation becomes,

neglecting squares of small quantities:

η′ + 2cη = ε . (C.6)

The general solution can be obtained by the method of variations of constants and read:

η(ϕ) =

(∫ ϕ

0
dθε(θ)e2cθ +K

)
e−2cϕ. (C.7)

Periodicity fixes the integration constant K to be

K =

∫ 2π
0 dθε(θ)e2cθ

1− e−4πc
(C.8)

(the denominator does not vanish since c 6= 0). The solution X is therefore unique and

since ε does not depend on x−, one gets again ∂−X = 0.
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D Elliptic holonomy and enhancement of the constraint solutions

We wish to investigate here how unique (up to a gauge transformation) the solution

(Φ(ϕ), θ(ϕ), η(ϕ)) of the constraints (3.71) for L(ϕ) given by (3.72) is.

To gain understanding on this problem, let us assume to begin with that L is a constant,

L = L. We first try to determine the constant solutions to the problem. We denote by P

the constant value of Φ. The field η is necessarily zero, η = 0, while the constant value of

θ can be shifted by a gauge transformation, so we can assume θ = 0. One clearly has

L = −e−2P , ke = 2e−P = 2
√
−L , (D.1)

so in particular

L = −1

4
k2
e . (D.2)

Anti-de Sitter space corresponds to ke = 1 and L = −1
4 .

Are there other solutions (with same given L and hence ke)? To explore this question,

we perturb around the solution just derived,

Φ(ϕ) = P + p(ϕ) . (D.3)

The fields θ and η, having zero background value, coincide with the perturbations. The

perturbed equations read

θ′ + p
ke
2

= 0 , η = p′ , 0 = k2
ep+ p′′ . (D.4)

The general solution for p is

p = α cos(keϕ) + β sin(keϕ) , (D.5)

but it will not be periodic when ke is not an integer, unless one takes α = β = 0. Hence,

in that case, p = 0, η = 0, θ =constant (can be absorbed by a residual gauge symmetry).

The solution is unique.

When ke is an integer, however, the solution p is periodic for any choice of α and β. So

there are two more families of solutions in addition to the constant one. (Given p, θ exists

and is unique up to a gauge transformation because θ′ = −ke
2 p = 1

2ke
p′′ and so θ = 1

2ke
p′+

constant.)

There is thus an enhancement of the number of independent solutions when ke is an

integer. This is precisely the values of ke for which there is enhanced gauge symmetry. The

nonlinear treatment going beyond the perturbative treatment involves the Hill equation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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