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from planar CFT data. Our analysis focuses mostly on four-point, one-loop diagrams — we
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1 Introduction

Unitarity in quantum field theory (QFT) is most commonly stated as a condition on the
S-matrix:
STs =1. (1.1)

Separating out the trivial part of the S-matrix, S = 1 4 ¢7, this becomes the optical
theorem,

2¥(T) =T'T. (1.2)

In perturbation theory, the imaginary part of the transition matrix 7 at L loops is de-
termined by the same matrix 7 at L — 1 loops. The combination of the optical theorem
with dispersion relations forms the backbone of unitarity methods for scattering ampli-
tudes in QFT.

In conformal field theories (CFTs), dual to theories of AdS quantum gravity via the
AdS/CFT correspondence [2-4] , S is not well-defined. One may nevertheless attempt to
define unitarity methods for AdS scattering amplitudes and conformal correlators. Though
a theory in AdS lacks asymptotic states necessary to define a standard S-matrix, AdS am-
plitudes (with appropriate boundary conditions) compute dual CFT correlation functions
of local operators. Therefore, one may expect that unitarity conditions for AdS can be
formulated in terms of Witten diagrams or dual CF'T data, and that the two descriptions
will be simply related.

This perspective formed the crux of the unitarity methods introduced in [1] which,
building on elements of [5-7], proposed a new approach to perturbative AdS amplitudes
and their dual non-planar CFT correlators. The idea was to compute AdS loop amplitudes
holographically by developing the 1/N expansion of the CFT correlator. One main achieve-
ment of this work was to make precise the sense in which one can “square” tree-level OPE
data — i.e. anomalous dimensions and OPE coefficients — to generate one-loop OPE data.
Aside from providing conceptual insight, this approach bypasses the difficulty of computing
directly in AdS, where results have been mostly restricted to tree level. The loop expansion
in AdS has been further studied along these lines in [8-17]. Other subsequent work on AdS
loops from diverse perspectives includes [18-37].!

'Early work on AdS loops can be found in [6, 7, 38, 39)].



The current paper aims to provide a more systematic approach to unitarity methods
for correlators in AdS/CFT, cast in both bulk and boundary language. Stated concisely,
the main results of this paper are the following:

e We develop an “AdS unitarity method” directly in the bulk, which uses bulk op-
erations, such as the cutting and gluing of Witten diagrams, and makes conformal
symmetry manifest. The method is best phrased in terms of the double discontinuity
(dDisc) of the amplitudes. The dDisc is analogous to (7)) in flat space and imple-
ments internal line cuts of loop-level bulk diagrams by putting virtual lines on shell.
From here, the Lorentzian inversion formula [40] then reconstructs the full diagram.

e We apply this method to a variety of one-loop diagrams, computing cuts of the
scalar bubble, triangle, and box diagrams, along with studying one-particle reducible
diagrams for mass and vertex corrections.

e We give a simple and elegant dictionary between the diagrammatic bulk unitarity
method, which involves cutting and gluing AdS graphs, and the algebraic holographic
unitarity method of [1], which involves summing over products of OPE data. Using
CFT tools [27], we show that the two methods are equivalent. In doing so we recast
the method of [1] in the language of the dDisc.

e We begin an extension to higher loops by analyzing the AdS double-ladder diagram.
The diagram admits several distinct cuts, one of which involves five-point tree dia-
grams whose crossing properties we also study. The methods developed at one loop
persist to higher loops and cleanly identify the multi-trace states.

The next subsection is an extended, self-contained conceptual summary of our work, fol-
lowed by an outline of the remainder of the paper.

1.1 Summary of AdS/CFT unitarity

An overarching point of this paper is that one should not compute AdS loop amplitudes
by brute force. However, to set the stage, suppose one does. An efficient algorithm for this
purpose that manifests the simplifying role of conformal symmetry was developed in [27].
First, by manipulating AdS bulk-to-bulk propagators, one can recast Witten diagrams as
spectral integrals over conformally-invariant gluings of CF'T three-point functions. Second,
one employs techniques from harmonic analysis to perform crossing transformations [40, 41]
and position-space integrals [42—44] of these conformal structures. In this way, any n-point,
loop-level diagram can be expressed in a conformal partial wave (CPW) expansion. The
OPE data is then determined by a set of non-trivial spectral integrals.

While a significant improvement over direct bulk integration, this method has certain
limitations. Although it makes bulk integrations trivial, we are still left with spectral
integrals which are difficult to compute. We also know from the existence of the Lorentzian
inversion formula in the CFT, and anticipate based on S-matrix techniques in QFT, that
we should be able to reconstruct the diagram from a simpler, more minimal object.



In this work, we pursue an alternative approach using unitarity. Let us start with
a general Witten diagram A'%%4(x;) = A(z1, 29,73, 24), drawn below, with four external

points and two sub-diagrams Ay, g connected by two propagators.?

(1.3)

One expects that a useful AdS unitarity method should make the following explicit:
i) How to implement a “cut” of the two propagators.
ii) How this cut factorizes A into the lower-loop diagrams Ay, g.
iii) How this relates to operator exchanges in the CPW decomposition of A.

¢

Let us draw a picture of three possible “vertical line cuts” of this Witten diagram:

D [0103], [0304], [0506] (1.4)

Since the lines always cut through two propagators, AdS/CFT intuition suggests that
those cuts should isolate the respective double-trace families in the s-channel CPW decom-
position as shown above [7]. In general, we may expect that vertical line cuts should tell us
about operators exchanged in the s-channel, 010y — O30y, while horizontal cuts should
tell us about exchanges in the ¢-channel, O30 — O104. We realize these ideas concretely
as follows.

To start, we use the split representation of the bulk-to-bulk propagator Ga(y1,2),
with bulk coordinates y; and boundary coordinates x;:

[e o]

Ga(y1,92) _/

—00

dVP(”? A)/ ddeéJriV(mvyl)Ké,iy(xayQ)v (15)
OAdS 2 2

2To make it manifest which operators are being isolated and how external cuts differ from internal cuts,
we will choose all internal and external lines to correspond to different operators/fields. For convenience
we label fields in AdS by their dual operator in the CFT.



where Ka(z,y) is the bulk-to-boundary propagator for a CFT operator of dimension A, and

A= LV (1.6)

’ 2+ (A-92
The dimensions of Ka(z,y) in (1.5) sit on the Euclidean principal series, A = % +iv. The
measure P(v, A) has poles at v = +i(A — %) For reasons that will become clearer soon, we
call the pole at v = —i(A — g) the single-trace pole: it lies at the value of v corresponding
to the physical, single-trace operator of dimension A propagating on the original line. This
split is shown in the following figure, where we introduce the notation A=d-— A, so that

v = —v represents the “shadow pole” at v = +i(A — %):
x
= / dvd?zP(v, \) (1.7)

If the bulk-to-boundary propagator sits on the principal series, we say it is off shell. On
the other hand, if the bulk-to-boundary propagator has the scaling dimension of a physical
single-trace operator, we say it is on shell. In the language above, a propagator goes on shell
when localized onto the single-trace pole of P(v,A). This captures the essential distinction,
central to the unitarity method, between the original diagram and its split representation.

Since vp (an off-shell quantity) and Ay (an on-shell quantity) will often appear in the
same expression, to keep the presentation unambiguous we define:

d

A=-—
2

+iv, (1.8)

so that O will denote an off-shell operator with dimension Ay, and spin Jp. This will
be convenient for distinguishing the scaling dimensions of bulk-to-boundary propagators
K d +ip(@,y), which come from splitting a bulk-to-bulk propagator Ga (y1,¥2), from prop-
agators of the original diagram with physical scaling dimensions Ap.

It will be convenient to define two notions of conformal gluing for four-point
amplitudes.?

First, we define on-shell conformal gluing:

1265 5634 _ d,. ad 1265 5634
A% 0 AR :/ d®wsd®ve A7 (21, T2, T6, T5) AR (x5, T6, T3, T4). (1.9)
HAdS

This is a conformally-invariant gluing of two four-point amplitudes along their common
boundary points that generates another four-point amplitude.

3To use identities involving conformal integrals and, later, the 6j symbol, we must take all operators to
lie on the principal series [27, 41] and only analytically continue to real, physical dimensions at the end.
We henceforth take this to be understood.
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Figure 1. General Witten diagram with an internal, double-trace cut.

Next, we define off-shell conformal gluing:
A}?ﬁ & A?;Té34 = / Cll/5dV6 P(V5, A5)P(V6, AG)AlLQ® 9] A%34. (110)

This is also a conformally-invariant gluing, but it includes two spectral integrals weighted

by the factors from the split representation. By construction, the off-shell gluing defines a

full Witten diagram because Ga (y1,y2) splits onto off-shell propagators, cf. (1.5).*
Returning to our amplitude A, using the split representation twice gives figure 1, i.e.

A () = AP @ AR (1.11)

This is an exact equality for the full diagram, and it is a non-trivial problem to perform
the spectral integrals. To go further, we use unitarity.

Main results. Let us define the following cut operator:

Cuts[ A2 = (245 — d) (20 — d) AL265 5 43634 (1.12)
where we note that
2A1 —d= Res ZP(I/Z', Al) . (113)
imi(ai-4)

That is, this cut operation places the virtual 5 and 6 lines on shell by picking up the single-
trace poles of the measure. This vertical cut factorizes the diagram into position integrals
of two on shell, lower-loop four-point functions. (One can define an n-fold cut operator
Cut;,;,...;,, which puts n virtual lines on-shell in the same way.) To make contact with the
CFT, it is convenient to further introduce

Cutss[A1234] = Cutsg[ A2 (1.14)

[0506] ¢’

The symbol |j0,0,), , means “project onto the [O5O¢], ¢ family in the conformal block de-

composition”,® where [O506) ¢ are double-trace primary operators with the schematic form

[0506]n.0 = 050y, - . . 0,,0°"Og — traces (1.15)

“The on-shell gluing is related to the “pre-amplitude”, defined as a Witten diagram with bulk-to-bulk
propagators replaced by harmonic functions [24, 27]. The on-shell gluing defines a pre-amplitude in which
we replace only the 5 and 6 propagators.

5In Mellin space [6, 45] this corresponds to localizing onto certain poles of the Mellin amplitude.



This projection is non-trivial because the decomposition of Cutsg[.A'?34] includes not just
the [O50¢],, ¢ family, but also the shadow families where Os ¢ — O5 6. We will discuss this
in more detail in section 4.5

We can now summarize our results.

Result 1: 61?556 isolates the full contribution of the [O5Og), ¢ operators to the
conformal block decomposition of the amplitude. As an equation,

6&56 [A1234] — A1234 ]
[O506]n,e
We prove this statement by direct computation of one-loop diagrams. That is, we show that
all poles in the spectral integrals besides the single-trace pole contribute only to external
line cuts.

To establish an AdS unitarity method, we need to reconstruct the diagram from its
internal line cuts. To do this, we relate these cuts to the dDisc, defined in (2.16); the deter-
mination of the full diagram then follows from Lorentzian inversion/CFT dispersion [40, 46].
As is now well-known, the dDisc annihilates conformal blocks of double-trace composites
comprised of the external operators in that channel, as stated in (2.20). Acting on the

A1234

amplitude considered here, the s-channel dDiscg will remove the operators [(91(92]71,@

and [O304],, ¢ from the conformal block expansion. Therefore, taking dDisc, projects Al234

onto a sum over all internal, vertical line cuts, weighted by some trigonometric prefactors:
Result 2: dDisc is a weighted sum of the Cut operator acting on internal lines.

In the body of the paper, we will classify what the allowed internal cuts are, i.e. what
operators can appear in the CPW decomposition of a Witten diagram. Cuts are to be
understood as acting in a given channel. At one loop — i.e. taking A, and Apg to be tree
diagrams in figure 1 — Result 2 implies the following:

Result 3: For one-loop 1PI diagrams, dDisc is proportional to a single Cut.

This also follows straightforwardly from Result 1. For generic scalar operators, for example,

1—loop

dDisc,(A}%32 ) =2sin (g(A5 + A — Ap — A2)>

X sin (;r(Ag) + Ag — Az — A4)> Cutss[A1%L,].  (1.16)

The dDisc of non-1PI diagrams is still a weighted sum of (ﬁs, but there can be more

than one such cut. This is intuitive from looking at the diagrams, and is discussed in more
detail for mass and vertex renormalization diagrams in section 4.

With these ideas in hand, we can now directly relate the bulk and boundary unitarity

methods — that is, we seek a map between the diagrammatic conformal gluing defined

50ne can define an external line cut, as simply projecting onto double-trace operators composed of
external operators. For example, for A'?3* an external, vertical line cut means we project onto the [01 2], ¢
or [(’)3 (94]”7 ¢ families. These cuts do not factorize the diagram: external lines are already on shell and cutting
them provides no simplification, unlike internal cuts which place virtual lines on shell.



by the Cut operator, and the algebraic holographic unitarity method that constructs the
amplitude from OPE data. We exhibit this in figure 2 for some diagrams in AdS ¢ +
¢* theory.

The boundary unitarity method addressed the following question: given the planar
OPE data of a large N CFT, how do we generate leading non-planar corrections? Con-
sider a one-loop, four-point function of identical scalars (OOQQ), as in [1]. Double-trace
operators [O0)], ; have anomalous dimensions that admit an expansion

1 2
IRV

771,@ - N2 + N4

+... (1.17)

where ’yr(le is the tree-level piece. The upshot of [1] phrased in the present language is that

the dDisc of the one-loop correlator is completely determined by the product of tree-level
anomalous dimensions

2
. 77 _
dDisct (A1 -100p) D > g psz(’yr(jZ)anyg(l —z,1—2). (1.18)

n,l

Here pq(lo’% are the squared OPE coefficients of Mean Field Theory [5, 7] and gy, ¢(1 —2,1—2)
are t-channel conformal blocks for the exchange of [OO],, .

Now, while the above reconstructs the (dDisc of the) full, crossing-symmetric one-loop
amplitude, it can be refined to reconstruct individual bulk diagrams as well. The sum of
all bulk tree-level amplitudes gives the total tree-level anomalous dimension ’yfllz. Let us
write it as ’

1 1), 1),t 1),
Ay e A e (1.19)

1)

where vnlg’x denotes the contribution from diagrams in channel x. Inserting this into the
right-hand side of (1.18) and expanding, the bulk-boundary relation is clear:

Result 4: Replacing (7212)2 in (1.18) with Vfllg’xnglz’y computes the piece of
dDisct(A1—100p) 0btained by gluing the bulk diagrams in the x andy channels.

This is a simple and straightforward map between geometric and algebraic unitarity meth-
ods. The bulk-boundary map is explained further in section 5, where we also give a CFT
prescription for implementing contraction of bulk lines.

Let us recap the analogy to the unitarity method in flat space scattering amplitudes.
The integration over v is analogous to the integration over momenta in standard Feynman
diagrams, and the measure factor P(v,A) is analogous to a propagator. The dDisc of
a diagram plays the role of the imaginary piece and is proportional to a sum over the
action of the AdS Cut operator. Localizing onto the single-trace poles (1.6) is analogous
to localizing onto on-shell momentum eigenstates. The Lorentzian inversion formula then
functions as a dispersion relation for the CFT data, allowing us to reconstruct the full CFT
correlator from its cuts.

In closing, we note that the ideas we present here are valid for any perturbative field
theory in AdS. For simplicity we will focus mostly on AdS scalar field theories, though
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Figure 2. A summary of the map between bulk and boundary unitarity methods for one-loop
amplitudes in AdS ¢ + ¢* theory. The left column shows the off-shell, s-channel conformal gluing
of Witten diagrams, the Cuts of which map to the dDisc of the correlator, dDiscs(Gi—i00p), as
explained in the text. The right column shows the CFT data — namely, the product of tree-level
anomalous dimensions — that are inserted into the s-channel expansion of dDiscs(G1—100p). The two
ways of computing dDisc,(G1_100p) match. We have suppressed the tree-level “(1)” superscripts on
the anomalous dimensions for clarity. The fourth line may be obtained from the third by contraction
of the t-channel exchange sub-diagram; this is neatly implemented on the CFT side by replacing a
¢* anomalous dimension with its ¢* counterpart.



we emphasize (and hope to convey) that the AdS unitarity method does not rely on that
simplification. In section 5, when making contact with the CFT unitarity method, we do
not make such a restriction. The generalization to external spinning operators is possible
using weight-shifting operators [47, 48] and readily available identities for AdS bulk-to-bulk
propagators [49-52].

1.2 Outline

In section 2, we summarize the necessary CFT technology, including conformal integrals
and the inversion formula. In section 3, we review how to compute tree diagrams, which
will be the basic building blocks for loop amplitudes. In section 4 we present our central
computational results, explicating the AdS unitarity method for one-loop, four-point scalar
amplitudes, and computing their dDiscs. We study both 1PI and non-1PI diagrams. In
section 5 we tie things together by exhibiting the map between the bulk and boundary
unitarity methods. In section 6 we initiate an extension to higher loops by applying the
unitarity method to the two-loop double-ladder amplitude and, in conjunction with that,
the five-point tree amplitude. Finally in section 7 we discuss some future directions. The
appendices collect various conventions and technical details used in the body of the pa-
per. Appendix A summarizes our conventions. Appendix B contains further discussions on
identities for the 6j symbol and AdS box, and some comments about the box Mellin ampli-
tude and its relation to the results of [1]. In appendix C we perform explicit comparisons
between the bulk and boundary unitarity methods.

Note: after this work was completed, [53] appeared, which has some overlap with
this work.

2 CFT ingredients

2.1 Rudiments
We will be studying conformal four-point functions of real, scalar operators,
(O1(21)O2(22) O3(23) O (24)) = Tis(2:)G(2, 2), (2.1)

where Tg(x;) is a kinematic prefactor

Ao—Ag Az—Ay

(2, : () 7 (%) 22)
x;) = == == : :
T (afy) B0 2 (a5 (Bat A0/ \ 2, iy
and the cross-ratios (z, z) are defined by:
2 .2 2 .2
pr= 2B (1)1 - 5) = AT (2.3)
13724 13724

In our convention, “s-channel” means the O10y — O304 OPE and “t-channel” means the
0104 — 0303 OPE. The crossing transformation maps (z,z) — (1 — 2,1 — z). We will
sometimes refer to four-point objects, like amplitudes, as A'234(z;), where x; is implicit for
(x1,x9,x3,24) and 1...4 denotes the operators O; ... Oy.



The four-point function may be expanded equivalently in conformal blocks or conformal
partial waves (CPWs). The s-channel CPW expansion is

<01({L'1)02(.%'2>03(.%'3 04 .%'4 Z/ 1234(A J)\I/1234( ) (2.4)

The CPW, \111234( i), is related to the s-channel conformal block as

W () = K8 9B i) + KR 925 o), (25)

where A = d — A is the dimension of the shadow operator (’), and the kinematic factors
of K u i are defined in appendix A, although we will not need their explicit form. The

conformal block as a function of all four points, ga,s(x;), may be written as a function of
the cross-ratios, ga, s(z,%), multiplied by the T(z;) factor in (2.2). The important, non-
kinematic object here is the OPE function p'23*(A, J): this contains all data of the CPW
decomposition in the O10y — O30, channel.” To study the physical OPE of our theory
and remove the shadow operator contributions, we need to go from the CPW expansion to
the conformal block decomposition. Using the identity
K34

P AL T) = AL ) s (2.6)
A

we can extend the A contour along the entire axis and replace the CPW with a block:
dA 1234 31 1234
(O1(21) 02 () O3(3) Os(4)) Z —p A DKL g8 () - (27)

Since each block decays for large real A > 0, we can close the contour to the right, pick up
the poles in the OPE function, and reproduce the physical conformal block expansion.®

We emphasize again that (2.4) and (2.7) are equivalent. As is evident from comparison,
the OPE function for the conformal block decomposition (2.7) is just p!#4(A, J) times the
kinematic factor K %47 J. We will often just quote the result for p'234(A, J).

The CPWs have several useful properties which are not inherited by the blocks, some
of which we mention here. If we restrict the scaling dimension to the Euclidean principal
series, A = % + v with v € R>¢, then the CPWs form a normalizable, complete basis
for CF'T four-point functions, modulo non-normalizable terms. The CPWs are orthogonal

with respect to the following inner product:

(‘Ijl,Q—i?fm,h \1/1723?1/2,&72) - 27T5(V1 - V2)5J1 JQnd'HVl J1 (28)
dzy ... d%y
» _ Fr: . 2.
(F.G) /vol(SO(d+1,1)) ()G (), (2.9)

"Our notation is that p*23*(A, J) is the OPE function in the s-channel, and likewise for the CPWs and
conformal blocks.

8There are non-normalizable terms, coming from operators with A < d/2, which are not captured by
this expansion [40, 54, 55]. In this work we can ignore such terms. Note that the function p'?3*(A, J) can
have families of poles extending to the left, so we define the contour such that it passes to the right of
these poles.

~10 -



<01(9203> — \111234 — 5
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Figure 3. Outgoing/ingoing lines correspond to O and O respectively.

where np  is the normalization of the CPW, see (A.12).
Another convenient feature of CPWs is they can be expressed as a conformal integral:

U3 (21, 39, 43, 74) :/dd$5(01($1)02($2)05($5)>(65(335)(93(363)04(304)% (2.10)

where (O1(x1)O2(x2)O5(x5)) is the unique conformally invariant three-point function, or
three-point structure, when O; o are scalars. We will adopt the convention that these
structures do not include the OPE coefficients in their definition.” More generally, we will
refer to integrals involving an operator paired with its shadow as a “conformal integral”.'’
It will be convenient to adopt the graphical notation given in figure 3 such that a cubic
vertex corresponds to a three point function, the CPW is a four-point tree-graph, and the
positions of internal operators are integrated over.

Taking the inner product of s- and t-channel CPWs defines the 6j symbol of the

conformal group SO(d + 1,1):

1535 126
1234 3214
(\Ilﬁwfs’ \I}Aﬁ"lﬁ) - {3 45 } . 24y

The 6j symbol tells us how to expand a single CPW in one channel as a spectral
integral in another channel,'!

et 440
3214 /.. \ _ 2 dAs 1 1126 1234 (..
5= 2

In our graphical notation, a 6j symbol allows us to convert a vertical tree into a sum of
horizontal trees and vice-versa,

1 4
°°%+mdA1 1261 :
_ 5 1 5
0 _Z / 27rin5{3 4 5} (213)
Js=0 %
2 2 3

9We also adopt the convention that inside two and three-point functions O denotes an abstract operator
with dimension ﬁo and does not include any factors from the shadow transform.

10Th Euclidean signature the integration is over all of space, but in Lorentzian signature we can consider
more general pairings of operators and domains of integration [42, 56].

"Note that the 6j symbol is known explicitly in closed form only in d = 1,2,4 [27, 57]. See also [58, 59].

- 11 -



By working with operators on the principal series, we will leverage this equality when
studying Witten diagrams.

Finally, the last conformal integral we need is the Euclidean bubble integral:

/(')Ads ddmlddm<(’)%+W7J(a:)(’)1(x1)(’)2(x2)><52(x2)51 (.%'1)(’)/%7“//“]/ ($/)>

= Bod(v —V')dyp0(x —2), (2.14)

with the restriction v,/ > 0. This identity is shown diagrammatically as:

1
@ o’ @)
‘Q‘: B(Q(S(QO/
2

The definition of the bubble factor is given in (A.14)-(A.19) and for internal scalars it
is given by (A.20). We will use this integral repeatedly to compute loop-level Witten
diagrams. In particular, we will often use the following form of the bubble identity, which
comes from expressing CPWs in terms of three-point functions as in (2.10):

/ dasdle VP, (@)Y, | (x1) = Bodspd(y —v )Wk (). (2.15)

2.2 dDisc

Now we can introduce the double discontinuity which is used in the Lorentzian inversion
formula [40] to reconstruct the OPE data, up to low-spin ambiguities. The ¢-channel dDisc;
is defined as'?

dDiscy(G(z,2)) = cos(a)G(z,2) — % (emgo(z, 2) 4+ e G (2, z)), (2.16)

o= 2(Bs+ Ay — A~ Ay), (2.17)

where G9(z, z) is found by rotating z counterclockwise around the branch cut at z = 1
and clockwise for G“(z, z), holding z fixed. dDisc; is likewise defined by instead continuing
around z = 0 and keeping Z fixed.

Written as a discrete sum over real operator dimensions, the ¢-channel conformal block
decomposition of G(z, 2) is

A1+Ag
2

_ (22) _
G(z,2) = AyTA; Jgn, (1 —2,1—2), (2.18)
o

where pa j are products of OPE coefficients,

pas =277 Cuo, , Cason., - (2.19)

12To fully reconstruct the s-channel OPE data using the inversion formula, one needs the u-channel
double discontinuity; for simplicity, we will focus on the s and ¢-channel dDiscs and everything will carry
over to the u-channel. Note that, in general, the Lorentzian inversion formula produces the correct OPE
data for operators with J > Jo, where Jy controls the Regge growth of the correlator.
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The action of the dDisc; on this expansion weights each block by sin factors:

dDiscy(G(z 7)) =2— L 2 Y (g(A — A - A4>> (2.20)
(1-=2)1-2)] 2 ay

. ™ _
X sin (2(A — Ay — Ag))pA7JgA7J(1 —z,1—2).

Thus, exchanges of “double-trace” composites [O104),, and [O203], ¢ with vanishing
anomalous dimension, as in Mean Field Theory, are annihilated by dDisc;.

3 Review and warmup: AdS trees

We begin by reviewing, in detail, the computation of tree-level Witten diagrams and their
conformal block decomposition. This serves as a useful warmup for the one-loop case, which
we will compute by gluing trees, and helps develop intuition for the role of the dDisc. The
main point will be to introduce the AdS wunitarity cut, which factorizes tree-level exchanges
into products of three-point functions, and its manifest relation to dDisc. The computation
follows [27] and employs the technical toolkit of conformal integrals reviewed in section 2
(see e.g. [27, 41-43, 60]).

We use conventions and normalizations of [27]. Bulk coordinates are y; and boundary
coordinates are x;. We will use the notation

/ ditly = /ddHy Vv9(y) and / dlx (3.1)
AdS OAdS

for bulk and boundary integration, respectively. The bulk-to-boundary propagator for
a scalar operator Oa is Ka(xi,yi), and the bulk-to-bulk propagator is Ga(y;,y;). We
suppress overall coupling-dependence of all diagrams.

3.1 Contact diagrams

A particularly simple four-point Witten diagram is the ¢* contact diagram drawn below.

A1234 _

cont —

To find the CPW expansion, we use the scalar AdS harmonic function

2
D (y1,y2) = / dda?KgH,,(«T,yl)KLw(%y2)a (3.2)
OAdS 2 2

s
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which is independently invariant under y; <> y2 and v — —v. The harmonic function also
satisfies the completeness property:

/OO dv Qu,(y1,92) = 6(y1, y2)- (3.3)

—00

Using this representation of the delta function, the contact diagram can be written as [61]:

o) 1/2
Acont (1) = / dv / d'zs / a1y Kon, (21, 50) K ag (2, 91)
—00 OAdS AdS T

X K%_H'y(xf)a yl)K%_iV(:E& y2)KA3 (1‘37 y2)KA4 (‘7;47 y2)
(3.4)

The AdS integrals have now all been reduced to standard three-point integrals:
/ A YK A, (21, 9) Kay (22, ) Kay 05 (23, y) = b123(O1(21) O2(22) O3(23)), (3.5)
AdS

where the kinematic b-factors were derived in [49, 62] and are defined in (A.9). From the
definition (2.10) of the CPW, we have

e’} I/2

Acont ($l) = / dV5?5b12§b534\111éQj%($1, T2, T3, $4). (36)
—00

Comparing with the CPW expansion (2.4) and recalling the principal series parameteriza-

tion A = % + iv, we can read off the OPE function for scalar contact diagrams as

szggé(é& J5) = —d5,0(d — 2é5)2bl2§b534' (3.7)

The scalar contact diagram only has support on J = 0 operators, and the poles from

the b-factors in (3.6) are at the double-trace locations:'3

é5 = A1+ Ay + 2n, (38)
ég) = Az + Ay + 2n.

If we split the CPW using (2.5), we determine the conformal block decomposition. This

1234
cont

simply appends a K §4 factor to peont (As, J5). The conformal block decays exponentially for
large dimensions, and this allows us to close the v5 contour in the lower half-plane. In the
process we only pick up the poles (3.8) and (3.9). In the special case that A;+Ag = Ag+Ay
we find a double pole which produces a logarithm after closing the contour. This familiar
feature reflects the tree-level anomalous dimension of the double-trace operators.

Now, due to the manifest non-analyticity in spin of the OPE data in any channel,'*
dDiscs ¢ 4 (Acont (2:)) = 0. (3.10)

As we explained earlier and will substantiate throughout this paper, the diagrammatic
reason for this is the absence of internal lines.

13The b-factor has additional families of poles at A = (A1 — Ag) — 2n and d — A1 — Az — 2n, but they
lie in the upper half plane of v and will not be picked up.
14To derive the t- and u- channel expansions we use (3.3) to “split” the contact diagram in different ways.
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3.2 Exchange diagrams

Next we will review the CPW decomposition of tree-level exchange diagrams. The main
goal is to show that dDisc projects onto internal cuts in a natural way. We will also find it
useful to recall how the 6j symbol naturally appears in the process of decomposing exchange
diagrams in the crossed channel [27].

To determine the CPW expansion of the t-channel exchange graph,

1 4

3214
’AO,exch -

2 3

we will use the split representation for the bulk-to-bulk propagators, see (1.5). Using (3.5)
on the resulting product of two three-point functions gives a CPW expansion

AG Aen(zi) = / dvo P(vo, Ao)bsaob, W E (1), (3.11)
The OPE function is thus

(d—2Ap)?
(Ap — Ao)(Ap — Ap)

There are three types of operators contributing to the block decomposition:

PE exeh (L0, J0) = —010,0 b320bg - (3.12)

Ap = Ao, (3.13)
Ap = A1+ As+ 0+ 2n, (3.14)
Ap = Ay + Az + 0+ 2n. (3.15)

The first pole comes from the measure of the spectral integral; this is the “single-trace
pole”. As in the contact diagram case, the remaining poles come from the b-factors, and
are at the location of the double-trace operators.

The tree-level diagram provides a simple but useful example of how cuts simplify a
diagram. On the one hand, Cuto[A‘gleiCh] is, by definition, the contribution from only the
single trace pole (3.13):

Cuto[Agleich(:L‘i)] = (d — 2A0)bs20 5614K(154g?9214(1'i). (3.16)
The cut OPE function manifestly factorizes onto a product of the three-point factors
b120bgs,- This is the unique, internal line cut and is also proportional to the dDisc,
of the diagram:

dDiSCt(A?Q%Ié(Ch(IEi)) =2sin (;r(A@ — AQ — Ag))

X sin <;T(A@ — A1 — A4)>Cuto["4?()92’1£(ch(xi)]' (3.17)
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That is, the dDisc is putting the virtual O line on shell. This is a tree-level foreshadowing
of the loop relations to come.

3.2.1 Crossed-channel decomposition
It will be useful for later to gain some experience with 6j symbols. These arise when we
decompose this t-channel exchange in the s-channel. First, insert (2.12) into (3.11) to
branch the t-channel CPWs into the crossed channel:
00 X et AL (120 1
o’ L4
AS, xen () :/ dvoP(vo, Ao)bsaobs, Y [1 1340 Vo @)

21 n
—oo Jor=0"3 o

(3.18)

At this point, we could close the vp contour to the right so that we are left with a single
spectral integral, but generically the 6j symbol has many poles whose physical significance
is not clear. It is more convenient to use (2.5) to decompose the 6j symbol as [27]

126 126 126
_ K K2 3.19
{345} 6(345)Jr 6 \345) (3.19)

<§12, Z g) _ <@%234792214> , (3.20)
where in application to (3.18) we have 6 — O and 5 — O’. The symbol (3.20) represents
the inversion of a single ¢-channel block (as opposed to a t-channel CPW). This must be
formally defined as the “half” of the inversion of a t-channel CPW proportional to Ké4,
since only CPWs obey well-defined orthogonality and single-valuedness properties.

To proceed we need the location of the poles of the 6j symbol, which were discussed
n [27]. One nice feature of the split (3.19) is that (3.20) has no poles in Ag to the right
of the principal series. We can therefore insert (3.19) into (3.18) and close the Ag contour
to the right for the first term and to the left for second term in (3.19). Another important
feature of (3.20) is that it is zero when Ag = A;+Ag+ls+2n and Ag = Ay + Asg+ g+ 2n.
These are the familiar zeros from the dDisc in the inversion formula and will cancel the
t-channel double-trace poles from the b factors in (3.18) when we close the Ag contour.

Therefore, we are left with only the single-trace pole for the vp contour and the s-
channel CPW decomposition of the t-channel exchange diagram is

o0

4 tico dA
2 (04 1 2 O ].
AZ () = Y / g (@ 2080) byobg, K <3 | O,) o kG 96 @0).
Jor=0" 27t

(3.21)

We can close the Ay contour to the right to obtain the conformal block decomposition.
We first need that the symbol (3.20) has poles in Aj at the following locations:

As = A1+ As+2n+ 4,
As = Ag+ Ay +2n+ 4,
Asg =£3+A4+2n—|—€,
As = As + Ag+2n + £
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These latter two sets of poles are not physical and will be cancelled by zeros in K (35‘% In
the end, only the first two sequences of poles contribute, as is known from previous AdS
computations [5, 6, 63, 64]. The full set of poles for the 6j symbol can be derived from these
using tetrahedral symmetry [27], but for this work we can focus on these poles of (3.20).

4 AdS one-loop diagrams

In this section, we turn to the direct bulk computation of scalar one-loop diagrams. Our
approach will be as follows. We will apply the identities in section 2 to obtain loop diagrams
as spectral integrals over CPWs. We will explain how to identify the physical poles that
contribute to the spectral integrals.'> We then focus on the dDisc of the diagrams and show
its relation to the internal Cut operator. The main result is that the spectral integrals will
become trivial when computing the dDisc.

For one-particle irreducible (1PI) diagrams, this algorithm amounts to factorizing the
diagram into products of two tree diagrams. In the end, there are no spectral integrals
remaining and the dDisc reduces to a sum over blocks with known coefficients. One-particle
reducible diagrams introduce some subtleties whereupon we can also have factorization
onto lower-loop and/or lower-point diagrams. In this case there may still be spectral
integrals after taking the dDisc. One new result is that some one-particle reducible one-
loop diagrams will introduce new operator exchanges not observed at tree-level.

We will continue to stress the analogy to the unitarity method in flat space scattering
amplitudes: the dDisc localizes amplitudes onto the single-trace poles (1.6) and factorizes
the diagram, just as for the imaginary part of the S-matrix in flat space. The Lorentzian
inversion formula then functions as a dispersion relation for the CFT data.

In the next section, we will return to the original unitarity method of [1] and make
explicit contact with the results of this section. Both methods will agree exactly.

4.1 One-particle irreducible diagrams

4.1.1 Bubble

We start with the ¢*-type s-channel bubble diagram with non-derivative vertices. The
procedure for calculating this diagram is shown below: we will use the split representation
on the two internal lines to reduce the bubble to two contact diagrams sewn together.

15 At intermediate steps, various unphysical operators will appear as poles, but we find these are always
have zero residue. This cancellation is not serendipitous but is expected from general arguments: for
example, we should not see operators which lie below the unitarity bound, and the appearance of triple-
trace operators at one loop would violate the expected 1/N counting.
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As an equation, this corresponds to
1234 41265 5634
'Abub ( ) cont ® Acont? (4'2)

where we recall the definition of ® in (1.10). We can now plug in the CPW decompo-
sition of the constituent contact diagrams. The boundary integrals are the CFT bubble
integral (2.14) applied to CPWs, so using the identity (2.15) we have

AL () = / dvsdvs P(vs, Ag) P(vs, Ag)

270 dA
[ A A 0B R @), (49
d 2mi
Equivalently, the s-channel OPE function is
PEBY A, T) = b5 / dusduP(us, As) P(1g, A6) pacs2 (A, 0)p2t (A, 0)Ba g, (4.4)

Thus, the conformal block expansion of the bubble is determined by the spectral integrals
over v56. Note that only J = 0 double traces contribute in the s-channel because we are
gluing two ¢* vertices together in the s-channel.

To understand the pole structure it is useful start with the poles in the A plane. The

contact diagram OPE functions pco65(A 0) and pigﬁf (A,0), given in (3.7), yield the poles

A=A+ Ay +2n, (4.5)
A = As+ Ay +2n, (4.6)
A = A5+ Ag +2n, (4.7)
A=A+ Ag + 2n. (4.8)

Picking up the poles (4.5) or (4.6) corresponds to doing an external vertical line cut while
picking up the poles (4.7) or (4.8) corresponds to doing an internal vertical line cut.

We now show that dDisc; of this diagram is simpler than the full diagram, and equiv-
alent to the @56 operator. As reviewed in section 2, taking the dDiscs; removes the
contribution of (4.5) and (4.6).!6 That is, dDiscs projects out the external vertical line
cuts. Next, we will show the only other allowed exchanges are [O50g], . We also show
their contribution is determined by @:56, or that the full contribution of this exchange
comes from closing the v5 ¢ spectral integrals on shell.

To see this, we first close the A contour on the poles in (4.7) which produces the
conformal block 9[1536%1 (x;). Turning to the remaining v56 integrals, we are forced to
close them in the lower-half plane so that the conformal blocks are exponentially sup-
pressed. In the process, one contribution we pick up comes from the single-trace poles of
P(vs,As) and P(vg, Ag): this puts the operators Os and Og on shell and leaves us with

the block g[1526?i4 ().

1676 avoid divergences in the principal series integral from the sin factors we should first close the A
contour and then apply the dDisc to the conformal block sum.
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Shadow symmetry of the integrand guarantees that if we close the A contour on the
poles in (4.8) we find the same result. In this case we must close the v5¢ integrals in the
upper-half-plane for convergence. The presence of these extra poles is why we defined the
6171:56 in (1.14) as Cutsg with an extra projection.

To complete the argument that dDiscs truly localizes on the [O50¢] family, we now
rule out other poles in v56. If we close A on the (4.7) pole we find a pole in v5 from

1265(A 0) located at:

cont

Ag = A1+ Ay — Ag +2m + 2n, (4.9)
which  would give a contribution 9[12?}’4 (x;)) — 9[1122?})4+ e(:vl) However,
dDiscsg [1122?4 ,(@i)] = 0. We repeat this exercise for all other poles for v5s and

find they do not contribute to dDiscs.
Thus, taking dDisc, does isolate the [O50¢], ¢ family, and the final result is

dDiscs (A2 (x;)) = — (d — 2A5) (d — 24¢)

oo
A3z, A .
3" Res  (pZ5(A,0)B(A,0)Ba oK 2 dDise, (428 1))
n=0 A:A[56]n,0 ’

(4.10)

Recalling that dDiscS(glAQ?(’)4( ;)) simply multiplies 91234(372-) by a prefactor (cf. (2.20)) which
is the same for all [O50g],, 0 blocks, we have proven (1.16) for the bubble:

dDiSCS(A}IJ?I%L) =2sin (;r(Ag, + A6 - Al — A2)>
x sin (g(Ag, +Ag— As — A4)> Cutss[A123). (4.11)

The simplification of the dDisc of the diagram is analogous to simplifications from
unitarity cuts of flat space scattering amplitudes. In the latter, internal cuts of a one-loop
diagram — i.e. calculating its imaginary piece — are simple: they put the internal legs
on shell and factorize the amplitude onto tree-level pieces. Likewise, as shown above for
the AdS bubble, this is exactly what dDisc has done. For the AdS bubble, just as for
S-matrices, it is more difficult to determine the real part of the amplitude, which involves
doing external line cuts.!”

Identical operators. It may also be useful to understand this phenomenon of dDisc
simplification when all operators are taken to be identical, i.e. O1 = Oy = ... = Og = O.

In this case we first close Aj; ¢ on the single trace located at Ap. We now have a triple pole

at A = 2Ap: from (4.3), a double pole comes from pgg? (A, J) and a single pole comes

5634

cont

from pocoe (A, J). After closing the A contour this triple pole gives us a In?(2Z) divergence,

1"Suppose we were to consider an external line cut, e.g. closing on the poles (4.5) or (4.6). In this case
we have to perform the vs ¢ integrals to determine the correct OPE coefficient, but now an infinite number
of poles contribute.
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which is proportional to the squared anomalous dimension of the [OO],, ¢ states [1]:
234
‘All)ub (mi)‘IHQ(Zg) s(w; an[ gn g(Z Z) (4.12)

The dDisc,s projects onto this term because dDiscs(In(22)gn (2, 2)) = dDiscs(gn (2, 2)) =
0. So at the level of the spectral representation (4.3) only the triple pole can contribute to
dDiscs. Because this triple pole only appears when Aj ¢ are put on shell, this is another
way to see the simplifying effect of dDisc.

4.1.2 Triangle

Next we will turn to the triangle diagram in a ¢® + ¢* theory, drawn below.

(4.13)

This will introduce the 6j symbol into the calculations, but otherwise will proceed similarly
to the bubble diagram.

When we use the split representation for lines 6 and 7, the triangle diagram becomes
a t-channel tree exchange diagram glued in the s-channel to a contact diagram.

1234 7216 6734
Atn ( ) - A5,exch ® Acont' (414)

Our end goal is to obtain the block decomposition in a single channel. Since we are gluing
the two diagrams together along x¢ 7, it is simplest to calculate the s-channel O10y —
030, decomposition, as this will allow us to use the CFT bubble identity.

Recall from the discussion surrounding (3.18) that using crossing on the tree-

level exchange diagram!'®

gilxih(:cﬁ, x1, T2, x7) factor in (4.14) — introduces a 6j symbol. This leads to (3.21) with

comprising the left “half” of the triangle diagram — the

the relabeling A%Zéich — "4(79251§X0h Plugging that into the triangle diagram and using the
bubble identity the same way we did in section 4.1.1, we have

1234 > gico dAp
A ) =~ [ dvadrr | Pvs, Ag)P(ur, Ar) (1.15)

—00 5 —100 2mi

6734 125\ Bo 31 1934
XAEQS p5exch(AO' )pcont (A(')? ) g (760) %K(B 9o (1‘2)

18To recap the steps: use crossing to go from the Os®; — 207 channel to the 0102 — OO
channel, extend the contour so the CPW is replaced by the block, and then close the Ap/ contour to pick
up the As pole.
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Again, because of the ¢* vertex in the triangle diagram, the blocks only have support
for J = 0.

We now analyze the pole structure. In the A plane we have poles at the following
locations:

A = A1+ Ay + 2n, ( )
A = Az + Ay + 20, (4.17)
A= Ag+ A;+2n, (4.18)
A= Ag+A;+2n, (4.19)
A=Ag+A;+2n, (4.20)
A= Ag+ A +2n. (4.21)

The contact diagram OPE function gives us the poles (4.17) and (4.21), while the inversion
of the exchange graph gives us the poles (4.16), (4.18), (4.19), and (4.20).

As with the bubble diagram, evaluating the triangle in full involves performing infinite
sums over poles in vg, 7 to obtain the full OPE function, and so is somewhat involved.
Once again, however, the s-channel dDisc is simpler. Taking dDiscs removes the external
double-trace poles (4.16) and (4.17), leaving us with the states corresponding to vertical
internal line cuts. By shadow symmetry, all poles (4.18)—(4.21) give the same contribution
so we can focus on (4.18).1 As with the bubble, if we pick up this pole, close v 7 in the
lower-half plane, and focus on the term with a non-zero dDiscg, then we only pick up the
single-trace poles from the P(v, A) factors. Putting everything together,

dDiscs (A (1)) = (4 — 24) (4 — 247) K3 Res pfi50,(A0r,0) (4.22)
Or==5
> - 125\ Bo _
X Res 5734(A ), 0 = K ADiscs (¢34 (x4)).
P AO:A[GHWQ pcont( o ) 760 no O (9(9 ( ))

This expression involves various factors, but the punchline is familiar. Only the sum over
the [OgO7]p 0 family is picked out by dDiscs, and this is proportional to taking a vertical
internal line cut:

dDisc, (AL24) =2sin <72T(A6 + A7 — A — A2)>

tri

x sin (g(Aﬁ + A7 —Ag— A4)> Cutgr[AL23]. (4.23)

Unlike the full diagram (4.15), we do not have any spectral integrals here: dDiscg has put
the internal states on shell.

4.1.3 Box

The AdS box diagram has many interesting features which the other one-loop diagrams
do not.

19See the analogous discussion for the bubble. For example, if we pick up the (4.18) pole we must close
the vg, v7 in the lower half plane, for (4.19) we must close vs in the upper half plane and v in the lower
half plane, and so on.
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e It is the only one-loop diagram which is non-zero?® when we take a simultaneous
dDiscs and dDiscy, also known as the gDisc [40]:

qDisc(Apox(2;)) = dDiscsdDiscy (Apox (x4)) # 0 (4.24)

whereas?!

aDisc(Agi(z;)) = qDise(Apup(z;)) = 0. (4.25)

e In Mellin space, the box diagram has simultaneous poles in the two independent
Mellin variables s and t. This is equivalent to having a nonzero gDisc.

e Ignoring the operator labels, the graph is more symmetric and has an equally natural
decomposition in both the s and ¢-channel.

e The OPE decomposition involves double-trace operators of unbounded spin in both
the s and t-channels. In general, the Lorentzian inversion formula implies that a
nonzero gDisc means that the OPE data is analytic in spin in both channels. Dia-
grammatically, this is because the box has both internal horizontal and vertical cuts.

The box diagram we will study is

Abox — 5 7

We will start with the s-channel 010y — 030, decomposition without loss of generality.
We use our bag of tricks — the split representation, crossing, and the CF'T bubble identity
— to obtain the box OPE function. Using the split representation for the 6 and 8 legs, the
box can be written as two trees sewn together,

6218 3684
Apox (i) = .Agve);:h ® A7E(ch~ (4.26)

Using crossing on each exchange diagram (cf. (3.18)) we find s-channel CPWs glued
together. Next we use the CFT bubble identity (2.15) to do the boundary integrals and

20Tt can also be shown explicitly using the lightcone bootstrap [65, 66] that the gqDisc of the box is non-
zero, see [67], appendix C. In the lightcone limit z < 1 — Z < 1 the gDisc of the AdS box reduces to the
gDisc of the “large spin box diagram” in [67], so the calculations in this limit are equivalent.

2The s-channel bubble and triangle diagrams have zero dDisc;. If this were not the case, the inversion
formula would imply that their s-channel expansion contains operators of unbounded spin, contradicting
our direct computation. The unitarity cuts for the analogous scattering amplitudes are also zero for the
same underlying reason: these diagrams have no internal ¢-channel cuts.
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obtain the s-channel decomposition written in terms of the OPE data of the two con-
stituent trees

Abox(wi) = (d — 2A5)(d — 2A7) (/_Oo 11 dViP(Vz‘,Ai)>

0 i=6,8

x JRes prs(Dor, J) Res p%iiihmo,,ﬂ
o= Apr=A

+i0o dAo s (215 86 7\ Bo
K2 K: ° == RG24 (). (427
XZ/_ZOO 2mi T \86 0 340 n% 6 90 SR )

Jo=0

By way of orientation, note the similarity to the analogous expression (4.15) for the triangle,
only we have had to use crossing on two trees, not just one, and hence contact data is now
replaced by exchange data.

Now to the main point, that the block decomposition of the box makes the three classes
of cuts manifest: the external line cuts for Ap = A1+As+2n+J and Ap = Az+A4+2n+J,
as well as the internal line cuts for A = Ag + Ag + 2n + J. In this case, the poles in A
all come from inverting individual blocks (3.20) and therefore J is nonzero. Once again,
taking the dDiscg places all spectral integrals on shell. We quote the final result of applying
our algorithm, which is by now hopefully familiar:

8
dDiscs(Apox(:)) =  Res H(d — 20:)by55b956b3570475
o Do=R6s,0 15
215 86 7
s (150) (300) Trpammotion. o

As anticipated, dDisc, isolates the family specified by the internal vertical line cut that
puts the 6 and 8 lines on shell:

dDiSCS(.AbOX) =2sin (g(AG + Ag — Ay — A2)>

x sin (g(A6 +Ag— As— A4)> Cutgs[Apoy]- (4.29)

Analogous expressions can be read off in the t-channel by relabeling. Note that conformal
blocks g3 (z;) for all spins appear explicitly in both channels.

In appendix B.3 we make some comments about the box amplitude in Mellin space.

qDisc and the pentagon identity for 6j symbols. We can also study the quadruple
discontinuity [40] — the “gDisc” — which is the composition of two discontinuities in dif-
ferent channels. Commutativity of dDiscs; and dDisc; implies a non-trivial relation between
infinite sums of conformal blocks. Taking dDisc; of (4.28) and equating it with the reverse
order, we note that all of the AdS kinematic factors in the above expression cancel out
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Figure 4. One-loop corrections ¢3 theory. The Witten diagrams on the left and right correspond
to renormalization of the bulk-to-boundary and bulk-to-bulk propagator respectively.

to yield

125 86 7\ Bo
Di F(~26 P(48K3~4 n Y aDi 1234/,..
d lsct[ R, ISR 650 | | 54 0 ) wz dPBesl00™ (@)

n,l e

326 57 8 \ Bo
_ : 37 115 1-14 o : 3214/, ..
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(4.30)

In fact, this identity, and more generally crossing symmetry for the AdS box, follows from
the pentagon identity of the conformal group SO(d + 1, 1) [41], given in (B.7). We explain
this in more detail in appendix B.2.

4.2 One-particle reducible diagrams

So far we have studied 1PI diagrams, but the full set of one-loop diagrams includes one-
particle reducible diagrams. The upshot here is: wvertex corrections and corrections to
bulk-to-bulk propagators induce new double-trace poles not present at tree-level, while loop
corrections to bulk-to-boundary propagators do not.

The presence of new poles in some diagrams is, perhaps, surprising. One may expect
that the one-particle reducible diagrams, like propagator and vertex corrections, are simply
proportional to tree-level quantities. Ome hint that this is wrong is that there can be
regions of bulk integration where the diagrams degenerate to the 1PI diagrams studied in
the previous section (e.g. when a bulk-to-bulk propagator shrinks to zero size), and these

1.2 The question becomes whether

do have double-trace poles not present at tree-leve
these degenerations do contribute to the final result. We will confirm this on general

grounds below.

4.2.1 Mass corrections in ¢3 theory

In AdS diagrams there are two types of propagator corrections, corresponding to mass
renormalization of bulk-to-boundary or bulk-to-bulk propagators.

22 Another way to see how these diagrams can degenerate to 1PI diagrams is to let an exchanged field
have an asymptotically large mass and replace the propagator a contact interaction.
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Consider first a one-loop correction to the ¢ tree diagram with a loop on a bulk-to-
boundary propagator, shown as AI(,er)p in the first diagram of figure 4. We will demonstrate
that this diagram is proportional to the tree-level exchange diagram. To prove this, it is
sufficient to study the loop-corrected bulk-to-boundary propagator alone, which we call
KZZIOOP . To calculate it, we will use the split representation for all three bulk-to-bulk
propagators. We then use the bubble integral (2.14) to obtain a result proportional to a

single bulk-to-boundary propagator:
—1
KN °P(21, 1) = /Ads A yod™ ys K, (21, y2) Gag (Y2, y3) G aq (y2, y3) G ag (43, 91)

> 1
X (/ dV@dl/7P (1/67 A6) P(V7, A7>P (2(d - 2A1), Ag) blmbfﬁgB01>

x Ka,(w1,91).
(4.31)

We have used that conformal symmetry implies [}, o d%2’ (O(z)O(z')) Kx(2',y) o
Ka(z,y) [49].2 The result is proportional to Ka,(71,y1): (4.31) involves two spectral
integrals, but they only produce an overall proportionality constant. Therefore, this dia-
gram simply renormalizes the tree-level exchange, i.e. there are no cuts associated to Og,
O7, or Og. Note that if we set Ag = Ay, there is a divergence from the third P factor. In
this case the divergence needs to be regularized to extract one-loop corrections to A [21].

We next study the exchange diagram where the bulk-to-bulk propagator is renormal-
ized, Agép. By splitting the two bulk-to-bulk propagators in the bubble we can reduce
this diagram to the gluing of two s-channel tree-level exchange diagrams,

1267 6734
AR = Aol © Ao (4.32)

prop — Y5 exc

Using the CFT bubble identity, we find the OPE function takes a simple form

AL (A ) =2 / dvsdvsdvs P(vs, Ag)P(vs, Ag)

X P(l/7, A7)P(V£’n AS)b12§b@b@bg34K§4Bé570'
(4.33)

In contrast with the previous case, the loop correction to the propagator here introduces
new poles in v5, and therefore new physical states: taking Os = Og so that the loop
renormalizes a bulk-to-bulk propagator, the diagram has new [OgO7],, ¢ poles in addition
to the [0102],, ¢, [0304],, ¢ and Os poles that are present for the tree-level exchange. We
will discuss one-loop single-trace poles in more detail in the next subsection.

4.2.2 Vertex correction in ¢3 4+ ¢* theory

Now we turn to vertex corrections. We focus on a bubble vertex correction in ¢34 ¢* theory
for concreteness, but the conclusion will be the same for the vertex correction arising in ¢>

ZWe thank Anténio Antunes for discussions on this point.
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theory. We label the diagram as

Avertex — (4.34)
This diagram is the off-shell gluing
Avertex = A(l;g% & A%Giih- (435)

Using the split representation for the 5 and 6 legs yields the s-channel OPE function

P2 (AJ) =610 / dvsdvs P(vs, As) P(vg, M) pen (A, 0)p 7(A,0)Bao.  (4.36)

—0o0

From our previous computations of pigfjf(A, 0) and pggﬁ -(A,0) in (3.7) and (3.12), respec-

tively, we have, in addition to the usual external double trace poles, three families of poles
in A corresponding to internal line cuts:

A= A, (4.37)

In the language of cutting diagrams, all vertical line cuts in this one-particle reducible
graph are allowed.

Using the split representation for the 5 and 6 propagators has made it manifest that
the double-trace operators [O5Og|n.0 will appear in the CPW decomposition.?* These are
analogous to the [O¢O7], , poles appearing in the mass renormalization diagram of the
previous subsection. The contribution of the [O50g], 0 operators is found by closing the
A contour on (4.38) and localizing the spectral integrals on their single-trace poles, with a
similar procedure for the (4.39) poles.

What about the O7 pole? It is helpful for interpretation to study this diagram by
first splitting the O line: in this approach we can phrase the result in terms of the one-
loop correction to the cubic vertex, lining up nicely with expectations from standard QFT.
Starting from (4.35), if we split the O7 rung we find

00 -
Avertex(-%’) = / ddx7 / dl/7P(U7, A7)A}2}1’O§§)(l’1, T, 1‘7)Atz§e4e(l‘7, 3, 33‘4), (4.40)
0AdS

—0o0

24The presence of these poles, and explicit computation of their residues for specific values of d and A,
was found in [68] by brute force calculation using the methods of [24]. We thank Ellis Ye-Yuan for early
conversations that alerted us to these poles.
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where the subdiagrams are

-/412_71;050%(901,332,967) E/ Ay dT s K, (21, 51) Ky (22, 31)
AdS
X GA5 (ylayQ)GAe (y17y2)KA7(fU77y2)»

(4.41)
AT (27, 23, 24) = / Ay Ka (27, y1) Ky (23, y1) Ko, (T4, 11).- (4.42)
AdS
Clearly, Aﬁ?loii(xz) contains the one-loop correction to the OPE coefficient C197 due to a

mixed cubic and quartic diagram, while A73% (z;) is the tree-level contribution to C734. By

tree
conformal symmetry, these are both proportional to CFT three-point structures,

AP (@1, 0, 27) = O 105 (010,07), (4.43)
Aliee (7,23, 24) = br34(070304), (4.44)

where 0113710‘22 is defined by conformally pairing (4.43) with its shadow [27],

127; 56 ~ ~ ~
127,56 _ (Al—loop(x17x27x7)7 <0102O7>)E

C’17100 - ~ ~ -~
" ((000:00),(0:0:00))

(4.45)

The definition of the three-point pairing [42, 43] is given in (A.15). This gives the same
CPW decomposition as before, but written in a different way:

o0

127; 56
Avertex (i) = / dd967/ dvrP(vr, A7) C 2300 by WA (). (4.46)
0AdS -0 -

The diagram has the form of the tree-level exchange graph for O7 exchange, only with one
of the kinematic, tree-level, three-point b factors replaced by the one-loop factor Ci_i0p,
i.e. the one-loop correction to the cubic coupling. Moreover, the function C_j,ep contains

the poles at A7 = As+Ag+2n we found earlier: by splitting the loop in -’4127710?)?) (z1,22,27),
the spectral representation of Cllﬁoig is
. o0 05040
0113718;6) = / dvsdug / dda}5dd$6 bgé7p(l/5, A5)P(l/6, Aﬁ)Aig%(l’l, X9, L6, .%'5)7<7576 7>
— DAdS = (010,07)
o0
= / dvsdvg by P(vs, As) P(V6, A6) et (A7, 0)Ba o, (4.47)
—0o0

where in the last line we plugged in the CPW decomposition for the contact diagram and
did the position integrals. This function has poles at A7 = As+ Ag+ 2n as claimed above.
In appendix C.2, we comment on how the O7 exchange can be reabsorbed by one-loop
counterterms and its relation to the CFT unitarity method.

5 Matching bulk and boundary unitarity methods

In the previous sections we developed AdS unitarity methods directly in the bulk. We are
now in position to make contact with the original, holographic unitarity method of [1]. We
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begin by recalling properties of the OPE data associated to bulk amplitudes, and rephrase
the approach of [1] in terms of the dDisc and the Lorentzian inversion formula. We then
show that there is a transparent and natural relation between gluing bulk diagrams, on
the one hand, and multiplying OPE data in the conformal block decomposition, on the
other. In this section, in an effort to make clear which manipulations are to be thought
of as bulk and which as boundary, we refer to CFT correlators as G and AdS amplitudes
as A, despite their equivalence. For simplicity we continue to refer to both as tree-level,
one-loop, etc.

We remind the reader that the contents of this section are summarized in figure 2 for
the example of AdS ¢® + ¢* theory.

5.1 Review of CFT unitarity method

The method of [1] answers the following question: given the planar OPE data of a large
N CFT, how do we compute leading non-planar corrections? In bulk terms: given the
tree-level OPE data, how do we compute one-loop corrections to that data? We briefly
review this now.

For simplicity, we start by considering identical, external scalars O dual to a self-
interacting scalar field in AdS, as in [1]. Recall that tree-level, four-point AdS amplitudes
generate anomalous dimensions, 7, ¢, for double-trace operators [O0O],, o. These admit a
1/N expansion,

v A2

Ynt = W—i_ N

T (5.1)
(2)

Modulo non-analyticities in spin ¢, the one-loop term ~,”; must be fixed by the tree-level
term 77(112. This is because the loop-level amplitude is fixed once the Feynman rules —
equivalently, the on-shell tree-level amplitudes — are specified, modulo finite one-loop
counterterm ambiguities which can only introduce non-analytic OPE data [5].

(2) (1)

It is straightforward to see how 7, is fixed in terms of ~

R Let us use the language

of Lorentzian inversion. Recalling that
dDisc;(ga (1 — 2,1 — %)) = 2sin? (;T(A —0— 2A(9))QA,5(1 —2z,1-2) (5.2)

and
dDisc;(In(1 — 2)) =0 (5.3)

one concludes that for the CFT correlator (OOOQ) at one loop, dDisc:(G1_100p) is quadratic
in the tree-level anomalous dimension, and independent of the one-loop anomalous dimen-
sion. These imply

2
. ™ _
leSCt(glfloop) o ? E pg;(%&z)zgn,é(l -z, 1= Z)v (5'4)

n,l

where we denote g, ¢(1 —z,1— %) as the t-channel conformal block for [00],, ; exchange. In
this sense, tree-level data is a “source” for the one-loop data (and beyond). Through the

Lorentzian inversion formula, one can mechanically extract 77(122 (see e.g. [1, 8,9, 18, 19]).
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For non-identical operators (O102030y), the concept is the same, only some details
differ. Generically, the sin factors in (2.20) do not degenerate, and the 1/N? factors come
from the OPE coefficients of external operators with some new double traces first appearing
at one-loop. In particular, dDisc;(G1—100p) takes the form (2.20) with Oa ; = [O50¢]n.¢,
where Os and Og are some other primaries in the CFT:

dDisc;(G(2, %)) =2sin (g(A5 +Ag— Ay — A4)> sin (g(A5 +Ag— Ay — A3)> (5.5)

()"

z2Z)" 2 B

X L DotAg Zp[56]n,eg[56]n,e(1 —-z,1-2),
(1=2)(1—=2)] 2 ‘ny

where
p[56]n,€ = 27@012[56}n,5043[56]7u£' (56)

Each of these OPE coefficients is of order 1/N? because the external operators are not
the double-trace constituents. The product is then of order 1/N*, playing the role of the

product ('ygz)Q for the identical operator case.?®

5.2 Cutting, gluing and contraction in CFT

We can now explain the map between bulk and boundary unitarity methods. The main
point is that equation (5.4) is the OPE version of gluing bulk trees at one loop. In
other words,

There is a direct correspondence between which tree-level OPE data one plugs
into the sums (5.4) and (5.5), and which bulk diagrams one glues together.

For simplicity in making contact with [1], first consider identical external scalars O.
Consider an arbitrary bulk theory containing the scalar field dual to O. The theory may
include spinning operators, such as the graviton, to which it couples. The sum of all s- ¢-
and u-channel tree diagrams, when branched into a single channel, gives the total tree-level

(1

anomalous dimension v, , for [O0], ¢ operators. Let us write it as

n,l
1 1), 1t 1),
Tt = Vo™t v (5.7)
where 77(112”( denotes the contribution from diagrams in channel x. Inserting this into

the right-hand side of (5.4), one can expand dDisc;(Gi—100p) into products of individual
channel contributions. The map is that each term in the product reproduces the piece of
dDisc;(A1-100p) Obtained by gluing the bulk diagrams in the respective channels!

That is, define 4* as the product of anomalous dimensions due to tree-level exchange

in the x and y channels,
x|y — (1),x (1)7}’. (58)

*There is also an intermediate case: if for example [O5O0g]n,e = [0102]n,¢, then ppsg), , is replaced by a

product of an anomalous dimension 'yfiz with a tree-level OPE coefficient 034[56]717[.

n,l
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In this notation, the dDisc in the t-channel (say) of the full, crossing-symmetric correlator
G1-100p includes a piece

dDisct(G1-100p) D lesc,g(g1 bop Z ai%’yn % 9n, (1—2,1-2), (5.9)

with one for each pair of channels (x,y). If we denote the off-shell conformal gluing (1.10)
of tree diagrams in the x and y channels as

A= A © A (5.10)

1—loop

then lesct(Q1 10op) is a weighted sum of cuts Cutt(.A1 loop) over internal lines. In par-
ticular, we have a map between individual diagrams in the bulk and pieces of the tree-level
anomalous dimension; this is a refinement of the map emphasized in [1] between the full
bulk amplitude summed over channels and the OPE data of the full crossing-symmetric

correlator.?S
For 1PI diagrams, there is a unique internal ¢-channel cut, so these two operators are

proportional:
dDisct(gfljoo ) x Cutt(.A1 lOop) (5.11)

For non-1PI diagrams, there are multiple internal cuts — recall the amplitudes ASLP and
Ayertex 10 section 4.2 — in which case dDisc; is a sum over the different t-channel cuts.

The above generalizes immediately to generic, non-identical operators. For 1PI dia-
grams,

(T e —
leSCt(gl 100p> 2sin <2<Tt — A — Ag)) sin (2(7} — A3 — A4)) Cutt[.All_yloop] (5.12)

where 73 = A; — {; is the twist of the t-channel double-trace operators first appearing
in this correlator at one loop and x|y refers to a product of OPE coefficients instead of
anomalous dimensions (cf. (5.5) and (5.5)). This relation (5.12) was explicitly proven in
earlier sections for the bubble, triangle and box diagrams. For non-1PI diagrams there is
an analogous extension which sums over all internal cuts.

5.2.1 Contraction

In addition to explaining the CFT duals of cutting and gluing bulk diagrams, there is a
simple CFT operation that corresponds to contraction. Whereas in the bulk, contraction
means replacing an exchange diagram with a contact diagram, in the CFT one just replaces
a factor of ’y( ) from an exchange diagram with its contact-diagram counterpart:

o/ 2 =Y < Bulk contraction. (5.13)

If the exchanged operator has spin-J, one uses the ’y(l) " derived from a ¢*-type inter-
action dressed with 2J derivatives. This follows from general covariance of scalar-scalar-

spin-J couplings.

?63ee footnote 13 of [1].
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This is straightforward to prove for scalar exchanges. Recall that contraction can be
achieved by taking the mass of the exchanged field to infinity. Indeed, it was shown in [69]

that the leading asymptotic of %(le’ excha o large internal A becomes yélg’cont,
. 2 (1),excha (1), cont
AlgnooA O e (5.14)

where we recall that A ~ mLags at large mass.

5.2.2 Comments

The above map generalizes directly to higher loops. The main idea is essentially recursive:
the dDisc allows us to construct L-loop diagrams using lower-loop diagrams as input.
More precisely, at arbitrary loop order, dDiscy is a weighted sum of internal cuts (/hTtt.
The one-loop diagrams computed from tree-level data serve as input at two loops, and so
on.?” The bulk unitarity method will be demonstrated in the next section for the double-
ladder diagram.

We emphasize that this prescription for how to build up individual loop diagrams from
the CFT is not restricted to scalar theories. Anomalous dimensions associated to spinning
operator exchanges have pieces that are non-analytic in spin [49, 70], but this is simply fed
into the same formulas above.

For non-1PI diagrams, one can always add local counterterms to remove the part of
the amplitude that is simply proportional to the tree, thus defining one-loop renormalized
masses and coupling constants. Stated slightly differently, there exists a choice of renor-
malization scheme in which one-loop diagrams are all 1PI, and thus have only a single
internal cut in a given channel. In such a scheme, dDisc and Cut are proportional for all
one-loop diagrams.

In appendix C we explicitly demonstrate the map between dDisc and Cut for the box,
Apox, and the vertex correction, Ayertex. We have also checked that the boundary unitarity
method agrees, in the manner described above, with a bulk computation of [24, 68] which
uses a different, more direct approach than the bulk unitarity method presented here.
More precisely, we have checked this correspondence for the case of the four-point triangle
in ¢* 4+ ¢* theory in AdSs with Ay = 2. On the CFT side, one inserts (suppressing the

tree-level “(1)” superscripts for clarity) ’y::?' = 7:’?3%45 into (5.9).

6 Higher loops and points

Let us apply the recursive approach to higher-loop amplitudes using the bulk unitarity
method. While a systematic study is left for the future, we are now in a good position to
demonstrate the higher-loop procedure in a ¢3 theory for the double-ladder diagram.

In general, higher-point functions naturally enter in the study of four-point diagrams
beyond one-loop, as will the crossing properties of higher-point CPWs. We will demonstrate
this for the double ladder, which, by the split representation, can be written as the gluing

2TFor example, the leading log comes from a term (75}%)3 in dDisc(G2—100p)-
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of two five-point tree-level diagrams. Thus we first study the five-point tree and its crossing
properties.?®

Let us emphasize: while some properties are special to the double-ladder and five-point
tree, there is nothing fundamentally unique about these diagrams in the application of our

unitarity methods.

6.1 Warmup: five-point tree

The five-point tree we will study is is drawn below.

A12345 (6.1)
67 -
To proceed, we define the five-point CPW expansion as:
> 4 4ico
12345 2 dAg dA7 12345 12345
AZ B ()= Y [l a2 ” (Ae, Jo, A7, J7) V7™ (24), (6.2)
J6,J7=0 2
\1112345( ) /ddl‘ﬁd x7<(’)1(’)2(’)6><(’)6(’)5(’)7>((’)7(’)3(’)4) (6.3)

As the external operators here are scalars, all the internal operators will be symmetric
traceless tensors. It will be helpful for understanding crossing to note that the five-point
CPW can be obtained by gluing a three-point function to a four-point CPW:

W25, /dd:p \1;1257 (21,22, 25, 27) (O70304)

_ / 6 (010506) WO (25, 25, w3, 74). (6.4)

We can also define the five-point conformal block as the solution to the Casimir equations
with the following behavior when we take the limit 1 — x9 and then take z3 — x4

965385 (27) = (—2)75 (—2) 0 |z1o| B0 TR2 3y |ATT A TR (O (21) O (w5) O7(23)). (6.5)
With this definition we have
\1112345( ) K57K569(15$345 (ﬂjz) + Ké2K5ﬁgé$345 (ﬂjz)

+K K57 12345( z)+K K12 12345(1'1)- (66)

This relation is proven in appendix A.3. The relation between the five-point OPE function
and the OPE coefficients is:

-]6 J7
1 1 12345 57 756/
-5) (-3 = Agr . Jo. Amr. JVKST K5 (6,
( 2) ( 2) CrzoCosrCraa = \Res | Res p77 Qe Jo, Arry Jr) K KG7. - (67)

%8 For further work on higher-point tree diagrams and conformal blocks, see [35, 71-75]
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We will not study crossing for the five-point CPW in general, only the crossing rela-
tions required to understand the double-ladder. We will start by decomposing the five-point
exchange diagram, given above, in terms of an OPE channel with the same graphical struc-
ture:

AL (1) = / dvsdvr P(vs, Ag)P(v7, A7)b1agbgszbraaWes ™ (). (6.8)

— 00

Closing the contours, we find poles in vg at

é6 = A67 (69)
AG = A1+ As + 2n, (610)
Ag = As + A7 + 2n, (6.11)

and similarly for the v7 poles we have

A, = Aq, (6.12)
é7 = Az + Ay + 2n, (613)
Ay = A5+ Ag + 2n. (6.14)

From these double-trace poles we can now construct triple-trace operators. For example, if
we pick up the pole (6.11) this sets O = [O507],, ¢, , for some nq,¢;. Then we can pick up
the pole (6.13) which sets O7 = [O304]p, ¢,- Therefore, Og has now become a triple-trace
operator Og = [030405]a¢.2° Likewise, by picking up the poles (6.10) and (6.14) and we
can also from the triple-trace operator O7 = [010205]a 4.

This aligns with expectations from Mean Field Theory and large N counting. In the
canonical large N normalization, the five-point tree has scaling A234> ~ N=3. To leading
order in 1/N, (O10205[010205]) ~ N (this is the Mean Field Theory result) while
(0304]010505]) ~ N3, These results are also consistent with those of [72, 73] which
used geodesic Witten diagrams [76].

Now we turn to the crossed channel decomposition. Expanding the five-point diagram
in a dual channel requires the 9j symbol for the conformal group, which is currently not
known in closed form. Nevertheless, we can make progress using the 6j symbol on internal
parts of the five-point partial wave, which amounts to expressing the 9j symbol as a spectral
integral of products of 6j symbols. Crossing can be applied to each pair of glued three-
point functions in succession, as these are partial waves (6.4). In preparation for the AdS
double-ladder, we will apply crossing twice to obtain

5+ JAgdA
Aé$345 (:L’Z) = / dV@dV7 Z / 2?_” 9 P(I/G, AG)P(V7, A7)b12§b§5ibzg4
- Jg,0=0

5 = 15
% 1 )2716 231 &W15234($»).
ngng | 518 489 [ [19 89 ’

(6.15)

Triple-trace operators with spin are degenerate but to be compact we label them by their dimension
and spin and drop any extra index.
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In this channel we again find that triple-traces are exchanged, this time manifest as poles
in the 6j symbol. For instance, we have triple-trace operators when Og = [0105] and Oy =
{0408] = [010405] or when Og = [0203] and 08 = [0409] = [020304].30 ‘We now have
sufficient information about the five-point Witten diagram to address the double-ladder.

6.2 Double-ladder

Now we study the double-ladder diagram:

-Adouble— — 77 8 9 (6.16)
ladder

10 11

The double-ladder has several non-trivial cuts: two vertical cuts for the [O5019] and
[OO11] families, a horizontal cut for the triple-trace family [O7050], and two diago-
nal cuts for [0503011] and [OgO0sO1p]. Part of the goal of this section is to show no other
cuts are possible for this diagram. We also want to understand how to compute the dDisc
of this diagram.

There are several natural, but distinct, ways to decompose the double-ladder:

o [f we split the 5, 6, 10 and 11 legs, it is a gluing of three vertical four-point exchanges:

102,15 11,10,5,6 3,11,6,4
’A(}Oggle‘ (:L"L) = A?, exch ® AS,eXCh ® "497 exch ° (617)
adder

o If we split the 7, 8 and 9 legs, it is a gluing of two horizontal five-point trees:

Adouble—(xi) = A%};& & ‘A%g?lng (618)

ladder

o If we split the 5 and 10 legs (say), it is a gluing of a vertical four-point exchange and
a four-point box:

10,2,1,5 5,10,3,4
Adouble- (7)) = A7 0py” @ Aps 70 (6.19)
ladder ’

o [f we split the 5, 8, and 11 legs it is a gluing of two five-point trees:

5,1,11,8,2 5,8,11,3,4
Adouble- ($z) = A710 & Aﬁ 9 (620)
ladder ’ ’

We will discuss each of these representations below.

39The pole at Og = [0205] is canceled by a zero in the second 6j symbol, and thus does not lead to a
triple-trace exchange.
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It will be convenient to apply the split representation on all rungs and reduce the AdS
double-ladder to a spectral integral of the corresponding two-loop conformal integral as
our starting point,

Adouble xz = / H dVZ Vlv % / dx57---711bﬁ,1,ibzv2vmbﬁ,ﬂﬁb&é@bﬁfl=9b9,37ﬁ
ladder 0AdS

X <O50107><O702010><61001108><686506><660469><0903611>-
(6.21)

6.2.1 s-channel

We first obtain the s-channel decomposition, O103 — O304. We begin by performing the
x789 integrals in (6.21). This implements the cut given by (6.17). Using the 6j symbol to
obtain the crossed-channel decomposition of the three constituent exchange diagrams, and
then using the CFT bubble identity (2.14) to do the remaining position-space integrals,

we have
o 11
Ac%ouble— ;) / HdViP(Vu Z / -1 b51,707,2,10075 11 505 5,606,4,500.3 11
adder 271,
=5 JX1—0
B2 [12 5 6 11
ny, | 105 xa 11 ﬁ 34 x1

We can then use the split of the 6j symbol (3.19), to close the vg, v7, Vg contours, and in
doing so we pick up only the single-trace poles. The block decomposition becomes

9
Adouble xz H d QA / H dv; P (VluAi)

ladder i=5,6,10,11
g0 gA B2,
x Z / 27:;1 bs 1,?5772710% 11 86856b649b9311 3
Jx1_0 X1
12 5 1C 6 11
K15K56K 7 210 8 E11°9 K3 g1 (2;). (6.23)
9 \105 x1 11 6 x1 34 x1 X

The poles for physical operators are now manifest in the same way as at tree-level and
one-loop. Each factor from inverting a tree-level exchange diagram furnishes double-trace
poles. In addition to the external double-trace poles we also have the poles

Ay = A5+ Ay +2n, (6.24)
Ay, = Bg+ Ay + 20, (6.25)

corresponding to the two internal vertical cuts. We see that the same process we applied
at one loop cleanly delivers the physical states in this two-loop example. We leave implicit
the other double-trace poles related by shadow symmetry.

The dDisc, removes the external double-trace poles, and if we close the A, contour
on the Ay + Ao+ 2n poles, the v5 19 spectral integrals localize on their single-trace poles.
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Unlike at one loop, however, this does not localize all spectral integrals: the v 11 spectral
integrals remain. These integrals cannot be done in a simple form that we are aware of,
and when we close these contours, we pick up an infinite sequence of poles. This result
dovetails with the statement in flat space scattering amplitudes that a unitarity cut of a
two-loop diagram factorizes it into a tree and one-loop diagram. In our case, we can see
this structure more plainly by splitting the Os 19 lines in the double-ladder at the outset:
the double-ladder becomes a tree exchange diagram and box diagram glued together, cf.
(6.19). Therefore isolating the [O501¢], ¢ contribution requires an external line cut for the
box sub-graph.

However, the representation (6.23) does not make manifest that the s-channel expan-
sion also contains triple-trace operators corresponding to a “diagonal” cut. To see these
operators we can consider the expression for the double-ladder given in (6.20). Before dis-
cussing the bulk approach, we will first explain how to see these operators via the approach
of [1], as reviewed in section 5. Our starting point is that the AdS theory gives rise to
the tree-level five-point Witten diagrams A?ﬁbn’&z and Ag:g’11’3’4. Restoring the coupling
dependence, each Witten diagram scales like N 3. Therefore, when we solve crossing sym-
metry we find (O102[0503011]) ~ (0304][0505011]) ~ N3, and hence this triple-trace
operator must contribute to (O;02030,) at order N —6i.e. two-loop order.

We now recover this fact directly in the bulk approach. By applying crossing for the
first five-point sub-diagram in (6.20) we find:

A%:?bll’&z (:L“l) = / dl/7dl/10P(V7, A7)P(l/10, Alo)blvg’ibi,%mbﬁ,&ll (626)

oo
ngioo dA ~
2 yi ) 510 7 I 211185
A 7\1} 1T .
x Z/d 27 {2 1 xv1 | n x1,10 (i)

Jg 72 X1

We see that the triple-trace operator in the five-point CPW emerges via a combination
of the 6j symbol and a b factor, e.g. we should close the A,, contour®! on the [O50;]
pole and then close the vy contour on a double-trace pole in bfﬁ,s,n’ along with other
poles related by shadow symmetry. For the second, five-point tree in (6.23) we will apply

crossing twice:

g—HOO dAX2 dAXB

5,8.11,3,4 o
"46,9 (I‘Z) = / dVﬁdVgP(l/ﬁ, AG)P(Vg, Ag)bg753’@[)674’9[)&’1‘173 Z /i (27Ti)2

—oo d
Ixgrdxs © 2

JJetio 8 11 6 LRSI RE T (6.27)
3 4 xeo X2 5 X3 | Nyanyg XX ' ‘

We actually only need to apply crossing once to see the contribution of the [(55(58(511]

in the CPW decomposition of this diagram, exactly mirroring what we did for the first
sub-diagram in (6.26),%2 but we need to use crossing twice in order to glue the two sub-

31We first should use symmetries of the integrand under a shadow transform to extend the contour along
the entire axis, but this will not affect the poles we are considering.

32In this case we would close the x2 contour on the [@6(511] double-trace pole and then close the vg
contour on the [(55(58] double-trace pole in the first b-factor.
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diagrams together and produce the CPW expansion for the double-ladder. Performing this
gluing and using the CFT bubble integral we find:

11

o0
A‘}Oﬁgle‘(xi) - / dvs, .11 H P(vi; Ai)b1,5,757 2 10076 5.1105.8.66,4,8%0, 17,3
a er — Loe= 2U,0,11 HEHY hyheZ Jy,24,

440 ~ ~o1q S 11 &~
XZ/+ dAX1 5107 | 6119|8116
21 x| |34 x1] |x1 510
Jx1
1 J. 1234
X m( 1) B1g By, U, (). (6.28)

Finally, we see that the triple-trace operator [O50sO11] emerges in the double-ladder as it
does in the individual, five-point exchange diagrams.

6.2.2 t-channel

Next we obtain the ¢-channel decomposition, O30 — O104. The t-channel expansion is
most naturally thought of in terms of five-point functions, using the cut (6.18). This cut
makes it clear how five-point tree data feeds into the horizontal cut of the double-ladder. To
proceed, we first substitute the partial wave decompositions of the five-point ladder (6.8)
into (6.18). We then use four-point crossing twice on each diagram, as in (6.15), such that
the gluing of the two five-point partial waves reduces to two bubble integrals. In this way,

we obtain the t-channel partial wave expansion,

0o 11
Adouble- xz —/ dez Vu

ladder
§+ico dA,,., dA
x 22X 2b7910075 11 805.5.606.4.000 3 11
: 5,1,77,2,10¥10,11,8"8,5,676,4,979,3,11

2w 2w
TxigsIxg =0

K§8K8~11K~9K39 875 11210
il 6 11 \16 x2 7 8 xeo

9 Y2 6 3 211\ By,By
x| X2 2 =) DX g2 g, (6.29)
T4 xs ) \x29x3 ) ng,ny,

We also see that this diagram produces more non-trivial spectral integrals and it takes more
work to see that spurious poles ultimately do not contribute. For example, as a function
of A,,, our expression has poles at A, = A, + Ag + 2n + ¢ while as a function of A,,
there are double-trace poles

Ay, = A7+ Ag+2n+ 4, (6.30)
Ay, = A1+ Ag+2n+ ¢, (6.32)

along with poles related by shadow symmetry. The first set of poles (6.30) will give physical
operators while (6.31) and (6.32) are artifacts of how we chose to perform the crossing
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transformations. When we actually evaluate the residues we find the two families (6.31)
and (6.32) have vanishing residue and the only physical, triple-trace operators which appear
are [07030y], as anticipated. We see how the procedure carried out here can easily identify
multi-trace states beyond one loop.

7 Discussion

There are many open questions and avenues to consider. Obviously, a systematic under-
standing at higher loops and points would help to flesh out the nuts and bolts of the
AdS/CFT unitarity method. There have been a few studies of higher-point correlators,
e.g. [71-73, 77] but they have received much less focus than four-point functions. However,
as we study higher-loop, four-point correlators in AdS/CFT they inevitably appear when
cutting certain Witten diagrams. We therefore expect understanding the OPE decompo-
sitions of higher-point correlators will help in the study of higher loops.

While the dDisc is especially useful at one loop, its power as a tool in the unitarity
method is not as clear at higher loops. In particular, one would like a clean way to isolate in-
dividual diagrammatic cuts, as opposed to sums over such cuts, e.g. by higher-discontinuity
operators. On the other hand, dDisc is a central object in the non-perturbative Lorentzian
inversion formula, and will still be simpler to compute than a full higher-loop amplitude.
It would be nice to discover whatever relations there may be between these different types
of objects.

It would also be interesting to understand in more detail how consistency conditions in
AdS/CFT at higher loops, such as causality, unitarity, and crossing symmetry, constrain the
space of theories. There has been great success in constraining graviton [78-87] and general
higher derivative interactions [69, 80, 88, 89] at leading order in 1/N, but the study of these
consistency conditions at higher loops remains unexplored. Individual loop amplitudes are
also sensitive to the existence of compact, extra dimensions [9, 15]. Therefore, we may
expect loop amplitudes correlators to contain rich new physics not visible at tree-level
which place stronger constraints on the space of AdS theories.

So far we have also only discussed the scattering of particles with bounded spin, e.g.
scalars and gravitons. However, if we want to understand string theory in AdS from the
boundary CFT, we also need to include particles with unbounded spin. These particles
organize onto Regge trajectories and are key for resolving possible causality violations due
to higher derivative interactions. These trajectories have been studied at tree-level using
conformal Regge theory [55, 90-92] and by generalizing to higher loops we can also hope
to better understand string scattering in AdS [17, 93-95].
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A Conventions

A.1 Two and three point correlators

First let us specify our conventions for two and three-point functions. The standard con-
vention in the CFT literature is to let all operators have unit norm. In this paper we also
define the three-point functions to be kinematic structures without OPE coefficients. For

scalar operators ¢; and spinning operators Oa ; the two- and three-point functions are33

(z1- I(z12) - 22)”

(On,1(x1,21)On, (22, 22)) = Ag ; (A1)
12
(X3 - 23)7
<¢1(x1>¢2(x2)0A3’J3(x3’Z3)> T UAIFA—AsA s A+Az—J3—As AstAz—Jzs—Ar° (A.2)
L12 T13 L23
where we defined Oa j(z,2) = OX' ;" 2, ... 2, and:
TuT
L(z) =0 — 2%, (A.3)
s b
xp— T8 T (A.4)
T13  Ta3

With this normalization the physical three-point functions are:

(91(21)P2(22)Ong,s5 (%3, 23)) phys = Cr23(P1(21)P2(22) Oy, 15 (73, 23))- (A.5)

However, the AdS conventions we follow [27, 49] define a different normalization,

(2’1 . I(x‘lg) . ZQ)J

(Oa,7(x1,21)0n, 5 (22, 22)) = CAs Ay , (A.6)
L12
T'(A
CAJ = ( ) (A.7)

C2riD(A+1—d)2)

This normalization feeds into the integral of three bulk-to-boundary propagators,

/Ads AT YK A, (01, ) Kay (22, ) Kay, 05 (23, y) = bi2s(O1(21)O2(22)O3(x3)) . (A.8)

33Note that our normalization differs from [42] by a factor of (—2)”
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where

bi23 =Ca,Ca,CAs,J5
74/27 (A1+A2+2A3+J3*d> T (A1+A2;A3+J3) T (A2+A3;A1+J3) T (A1+A3;A2+J3)

% =T (AN (AT (As + J3)

(A.9)

In the body of the paper we have used the conventions of [27, 49] for the propagators
and then expanded the full answer in terms of conformal partial waves. However, to
determine the OPE coefficients in a theory with unit normalized operators we should rescale
our propagators as Gao — CglGA and Kp — C;lK A. We will take this into account in
appendix C.1 when comparing the CFT and AdS unitarity methods for evaluating the box

diagram.

A.2 Conformal integral factors

In this section we will summarize factors which appear when evaluating conformal integrals.
First recall the shadow transform and coefficients are defined by,

/ddw:sf<53(51?3)53(11?3')><01(3«“1)02(332)03(963')>
= SRV 501 (1) Oa(w) Os(w3)), (A.10)
F%P(Ag o g)P(Ag + J3 B 1)P <£3+A1;A2+JS) r (53+A2;A1+J3)

SAl,AQ _ _ . A1l
Az, J3 [(As — D)I(Ag + J)T (A3+A12—A2+J3) T (A3+A22—A1+J3) ( )

Then the K-factors that relate blocks to partial waves are proportional to shadow coeffi-

. . A1,As 1\J3 gA1,A2
cients according to KAR”J3 = (—5) SAg,Jg .

Furthermore, the normalization of the conformal partial wave with respect to the
conformally invariant inner product is:

AsAyg 7-As,A d—9
KRN VOlSY™) (97 4 d — 2)aD(J + DI(J + d — 2)

- : A.12
na.J vol(SO(d — 1)) 2d-212(7 1 4) (A.12)
Here the volume factors are defined by:
d
vol(59-1) = 272 vol(SO(d)) — vol(S%Y), (A13)

rgy’ vol(SO(d — 1))
We also repeatedly used the CFT bubble integral for gluing three point functions®* [42]:
/ 1501050 (2)) (D20, B} (')

(—1)‘]O <<O1020>7 <(51626>)

— F sa _ /2 _ / ,
AT dpo(x —a')2md(v —v')dyy

= Bodgd(x — 2" )o(v — 1), (A.14)

34We use a different ordering for the three point function so this gives the factor of (—1)”.
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where a and b are shorthand for the tensor indices. The three point pairing is defined by

1
£ 2dvol(SO(d — 1))

(1010,0),(0,:0:0)) (01(0)02(€)03(00)){01(0)Os(¢) Os(ox)),

(A.15)

where indices are implicitly contracted. A simple case, the scalar-scalar-spin-J three-point
function, is [42]

T _ Cy(1)
<<¢1¢203,J>> <¢1¢203,J>)E = 2ol(SO(d 1))’ (A.16)
. T2 (J +d—2) d—1 1—77
C = 2 JJ+d—2, —— > .
)= S (i - 2)° ( 2 72
(A.17)
Finally (A, J) is the Plancherel measure for the symmetric traceless operators
dimp; TA-DId-A-1)(A+J—-1)d-A+J-1)
A J , A.18
a )= 24vol(SO(d)) TIT (A — %)F(% —A) ( )
. N(J+d—2)(2J+d-2)
pu— A.l
dim py T(J + )I(d—1) (A.19)
We will often use the bubble factor for scalars,
3d
1 212 D(Ao — DT (§ — Ao)
Bag = = A.20
A0 = SISO — D)iBo,0) ~ I(Z) F(Ao){d— Ao) (4.20)

A.3 Five-point partial wave

Recall we have defined the five-point partial waves in terms of the conformal integral:
VB () = / d?z6d? a7 (010506 (O 0507 (07050,), (A.21)

and we want to expand it in terms of conformal blocks. We define the conformal blocks to
be solutions of the conformal Casimir equation such that in the limit z1 — z2 and x3 — x4:

12345
.96 (161,332,1'3,%4,.%'5)

~ (—2)75 (—=2) 78 |yg| B0 TR TR2 3y | AT 9T A (O (1) O (a5) Or (w3)).

(A.22)

The five-point partial wave is also a solution to the conformal Casimir equation, so we
must have:

‘1,12345( ) R g12345(l'2)—|—R 912345($z)+R 912345(1;1)_1_}3 912345( Z,)’ (A23)

where we used that the conformal Casimirs are invariant under A — d — A [96-98].

To determine the coefficients R; we will follow the procedure of [54] and evaluate
the five-point integral in various limits. In the limit xy — x9 the three-point function
behaves as:

(O1(21)O2(w2) O5 1 (w3)) & [wyg| 2~ 217 22as Y3 (O3,. Ly, (1) OM 15 (3)).
(A.24)
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If we take the limit 1 — x9 and x3 — x4 under the integrand in (A.21) and compare
with (A.23) we find:

Ry = KJTK. (A.25)

To get the other R; we can use symmetry properties of the partial wave:

W2 () = / A z6d 27 (01 0506) (O O5O07) (O7030,) (A.26)
~ ~ 1
- / dda:Gdde/ddx7<(’)102(96>((96(96/)((’)6(’)5(’)7)((’)703(’)4)557 (A.27)
6
~ - K12
_ / 2'r4d"7(010205) (Os0507) (070501) -2 (A.28)
6
K12
— ?%mé§345(xi). (A.29)

This identity implies:

WA (1) = Rpgl2 () + ... = KE2KSgI25(5) 4 . (A.30)

= Ry = KK, (A.31)

To get the other coefficients we need the identities:

K34 K34 K12
12345/, \ _ 27 12345/, \ _ 7 6 12345/, .
\Ij67 (xl) - K?é \Ij67 ( Z) K?é Kgﬁqj(w ( Z)v (A'32)

which in turn yields:
Ry = KBKY, (A.33)
Ry = K3 K2 (A.34)
B More on the box diagram and 6j symbols

In this section we will study the AdS box diagram in more detail.

B.1 6j properties

When studying the box diagram it is useful to have some identities for the 6j symbol. As
reviewed in [27] the 6j symbol is invariant under the tetrahedral group, S4. This group is
generated by the following transformations:

{126}:{5§2}:{25§}:{216}. B.1)
345 614 161 435
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When studying the box diagram and its OPE it is also useful to have a set of identities
which replaces an operator with its shadow. For example:

126 dizy...d? SO o N
{ }:/ X1 Z6 <010205><O5O3O4><O30206><0601O4>

345 vol (SO(d +1,1))
dizy ... d%wed%ze ~ = ~ ~ o~ 1
= / vol (SO(d + 1,1)) <(’)1/(’)2(’)5)((’)5(’)3(’)4)((’)3(’)2(’)6/><01/01><(’)6(’)1(94>Slég
ddlL‘l .. .ddxﬁ ~ o~ ~ ~ - 5164
_ / T8O 177 (010205 (050504) (050:04) (G6010:) B
64 (3
_SL 1ot (B.2)
S% 1345
Taking both sides and using (3.19) also allows to derive similar identities for the inversion
of a single block, (3.20):
S~i4564 =
126) _ 95 L 126 . (B.3)
345 5%45%5 345

It is straightforward to use tetrahedral symmetry to derive the other identities, so we will
not write them down explicitly.

B.2 Pentagon identity and conformal diagrams

In this section we discuss how identities associated to the AdS box, such as (4.30), follow
from the CFT pentagon identity [27, 41]. To do this we will use the split representation
for all bulk-to-bulk propagators for the AdS box diagram given by (4.26). This reduces the
AdS box diagram to a spectral integral of a CFT box graph:

~ 8
'Abox(ZEi) = (/ dVZP(VZ,AZ)> / d$5,.._78b1@b2576b3@b4?78
—00 5 OAdS

x (O1(21)O5(x5)Os(5)) (O2(72) O3 (25) O (ws))

x (O3(23)O(26)O7(27)) (O4(24) Or (w7) O (a5))

o 8
= (/ dVZ‘P(VZ',Ai)> 51@b2®b3gb477814b0x($i)7 <B4)
- 5

e S

where Apoy is the CFT box diagram shown in figure 5 and defined by:

x (O3(23) O (w6)O7 (7)) (O(4) Or (w7) O (s)).
(B.5)

The CFT diagrams are formed by gluing together three-point structures in a conformally-
invariant way [43, 44].
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Abox = 5 7

2 3

Figure 5. The conformal box amplitude is four CFT three-point functions integrated over the
position of internal operators. Outgoing and ingoing arrows denote operators and their shadow,
respectively.

By using the 6j symbol we can write down the s and t-channel expansions of the CFT
box [27].

Apox (i) = Z / {6 30 340 %‘I/O (z1, 72,73, 74)

Jo()

5+ A (326 | [75 &8 | B
_ o’ O’ 3214
N Z / 2mi {5 70 140 \Il (@2). (B.6)

Jeor=0

This is the pentagon identity. If we plug in the s-channel decomposition of (B.6) into (B.4),
split the 6j symbol using (3.19), and close the v5 7 contours we of course recover the correct
decomposition for the AdS box (4.27). By taking an inner product with a partial wave, we
can also write the pentagon identity purely in terms of 6j symbols

Z/d+Z°°dA@/{326}{?58}{12(’)’}BO/
= / /
vl 271 570 140 340 no,
125 86 7 | Bo
_ . -9 B.7
{680}{340}n0 (B.7)

This version of the pentagon identity makes it clear that spectral integrals over a 6j symbol

can introduce new poles which do not appear in individual 6j symbols. The integrand in the
first line of (B.7) does not have any poles in Ap whose location depends on Ag or Ag, while
in the second line, the poles at Ap = Ag +£8+2n and their shadowed versions are manifest.
In the language of the conformal block decomposition, if we invert an infinite number of
blocks we can find poles which are not present when inverting a single block [67, 99].

Crossing symmetry of the CFT box also implies crossing symmetry of the AdS box, as
the AdS box is simply (B.7) dressed with spectral integrals and b-factors. It also follows
that the identity (4.30) follows from the pentagon identity. Finally, the previous discussion
of seeing new poles from inverting an infinite number of operators carries over for the
AdS box.
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B.3 Comments on the box Mellin amplitude

The holographic unitarity method in [1] reconstructed one-loop OPE data from tree-level
OPE data. It also reconstructed the bulk one-loop Mellin amplitude, M;_jop, from this
OPE data. Mj_jo0p can be written as a sum over poles at double-trace twists. Attention
was restricted mostly to one-loop amplitudes involving at least one quartic vertex (i.e.
those with vanishing qDisc), for which the sums dDisc;(G1-100p) in (5.4) truncate in spin £.

It is helpful to understand how the ansatz for Mj_jop in [1], given in (61) there,
obscures the features of the box. On general grounds, a nonzero gDisc requires simultaneous
poles in both Mellin variables s and ¢ channels at double-trace twists; these terms are the
Mellin transforms of log® ulog? v terms that give rise to the nonzero qDisc. However, that
ansatz has only simple poles in either s or ¢ if we assume that the residues are analytic in the
other variable. Indeed, they are not. This can be confirmed easily in the case of massless
¢ theory in AdSs, for which the leading residue of M _160p in a t-channel expansion was
given in equations (70) and (72) of [1]:

R
M 100p(s, 1) to—(il) + (higher poles) (B.8)
where the residue is
> 3420 s
Ro( E ol —0,34+70,=-:2,2;1) . B.9
+£2 1+€2+€)32( 7+a2777> ( )

Recall that the double-trace twist equals four because the dual operator has A = 2. Eval-
uating Ro(4), one in fact finds

3F2(—£,3 +€,2;2,2; 1) = 2F1(—€,3 +€;2; 1) =1for { € 2Z . (BlO)

Therefore the sum diverges logarithmically.

It would be worthwhile to compute the complete Mj_j0p for the scalar box, which
will likely simplify for specific conformal and spacetime dimensions. One-loop amplitudes
of KK modes of type IIB supergravity in AdSs x S° have only simultaneous poles [11, 16].
A natural interpretation of this is as an AdSs; x S° avatar of the no-triangle property
of one-loop ten-dimensional supergravity in Minkowski space. Knowing M;j_joop for the
pure scalar box diagram could help substantiate that hypothesis, by shedding light on the
circumstances under which individual poles are absent. We leave that for the future.

C Explicit checks of bulk vs. boundary unitarity methods
Here we will explicitly check the match between bulk and boundary approaches to unitarity

methods for two of the amplitudes considered in this paper: the box diagram Apox from
section 4.1.3, and the vertex correction Ayertex from section 4.2.2.
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C.1 Box

Our strategy is to study the contribution of the entire [OgOg|, ¢ family in the O10, —
O304 channel. Since this determines dDiscg, it will be sufficient to show these contributions
to the CFT correlator match the direct calculation of the AdS box.

: : : : 6218 3684
To do this we will solve crossing for the two exchange sub-diagrams, AS,exch and Azexch’

which make up the AdS box, Apex(zi) = Ag,?elih ® Ag%f‘ch. By standard large N scaling

arguments,
Crafg],.,, ~ Caafos,, ~ N (C.1)

Solving crossing for each tree gives the OPE coefficients:

1\ .
C12(68),, . Ces[6s],, , = _Ao:RAe[Sg]M <—2> ( I1 CAi,O>

i=1,2,5,6,8
be2sbs s KAPKS (1 9 5
d—2A 5 0 C.2
x 5) o A B ()
1\~ .
Cosioshn.e Catioshn.e = = 5 BES <2) II ¢l
n,L i=3,4,6,7,3
bserbag K K2 (g6 7
d—2A r0 . (C.3
x 7) o 540 (C.3)

where we have suppressed the bulk couplings and the factors of Ca ; come from unit
normalizing the operators. The OPE coefficients Cggeg), , are, to leading order in 1 /N, of
order NV, and are those of Mean Field Theory. These are known in closed form [7, 43],

2! KOO 8O K68
68[68]n.e (’):[6%?”@ Bo ) (C4)

where Bp is the CF'T bubble factor defined in (A.14). We then find the following contri-
bution to <01020304>:

¢
(01020304) D Z <—2> C12(68),,. C34[68],. 0 9[68],0.0 (% Z)
nt

(d — 225)(d — 2A7)bgasbs, g bssrb K KK
S-S Res (d— 2A5)(d — 2A7)bsasbs,sbssrbss—o O
O=[6810.s ’ PRI K0 802,

nt
8
1 1 a1 125 86 7 1234
X <Z];[16A“0> CAG,OCAS,O <6 8 O 340 g[GS}me(xi)7 (05)

where the operators Oy, ...,Og are all scalars so we can freely trade S for K.
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Next let us compare this to the AdS box,

8

~ Bo
Apox(i) D = Res [ [(d—220)b;55bas6bsg7047s K5 K7 K S —
= O=[68]n.¢ 1 "o

8 -
N (125 (867 1o

where in comparison to (4.27) we used symmetry under 5 — 5 to make the comparison
simpler. Then using identities like (B.2) we can rewrite this as:

8
3 B
Abox(Ti) 2 _Z Res H(d_2Ai)5158b256b3é7b4?8K§8K$8K<394TO
g O=[68lne g "o
18 1737 151 8
CRBKTRE (8 N (125 (567 o
KBK8OKO6 \ 0 A0 )\ 680 34 @ |68\ i) :
5 6 8 1=

Plugging in the definitions it is straightforward to check the two expressions, (C.5)
and (C.7), agree exactly.

It should be noted in deriving this relation, although we did use the 6j symbol and
the inversion of the block, we did not need their explicit form. Rather all we needed were
some general identities for the 6j symbol like (B.2).

C.2 Vertex correction

We can also compare our approach for calculating loop corrections in ¢3 + ¢* theory with
the CFT procedure used in [1]. Again, by standard large N scaling arguments,

Chafs6).0 ~ Caafse)o ~ N2 (C.8)

where Cig5¢), , comes from the contact sub-diagram of Ayertex wWhile C3y[5g), , comes from
the exchange sub-diagram. The contribution of the [O50g], 0 family to the s-channel
double discontinuity of (O102030y) is

dDiSC5(<010203O4>) D) Z 012[56]71,0034[56]n,odDiSCS(9[1526?])1’0 (337,)) (Cg)

n=0

This accounts for the contribution of the [O50¢], 0 family to the double discontinuity of
Avertex in (435)

From the purely boundary perspective, it appears there is no need to include the
exchange of O7, which we know also contributes to Ayertex, see (4.46). This raises a
question: how should we interpret this boundary approach in terms of Witten diagrams?
We claim we can always shift the couplings in the bulk dual such that O7 does not appear
at one-loop in (O102030,), while still maintaining crossing symmetry. In other words,
the boundary approach we consider here is implicitly constructing a linear combination of
Avertex and an exchange diagram.
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The proof is as follows: we first note we are free to change the (0;0207) cubic coupling
while still maintaining crossing symmetry. Call the bulk cubic coupling g127, which we take
to scale as g197 ~ 1/N. We can consider the shift

9127 = G127 + %04127, (C.10)
where aj97 is order NY. We now have a new exchange diagram for (0102030,) which is
of order 1/N* and proportional to a127g347. The dDiscy of this graph only includes the
exchange of O7, so we are free to choose a7 such that the single-trace block coming from
this diagram cancels that of O7 in Ayertex. This choice leaves us with only double-trace
states contributing to dDiscs. Therefore, this unique choice of 97 is being picked out by
the boundary unitarity method. It would be interesting to understand in general when such
shifts are allowed or if consistency conditions like unitarity or causality pose obstructions
to shifting cubic couplings.
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