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1 Introduction

T-duality is the characteristic feature of the string theory which leads to a different picture
from the Einstein gravity drastically at the short distance. T-duality of string action is
made manifest by doubling the spacetime coordinates [1, 2]. Since physical string currents
are the D-dimensional left and right currents, the physical current in the doubled spacetime
is the 2D-dimensional chiral current which gives rise to the chiral boson problem [3]. A La-
grangian only with chiral currents does not allow the conformal gauge which is useful for the
quantum computation. The Weyl invariance and the Lorentz covariance of the worldsheet
are necessary especially for a superstring since the k-symmetry involves the gauge transfor-
mation of the zweibein. Pasti, Sorokin and Tonin introduced a scalar to resolve the chiral
scalar problem [4, 5] which has a nonzero vacuum value leading to the spontaneous breaking
down of the worldsheet symmetry. It was applied to make manifest T-duality in [6].
Bandos proposed the superstring Lagrangian with manifestly T-duality where the PST
scalar field is used resulting double zweibeins [7]. The obtained superstring action has
two sets of k-symmetries leading to simpler structure of the gauge invariance. In our
previous paper [8] doubling of the zweibein comes from the Lagrange multipliers of the
selfduality constraints for a bosonic string. In this paper we extend it to the supersymmetric
case. Our Lagrangian is similar to the one obtained by Bandos [7]. Differences of our



treatment in this paper from [7] are the followings: (1) We use both the selfdual and
anti-selfdual currents which are extendable to non-abelian cases instead of the Hodge dual
of the selfdual current in [7]. (2) Lagrange multipliers of the selfduality constraints are
used for double zweibeins, instead of the PST scalar. (3) The Wess-Zumino terms are
written in bilinears of the currents as well as the kinetic term in our approach. We also
mention about our “chiral” treatment in the previous paper [9]. The main differrence
from [7] is the dimensional reduction constraint which is linear combination of the anti-
selfdual currents. Although we began by only the selfdual currents [10, 21], the dimensional
reduction constraints involve the anti-selfdual currents leading to the Weyl invariant and
Lorentz covariant worldsheet Lagrangian. As earlier studies many aspects of superstring
Lagrangians with T-duality are examined such as the NS/NS superstring [11], the doubled-
yet-gauged spacetime formulation [12-14] and the pure spinor [15].

The string background is described by the gravity with the T-duality symmetry. It was
shown that the classical gravity theory with manifest T-duality is the same with the low
energy 1-loop effective theory of the string [16-18] and the one for the chiral string in the
o/ order [19]. It is the gauge theory of gravity. For the Einstein gravity the gauge generator
and the gauge field are the momentum py; and the vielbein ea™ which make the covariant
derivative V5 = eaMpy. For the stringy gravity the momentum includes the winding
mode >/ (0) = (pm, pz™) with the D-dimensional index M and the 2D-dimensional index
M. They satisfy the affine Lie algebra whose consistency requires the nondegenerate group
metric nasn. This affine Lie algebra is realized by the 2D-dimensional canonical coordinates
Py and XM, The covariant derivative is extended to Vo — >a(o) = E M, with the
vielbein E4M(X). The gauge transformation of the vielbein under the general coordinate
transformation is given by 6EsM = dEAM + LAEsM with the differential term dE4M
and the “new” Lie derivative Lo E4™. The “new” Lie derivative gives rise to the O(D,D)
transformation

SEM = ExN(—onAM +0MAyN),  SEN = (0uAYN —0NAy)ENY.  (1.1)

Throughout this paper the 2D-dimensional index M is raised and lowered by the O(D,D)
invariant metric 7", The tangent vector is transformed as O(D,D)

OX'M — 9X'M XN — (Onr + O A )ON = (Opp + O A™ — 07 An)ON (1.2)
where the section conditions on arbitrary functions W;(X) with I =1,2,--- are used
N op O U (X) =M N0 U (X)ONT (X)) =0. (1.3)

The cotangent vector should be also transformed as O(D,D)
M
N OX'
oOXN
so the Lagrangian version of the section conditions are necessary as shown in our previous
paper [8]

dX™ = 4x = dXN (N —OnAM) ~ dXN (6N — OnAM + 0MAN),  (1.4)

dXMpyndX N = dX"MnpyndX'™N =0 = dXMnynop AN . (1.5)



These conditions guarantee the consistency for the cotangent vector dX™ and the tangent
e
guarantee the coordinate invariance of the currents in curved backgrounds

vector aXLN as (dXM ) = 5]]\\/{ . The Lagrangian version of the section conditions also

It = 0 XMEyA ) 6002 = (00 XMYEyA + 0, XMEy" =0, (1.6)

where index m runs 7, ¢ for a string and 7 for a particle. Then the Lagrangian is made to
be coordinate invariant.

The organization of the paper is the following: in the next section we present solutions
of the section conditions in Hamiltonian (1.3) and in Lagrangian (1.5) explicitly. In section
3, the worldsheet gauges are examined where the Lagrange multipliers of the Virasoro
constraints and the selfduality constraints in Hamiltonian become double zweibeins. In
section 4 the Virasoro constraints and the selfduality constraints in a non-abelian space are
obtained. We begin by the Hamiltonian formalism where the covariant derivative commutes
with the symmetry generator. The covariant derivative is the selfdual current while the
orthogonal transformed symmetry generator becomes the anti-selfdual current. The o-
diffeomorphism Virasoro operator includes the anti-selfdual current, so the o derivative
computed by the canonical commutator coincides with the one computed by the chain rule
differential. Including the anti-selfdual current is a similar formulation given in [20] where
the Lagrangian for selfdual 2n-form fields is written with the anti-seldfual form.

In section 5, the superstring Lagrangians with manifest T-duality are presented. For
two sets of nondegenerate superalgebras the selfdual and anti-selfdual currents are given
concretely. The Hamiltonian of the superstring includes the Virasoro constraints, the
selfduality constraints and the dimensional reduction constraints for unphysical fermions.
The Lagrangian with double zweibeins makes the type II k-symmetry to be two sets of the
type I k-symmetries leading to simpler computation. We also show how to reduce to the
Green-Schwarz superstring action by gauge fixing and sectioning.

2 Section conditions

2.1 Section conditions in Hamiltonian

The manifestly T-duality space is defined by the string current algebra, where the world-
sheet spatial diffeomorphism is suppressed consistently as the section conditions. The
Virasoro operators are
H, = 3Py GMYN Py
(2.1)
Ho = LPunMN Py

where GM¥ is the O(D,D) gravitational background metric while n™% is the O(D,D)
invariant metric. H, is the Hamiltonian in the conformal gauge. H, = 0 is realized on
arbitrary fields W;(X M ), i=1,2,.. as weak and strong section conditions

MV OnON T (X) = M N Op T (X)ONT,(X) =0 fori,j=1,2,---. (2.2)



The Fourier transformation introduces momenta F;.)s for each function as
(XM = / d?P e P XM (P (2.3)
The weak section condition gives
MV oyoNYi(X) =0 — yMVPyPiny =0 fori=1,2,--- .

Let us divide the 2D directions of Pp; into two Euclidean D-dimensional directions of the
positive metric PM and the one of the negative metric P,

D D D D
MNP Pin = Y (Pgp)® = > (Pan)’=0— > (Pgp)® = > (Piy)’ =P

M=1 M=1 M=1 M=1
(2.4)
The strong section condition gives
MV U X)ONT;(X) =0 — MNPy Py =0 fori#j=1,2,---  (2.5)
which leads to
D D
"N PorPin = Y PixiPiar = D PemPju = [Pl| Pl (coshi — cost;) = 0
M=1 M=1

In order to coincide all angles of infinite number of arbitrary vectors, éij =0,j,
and negative vectors P, 37 and P, must be equal up to an O(D) rotation Ay~

the positive

The infinite number of vectors P, 7 and P;. 5y are recognized as infinite number of points in
the momentum coordinate space Py and Pj,. Therefore the reducibility (2.7) eliminates
a half space as

Py = Ay Py — 0= (2.8)

Interchanging ]35 and Pp of the positive and negative vectors and renaming them as
Py and Py make the Lorentz covariant left and right vectors. The interchanging matrix Z
makes the left /right vectors Py, g = (Pj7, Py) from the positive/negative vectors Pp/n =
(Psz, Ppy)- 1t also makes the O(D,D) invariant metric to be diagonal (1377, —n77) from
diagonal (1, —-1)

110 ivard Y
» PLyr =1Pp/n, nun =1 7= 2M¥

0)-1 0 |—mrw




Plugging (2.9) into the reducibility relation (2.8) the left/right momenta also satisfy the
reducibility condition with a new reducibility matrix denoted by the same matrix A as

Py = Ay Py (2.10)

The matrix Aﬁﬂ is an element of O(D—1,1) group with respect to 7y and nm as
AnAT = p and ATnA = 7. By using AMM we fix the left and right Lorentz symmetries,
Syrnv and Sy, as

Sphysical;MN = SW — AMiLANiKSM, 0= Sm -+ AMiLANiKSM (2.11)

It is denoted that the left and the right Lorentz generators satisfy the same Lorentz algebras
with the opposite signatures as [Sieft, Siet] = Steft and [Sright, Sright] = —Sright- Linear
combination of the left /right momenta brings to the conventional basis py and pM as

1 L
Pphysical,M = 7(P*+A**PL) = P+
physica 2\" M M L M (2‘12)

M —

pM = 5Py — AyfPL) =0

N[

The Fourier functions have the form of \ili(Pi;M) = \i/i(pi;M,piM = 0). The Fourier integra-
tion with respect to p;™ gives depiMe*ipiMyM\i/i(PM) = 5(yM)\i/i(pM), so the resultant
functions are

T (XM = v, (M ym = 0) . (2.13)

The half of 2D coordinates are suppressed. Other solutions such as M = 0, y\; # 0, are
obtained by regular O(D,D) matrix transformations.

2.2 Section conditions in Lagrangian

The Lagrangian version of the section conditions are given in our previous paper [8]. We
also showed that the Virasoro operators (2.1) become the line element and the constraint
in Lagrangian formalism
%dXMGMNdXN = d28
(2.14)
$dXMnyndXN =0

The second line is the section condition suppressing the degrees of freedom generated by
the o-diffeomorphism which corresponds to the weak section condition. Under an infinites-
imal coordinate transformation XM — X'M = XM _ AM(X) the additional condition is

required [8] corresponding to the strong section condition
dXM?]MNaLAN =0 (2.15)
The Lagrangian version of the section conditions are solved analogously in (2.10)

mndXMdxXY = gy ndX™Mdx™N =0, puydXMdX"N =0 — dxM = dxN Ay

(2.16)



The left and right Lorentz symmetries are fixed analogously to (2.11). The conventional
coordinates are introduced as

oM = XM 4 XN~ M
- (2.17)

yM = XH_XM(A—l)NM

A solution of the Lagrangian version of the weak section condition (2.16) is given by

dzM = dXM 4+ dxN(A"H)NM = 2dx M
4y — dXM = (dz™, dyy = 0) . (2.18)

dyy = dXM — dXN(AHyM =0

This solution supplements the solution of yp = 0 in (2.13). The weak condition in (2.15)

is examined as dXMny oL AN =0 = dxMag%AM = 0 leading to Ay =constant, where
o)

dym

dyn — dAy; = 0. Other solutions are obtained by regular O(D,D) matrix transfomations.

A =0 and dyy = 0 are used. So the transformed coordinate is still solution dy}; =

3 Worldsheet gauges

The Lagrange multipliers of the Virasoro constraints in Hamiltonian are zweiben gauge
fields in Lagrangian. The choice of the zweibein gauge links the target space symmetry.
In order to focus on this relation we consider a bosonic string in a D-dimensional flat
space without the B-field. The D-dimensional target space coordinate and the canonical
conjugate are denoted by (2M,pyr) with the usual Lorentz metric nyy. The Hamiltonian
for a string in the D-dimensional flat space gives the Lagrangian in the Weyl-Lorentz gauge
of the zweibein

1 1
Hy = g-~(p+ 0sx)M> + g1~ (p — Oox)M”

4 4
1
Lo = 0:2M py — Hy = - (e2™Oma™) (e_"0pa™) nun
e_Te.”? 1 —g-
eam g g g
ey e’ L g+ (3.1)

e =dete, " =gy+g-

In the manifestly T-duality formulation the D-dimensional left/right coordinates are
treated as independent 2D-dimensional coordinates; the coordinates X = (X Mo x M) and
the conjugate momenta Py; = (Py7, Pa) - On the other hand the 2D-dimensional left /right
moving currents, Py 4 9, XVnnas, include not only the D-dimensional left /right moving
currents Py + 0, X VNN = ((P + 0, X )y (P — 8UX)M) but also unphysical currents
Pr— 0 XNnnm = (P = 0-X) 57, (P +05X)M). Pu+ 09Xy is the selfdual current
and Py; — 0, XNnnar is the anti-selfdual currents.

We review our chiral approach [9]. The Hamiltonian includes only physical currents.
The selfduality constraint is imposed by the linear combination of the left /right anti-selfdual



currents in such a way that the stringy anomaly is cancelled, (P—0,X )7;—(P+0,X)n = 0.

The chiral Hamiltonian with the linear selfduality constraint is given by

1 1

yilhs 0o X )37 + g+7(P = 00 X)) 01>
M (P — 9, X )57 — (P + 85 X)ar }

Lchiral = 8TXM PM - Hchiral

Hchiral = g-

1 N N —
-~ {(e_m8mXM — M2 4 g_agXM(e_mamXM)}
+gl {(e+™0m XM + M2 — 9,0, XM (e ™0, X M)} (3.2)
+

where the zweibein e,

pM and rewriting in terms of the usual coordinates ™ and yy; in (2.17), the worldsheet

is given in (3.1). After integrating out the Lagrangian multiplier

covariant Lagrangian is obtained

1
Lehival = g (6+m me) (einaan) TIMN — €

mn

The first term is both D-dimensional and worldsheet covariant kinetic term. The second
term is total derivative in the bosonic case, but it contributes to the supersymmetric case.
Next let us include the anti-selfdual currents. The Hamiltonian for a string in the 2D-
dimensional flat space gives the Lagrangian in the Weyl-Lorentz gauge with two zweibeins:
1 2 1 2
Hy = g-7(P+0:X)5" + 9+ 7 (P = 0o X)u

1 1
gt + M) (P - 0o X)37 + (9- + A)7(P+ 05X ) as”
Ly = 0, XM Py — H,

1 Vi ~ 1
=2 (4™ 0m XM (e_"0, XN )i + - (e, 0mXM) (e "0, XN e (3.4)
1 —g_ 1 —(g— + =
am— g e — (9 )
Lgr+XA+ ) 1 9+
e =e+ A e =e+ A

Two zweibeins and two worldsheet coordinates allow two independent worldsheets, so Lq
is sum of the left and the right sectors. It will be convenient to calculate the x-symmetry
invariance as shown in the next section.

The Lagrangian L; is rewritten in such a way that the kinetic term becomes 2D-
dimensional covariant,

1
Ly = - (ex™0m XM (e "0, XM iinn
1 1 7 1 1
- = _mmXMQ - = mmXM2 )
+<e €> (e-"0 ) —i—(e e> (e;™0 ) (3.5)
where the zweibein e,™ is the same one in (3.1). In the conformal gauge g+ = 1 Lo becomes
1 A VA A
= 5 @ XXM ary - 20X - 2 (o, (35



with 0+ = 0. + 0,. The selfdual constraints obtained by varying A+ in terms of 2™, yu

in (2.17) are squares of the usual selfduality condition Op,yn = €mn0™2z™ equivalently
O (XM = €,,,0" XM as
7\ _ 1 M My) 2
(8_X ) =3 ((8T:L‘ — doym) + (Orym — O )) =0 (3.7)
(8+XM)2 = i ((aﬂ'xM - oyM) - (BTyM - 8axM))2 =0

The D-dimensional dual coordinate dyy is solved in terms of dz™, if the selfduality con-
straint is solved. But squares of the selfduality constraints are weaker, and it contributes
to make the worldsheet covariance manifest. The Lagrangian Lo is rewritten in terms of
#M gy in (2.17) as

1
Ly = e{(6+m mCUM)(e—nanl’N)nMN + (€+m3myM)(e—nanyN)nMN
Ay M M
aq— - 80' 80’ - Ur 38
+e+/\+( ! u)(0r yM)} 39
. 1 1 2 . . e
in the gauge 3 + e e which is A_ = e+2J,{+-

The Lagrangian L; is further rewritten in such a way that both the kinetic term and
the constraints become 2D-dimensional covariant:

Ly = é (610 XM (e_"0, XM VAnn +; A0 XMYA_"0, XMy (3.9)
o 1 —g_ o 1 —AX_
L g+ L Ay
g+ = g+ + ;\Tf , A o=gi (2_65_429
- =g+t Ao=go+ o
e =2i+H)7! A o=2(l-1)7t

The conformal gauge in the first term is given by

Ay
N (L - ) = = ) (3.10)

Il
)
/N
£~
|
SN—
1
>
S
3
|
—
|
—_

In this gauge the second term does not allow the conformal gauge, Ay = 1, since they are
originally selfduality constraints,

A, = 2ge o —9+9-) P S
9+~ 9- PN ArFA-—2 (3.11)
5 29+9- 2\
- _ g— B ———
9+~ 9- Ap + A +2



This is in contrast to Lo in (3.5) where the conformal gauge in the zweibein e, is allowed
for both the kinetic term and the selfduality constraints. The solutions of the selfdual-
ity constraints and the section condition lead to the same physical degrees of freedom.
The second term should be imposed as the section condition which is the 2D-dimensional
covariant orthogonal condition,

A0 XMYA_"0, XM yn = 0. (3.12)

A solution of the section condition is given in (2.17).

4 Non-abelian space currents

4.1 Algebra and currents

A nondegenerate graded Lie algebra generated by G has the nondegenerate group metric
nry and the totally graded antisymmetric structure constant f7jx

) 1 1
GGy} =ifr/"Gk, t1(GiGy) =n1s = SN ik = froifnok = gfr (1)

with the graded bracket [4, B} = AB — (—=)#PBA and the graded symmetrized and an-
tisymmetrized indices (A, B] = AB + (—)ABBA and [A,B) = AB — (—)4PBA. A group
element ¢(Z) with coordinates Z! gives two kinds of currents and derivatives: the left-
invariant current J!, the particle covariant derivative V;, the right-invariant current J!
and the particle symmetry generator V; are given by

Left-invariants : ¢ 'dg = iJ!G; = idZM Ry Gy , V| = (R_l)IM%agM (42)
Right-invariants : dgg~! = iJIG =idZM Ly 1Gy , %1 = (Lil)IM%%

They satisfy the following Maurer-Cartan equations and the algebras
Left-invariants :  dJ! = LJ7 A JE fie)t [V, V) = —if1/5 Vi
Right-invariants : dJ! = —%j‘] ANJTE fres! [%],%J} =if1/5Vg (4.3)
Mixed Vi,Vs} =0
The left- and the right-invariant currents are related by the orthogonal matrix M;”’ as [9]
JE=J07 MY, V=MV, M = (LY MRy nrg = MyIE Mg . (4.4)

The affine extension of the algebras (4.3) is given by generalization V; — >;(o) and
Vi — 51(0) . The worldsheet indices of the currents are denoted as m = (7,0) = (0,1)
for currents J,,! and J,,! with dZM = do™8,,ZM . The affine covariant derivative and the
symmetry generator are given by

Covariant derivative

. _ Jar K _ J
(Selfdual current) - >r = Vi+JiNr ks = Vr+Ji (B +n1)

Symmetry generator : S = Vj — JIMEME N = M5, (4.5)

Anti-selfdual current >j; = V. + JlK(BKJ —NK.J)



We consider cases where By is constant and determined by the dilatation operator as [9]
1 . x 1
Bry = 5N iweig) = 5 (g —ninrs (4.6)

where the dilatation operator N gives the canonical dimension of the generator Gy with
the following normalization

[N,G[] :iN[JGJ:in[GI, (n[+n])77[J:277[]. (4.7)

They satisfy the following affine Lie algebra

>7(1),>7(2)} = —ifr 5 >rd(2 —1) = 2inr;0,0(2 — 1)
[S](l), SJ(Q)} = if]JK§K5(2 — 1) + 2i77]J805(2 — 1) (4'8)

>7(1),55(2)} =0

where the worldsheet o coordinates o1, o2 are denoted as 1,2 and 0,0(2—1) = 8%25 (o9—01).

In general the Hamiltonian is written as bilinears of the covariant derivatives >, while
the global symmetry charge is given by the integral of the symmetry generator >; so that
the Hamiltonian is invariant under the global symmetry. The 2-dimensional operators >
and >, which is O(D,D) transformed >; in (4.5), in manifestly T-duality formulation are
seldfual and anti-selfdual respectively. Some of the symmetry generators are set to be zero
as the dimensional reduction constraints.

4.2 Virasoro and selfduality constraints
We double the algebra (4.1) as the direct product of two copies of the algebra with the
opposite sign of the structure constant:

Gr — Gr=(Gy, Gy)

ZM — ZM = (ZM | ZM)

Fri™ = f" = (115 fr5 = =155

nrg — ey = iy, N = —N5z), N7 = M5y, N1 = N57)

where two kinds of metrics are written in matrix notarion as
770 R 77 0
ny= "7 0 ) A= ("7 7). (4.10)
0 —np; 0 nzy

,10,



The bilinears of currents (4.5) contracted with these metrics are the Virasoro generators

he = 1>m">r =1 (502 = (>1)?)

he = 3>y = 1 () + (>1)?)

ho = BB, = L (B - (B1?) (4.11)
= 1&m"Br =1 (G - (5D?)

e = 150078, = L (B0 + (B1?)

where [>; = M;71>; in (4.5) is used in the fourth line. The Virasoro algebras are given by

ho(1),hr(2)] = —i (he(1) + hr(2)) 956(2 — 1) (4.12)

o (1), o (2)] = i (BU (1) +h )806 2-1)
o (1), hr(2)] = d (BT 1)+ 7 (2 )305 (4.13)
7 (1), 2 (2)] = i (ﬁa (1) + h )605 (2-1)

{ [hn(1),hn(2)] =0,  mn=(7,0) (4.14)

Derivative operators act on fields ®(Z) as ZM derivatives
. 1,
>, @] = [Br, ®] = =(R HiMoue(2). (4.15)
The o derivative is defined by the commutator with both selfdual and anti-selfdual Virasoro

operators, so that the o derivative in canonical formalism coincides with the usual chain
rule derivative

0,B(Z) i[/(ha ), @] = %(m LB (R MOy ® = 0,7M 008 (4.16)

Therefore we take a set of constraints for a string system in the doubled space; the Virasoro
constraints and the selfduality constraints as

pakl
Q
I

Virasoro Hy = ho —ho =0 Selfduality

constraints | 2y _p 4} — " constraints (4.17)

>
5
I
[a) (@)

H, and H, satisfy the same Virasoro algebra in (4.12).

— 11 —



5 T-dual superstring Lagrangians

5.1 Superalgebras and currents

In the manifestly T-duality formulation a superstring in a flat space is governed by the
doubled nondegenerate superalgebra generated by Gaq. The doubled indices for the left
and right sectors are denoted by M = (M, M). The nondegenerate supergenerators are
denoted as Gaq = (dy, Pur, wh) = (dp, Py, w”; dy, Py, w?). The algebra is given by

Left : {dg,ds} = 2Py o, [dp, Pygl = 2(y50)a

(5.1)
Right : {dga dz} = _2PM7MEZ7 [dﬁa PM] = _Q(WM@))E
The nondegenerate metric nysy and By are given as
dg 1
wh -1
dp 3
Buy = , Byiv = Pir 0 (5.3)
2

where blank spaces are zeros.
For a group element g the left-invariant and the right-invariant currents are denoted
by

Lg=ldg = MGy = TPy + T Pyp + Jawh + Jidy, + JM Py + Jwh

%dgg*1 = JMGp = jﬁdﬁ + jﬁPM + jﬁwﬁ + jﬁdE + jMPM + jﬁwﬁ o0
The Maurer-Cartan equations for the left/right one form currents are given as
Left-invariant currents
dJh =0 dJb =0
Left : ¢ dJM = iJi aJ74M,. . Right: ¢ dJM = —iJep JeyM . (5.5)
| dJp = =207 A TNy dJ, = 20T A TNy,
Right-invariant currents
(47 =0 dJt =0
Left : § dJM = —iJr A J?4M, ., Right: ¢ dJM = jJEp JuaM, . (5.6)
dJ; = 2007 N T¥vxon dJ, = =20J° N TNy,

A group element g(ZM) is parametrized with ZM = (67, Xﬁ7 on; O, XX @ﬁ) by
g(Z™M) = g(zM)g(2M)
9(ZM) = explippw™)exp(iX M Prp)exp(ifdy)

g(ZM) = exp(wﬁwﬁ)exp(iXMPM)eXp(iHHdE)

— 12 —



The left /right-invariant currents are given as

Left-invariant currents
JE = doF
Left : JM = gxM _ i&’yﬁdﬁ
Jp = dop — 2i(dXM — L04Md0) (0r37)s

JE = do*
Right : ¢ JM — gxM 4 j9~M g
Ju = dpy 4 2i(dXM + £092d0) (6v)

Right-invariant currents

JH = dor

Left: ¢ JM = axM +i(9yMdp)
Jp = dop — 2i(dXM — L04Mdh) (0737)n
JE = dor

Right : ¢ JM — gxM 4 jg~Mgp

Ju = dgy + 2i(dXM + L0vMd0) (0yar)

The left/right-invariant derivatives are given as

Left-invariant currents

Vi = =i + (0v")a05r + 507" (0737)50”
Left : ¢ Vyp = —idy; + 2(09M)20”

VE = —ioF

Vu = _iag - (QVM)E?M"‘ i%(Q'YM)E(HWM)Z‘?Z
Right : ¢ V) = —idy — 2(67M), 0%

VE = —jot

Right-invariant currents

Vi = —idp — (07M)udsr + 2X 577 0" — i3 (09™) (0v37) 0"

Vi = —ioF

65 = _iag + (G’YM)E?M - QXM'YMEK v — i%(g'YM)g(‘g'YM>zaz
Right : { Vy = —idy

VA = —iok

(5.8)

(5.10)

(5.12)

The covariant derivatives > ¢ and the anti-selfdual currents [> 4 which are proportional

,13,



to the symmetry generators By = MV > as in (4.3) and (4.4) are the followings:

Selfdual current, > = (D, P, Q)

Dy = V=55 Dy =Vut 3/

Left : ¢ Py; = Va7 + Jigp » Right: § Py =V — Jim (5.13)
OF = VF 4 30 Qf = VE— 31

Anti-selfdual currents, > = (ﬁu, D Q“)
Dy =Vu+ 34 w = Vu— 3D,

Left : { Py = Vy; — Ji7 » Right: Dy =V + Jim (5.14)
OF = vi - Lk QL = Ve Ik

5.2 Superstring Lagrangians
We propose the superstring Lagrangian with manifestly T-duality in Hamilton form
L =0.ZMPy— H
H = g iV oi + g4 1>V n (5.15)
+(g+ -+ )\+)%I;HHMNI;W + (g_ + )\_)%[;MUMNI;M
+AQF + AQH
where the set of first class constraints are the Virasoro constraints, the selfduality con-
straints and the dimensional reduction constraints of auxiliary fermions

He = 1MWV n — SV B y) =0
= Lo Vow + D"V + BV B+ BV B )
Ho = (>N =AMV B N) =0
= 1MV — D"V — BV + B VB ) 5.16)
¥ = By VB =0 |
X =bmr"VBoy =0
QF = OF =0
QL =OF =0

\

In the last two lines M#*” = 0 = M¥*y and M*, = 0, of MaN = (L'R) AN are used.
The Hamiltonian becomes

4
+AQF + AQE (5.17)

1 1 - 1 1 1A 1.
H=g_ (473M2+2Q“Du> +g4 <473M2—|—2Q“DH> +(g++/\+)173ﬁ2+(gf + )Py’

— 14 —



The Legendre tranfsormation brings to the following Lagrangian

Ly = Lixin + L1:wz

[

(e IM) (e TN Vi +

(Jio" Tya — T ) (5.18)

Ll:kin =

1o |—=
)
+
&
3
™
3
=
=
=
2

Liwz =

[SIESEE T

L@ T @1 ) = & (e ) (e " o)

This is one of the main results, the superstring Lagrangian with manifest T-duality with
double zweibeins where €, and e,™ are zweibeins in (3.4). The worldsheet contraction
€ab = %eameb”emn = ééaméb”emn = %gamgb"emn with ¢pg1 = —€19 = 1 is used. The
Hamiltonian (5.17) gives k = 1, and we ‘generalize the constant k = +1 as usual.

Doubling zweibein makes computation of the kK-symmetry transformation easier, since
each left and right sector Lagrangians are sk-symmetry invariant separately. The k-
symmetry transformation d,g is denoted by AM and the vector components AM vanish
as

9 0ug = iAMGr,  AM = (AM AM) =0, (5.19)

Since the left and right sectors are completely independent, we just use e, as the zweibeins
instead of €, and e, to perform the s-invariance computation only in this paragraph.
The k-symmetry transformation of zwiebein e,,” is denoted as

O (;EEGWL) Veen? = AL (5.20)

which is traceless, A,* = 0. The worldsheet currents with the zwiebein is denoted as
JM =

= Le,mJ,M. Under the s-symmetry transformation the currents are transformed
/e

as
Srdm™ = O AM + T EAN fare™ 0 du™M = ALTM 4 0,0M + T EAN M (5.21)

with 8, = Le,™m,,. It is convenient to write down the k-symmetry transformation of the
Ve
left and right currents

Srdaf = Al JWE + 9, AF
Left : Suda™ = ALIM 4 2iAF TP AM o (5.22)
Sndap = Adlpp + 0alp — 2007 JMrmns
Spdatt = ALTHE + 0,AL
Right : SndaL = AL M — 2iAL T AM (5.23)
Sudai = DalJop + 0l + 200V Mg

Under the k-symmetry transformation the left sector Lagrangian, with J and A cor-
responding to €,"", becomes

SuLlret = Ay (JM)? + A__(JM)? 4 2 APy ((1 + k) JTIM 41— k)JEJF) (5.24)

,15,



up to total derivative terms. The Maurer-Cartan equation in (5.5) was used. Let us set

the k-symmetry parameter for the left sector & as

1 AT i 1 7 Z
AP = 5(1 + k)T 5 R+ 5(1 — k) R (5.25)

)

Then it becomes

uLlLete = (Ajy + 2i(1 + k)Rpq ) (T2 + (A + 2i(1 — k)R_jz J_F) (J2)? . (5.26)
Therefore the xk-symmetry invariance requires the transformation of the zweibein as
0=A4t +2i(1+ k)Rt = A +2i(1 —k)r_,zJ_". (5.27)

Analogously the k-symmetry transformations for the right sector with J, A and k are

given as

0=2A,, —2i(1—k)ry,J = A = 2i(1+k)r_,J " (5.28)

The Lagrangian L, is rewritten in a 2D-dimensional covariant way as Ls in (3.5). Then
the manifestly T-duality covariant superstring Lagrangian is given by

Lo = Laxin + La.sp + La.wz

Loyin = % (eerJ%)(e*nJéV)ﬁMN

Lysp = (2 = H)(e-"I)2 + (L = D(esmJnt)? (5.29)
Lowz = & (J[O'EJI},E) - J[Oﬁjl}g>

The kinetic term has both the 2D-target space covariance and the worldsheet covariance.

Next let us examine how the Lagrangian reduces into the Green-Schwarz superstring
Lagrangian. The left and right Lorentz symmetries can be fixed in such a way that two
gamma matrices are identified to the D-dimensional gamma matrix as ’yﬂﬂ,; = —fyMW =
WMW. The left and right spinors 8% and A" can be chosen to be the opposite chirﬁity
for the type ITA and the same chirality for the type IIB theories. In terms of zM, y\
coordinates in (2.17), the currents are written as

I M = I M 4 1M = 8,,a™M — i(0FM 0,07 + 08M ,,0,,0Y)
Jnm = Jmﬁ - JmM = OmYM — i(gﬁVMuuameﬁ - QE’YMuVamQZ)
It = O OF
(5.30)
Tnlt = O
Jm;ﬂ = angﬂ —1 (28m(33 + y)M - %GDVM,;,;BmHﬁ) (Q’YM)ﬂ
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Then the Lagrangian Lo is rewritten as

Ly = Loxin + Lo:sp + Lo:wyz
Loxin = 5= {(ex™JIn™)(e—"T.N)mun + (e4™Tmm) (e~"Tpn )MV}

LQISD = Ae (6 m + e_m)JmM — (6 mo_ C_m)JmM
ie (e " j (5.31)

Lywz = % (J[Oﬂjl]ﬂ) - J[Oﬁjl}ﬁ)

with A = eiL. The selfduality constraint La.sp in the conformal gauge g+ = 1 is given by

A
Lasp = §(J0M — J1n) (I = Jomr) (5.32)
where the selfduality condition for a superstring is

JmNﬁNM = 6annNnNM . (533)

The zweibein squared is the worldsheet metric ¢™" = e, e p® with —p% =1 = p!! and
g = det g;pn. Then kinetic term Lo, is given as

1
Loxin = _5\/.5 {ganmMJnNT/MN + ganmMJnNnMN} . (534)

The Wess-Zumino term is given as

k .
Lowz = 5" { (90" 0np — 00 Oniy) (5.35)
—8me 2(9‘1&105 — Qﬁﬁnek)’yij - amyM IL(‘gﬁanel7 + aﬁanez)fYMuu}

The Green-Schwarz superstring Lagrangian is obtained from (5.31) by the gauge A = 0
and a section with J,,\ = 0;

Ly = Lo.in + Lo.wz,
Loyin = _%\/gganmMJnNnMN
Loz = 5™ (007 0y — 0n040nipy) (5.36)

—i0m @M (07007 — 0100 s + (079 1 D7) (201D 0) |
The auxiliary fermions ¢,’s appear only in the surface terms which are absent in the
usual Green-Schwarz superstring action, so ¢,’s are gauged away. It is interesting that

the bosonic Wess-Zumino term €™"J,,MJ,,» does not show up contrasting to the chiral
approach [9].
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6 Conclusions

In this paper we have presented Lagrangians with manifest T-duality for the type II super-
string. The chiral scalar problem is solved by adding the anti-selfdual currents. While only
the selfdual currents are physical, the unphysical anti-selfdual currents are also included for
the worldsheet covariance of both the Weyl and Lorentz symmetries. The selfduality con-
straints are imposed to suppress the degrees of freedom of the anti-selfdual currents whose
Lagrange multipliers become the worldsheet zweibeins. Then the Lagrangian has double
zweibeins and so double worldsheets. Double zweibeins in the superstring Lagraigian make
the type II k-symmetry splitting into two sets of the type I k-symmetries leading to simpler
computation of k-symmetry. Resulted superstring Lagrangian with manifest T-duality in-
cluding double zweibeins is (5.18), the one with single zweibein is (5.29) and the one in
terms of the usual 2™, 9\ coordinates with single zweibein is (5.31). The superstring
Lagrangians are simple structure; all terms are given in bilinears of symmetry invariant
currents manifesting the global supersymmetry, the T-duality symmetry, coordinate invari-
ance and the k-symmetry. We give the gauge condition and the section condition which
lead to the Green-Schwarz superstring Lagrangian.

Including the Ramond-Ramond field based on the central extended superalgebra [21]
and constructing D-brane Lagrangians are future problems. Superstrings and D-branes
with background fields will be also interesting.
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A Indices

Indices are summarized.
Integer : Nonabelian space ---1,J,- -
Caligraphy : Superspace --- M, N, - -
Middle : doubled vector --- M, N, ---
greek : doubled spinors --- pu, v, - - -

UPPER CASE : spacetime --- M, N,---

lower case : worldvolume ---m,n,---

Barred : left-handed --- M, N, - -
Underlined : right-handed --- M, N, ---
Roman : D-dimensional vector --- M, N, - --
Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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