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emerges in the context of Ordinary Differential Equation/Integrable Models (ODE/IM)

correspondence for 2d A2 Toda CFT with central charge c = 98. We derive the corre-

sponding QQ and related TQ functional relations and establish the asymptotic behaviour
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of the Floquet monodromy matrix of the differential equation leads to evaluation of the A-

cycles a1,2,3 at any point of the moduli space of vacua parametrized by the vector multiplet

scalar VEVs 〈trφ2〉 and 〈trφ3〉 even for large values of q which are well beyond the reach

of instanton calculus. The numerical results at small q are in excellent agreement with in-
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Introduction. Ever since 1994 when Seiberg and Witten derived exact low-energy Wilso-

nian effective action of (pure) SU(2) N = 2 SYM [1], the interest in this kind of theories

has been remaining extremely high. The reason is their remarkably rich physical and

mathematical content. In fact, these theories provide a framework to address in a pre-

cise manner such problems as strong coupling, non-perturbative effects and confinement in

non-Abelian gauge theory (so relevant, for instance, in the Standard Model). The impact

of Seiberg-Witten theory in pure mathematics is also very substantial. Likely, the most fa-

mous applications are in algebraic geometry and topology of four-dimensional differentiable

manifolds where e.g. the notion of Seiberg-Witten [2] invariants is of primary importance.

The effective action of N = 2 SYM is given in terms of prepotential: a holomorphic

function of the vacuum expectation values (VEV) of the vector multiplet scalar field. Large

VEV expansion of the prepotential reveals its structure as sum of classical, one-loop and
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instanton contributions. Many researchers tried to restore the instanton contributions

directly from the microscopic theory, but they succeeded only in the case of the first

few instantons [3]. Actual progress has been achieved with the idea of using equivariant

localization techniques in the moduli space of instantons [4, 5], especially in combination

with the introduction of the so-called Ω background (see [6] and further developments [7–

9]). Considering theory in Ω-background effectively embeds the system in a finite volume

∼ 1
ε1ε2

, where the parameters ε1, ε2 are sort of angular velocities on orthogonal planes

of (Euclidean) 4d space-time. This makes the partition function a finite, well defined

quantity (commonly referred as Nekrasov partition function). Then the corresponding free

energy coincides with (generalized) prepotential. The usual SW prepotential is recovered

simply by sending the parameters ε1,2 → 0. Another, crucial consequence of introducing

this background is the fact that instanton moduli integrals are localized at finitely many

points. This property eventually leads to an elegant combinatorial formula for instanton

contributions [7].

Later developments are even more surprising. It appears that introduction of Ω back-

ground is not merely a regularization trick. Thus, keeping ε1,2 finite a deep relation between

conformal blocks of 2d CFT and Nekrasov partition function [10] (see also [11] for the higher

rank case) emerges, so that the Virasoro central charge is related to these parameters, the

masses of hypermultiplets specify inserted primary fields, while VEVs identify the states

of the intermediate channel.

The special case ε1 = −ε2 bridges the theory with topological string, ε-expansion of

Nekrasov partition function coinciding with topological (string) genus expansion [6].

Another special case of great interest is the Nekrasov-Shatashvili (NS) limit [12] when

one of parameters, say ε1 is kept finite while ε2 = 0. From AGT point of view this

case corresponds to semiclassical CFT when the central charge c → ∞. Besides this,

another interesting link to quantum integrable system emerges, now the remaining nonzero

parameter ε1 being related to Plank constant. In NS limit many quantities familiar from

original Seiberg-Witten theory become deformed or quantized in rather simple manner.

In particular the algebraic equation defining Seiberg-Witten curve, becomes a finite

difference equation [13], which in terms of related integrable system is nothing but Baxter’s

TQ equation (for an earlier approach see [14] and [15] for a later development). Through

discrete Fourier transform one gets a linear differential equation [16], which from 2d CFT

perspective is the null vector decoupling equation [17] in the semiclassical limit. This

relation was an object of intensive investigations in the last decade (see e.g. [18–28]).

More recently, moving from Gaiotto’s idea of looking at these equations as quantum

versions of the (suitable power of the) SW differential [29],1 it has been proposed to inves-

tigate their monodromies (quantum periods over cycles) through the connection (Stokes)

multipliers appearing in the ODE/IM correspondence [30, 31]: [32] describes the general

idea by exemplifying it in the simple case of pure SU(2) gauge theory2 and in particular the

link between the a-period and the Baxter transfer matrix T function. In this perspective,

1In other words, the SW differential gives way to the oper upon quantisation.
2Very few details are given for the cases with matter in the fundamental.
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Thermodynamic Bethe Ansatz (TBA)-like considerations about pure SU(2) gauge theory

were initiated in [33] at zero modulus (of the Coulomb branch) for the dual period aD, and

then more recently pursued by [34].

In fact, in this paper we show how to compute the gauge A-periods of the pure SU(3)

theory (without any matter hypermultiplet: cf. [35] and [36] for what concerns the gener-

alization of SW theory to higher rank gauge groups) as Floquet monodromy coefficients

of the aforementioned differential equation (in the complex domain). Then, we propose a

connexion between them and the integrable Baxter’s T function which extends non triv-

ially what happens in the SU(2) case and shows that the latter is not an accident. More

in details, we obtain a third order linear differential equation with some similarities (and

differences3) with the third order oper of ODE/IM correspondence in [37, 38]. As the latter

correspond to some ‘minimal’ case M > 1/2, we may conjecture, along the lines of [39]

and [40], that we are describing A2-Toda CFT with central charge c = 98.

In a very interesting unfinished paper [40] Alexei Zamolodchikov has proposed

ODE/IM for the Liouville CFT TBA. Special attention has been payed to the self-dual

case c = 25, when the related ODE becomes the modified Mathieu equation and a elegant

relationship between Floquet exponent and Baxter’s T function has been suggested. As

written, the implication of this conjecture for the period on the A-cycle of (effective) SU(2)

gauge theory has been highlighted and used by [32]. But it was not clear from there if

and how it is possible to generalize this beautiful connection between transfer matrix and

periods for higher rank groups.

In the details of this paper we derive QQ and TQ functional relations (see

eqs. (4.6), (4.8)) and extend Zamolodchikov’s conjecture for the case of gauge group SU(3)

(see eq. (5.14)). We show that numerical integration of the differential equation leads to

evaluation of the ‘quantum’ A-cycle periods a1,2,3 at any point of the moduli space of

vacua parametrized by the vector multiplet scalar VEV’s u2 = 〈trφ2〉 and u3 = 〈trφ3〉
even for large values of q at which the instanton series diverges. We have checked that the

numerical results at small q are in excellent agreement with instanton calculation. Thus

the main message of this paper is that the differential equation provides an excellent tool

for investigation of deformed SW theory in its entire range from weak to strong coupling.

The paper is organized as follows: section 1 is a short review on instanton calculus

for SU(N) SW theory without hypers in Ω-background. Here one can find explicit ex-

pressions as a sum over (multiple) Young diagrams for Nekrasov partition function and

VEV’s 〈trφJ〉.
Section 2 is a brief introduction to deformed SW theory. We present the main results

of [13] in a form convenient for our present purposes. Starting from section 3 we consider

the case of SU(3) theory. The main tool of our investigation, a third order linear ODE is

derived and its asymptotic solutions are found.

In section 4 we identify a unique solution χ(x) which rapidly vanishes for large negative

values of the argument x→ −∞. The three quantities Q1,2,2 are defined as coefficients of

3The main relevant difference is, as in simpler SU(2) case [40] and [32], the exit of the oper parameter

(M > 1/2 in [30]) from the range of validity with the appearance of a extra irregular singularity in zero

(besides that at ∞).
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expansion of χ(x) in terms of three independent solutions U1,2,3(x) defined in asymptotic

region x � 0. Investigating symmetries of the differential equation we find a system of

difference equations for Qk and their analogs Q̄k obtained by flipping the sign of parameter

u3 → −u3. Based on this QQ system we introduce Baxter’s T function and write down

corresponding TQ relations.

In section 5 we show how numerical integration of the differential equation along imagi-

nary direction with standard boundary conditions allows one to find the monodromy matrix

and corresponding Floquet exponents, which in the context of gauge theory, coincide with

the A-cycle periods a1,2,3. We have convincingly demonstrated the correctness of this iden-

tities trough comparison with instanton computation. But the main value of this method

is that it makes accessible also the region of large coupling constants, which is beyond

the reach of instanton calculus. Eventually, we close this section by suggesting a simple

relation between Baxter’s T -function and A-cycle periods a1,2,3 of SU(3) theory, which can

be thought of as a natural extension of Alexei Zamolodchikov’s conjecture relating Floquet

exponent of Mathieu equation to Baxter’s T function in c = 25 Liouville CFT.

Finally appendix A contains few technical details for derivation of the TQ relation.

1 Nekrasov partition function and the VEVs 〈trφJ〉

Consider pure SU(N) theory without hypers in Ω-background. The instanton part of

partition function is given by [6]

Zinst(a, ε1, ε2, q) =
∑
~Y

Z~Y
(
(−)Nq

)|~Y |
, (1.1)

where sum runs over all N -tuples of Young diagrams ~Y = (Y1, · · · , YN ) , |~Y | is the total

number all boxes, a = (a1, a2, · · · , aN ) are VEV’s of adjoint scalar from N = 2 vector

multiplet, ε1, ε2, as already mentioned, parametrize the Ω-background and the instanton

counting parameter q = exp 2πiτ , with τ = i
g2

+ θ
2π being the (complexified) coupling

constant. The coefficients Z~Y are factorized as

Z~Y =

N∏
u,v=1

1

P (Yu, au|Yv, av)
, (1.2)

where the factors P (λ, a|µ, b) for arbitrary pair of Young diagrams λ, µ and associated VEV

parameters a, b, are given explicitly by the formula [7]

P (λ, a|µ, b) =
∏
s∈λ

(a−b+ε1(1+Lµ(s))−ε2Aλ(s))
∏
s∈µ

(a−b−ε1Lλ(s)+(1+ε2Aλ(s))) (1.3)

If one specifies location of a box s by its horizontal and vertical coordinates (i, j), so that

(1, 1) corresponds to the corner box, its leg length Lλ(s) and arm length Aλ(s) with respect

to the diagram λ (s does not necessarily belong to λ) are defined as

Aλ(s) = λi − j; Lλ(s) = λ′j − i , (1.4)

– 4 –



J
H
E
P
0
3
(
2
0
2
0
)
0
4
9

where λi (λ′j) is i-th column (j-th row) of diagram λ with convention that when i exceeds

the number of columns (j exceeds the number of rows) of λ, one simply sets λi = 0 (λ′j = 0).

The instanton part of (deformed) prepotential is given by [6]

Finst(a, q) = −ε1ε2 logZinst . (1.5)

Instanton calculus allows one to obtain also the VEV’s 〈trφJ〉, φ being the adjoint scalar

of vector multiplet:

〈trφJ〉 =

N∑
i=1

aJu + Z−1inst

∑
~Y

Z~YO
J
~Y
q|
~Y | , (1.6)

where Z~Y is already defined by (1.2), (1.3), and [41, 42]

OJ~Y =

N∑
u=1

∑
(i,j)∈Yu

(
(au + ε1i+ ε2(j − 1))J + (au + ε1(i− 1) + ε2j)

J

− (au + ε1(i− 1) + ε2(j − 1))J − (au + ε1i+ ε2j)
J
)
. (1.7)

2 A Baxter difference equation

2.1 Bethe ansatz equation for NS limit

It was shown in [13] that in NS limit ε2 → 0, the sum (1.1) is dominated by a single term

corresponding to a unique array of Young diagrams ~Y (cr) specified by properties (the i-th

column length of a diagram Yu will be denoted as Yu,i):

• Though the total number of boxes →∞ in ε2 → 0 limit the rescaled column lengths

ε2Y
(cr)
u,i , converge to finite values

ξu,i = lim
ε2→0

ε2Y
(cr)
u,i .

• The rescaled column lengths at small q behave as ξu,i ∼ O(qi). This means in

particular, that in order to achieve accuracy up to qL, it is consistent to consider

restricted Young diagrams with number of columns ≤ L.

• Up to arbitrary order qL the quantities

xu,i = au + ε1(i− 1) + ξu,i

satisfy the Bethe-ansatz equations (for each u = 1, 2, · · ·N)

−q
N,L∏
v,j

(xu,i − xv,j − ε1)(xu,i − x0v,j + ε1)

(xu,i − xv,j + ε1)(xu,i − x0v,j − ε1)
=

N∏
v=1

(xu,i − av + ε1)(av − xu,i) , (2.1)

where, by definition

x0u,i = au + ε1(i− 1) .

The system of equations (2.1) together with the property ξu,i ∼ O(qi) uniquely fixes the

quantities xu,i up to order qL. Of course, calculations become more cumbersome if one

increases L. Examples of explicit computations for first few values of L can be found

in [13].
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2.2 Baxter’s difference equation and deformed Seiberg-Witten ‘curve’

The BA equations can be transformed into a difference equation [13]

Y (z + ε1) +
q

ε2N1
Y (z − ε1) = ε−N1 PN (z + ε1)Y (z) , (2.2)

where Y (z) is an entire function with zeros located at z = xu,i:

Y (z) =

N∏
u=1

e
z
ε1
ψ(au

ε1
)
∞∏
i=1

(
1− z

xu,i

)
ez/x

0
u,i , (2.3)

and

ψ(x) =
d

dx
log Γ(x)

is the logarithmic derivative of Gauss’ gamma-function. Finally PN (z) is an N -th order

polynomial which parametrises the Coulomb branch of the theory. Explicit expressions of

coefficients of this polynomial in terms of VEVs

uJ ≡ 〈trφJ〉 (2.4)

will be presented later for the case of our current interest N = 3. For more general cases

one can refer to [13]. Let us note also that (2.2) coincides with Baxter’s equation for the

N -body quantum Toda chain, and in relation to gauge theory has been considered earlier

in [12, 14] from a different perspective.

Now, let us briefly recall how the difference equation (2.2) is related to the Seiberg-

Witten curve. Introducing the function

y(z) = εN1
Y (z)

Y (z − ε1)

one can rewrite (2.2) as

y(z) +
q

y(z − ε1)
= PN (z) . (2.5)

At large z the function y(z) behaves as

y(z) = zN (1 +O(1/z)) .

Notice that setting ε1 = 0 in (2.5) one obtains an equation of hyperelliptic curve, which

is just the Seiberg-Witten curve. When ε1 6= 0, everything goes surprisingly similar to

the original Seiberg-Witten theory. For example the rôle of Seiberg-Witten differential is

played anew by the quantity

λSW = z
d

dz
log y(z) ,

and, as in the undeformed theory, the expectation values (2.4) are given by the contour

integrals

〈trφJ〉 =

∮
C

dz

2πi
zJ∂z log y(z) , (2.6)

where C is a large contour, enclosing all zeros and poles of y(z).
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2.3 Details on SU(3) theory

Without any essential loss of generality, from now on we will assume that

u1 ≡ 〈trφ〉 = a1 + a2 + a3 = 0 . (2.7)

Representing y(z) as a power series in 1/z

y(z) = z3(1 + c1z
−1 + c2z

−2 + c3z
−3 + · · · ) (2.8)

and inserting in eq. (2.6) one easily finds the relations

c1 = 0; c2 = −u2
2

; c3 = −u3
3
. (2.9)

Now, consistency of (2.8), (2.9) and (2.5) immediately specifies the polynomial P3(z) (we

omit the subscript 3, since only the case N = 3 will be considered later on)

P (z) = z3 − u2
2
z − u3

3
. (2.10)

3 The differential equation and its asymptotic solutions

3.1 Derivation of the differential equation

To keep expressions simple, from now on we will set ε1 = 1. In fact, at any stage the ε1
dependence can be easily restored on dimensional grounds. Taking the results of previous

subsection, the difference equation for N = 3 case (2.2) can be rewritten as

Y (z)−
(
z3 − u2

2
z − u3

3

)
Y (z − 1) + q Y (z − 2) = 0 , (3.1)

By means of inverse Fourier transform, following [16, 22, 25], from (3.1) we can derive a

third order linear differential equation for the function

f(x) =
∑
z∈Z+a

ex(z+1)Y (z) . (3.2)

At least when |q| is sufficiently small, it is expected that the series is convergent for finite

x, provided a takes one of the three possible values a1, a2 or a3. Taking into account the

difference relation (3.1), one can easily check that the function (3.2) solves the differential

equation

−f ′′′(x) +
u2
2
f
′
(x) +

(
e−x + q ex +

u3
3

)
f(x) = 0 . (3.3)

Denoting

q = Λ6

and shifting the variable

x→ x− log Λ3

the differential equation (3.3) may be cast into a more symmetric form

−f ′′′(x) +
u2
2
f
′
(x) +

(
Λ3(ex + e−x) +

u3
3

)
f(x) = 0 . (3.4)
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3.2 Solutions at x→ ±∞

Physics leads us to introduce parameters p1, p2, p3 satisfying p1 + p2 + p3 = 0 such that

u2 = p21 + p22 + p23 = 2(p21 + p22 + p1p2); u3 = p31 + p32 + p33 = −3p1p2(p1 + p2) , (3.5)

as in the weak coupling limit Λ→ 0 the parameters pi and ai, respectively, coincide.

At large positive values x � 3 ln Λ the term Λ3e−x in (3.4) can be neglected. In

this region the differential equation can be solved in terms of hypergeometric function

0F2(a, b; z) defined by the power series

0F2(a, b; z) =

∞∑
k=0

zk

k!(a)k(b)k
, (3.6)

where

(x)k = x(x+ 1) · · · (x+ k − 1) (3.7)

is the Pochhammer symbol. Three linearly independent solutions can be chosen as

Ui(x) ≈ e(x+3θ)pi
0F2(1 + pi − pj , 1 + pi − pk; ex+3θ) , (3.8)

where by definition

Λ ≡ exp θ (3.9)

and the indices (i, j, k) are cyclic permutations of (1, 2, 3). We used the symbol ≈ in (3.8) to

mean that the approximations of the solutions hold, striktly speaking, only for x� 3θ (at

leading order). In the end, we must verify that the Wronskian of the three solutions (3.8)

(below and later on, for brevity, we use the notation pij ≡ pi − pj)

Wr[U1(x), U2(x), U3(x)] ≡ det

 U1(x) U2(x) U3(x)

U
′
1(x) U

′
2(x) U

′
3(x)

U
′′
1 (x) U

′′
2 (x) U

′′
3 (x)

 = p12p23p31 (3.10)

is not zero provided the parameters pi are pairwise different. Thus, (3.10) confirms

that generically the Ui(x) are linearly independent and constitute a basis in the space

of all solutions.

Similarly in region x � −3θ the term Λ3ex of (3.4) becomes negligible and one can

write down the three linear independent solutions

Vi(x) ≈ e(x−3θ)pi 0F2(1− pi + pj , 1− pi + pk;−e−x+3θ) . (3.11)

In fact, we obtain the same result for the Wronskian

Wr[V1(x), V2(x), V3(x)] = p12p23p31 . (3.12)

– 8 –
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4 The functional relations

4.1 The QQ relations

All three solutions Vi(x) grow very fast at x→ −∞, but there is a special linear combination

(unique, up to a common constant factor) which vanishes in this limit. If it is the fastest

one (as we suspect), this solution is usually referred to as subdominant. Using formulae

for asymptotics of 0F2, which can be found e.g. in [43], we are able to establish that the

correct combination is

χ(x) =
Γ(p12)Γ(p13)

4π2
V1(x) +

Γ(p23)Γ(p21)

4π2
V2(x) +

Γ(p31)Γ(p32)

4π2
V3(x) . (4.1)

Its asymptotic expansion at x→ −∞ is given by

χ(x) =
v−

1
3 e−3v

1/3

2π
√

3

(
1−

(
1

9
− u2

2

)
v−

1
3 +

(
u22
8
− 5u2

36
+
u3
6

+
2

81

)
v−

2
3

−
(
−u

3
2

48
+
u22
18
− u3u2

12
− 13u2

324
+

7u3
54

+
14

2187

)
v−1 +O

(
v−

4
3

))
, (4.2)

where we denoted

v = exp(3θ − x)

and u2, u3 are defined in terms of pi in (3.5).

Since Ui(x) constitute a complete set of solutions one can represent χ(x) as a linear

combination

χ(x, θ) =

3∑
n=1

Qn(θ)Γ(pnj)Γ(pnk)e
−3pnθUn(x, θ), (4.3)

where the important quantities Qn(θ), are expected to be entire functions of θ (and also of

parameters p, whose dependence will be displayed explicitly only if necessary) thanks to a

rather general reasoning in the ODE/IM correspondence (cf. for instance the book [44] and

the research papers [37–39] and [45] along with their references) which relies on the simple

dependence in the basic differential equation, (3.4). Of course, this property is crucial for

all the integrability aspects and hence in our further developments. Moreover, we would

expect also a crucial rôle for the Qs in gauge theory as connected to the exponentials of

the dual periods, in analogy with the SU(2) case [32].

For the time being, we wish to prove some fundamental functional relations, typical of

an integrable theory. To this aim, the following easy to check property plays an essential

role: namely the Wronskian of any two solutions f(x), g(x) of the differential equation (3.4)

W [f(x), g(x)] ≡ f(x)g′(x)− g(x)f ′(x)

satisfies the adjoint equation, i.e. the one obtained by reversing the signs p → −p and

Λ3 → −Λ3. Taking inspiration from this property, it is then possible to show exactly that

Wr

[
χ

(
x, θ +

iπ

3

)
, χ

(
x, θ − iπ

3

)]
= − i

2π
χ̄(x, θ) , (4.4)
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where χ̄(θ) = χ(θ,−p). In fact, the property entails that the l.h.s. of (4.4) satisfies the

differential equation (3.4) with substitution p→ −p. Besides, by using the identity4

Wr
[
e

2−a−b
3

x
0F2(a, b,−e−x) , e

2a−b−1
3

x
0F2(2− a, 1− a+ b,−e−x)

]
= (a− 1)e

1+a−2b
3

x
0F2(b, 1− a+ b, e−x) , (4.5)

it is not difficult to show the match of the x→ −∞ asymptotics of both sides. Of course,

the combination of these two statements implies the equality (4.4) everywhere.

Let us investigate the x → ∞ limit of (4.4). Taking into account (4.3) and using the

identity (4.5) (with x substituted by −x), we obtain the functional relations

sin(πpjk)

2iπ2
Q̄n(θ) = Qj

(
θ +

iπ

3

)
Qk

(
θ − iπ

3

)
−Qj

(
θ − iπ

3

)
Qk

(
θ +

iπ

3

)
, (4.6)

where again, the bar on Qn indicates the sign change p→ −p

Q̄n(θ,p) ≡ Qn(θ,−p)

and (n, j, k) is a permutations of (1, 2, 3).

At the end of this section let us establish the θ → −∞ asymptotics of Qk(θ) and Q̄k(θ).

Obviously, in this case both (3.8) and (3.11) are approximate solutions of (3.4) at x ∼ 0.

Thus, comparison of (4.1) with (4.3) ensures that for θ � 0

Qk(θ) ∼
exp(−3θpk)

4π2
; Q̄k(θ) ∼

exp(3θpk)

4π2
. (4.7)

It is easy to see that above asymptotic behavior is fully consistent with functional rela-

tions (4.6).

4.2 SU(3) version of Baxter’s TQ relation

The functional relations (4.6) suggest the following SU(3) analog of Baxter’s TQ equations:

T (θ)Qj

(
θ− πi

6

)
Q̄k

(
θ+

πi

6

)
= Qj

(
θ− 5πi

6

)
Q̄k

(
θ+

πi

6

)
+Qj

(
θ+

πi

2

)
Q̄k

(
θ− πi

2

)
+Qj

(
θ− πi

6

)
Q̄k

(
θ+

5πi

6

)
(4.8)

for j, k ∈ {1, 2, 3} with j 6= k. To uncover the essence of this construction, notice that for

a fixed pair of indices (i, j) (4.8) can be thought as definition of function T (θ) in terms

of Q’s. Then the nontrivial question is “do other choices of (j, k) lead to the same T?”

Fortunately, elementary algebraic manipulations with the help of (4.6) ensure that the

answer is positive. As mentioned earlier, Qi(θ) are entire functions. A thorough analysis

shows that due to (4.6) all potential poles of T (θ) have zero residue. Thus T (θ) is an entire

function too. Details on proofs of above two statements can be found in appendix A. The

Bethe ansatz equations can be represented as (see equality (A.4))

Qj(θ` − 2πi
3 )Q̄k

(
θ` + πi

3

)
Qj
(
θ` + 2πi

3

)
Q̄k
(
θ` − πi

3

) = −1 , (4.9)

4It can be proven, for instance, by expanding both sides in powers of e−x.

– 10 –



J
H
E
P
0
3
(
2
0
2
0
)
0
4
9

where θ` are the zeros of Qj(θ). In appendix B we will show that there are 6 independent

BA equations.

Functional relations similar to (4.6) and (4.8) emerge also in the context of ODE/IM

for ‘minimal’ 2d CFT with extra spin 3 current (W3 symmetry) [37, 38]. From there we

can extrapolate that our case might correspond to the special choice of Virasoro central

charge c = 98 for Toda CFT. In fact, this value of the central charge lies outside the

region discussed in above references. Nevertheless, it should be possible to derive the

corresponding TBA equations: we leave this task for future publication.

5 Quantum periods and prepotential from Floquet monodromies and

extension of Zamolodchikov’s conjecture

5.1 The Floquet-Bloch monodromy matrix

Consider the basis of solutions f1(x), f2(x), f3(x) of (3.4) with standard initial conditions

(n, k ∈ {1, 2, 3})

f (k−1)n (x)
∣∣∣
x=0

= δk,n . (5.1)

Since the functions fn(x + 2πi) are solutions too, we can define the monodromy matrix

Mk,n as

fn(x+ 2πi) =
3∑

k=1

fk(x)Mk,n (5.2)

Clearly

Mk,n = f (k−1)n (2πi) . (5.3)

The solutions (3.2) with a ∈ {a1, a2, a3} have diagonal monodromies and can be rep-

resented as certain linear combinations of fn(x). In other words the eigenvalues of the

monodromy matrix Mk,n must be identified with exp(2πiak), with k = 1, 2, 3 (below the

set of eigenvalues of M is denoted as Spec(M)):

Spec(M) = {exp(2πia1), exp(2πia2), exp(2πia3)} . (5.4)

For any fixed values of parameters Λ, p, it is easy to integrate numerically the dif-

ferential equation (3.4) with boundary conditions (5.1), find the matrix Mk,n and then its

eigenvalues exp(2πian). Taking into account Matone relation [46], valid also in the presence

of Ω-background [42],

u2 ≡ 〈trφ2〉 =

3∑
n=1

a2n + 2q∂qFinst(q, a) , (5.5)

we can access the deformed prepotential for any value of the coupling constant.
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5.2 Comparison of the instanton counting against numerical results

Using formula of section 1 it is straightforward to calculate 〈trφ2〉 or 〈trφ3〉 as a power

series in q. Here are the 3-instanton results (it is assumed that a1 + a2 + a3 = 0 and by

definition ajk ≡ aj − ak)

〈trφ2〉 =

3∑
k=1

a2k −
12(1− h2)q∏
j<k(a

2
jk − 1)

+
P2,2q

2∏
j<k(a

2
jk − 1)3(a2jk − 4)

+O(q)4 (5.6)

〈trφ3〉 =
3∑

k=1

a3k +
54h3q∏

j<k(a
2
jk − 1)

+
P3,2q

2∏
j<k(a

2
jk − 1)3(a2jk − 4)

− P3,3q
3∏

j<k(a
2
jk − 1)5(a2jk − 4)(a2jk − 9)

+O(q)4 , (5.7)

where

h2 =
a21 + a22 + a23

2
; h3 = −a1a2a3 , (5.8)

and

P2,2 = 36(220− 1027h2 + 1659h22 − 698h32 − 958h42 + 1257h52 − 521h62 (5.9)

+68h72 − 13959h23 + 33804h2h
2
3 − 25434h22h

2
3 + 5292h32h

2
3

+297h42h
2
3 + 13851h43 − 5103h2h

4
3)

P3,2 = −162h3(455− 2487h2 + 4602h22 − 3286h32 + 291h42 + 573h52 − 148h62 (5.10)

−8073h23 + 14985h2h
2
3 − 7695h22h

2
3 + 783h32h

2
3 + 1458h43)

P3,3 = −108h3(12078563− 109310145h2 + 400164948h22 − 722480972h32 (5.11)

+538752402h42 + 275687658h52 − 946955868h62 + 865056708h72

−391259133h82 + 81882223h92 − 2063856h102 − 1715472h112 + 162944h122

−984855213h23 + 6130798389h2h
2
3 − 14569978437h22h

2
3 + 16850898261h32h

2
3

−9439886367h42h
2
3 + 1593033399h52h

2
3 + 730653777h62h

2
3 − 352792017h72h

2
3

+42690240h82h
2
3 − 562032h92h

2
3 + 7812512937h43 − 22941081063h2h

4
3

+24720233994h22h
4
3 − 11808597150h32h

4
3 + 2295385533h42h

4
3 − 64422459h52h

4
3

−14031792h62h
4
3 − 3311723799h63 + 3321565299h2h

6
3 − 982634409h22h

6
3

+65800269h32h
6
3 + 29760696h83)

We have calculated also 4 and 5 instanton corrections, but the formulae are too lengthy to

be presented here.

By means of numerical integration of the differential equation (3.4) along the line

indicated in section 5.1 we have computed the eigenvalues of monodromy matrix (5.3) for

several values of the instanton parameter q = Λ6, namely for the values

Λ = exp

(
k − 1

20
− 5

)
, k = 1, 2, · · · , 120 , (5.12)
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Λ a1 a2

0.00822974704902 0.1200000000131 0.169999999982

0.0223707718562 0.1200000053049 0.169999992932

0.0608100626252 0.1200021402877 0.169997148430

0.165298888222 0.1208841761521 0.168828966405

0.246596963942 0.1349151981823 0.151933010167

0.272531793034 0.142136769453− 0.019455438633 i 0.142136769453 + 0.019455438633 i

0.449328964117 0.092117229441− 0.135924390553 i 0.092117229441 + 0.135924390553 i

0.740818220682 0.003727137475− 0.568756791077 i 0.003727137475 + 0.568756791077 i

1.22140275816 0.000899023180− 1.071594057757 i 0.000899023180 + 1.071594057757 i

2.01375270747 0.00036203460− 1.78605985179 i 0.00036203460 + 1.78605985179 i

3.32011692274 0.00013130957− 2.96965962318 i 0.00013132399 + 2.96965962932 i

Table 1. The values a1, a2 obtained through numerical integration of the differential equation (3.4)

with initial conditions (5.1) for p1 = 0.12, p2 = 0.28.

Λ 〈trφ2〉 〈trφ3〉
0.00822974704902 0.1274000000000 −0.0177480000000

0.0223707718562 0.1274000000000 −0.0177480000000

0.0608100626252 0.1274000000000 −0.0177480000000

0.165298888222 0.1274000000000 −0.0177480000000

0.246596963942 0.1273999999998 −0.0177480000000

0.272531793034 0.1273999999922 −0.0177479999994

0.449328964117 0.1273774046391 −0.0177462190257

0.740818220682 0.1313057536866 −0.0178774876030

Table 2. The values 〈trφ2〉, 〈trφ3〉 obtained by inserting the values of a1, a2 from table 1

into (5.6), (5.7) supplemented by q4 and q5 corrections. To be compared with (by definition)

〈trφ2〉 = p21 + p22 + p23 = 0.1274 and 〈trφ3〉 = p31 + p32 + p33 = −0.017748.

and fixed values of parameters

p1 = 0.12 ; p2 = 0.17 ; p3 = −0.29 .

Due to identification (5.4) this allows to find the corresponding A-cycle periods a1, a2, a3.

In table 1 we present some characteristic excerpt from the resulting data. In table 1 as

well as in table 2 below we display stabilized digits, which do not change further upon

increasing the accuracy of calculations.

Inserting the values of ak, Λ in (5.6), (5.7) supplemented by q4 and q5 corrections we

have calculated 〈trφ2〉 and 〈trφ3〉. The consistency requires that at small values of q for

at which instanton expansion is valid one should always obtain the same expectation values

〈trφ2〉 = p21 + p22 + p23 = 0.1274 and 〈trφ3〉 = p31 + p32 + p33 = −0.017748. Table 2 displays

the results of actual computations. One expects an essential deviation from the instanton

series starting from the value of Λ at which the polynomial(
z3 − u2

2
z − u3

3

)2

− 4Λ6
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acquires coinciding zeros, i.e. at the point where its discriminant

1024Λ18
(
216Λ6 − 72Λ3u3 − u32 + 6u23

) (
216Λ6 + 72Λ3u3 − u32 + 6u23

)
vanishes. Such points correspond to massless dyons or monopoles. It is easy to check that

within the range of Λ (5.12) the only zero is at Λ = 0.1822359934629 · · · for which the last

factor of discriminant vanishes. And in fact, inspecting table 2 one sees that for the greater

values of Λ’s, the mismatch becomes significant while for smaller values the agreement is

quite impressive. Notice also from table 1 that for Λ > 0.24659696394 we encountered

complex values for a1 and a2. Emergence of this imaginary parts indicate presence of a

branch point non-analyticity, so that the convergence radius of instanton series can be

estimated to be Λ ∼ 0.2466.

We have calculated the contribution of the highest term ∼ q6 in 〈trφ2〉, 〈trφ3〉 and

found that for values Λ ≤ 0.27 the relative error of truncating the series at the order ∼ q5

instead of ∼ q6 is less than 10−9, for Λ ∼ 0.74 it is of order 10−2 and for Λ ∼ 1 the relative

error becomes of order 1, so the instanton series can not be trusted any more. This is the

reason why in table 2 we have presented results up to Λ ∼ 0.74.

5.3 Extension of Zamolodcikov’s conjecture to SU(3)

The simpler case of the gauge group SU(2) has been analyzed recently in [32]. In this case

one has to deal with the Mathieu equation. Corresponding TQ relation was investigated

in [40], where Al. Zamolodchikov conjectured (and demonstrated numerically) an elegant

relationship between T -function and Floquet exponent ν of Mathieu equation:

T = cosh(2πν) . (5.13)

Here we suggest a natural extension of Zamolodchikov’s conjecture for SU(3) case:

T (θ) =

3∑
n=1

e2πian . (5.14)

Notice, that at θ � 0 the asymptotic (4.7) leads to

T (θ) ∼
3∑

n=1

e2πipn , (5.15)

which is consistent with (5.14), since for θ � 0 instanton corrections disappear and ak
coincides with pk.

6 Few perspectives

It would be very interesting to have a TBA for our case and check our conjecture (5.14) as

it was done by Al. Zamolodchikov in [40]. Actually, even relevant would be a gauge TBA

that may shed light on the dual B-cycle periods aD along the route presented in [32] for

the SU(2) case (see also the presentation of [33] and [34]).
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It is well known that pure N = 2 SU(N) theories with N > 2 are endowed with special

points in there moduli spaces of vacua at which mutually nonlocal dyons become massless

(Argyres-Douglas points) [47]. It would be interesting to investigate this, as well as the

closely related wall crossing phenomena within our approach (for the NS regime of the Ω

background) with the help of our numerical method.

Furthermore, for generic groups of gauge theories (starting with SU(2) and general

Liouville ODE/IM correspondence) it is very intriguing to investigate the form of ‘poten-

tials’ of the ODE describing excited states of the IM (cf. [45, 48] for what we know about

‘ordinary’ ODE/IM). In fact, the latter should be obtainable also via analytic continua-

tion in the parameters/moduli, and thus, these non-trivial monodromies would be of great

interest in gauge theories.

Of course, it is very plausible that the imaginable generalizations of our results, and

in particular of (5.14), might hold for arbitrary SU(N) gauge groups. In fact, for those

higher order differential equations we shall have also the enlightening treatment of a math-

ematically similar problem with only one irregular singularity (at ∞), the case of gluon

scattering amplitudes/Wilson loops at strong coupling in planar N = 4 SYM [49, 50].

Because of its different physical nature, this problem allow for a beautiful and all-coupling

exact Operator Product Expansion [51, 52], whose strong coupling limit reproduces inter-

estingly the integrable TBA [53] of [49, 50]: the similar mathematical structures and ideas

of these two different fields should bear fruit, in future, for a deeper understanding.
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A Proving the TQ relations

In this appendix we prove that different choices of indices j 6= k in TQ relations (4.8) are

consistent with QQ relations (4.6).

For example let us choose j = 1, k = 2

T (θ)Q1

(
θ− πi

6

)
Q̄2

(
θ+

πi

6

)
= Q1

(
θ− 5πi

6

)
Q̄2

(
θ+

πi

6

)
+Q1

(
θ+

πi

2

)
Q̄2

(
θ− πi

2

)
+Q1

(
θ− πi

6

)
Q̄2

(
θ+

5πi

6

)
, (A.1)

and j = 1, k = 3

T (θ)Q1

(
θ− πi

6

)
Q̄3

(
θ+

πi

6

)
= Q1

(
θ− 5πi

6

)
Q̄3

(
θ+

πi

6

)
+Q1

(
θ+

πi

2

)
Q̄3

(
θ− πi

2

)
+Q1

(
θ− πi

6

)
Q̄3

(
θ+

5πi

6

)
, (A.2)
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Multiplying (A.1) by Q̄3

(
θ + πi

6

)
, (A.2) by Q̄2

(
θ + πi

6

)
and taking difference, the right

hand side becomes

Q̄3

(
θ +

πi

6

)(
Q1

(
θ +

πi

2

)
Q̄2

(
θ − πi

2

)
+Q1

(
θ − πi

6

)
Q̄2

(
θ +

5πi

6

))
−Q̄2

(
θ +

πi

6

)(
Q1

(
θ +

πi

2

)
Q̄3

(
θ − πi

2

)
+Q1

(
θ − πi

6

)
Q̄3

(
θ +

5πi

6

))
= Q1

(
θ +

πi

2

)(
Q̄3

(
θ +

πi

6

)
Q̄2

(
θ − πi

2

)
− Q̄2

(
θ +

πi

6

)
Q̄3

(
θ − πi

2

))
+Q1

(
θ − πi

6

)(
Q̄3

(
θ +

πi

6

)
Q̄2

(
θ +

5πi

6

)
− Q̄2

(
θ +

πi

6

)
Q̄3

(
θ +

5πi

6

))
.

(A.3)

Obviously the last expression vanishes due to (4.6) as consistency requires.

Now let us show that T (θ) does not have any pole. It follows from (A.1), that a

potential pole of T (θ) can be found either among the zeros of Q1

(
θ − πi

6

)
or Q̄2

(
θ + πi

6

)
.

For definiteness let us assume that it belongs to zero set of Q1

(
θ − πi

6

)
(the other option

can be considered in completely analogues manner). Let Q1(θ`) = 0. Then for θ = θ` + iπ
6

the r.h.s. of (A.1) is equal to

Q1

(
θ` −

2πi

3

)
Q̄2

(
θ` +

πi

3

)
+Q1

(
θ` +

2πi

3

)
Q̄2

(
θ` −

πi

3

)
(A.4)

=
2iπ2

sin(πp31)

(
Q1

(
θ` −

2πi

3

)
Q1

(
θ` +

2πi

3

)
Q3 (θ`)

−Q1

(
θ` +

2πi

3

)
Q1

(
θ` −

2πi

3

)
Q3 (θ`)

)
= 0,

where the relations (4.6) for both Q̄2

(
θ` ± πi

3

)
has been used. So T (θ`) is finite, thus

proving that T (θ) is entire.

B Various forms of Bethe-ansatz equations

Here using the (4.6) relation we recast the Bethe-ansatz equations (4.9) in various useful

forms. In particular, this analysis shows that there are 6 independent equations which

matches the number of functions Qi, Q̄i. Namely, using the QQ relations

sin(πpjk)

2iπ2
Q̄n(θ) = Qj

(
θ +

iπ

3

)
Qk

(
θ − iπ

3

)
−Qj

(
θ − iπ

3

)
Qk

(
θ +

iπ

3

)
, (B.1)

sin(πpjk)

2iπ2
Qn(θ) = −Q̄j

(
θ +

iπ

3

)
Q̄k

(
θ − iπ

3

)
+ Q̄j

(
θ − iπ

3

)
Q̄k

(
θ +

iπ

3

)
, (B.2)

we will show that there are only 6 intendant BA equations. Remind that (see eq. (4.9))

we have

Qj(θ
(j)
` −

2πi
3 )Q̄k

(
θ
(j)
` + πi

3

)
Qj

(
θ
(j)
` + 2πi

3

)
Q̄k

(
θ
(j)
` −

πi
3

) = −1 , (B.3)
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where θ
(j)
` are the zeros of Qj(θ) and also

Q̄j(θ̄
(j)
` −

2πi
3 )Qk

(
θ̄
(j)
` + πi

3

)
Q̄j

(
θ̄
(j)
` + 2πi

3

)
Qk

(
θ̄
(j)
` −

πi
3

) = −1 , (B.4)

where θ̄
(j)
` are the zeros of Q̄j(θ).

From (B.1), (B.2) we get

sin(πpjk)

2iπ2
Q̄n

(
θ
(j)
` −

πi

3

)
= −Qj

(
θ
(j)
` −

2πi

3

)
Qk

(
θ
(j)
`

)
; (B.5)

sin(πpjk)

2iπ2
Q̄n

(
θ
(j)
` +

πi

3

)
= Qj

(
θ
(j)
` +

2πi

3

)
Qk

(
θ
(j)
`

)
. (B.6)

Now we immediately see that

Q̄n

(
θ
(j)
` −

πi
3

)
Q̄n

(
θ
(j)
` + πi

3

) = −
Qj

(
θ
(j)
` −

2πi
3

)
Qj

(
θ
(j)
` + 2πi

3

) ; (B.7)

Qn

(
θ̄
(j)
` −

πi
3

)
Qn

(
θ̄
(j)
` + πi

3

) = −
Q̄j

(
θ̄
(j)
` −

2πi
3

)
Q̄j

(
θ̄
(j)
` + 2πi

3

) . (B.8)

Inserting (B.7) in (B.3) we obtain

Q̄n

(
θ
(j)
` −

πi
3

)
Q̄k

(
θ
(j)
` + πi

3

)
Q̄n

(
θ
(j)
` + πi

3

)
Q̄k

(
θ
(j)
` −

πi
3

) = 1 . (B.9)

Obviously this equation is invariant with respect to the replacement n↔ k. Insertion (B.8)

in (B.4) ensures that also the equation

Qn

(
θ̄
(j)
` −

πi
3

)
Qk

(
θ̄
(j)
` + πi

3

)
Qn

(
θ̄
(j)
` + πi

3

)
Qk

(
θ̄
(j)
` −

πi
3

) = 1 (B.10)

is valid. With the help of these equations it not difficult to get convinced that in (B.3), (B.4)

one can restrict the choices of pairs (j, k) e.g. by (1, 2), (1, 3) or (2, 3).
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