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1 Introduction

Recent works [1–3] have suggested that the Page curve [4, 5], which is a characteristic

result of unitary black hole evaporation, can be calculated simply within semiclassical

gravity, as long as one uses the correct formula for computing entropies in a gravitational

system (see also recent related works [6–13]). The authors in [1–3] considered models

with an AdS black hole coupled to a bath which absorbs the radiation from the black

hole, where the whole system has a holographic dual as a boundary quantum mechanical

system coupled to a bath. As shown in [1, 2], by applying the standard Ryu-Takayanagi

(RT) formula [14] with its generalization including time dependence [15] and quantum

correction [16, 17], one finds that the minimal quantum extremal surface has a phase

transition at the Page time, which then gives the entropy curve for the black hole in

accordance with unitarity. However, the traditional way of calculating the entropy for the

radiation, which is Hawking’s calculation [18], would still lead to result that contradicts

with unitarity. As hinted in [1, 2], a new way to compute the entropy for the radiation is

needed.

In [3], a “doubly holographic” set-up led the authors to put forth a new prescription for

computing the fine-grained von Neumann entropy of the Hawking radiation, which involves

taking into account the existence of the entanglement “island”:

S[ρ(rad)] = min

{
extI

[
S[ρ(rad ∪ I)] +

Area[∂I]

4GN

]}
. (1.1)

The prescription instructs us to search for all possible islands that can extremize the

generalized entropy functional for the union of the radiation and the island, and then look

for the minimal one. Here we adopted the convention from [9] that the bold symbols

or texts such as “rad” refer to the full non-perturbative gravity description, or the dual

quantum mechanical description, while ordinary texts like “rad” refer to the description
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within semiclassical gravity, and “rad” stands for radiation. We will call the density matrix

ρ as the fine-grained density matrix, which is calculated by tracing out other degrees of

freedom in the full non-perturbative gravity description, or in the dual quantum mechanical

model, while ρ is the density matrix calculated from the semiclassical bulk physics. With

this formula, one finds that the entropy curve of the radiation also agress with unitarity,

thus a black hole information paradox is prevented. Direct derivations of this formula from

replica calculations are presented in [19, 20].

An important consequence of this formula is that the island is included in the entan-

glement wedge of the radiation. In the black hole evaporation set-up in [1–3], the island

is inside the black hole interior, and entanglement wedge reconstruction [21–23] suggests

that part of the black hole interior is secretly encoded in the Hawking radiation. Thus one

knows that although the island is isolated and far away from the radiation, by acting only

on the radiation degrees of freedom in a sufficiently complicated way, one should in prin-

ciple be able to extract information from the island to the radiation. However, a concrete

proposal of how to do it is lacking (though see the note added in the end of this section),

and it is not clear whether the information extraction can be done while maintaining the

semiclassical bulk picture. In this paper, we give an affirmative answer to this question by

proposing a concrete way to pull out information from the island.

Our result is built on the established role of the modular Hamiltonian and modular

flow in entanglement wedge reconstruction. In the AdS/CFT correspondence, the modular

Hamiltonian of a boundary region of the CFT is dual to the area operator on the RT surface,

plus the bulk modular Hamiltonian of bulk quantum fields in the entanglement wedge, with

higher order corrections in the GN expansion [24, 25] (see also [26] from a quantum error

correction perspective). This is further strengthened to an equality in the case of quantum

extremal surfaces [27] (see also recent discussion in [28]). One consequence of such a duality

is that to the leading order of bulk perturbation theory, boundary modular flow is equivalent

to the bulk modular flow [29], where modular flow is defined as an unitary evolution using

the modular Hamiltonian. The concept of modular flow was found to be useful in the

context of entanglement wedge reconstruction [29, 30] and bulk reconstruction [31, 32].

Since the dual description of the modular Hamiltonian closely follows from the RT

formula, the new entropy formula (1.1) naturally gives rise to a generalized formula in the

cases with islands:

K[rad] =
Ârea[∂I]

4GN
+K[rad ∪ I]. (1.2)

In the formula, the hat on “Area” means that we should treat it as an operator in the semi-

classically quantized bulk theory [24]. K[rad] refers to the microscopic modular Hamil-

tonian of the radiation in the exact non-perturbative description, while K[rad ∪ I] refers

to the bulk modular Hamiltonian of the quantum fields in the semiclassical description

on the union of the radiation and the island. Now, if one applies a modular flow with

the microscopic modular Hamiltonian on the radiation degrees of freedom, in the gravity

picture it will correspond to a modular flow on the union of the radiation and the island.

Due to the entanglement between the quantum fields in the radiation and the island, which

is necessary for the existence of the island, the bulk modular Hamiltonian is a non-local
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operator which couples the radiation and the island directly. Our goal is to show that one

can utilize this inherent nonlocalness to pull out information from the island. To simplify

our discussion, instead of studying the evaporating black hole examples, we will instead set

the stage on the simpler set-ups discussed in [9], where the black holes are in equilibrium

with the baths, while one can still formulate an information paradox and islands still play

important roles in resolving the puzzle. The lesson of our discussion applies to general

situations where islands show up.

The paper is organized as follows. In section 2, we first discuss the example with an

extremal black hole coupled to a bath. In section 2.1, we provide general arguments on

how modular flow pulls out the information from the island. In section 2.2 and section 2.3,

we consider an example that the bulk quantum fields contain a free massless fermion field,

where by utilizing the exact result of modular Hamiltonian on disjoint intervals derived

in [33], we are able to show how the proposal works explicitly. In section 3, we generalize

the discussion to the example with non-extremal black holes coupled to baths, and we find

that one can almost extract information from the black hole interior perfectly at late time.

Note added: after the completion of this work, a different idea of extracting information

from the island using the Petz map [34, 35] was also proposed in [20]. It would be interesting

to understand its relation with our proposal.

2 Extremal black hole coupled to a bath

2.1 General argument

Before discussion of the modular flow, we first review the set up of the extremal black hole

example discussed in [9]. More specifically, we consider a zero temperature black hole in the

two-dimensional Jackiw-Teitelboim gravity [36–38] coupled to two-dimensional CFT with

central charge c � 1.1 On the boundary of the AdS2 spacetime we pick the transparent

boundary condition, and let the CFT to continue into a bath smoothly, where there is no

gravity and the metric is fixed to be flat. The metric in the AdS2 region is

ds2 =
−dt2 + dx2

x2
, x < 0, (2.1)

and the dilaton profile in the AdS2 region is

φ = φ0 −
φr
x
, (2.2)

where φ0 corresponds to the extremal entropy of the black hole. When the conformal fields

are in the Poincaré vacuum, one can choose a special gauge and write the fixed metric of

the bath as

ds2 = −dt2 + dx2, x > 0. (2.3)

At x = 0 where the AdS2 and the bath are joined together, one picks transparent boundary

conditions for the bulk fields. The Penrose diagram of the system is shown in figure 1. The

1We are not requiring the conformal field theory to have a holographic dual.
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BathAdS2

x = 0

x

t

u+u−

≡
QM CFT

Figure 1. Left: the Penrose diagram of the system. Dynamical gravity only lives in the green re-

gion. Right: the quantum mechanical description of the system, which involves a (0+1) dimensional

system coupled to a CFT on a half infinite line.

conformal fields are in the Poincaré vacuum, and the stress tensor vanishes everywhere

(apart from the piece coming from the conformal anomaly). Equivalently, one can view the

diamond-shaped region outside the horizon in AdS2 and the bath as conformally equivalent

to the Minkowski spacetime, and the conformal fields are in the Minkowski vacuum with

respect to the global time coordinate t.

We will assume that gravitational part of the system has an dual description as a

(0 + 1)-d quantum mechanical system. If there isn’t such a dual, the idea of the discussion

here should carry over to situations where a dual theory is known. In the dual picture, we

have a quantum mechanical system coupled to a half infinite line where the CFT lives (see

the right figure of figure 1), and the combined system is put in the ground state.

As instructed by (1.1), if one wants to calculate the microscopic von Neumann entropy

of a region [a2, b2] in the bath, then in the gravity calculation, one should take into account

of a possible entanglement island outside the horizon. One occasion such an island arises

is when2

a2 �
φr
c
� b2, log

(
cb2
φr

)
>

12φ0
c

+O(1). (2.4)

Under this parameter region, the entanglement wedge of [a2, b2] contains the region [a2, b2]

itself plus an island [a1, b1] (see figure 2), with

a1 ≈ −b2, b1 ≈ −
6φr
c
. (2.5)

With (1.1), the von Neumann entropy of the region [a2, b2] in the microscopic theory can

be calculated via

S([a2, b2]) = 2φ0 −
φr
a1
− φr
b1

+ Sbulk([a1, b1] ∪ [a2, b2]), (2.6)

where Sbulk([a1, b1] ∪ [a2, b2]) is the von Neumann entropy of the bulk quantum fields on

[a1, b1] ∪ [a2, b2], calculated in the semiclassical gravity picture.

2We work in units such that 4GN = 1 as in [9].
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a2 b2

b1a1

a2 b2

Figure 2. The entanglement wedge of region [a2, b2] in the quantum mechanical description

contains the region [a2, b2] itself plus an island [a1, b1] (the blue regions in the left figure).

It is already surprising that semiclassical gravity knows about the fine-grained entropy.

However, once this is established, much more would follow from the entropy formula. In

particular, the modular Hamiltonian of the region [a2, b2] in the quantum mechanical

description, which we denote as K([a2, b2]) or simply K, has a bulk expression as the

area operator plus the bulk modular Hamiltonian of the quantum fields on the region

[a1, b1] ∪ [a2, b2]:

K([a2, b2]) = φ̂(a1) + φ̂(b1) +K([a1, b1] ∪ [a2, b2]) +O (1/c) . (2.7)

In the formula, we put the hats on φ to stress that we should view them as operators in

the semiclassically quantized bulk theory. The equation (2.7) should be valid within the

code subspace, that is when we consider variations around the vacuum state such that

the locations a1, b1 of the quantum extremal surfaces stay approximately unchanged. In

the current setup, since the locations of the quantum extremal surfaces have a non-trivial

dependence on the central charge c as in (2.5), we should only apply the equality (2.7) to

situations where the bulk state is perturbed by only an order one number of light operators

in the CFT, and keep in mind possible corrections of order 1/c in the formula as written.3

One consequence of (2.7) is that for a bulk operator ϕ(x) inside the entanglement

wedge (i.e. x ∈ [a1, b1] ∪ [a2, b2]),
4 one has

[K([a2, b2]), ϕ(x)] = [K([a1, b1] ∪ [a2, b2]), ϕ(x)] +O (1/c) . (2.8)

At this point, we would like to stress again the difference between the boldface K([a2, b2])

and the semiclassical modular Hamiltonian K([a2, b2]). Although from the quantum me-

chanical system point of view, both are operators supported on the same region, the latter

one only knows about the semiclassical dynamics in the causal diamond of [a2, b2], while

the former one secretly knows about the information of the island via the non-perturbative

description. Since in most of the following discussion we will not use the coarse-grained

3We thank Juan Maldacena for clarification on this point.
4Here we’ve implicitly assumed that the gravitational dressing is done properly. One can refer to [39]

for discussion of gravitational dressing in JT gravity.
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modular Hamiltonian K([a2, b2]), we will use K to denote K([a1, b1] ∪ [a2, b2]) if there is

no further clarification. In [29], it was argued that (2.8) can be further upgraded to an

expression that relates the bulk and boundary modular flows:

eiKτϕ(x)e−iKτ = eiKτϕ(x)e−iKτ +O (1/c) , (2.9)

where we work in the Heisenberg picture and think of the modular flow as acting on the

operators. We define

ϕ(x, τ) ≡ eiKτϕ(x)e−iKτ (2.10)

as the modular flowed/evolved operator. In the following, we will explain why we can use

the formula (2.9) to extract information contained in the island, given that we have the

knowledge of the exact modular Hamiltonian K.

For concreteness, let’s imagine that the bulk vacuum state is perturbed by acting

with an unitary evolution exp(−iεϕI(x0)), where ϕI(x0) is a local simple operator in the

island [a1, b1]. The perturbed state is still well within the code subspace, thus we can use

formula (2.9) safely. As someone with only access to the radiation, our task is to find out

the information about the unitary evolution, such as what the operator ϕI is, or its location,

etc. Although by the entanglement wedge reconstruction, we know that the operator ϕI is

encoded in the region [a2, b2] in the full non-perturbative description, it must have been

encoded in such a complicated way that no simple measurements with few operators and

limited accuracy (cannot tell non-perturbative effects) could tell its existence or the value

of x0. In other words, if one computes the expectation value of some simple operator ϕB
in [a2, b2], one has

tr[e−iεϕI(x0)ρeiεϕI(x0)ϕB]− tr[ρϕB] = 0, (2.11)

to all orders in bulk perturbation theory, as demanded by bulk locality. However, suppose

we have the knowledge of the microscopic modular Hamiltonian K, we could apply a

modular flow on the state using K, or in the Heisenberg picture, we apply the modular

flow to the operator ϕI(x0) as in the left hand side of (2.9).5 By the equality in (2.9),

to the leading order in bulk perturbation theory, this is equivalent to doing a modular

flow on ϕI using the bulk modular Hamiltonian K. Now importantly, the existence of

the island requires that the region [a1, b1] and [a2, b2] share non-zero mutual information.

Another way to say this is that K must be a non-local operator in the sense that it

couples operators in [a1, b1] and [a2, b2]. Thus under a modular flow, the bulk operator

ϕI(x0, τ) ≡ eiKτϕI(x0)e−iKτ will become an operator that is supported on both [a1, b1] and

[a2, b2]. Once the operator is supported on [a2, b2], one is able to do simple measurements

to detect its existence. In other words,

tr[eiKτe−iεϕI(x0)ρeiεϕI(x0)e−iKτϕB] ≈ tr[eiKτe−iεϕI(x0)e−iKτρeiKτeiεϕI(x0)e−iKτϕB]

= tr[e−iεϕI(x0,τ)ρeiεϕI(x0,τ)ϕB]

6= tr[ρϕB]. (2.12)

5Note that since the bath does not contain dynamical gravity, we do not have to worry about the

backreaction on the geometry during this process.
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The approximation on the first line comes from (2.9), which is expected to be of order 1/c.

The difference between the second line and the third line already arises at order one, and

one does not need to carry out measurements with very high accuracy to observe it. More

importantly, the difference can be worked out in principle just within the bulk conformal

field theory instead of in the microscopic theory, since

tr[eiKτe−iεϕI(x0)ρeiεϕI(x0)e−iKτϕB]− tr[ρϕB]

≈ 〈eiεϕI(x0,τ)ϕBe
−iεϕI(x0,τ) − ϕB〉bulk +O(1/c).

(2.13)

Thus by measuring this differences with just simple operators, one can infer about infor-

mation in the island.

One might complain that computing eiKτϕI(x0)e
−iKτ in the bulk quantum field theory

is a taunting task as the bulk modular Hamiltonian of disjoint intervals [a1, b1] ∪ [a2, b2] is

generally not known. This suggests that the decoding process should also be complicated

in some sense. However, we want to stress that this complication is one in quantum field

theory, but not one in quantum gravity. Indeed, without knowledge of explicit formula for

K, it is difficult to quantify how much information one can extract from the island in this

way. However, in the following sections, we will discuss an example of two dimensional free

fermion theory, where the explicit expression of K is known [33]. There we will show that

this way of extracting information has a very simple bulk picture, and is almost perfect in

certain cases.

In summary, acting with the exact modular flow e−iKτ solely on the degrees of freedom

in [a2, b2], it is as if doing a modular flow e−iKτ in the combined region [a1, b1]∪ [a2, b2] in

the semiclassical gravity picture. Such a modular flow can carry information from the island

[a1, b1] to the bath [a2, b2]. Of course, in order to do it, one must have the knowledge about

the microscopic modular Hamiltonian K, which is not a simple operator by itself. Our

perspective is simply to say that this particular complicated operator provides a general

way to extract information from the island, and it has a simple gravity interpretation.

2.2 Modular flow for (1 + 1)-d free massless fermion

For general field theories, the modular Hamiltonian of disjoint intervals can be quite com-

plicated and is generally unknown, even for the vacuum state. However, for free massless

fermion in two dimensions, the modular Hamiltonian of arbitrary disjoint intervals in the

vacuum state was derived explicitly in [33]. This allows us to use the massless fermion as

an explicit example to illustrate the idea of pulling out information from the island with

modular flow. However, we should stress that the idea that was discussed in the previous

section applies to general field theories.

We start with some review of the equations in [33]. We consider the vacuum state of a

free massless Dirac fermion theory in two dimensional flat spacetime. Consider a spacelike

region V that contains n disjoint intervals. The modular Hamiltonian of the region V

factorizes into two pieces involving fermions with different chiralities:

K =K+ +K−, (2.14)

K± =

∫
V±

du1± du
2
±Ψ†±(u1±)H±(u1±, u

2
±)Ψ±(u2±), u± = t± x. (2.15)

– 7 –
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......
u−

u+

uL−,1

uL+,1

uR−,1

uR+,1

uL−,2

uL+,2

uR−,2

uR+,2

uL−,n

uL+,n

uR−,n

uR+,n

Figure 3. In the discussion of free chiral fermions, it is convenient to think about the intervals in

terms of light-cone coordinates.

In the formula, V± are the projections of the region V onto the light-cone coordinates (see

figure 3), which we denote as

V+ ≡ (uL+,1, u
R
+,1) ∪ (uL+,2, u

R
+,2) ∪ . . . ∪ (uL+,n, u

R
+,n), uL+,i < uR+,i, u

R
+,i < uL+,i+1,

V− ≡ (uR−,n, u
L
−,n) ∪ (uR−,n−1, u

L
−,n−1) ∪ . . . ∪ (uR−,1, u

L
−,1), uR−,i < uL−,i, u

L
−,i < uR−,i−1.

(2.16)

The matrix H± in (2.15) can be further separated into a local piece and a nonlocal

piece which couples the disjoint intervals:

H±(x, y) = H±,loc(x, y) +H±,noloc(x, y). (2.17)

The local piece is given by

H±,loc = πi

(
2

(
dz±(x)

dx

)−1
∂x +

d

dx

(
dz±(x)

dx

)−1)
δ(x− y), (2.18)

where

z±(x) ≡ log

[
−
∏n
i=1(x− a

±
i )∏n

i=1(x− b
±
i )

]
. (2.19)

Here a±i and b±i label the positions of the boundary points in the light-cone coordinate.

One has a+i ≡ uL+,i, b
+
i ≡ uR+,i, and a−i ≡ uR−,(n+1−i), b

−
i ≡ uL−,(n+1−i). With this definition,

we can omit the subscript ± in the following, and we just have to remember that ai and

bi are defined differently for the left and right moving modes. Note that we always have

ai < bi, bi < ai+1.
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Figure 4. An example with the region [−1,−0.1]∪ [0.1, 1] and z(0) ≈ 0.336. The causal diamonds

of the two intervals are shaded in blue. Under the modular flow, the two fermion operators travel

along the red curve while mixing with each other. The positive τ direction is marked by the arrow.

Note that the red curves are not generated by the conformal Killing vectors inside each diamond.

The function z(x) defined in (2.19) is a monotonic function in each interval (ai, bi),

which goes from −∞ at ai to +∞ at bi. By this property of z(x), if we fix a value of z,

there is one and only one point in each interval which corresponds to it, and we denote it

as xl(z) where l = 1, . . . , n labels which interval it is in.

A remarkable property of the non-local piece of the modular Hamiltonian for free

massless fermion is that it only couples the points in different intervals with the same z(x).

More explicitly, the non-local piece can be written as

Hnoloc = −2πi
n∑
l=1

1

x− y

(
dz

dy

)−1
δ(y − xl(z(x)), xl(z(x)) 6= x. (2.20)

This “quasi-localness” of the modular Hamiltonian makes the analysis of modular flow

particularly simple. Hnoloc takes a local operator Ψi(z) into n local operators inside the n

disjoint intervals with the same z. Here the subscript i labels which interval it is in, instead

of the chiralities. Under the modular flow, the positions of the n operators flow in a way

such that z(τ) = z(0) + 2πτ , and the relative weights on the n operators also vary with τ .

An example with two intervals [−1,−0.1]∪ [0.1, 1] is shown in figure 4 and figure 5. In the

figures, a particular value of z(0) ≈ 0.336 is chosen. By eq. (2.19), this sets the positions

of the fermion operators at τ = 0 to be x = −0.25 and x = 0.4 in the two diamonds.

For the case that V is composed of two disjoint intervals [a1, b1] and [a2, b2], the result

of the modular flow is explicitly worked out in [33]. We absorb an Jacobian factor into the

fermion operator by defining

Ψ̃l(z) ≡ (dxl/dz)
1
2 Ψ(xl(z)). (2.21)

Expression (2.21) is just a fermion operator at location xl determined by parameter z.

On the other hand, starting from an operator at xl(z) and apply the modular flow, the

resulting operator is denoted as

Ψ̃l(z, τ) ≡ eiKτ Ψ̃l(z)e−iKτ . (2.22)

– 9 –
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(a) Left-moving operator (b) Right-moving operator

Figure 5. The trajectories of the left-moving and right-moving operators during the flow in figure 4.

Note that from the definition of u± in (2.16), u− is larger at the left end-point, while u+ is larger

at the right end-point, thus under the modular flow in figure 4, the left-moving operator is pushed

to the right, while the right-moving operator is pushed to the left. Also note that the regions 1 and

2 are also labeled oppositely for operators with different chiralities.

It was showed in [33] that (2.21) and (2.22) are related in a simple way:(
Ψ̃1(z(τ))

Ψ̃2(z(τ))

)
=

(
cos θ(τ) − sin θ(τ)

sin θ(τ) cos θ(τ)

)(
Ψ̃1(z(0), τ)

Ψ̃2(z(0), τ)

)
, z(τ) = z(0) + 2πτ, (2.23)

where the function θ(τ) is given by:6

θ(τ) = arctan
(b1 + b2 − a1 − a2)x1(τ) + (a1a2 − b1b2)√

(b1 − a1)(a2 − b1)(b2 − a1)(b2 − a2)

− arctan
(b1 + b2 − a1 − a2)x1(0) + (a1a2 − b1b2)√

(b1 − a1)(a2 − b1)(b2 − a1)(b2 − a2)
.

(2.24)

In the formula, x1(τ) ∈ [a1, b1] is given implicitly by (2.19) and z(τ) = z(0) + 2πτ . Since

x1(τ) monotonically increases with τ , θ(τ) also monotonically increases with τ , starting

from θ(0) = 0. θ(τ) is invariant under the global conformal transformations, and thus we

can write it in terms of three independent conformal cross ratios:

tan θ(τ) =
(η1(τ)− η1(0))

√
η − 1

(η − 1)(η1(τ)− 1)(η1(0)− 1) + η1(τ)η1(0)
, (2.25)

where

η ≡ (a2 − a1)(b2 − b1)
(a2 − b1)(b2 − a1)

, η1(τ) ≡ (b1 − a1)(a2 − x1(τ))

(b1 − x1(τ))(a2 − a1)
. (2.26)

If we start from an operator in [a1, b1], then (2.23) tells us that after a modular flow with

parameter τ , it becomes a linear combination of operators in [a1, b1] and [a2, b2], i.e.

Ψ̃1(z(0), τ) = cos θ(τ)Ψ̃1(z(τ)) + sin θ(τ)Ψ̃2(z(τ)). (2.27)

Thus we see that the conformally invariant quantity θ(τ) quantifies how “perfectly” an

operator in [a1, b1] is being flowed to [a2, b2]. In general, tan θ(τ) does not go to ±∞ as

6The original formula for θ(τ) in [33] was incorrect, as was already noted in [40]. We thank H. Casini

and M. Huerta for verifying this information.
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Figure 6. We plot the function tan θ(τ) for the example shown in figure 4 and 5. The function

is not the same for different chiral modes, as one has to substitute in the correct definition of

a1, b1, a2, b2 as mentioned after (2.19). The maximal value of | tan θ(τ)| achieved for the example

is approximately 0.68. Since tan θ(τ) does not go to infinity, an operator in one interval is not

completely transferred to the other in this example.

a2
b2

a1 b1

i0

Figure 7. If we view the Minkowski spacetime as a patch that is conformally compactified on the

surface of a cylinder, then as a1 and b2 are being pushed toward the spatial infinity i0, they are in

fact getting closer to each other.

τ → ±∞. In figure 6, we plot the function tan θ(τ) for the example shown in figure 4

and 5.

We can work out the bounds on the possible value of tan θ(τ). We first consider the

limit of τ →∞, where x1(τ) is pushed to b1. In such a limit, η1(∞)→∞, and

| tan θ(∞)| =
√
η − 1

ηη1(0)− (η − 1)
<
√
η − 1, (2.28)

where the optimal value
√
η − 1 is approached if the initial position of the operator x1(0)

is close to a1. We can also try to modular evolve the operator in a different direction
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τ → −∞. In this limit, x1(τ)→ a1 and η1(−∞)→ 1. We find

| tan θ(−∞)| = (η1(0)− 1)
√
η − 1

η1(0)
<
√
η − 1, (2.29)

where the optimal value
√
η − 1 is approached if the initial position of the operator x1(0)

approaches b1. The conclusion is that in general one has

| tan θ(τ)| <
√
η − 1, (2.30)

and with larger value of the cross ratio η, one has greater room to transfer an operator

from one interval to the other. This can be intuitively understood as follows. One example

that we have η → ∞ is when we fix a1 and b2, then let b1 → a2. In this limit, physical

results should look like as if we had a single interval from a1 to b2. In the single interval

case (b1 = a2), the geometrical modular flow can simply carry an operator from (a1, b1) to

(a2, b2) perfectly. From this intuitive picture, it is also clear that if we fix the initial value

x1(0) of the operator in (a1, b1), it would be optimal to flow it in the direction of τ > 0,

i.e. towards b1. This can be checked by holding a1, x1(0), b1, b2 fixed, and take a2 → b1. In

this limit, one finds that tan θ(∞)→∞, while tan θ(−∞)→ 0.

Another example that η →∞ is when we consider b1 and a2 fixed, b2 = −a1 = `, while

taking ` to infinity. It seems that a1 and b2 are getting away from each other, but if we

view the Minkowski spacetime as a patch that is conformally compactified on the surface

of a 2D cylinder (see figure 7), a1 and b2 are actually approaching each other and thus

improves the extraction. Of course, we could also apply a global conformal transformation

which brings the second example to the first one. In this case, if one fixes the positions of

b1, x1(0), a2, then it is optimal to flow the operator in the negative direction, i.e. towards a1.

2.3 Pulling out the island

Now we apply the discussion of the free massless fermion field to the extremal black hole

set-up as discussed in section 2.1. We could consider a possible scenario where the bulk

CFT includes a sector that is or can be approximated by free massless fermion fields,

and we are interested in extracting the information in the island that is carried by this

fermion field. As we argued previously, doing a modular flow with the microscopic modular

Hamiltonian K corresponds to a bulk modular flow in the union [a1, b1] ∪ [a2, b2]. In the

example of section 2.1, the bulk quantum fields are simply in the vacuum state, thus apart

from c-number terms in the modular Hamiltonian that come from the conformal anomaly

on the AdS2 space, which do not enter the discussion of the dynamics under the modular

flow, the modular Hamiltonian is the same as what we have discussed in section 2.2. Thus

we can directly apply the results here and write:7

eiKτ Ψ̃1(z(0))e−iKτ = cos θ(τ)Ψ̃1(z(τ)) + sin θ(τ)Ψ̃2(z(τ)) +O (1/c) . (2.31)

In figure 8, we illustrate this formula with pictures. In figure 8(a), we present the gravity

7Here we are implicitly looking at the left-moving modes, for which Ψ̃1 is an operator in the island. For

the right-moving modes, one needs to suitably swap the subindices 1 and 2, but the physics is the same.
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a2 b2

b1a1

Ψ̃1(z(0))

Modular

flow a2 b2

b1a1

Ψ̃1(z(τ)) Ψ̃2(z(τ))

(a) The gravity picture

a2 b2

a2 b2

Modular flow

(b) The QM picture

Figure 8. (a) The gravity picture of the modular flow: a fermion operator in the island is partially

pulled out to the bath. (b) The dual quantum mechanical picture: two simple operators (represented

by the red dots) are partially pulled out from a complicated operator Ψ̃1(z(0)) (represented by the

red cloud). Note there are two dots because we have two different chiral components.

picture: an operator inside the island is partially pulled out to the bath by the modular

flow. In figure 8(b), we also draw an illustration of the quantum mechanical interpretation.

What we are doing is to pull out some simple operators from the initially complicated

operator “cloud”.

With the choice of parameters in (2.4), (2.5), we have

η ≈ b2

3φrc
� 1, (2.32)

thus by (2.30) we see that one has the ability of pulling out a large amount of information

from the island.8

One might worry that to achieve a large value of | tan θ(τ)|, one has to do a modular

flow with very large τ , which might invalidates (2.9) if τ is comparable to c. However, it is

easy to see that this does not happen. This is because τ enters the expression of x1(τ) only

in the form of exp(2πτ) and thus the time scale at which | tan θ(τ)| becomes exponentially

close to its asymptotic value can only depend on the cross ratios in a logarithmic way and

will not reach the scale c.

Above, we described an operational way of pulling out an operator from the island. The

same physics can also be phrased in the language of entanglement wedge reconstruction.

In [25, 29], it was proposed that modular flow serves as a natural way to generalize the

HKLL reconstruction [41, 42] to the operators in the entanglement wedge. The idea is that

an operator in the entanglement wedge can be reconstructed on the boundary using the

modular evolved boundary operators. In our current set up, the formula has a very simple

form. From (2.23) one gets

Ψ̃1(z(0)) =
1

sin θ(τ)
e−iKτ Ψ̃2(z(τ))eiKτ − 1

tan θ(τ)
Ψ̃2(z(0)) +O (1/c) , (2.33)

8We’ve used θ(τ) as a quantifier for the amount of information one can extract, in the sense that if θ

stays zero, one could extract no information and if θ goes to ±π/2, the extraction would be perfect. It

would be interesting to find a more precise quantifier for intermediate values of θ.
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u±,BR

AdS2

x

t

u+u−

u±,BL

BathRBathL

u±,IRu±,IL

Figure 9. We have two AdS black holes coupled to baths. If we consider the entanglement wedge

of the bath region shown in the figure, it includes an island in the bulk at late time.

that is one can reconstruct an operator in the island using operators in the bath region

[a2, b2] and its microscopic modular Hamiltonian K.

3 Nonzero temperature black hole coupled to a bath

In this section, we generalize the discussion in the previous section to the set up of nonzero

temperature black hole case discussed in [9]. More precisely, we still consider two dimen-

sional JT gravity coupled to a CFT with central charge c, but the solution involves two

black holes coupled to two baths. The two black hole-bath pairs are prepared in a ther-

mofield double state at t = 0. The metric inside the diamond completed by the dashed

lines in figure 9 is conformally equivalent to the flat space metric ds2 = −dt2 + dx2. We

put the origin (x, t) = (0, 0) at the bifurcation surface. The conformal fields are again in

the Minkowski vacuum, but this time in a larger diamond as in figure 9.

We now consider the entanglement wedge of a bath region which goes from the two

points (u+,BL
, u−,BL

) and (u+,BR
, u−,BR

) to the spatial infinity. The subscripts BL and

BR refer to whether the point is in the left bath or the right bath. The coordinates of the

two points are given explicitly by

u±,BL
= ∓ exp

(
∓2π(tR ∓ b)

β

)
, u±,BR

= ± exp

(
±2π(tR ± b)

β

)
, (3.1)

where β is the inverse temperature of the black hole, tR is a parameter which corresponds

to the Rindler time in the right wedge, and b is a fixed positive constant. In figure 9, we

marked the domains of dependence for these two regions in blue. The result of [9] is that,

the entanglement wedge of the bath region discussed above will include an island located
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inside the AdS2 region, after the Page time tR,Page ∼ βSBH/c. The left and right boundary

points of the island are located at

u±,IL = ∓ exp

(
∓2π(tR ∓ a)

β

)
, u±,IR = ± exp

(
±2π(tR ± a)

β

)
, (3.2)

where a is negative and is related to b via

a ≈ −
(
b+

β

2π
log

(
24πφr
cβ

))
, for

φr
cβ
� 1. (3.3)

Similar to what we have discussed in section 2.1, when the entanglement wedge of the bath

region contains the island, a modular flow using the microscopic modular Hamiltonian on

the bath region corresponds to a bulk modular flow on the union of the bath region and

the island, which can bring out the information hidden in the island.

We could also consider a scenario that the bulk CFT contains a free massless fermion

field, and ask how the information extraction works. One may wonder whether the formulas

in 2.2 still apply, as here the four boundary points u±,BL
, u±,IL , u±,IR , u±,BR

do not lie on

the constant Minkowski time slice. The answer is yes. The reason is that there is no

correlation in the vacuum state between fermion operators with different chiralities, and

the modular Hamiltonian always factorizes into different chiral pieces as in (2.14), no

matter the arrangement of the boundary points. Thus we can simply project the four

boundary points onto the light-cone coordinates, and study the modular flow for left-

moving and right-moving modes separately. Another concern might be that it seems we

have three disjoint intervals in this case, one from u±,BL
to spatial infinity, one from u±,BR

to spatial infinity and the third one is the island. However, we should really view the first

two intervals as joined together through the spatial infinity. For example, we could do a

conformal transformation which brings the spatial infinity to finite distance, and we literally

have two intervals.9 Another viewpoint is that if we view the Minkowski space as a patch

that is conformally compactified on a cylinder as in figure 7, we would have two intervals

instead of three. Thus we see that the discussion in section 2.2 is still applicable here.

Let’s first discuss how the bulk modular flow acts on the left-moving modes. Projecting

the boundary points to the u+ axis, we get the top figure in figure 10. Under a Möbius

transformation u+ → f(u+), we can rearrange the points as in the bottom figure in fig-

ure 10. The explicit form of the Möbius transformation is not crucial here. The important

feature is that we have

u+,IL − u+,BL
∝ exp

(
−2πtR

β

)
, (3.4)

thus u+,IL and u+,BL
approach each other exponentially at late time. After the transforma-

tion, f(u+,BL
) and f(u+,IL) also approach exponentially. As we mentioned in section 2.2,

as two boundary points approach each other, the extraction of an operator becomes opti-

mal. For an left-moving operator with some fixed u+ in the island, a modular flow in the

negative τ direction which pushes it to u+,IL will be able to almost pull it out to the left

9This way would produce the correct entropy for the region, while if one start from three intervals and

then push two end points to infinity, one do not get the correct result.
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u+,IR

u+,BR

u+ → f(u+)

f(u+,IR
) f(u+,IL

)

f(u+,BL
) f(u+,BR

)

Figure 10. We can apply a Möbius transformation such that the regions are arranged in the way

we discussed in section 2.2.

bath region. Of course, if this left-moving fermion is thrown into the black hole from the

right boundary, one needs to wait for a scrambling time before it is included in the island

to be pulled out [9]. Thus our proposal here serves as an example of the Hayden-Preskill

decoding process [43]. Similar arguments apply for right-going modes, where one also finds

that a modular flow in the negative τ direction can almost pull out the operator from the

island to the right bath.

Note that as tR increases, the island covers a larger part of the black hole interior.

Thus the proposed way is able to pull out information from the black hole interior, as far

as the semiclassical bulk picture still holds. What one needs is of course, the knowledge of

the microscopic density matrix of the bath region.

4 Conclusion and discussion

In this paper we’ve discussed a way to pull out the information from the island to the bath,

by acting only on the degrees of freedom in the bath, but with the microscopic modular

Hamiltonian. What we did is to apply the conventional wisdom of subregion-subregion

duality in holographic theories to the new set-ups involving a gravitational system coupled

to a bath, where islands arise. For the examples that the bulk fields include a free massless

fermion field, we find that one can almost pull out an operator from the island in both

the extremal and the non-extremal black hole cases. Although we’ve only discussed the

situations that the black hole and the bath are in equilibrium, the same idea also applies to

more realistic black hole evaporation set-up, such as the ones in [1, 2], or higher dimensional

situations [12].

In the bulk semiclassical picture, the reason that an island exists is that there is enough

mutual information between the island and the bath region, to win over the cost of including

extra area contributions as in (1.1). Our proposal exactly relies on and utilizes the nonzero

mutual information and its resulting nonlocalness in the bulk modular Hamiltonian. In

this sense, the resource needed to extract information from the island is simply contained

in the bulk quantum fields. At face value, it appears that gravity, especially those non-

perturbative effects discussed in [19, 20] did not play an important role in the extraction

process. However, this is not true, as the magic of gravity is to give rise to the formula (2.7),

i.e., to encode the information of the island into the microscopic modular Hamiltonian.
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Although we put a lot of focus on the example of free fermion field, we should stress

that the general idea of information extraction with modular flow should work for general

field theories, although the details will be different. We discussed the free fermion field just

because we are able to derive analytical results in this case, which helps us demonstrate the

idea. In [44], the modular Hamiltonian for free chiral bosons in two intervals was derived,

which does not have the “quasi-local” property as the free fermion case. However, one

might expect that when the two intervals approach each other, such as in the example

of section 3, one can still extract information from one to the other nicely. It would be

interesting to check whether this is true.

In [9], it is proposed that in certain situation, one can also extract part of the informa-

tion from the island using the Gao-Jafferis-Wall protocol [45] (see also [46]). However, the

Gao-Jafferis-Wall protocol described in [9] requires that the island is close to a black hole

horizon region that one has access to. This is not true in general, for example in the cases

discussed in this paper. The advantage of using modular flow is that it applies to general

cases that an island is included in the entanglement wedge.

One might worry whether our proposal violates causality in some potential ways, as we

can extract information from a spacelike separated island, by acting only on the bath region.

In the dual quantum mechanical description, there is no trouble, since the information we

want to extract was already contained in the bath region in some complicated way. In

the semiclassical gravity description, there is again no violation of causality, since we are

acting with a bulk modular flow which directly couples the island and the bath. It’s only

questionable when we start to think about the exact non-perturbative gravity description.

Since we do not have a complete understanding of it, we cannot draw any conclusions here.

It might be that in the full non-perturbative gravity description, the island is connected to

the bath in some new way, in the spirit of [3, 47]. The causality, with the correct definition,

might still be preserved there.

Acknowledgments

We would like to thank Juan Maldacena for helpful discussions and valuable advice on

the manuscript. We also want to thank Ho Tat Lam, Henry Lin and Pengfei Zhang for

intriguing conversations. Y.C. is supported by a Centennial Fellowship from Princeton

University.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] G. Penington, Entanglement wedge reconstruction and the information paradox,

arXiv:1905.08255 [INSPIRE].

– 17 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1905.08255
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.08255


J
H
E
P
0
3
(
2
0
2
0
)
0
3
3

[2] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields

and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063

[arXiv:1905.08762] [INSPIRE].

[3] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation

from semiclassical geometry, arXiv:1908.10996 [INSPIRE].

[4] D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743

[hep-th/9306083] [INSPIRE].

[5] D.N. Page, Time dependence of Hawking radiation entropy, JCAP 09 (2013) 028

[arXiv:1301.4995] [INSPIRE].

[6] C. Akers, S. Leichenauer and A. Levine, Large breakdowns of entanglement wedge

reconstruction, Phys. Rev. D 100 (2019) 126006 [arXiv:1908.03975] [INSPIRE].

[7] Z. Fu and D. Marolf, Bag-of-gold spacetimes, Euclidean wormholes and inflation from

domain walls in AdS/CFT, JHEP 11 (2019) 040 [arXiv:1909.02505] [INSPIRE].

[8] C. Akers, N. Engelhardt and D. Harlow, Simple holographic models of black hole evaporation,

arXiv:1910.00972 [INSPIRE].

[9] A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077

[INSPIRE].

[10] M. Rozali et al., Information radiation in BCFT models of black holes, arXiv:1910.12836

[INSPIRE].
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