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1 Introduction

Since the advent of AdS/CFT in [1] many examples of dual pairs have been conjectured.

The first (and most studied) was AdS5×S5 with five-form flux in type IIB and is proposed

to be dual to four-dimensional N = 4 supersymmetric Yang-Mills [1]. The five-sphere can

be replaced by an arbitrary five-dimensional Sasaki-Einstein manifold Y5 and gives rise

to AdS5 × Y5 spaces dual to 4d N = 1 quiver gauge theories. In general, it is hard to

find explicit metrics for these spaces and this makes it difficult to obtain evidence for new

dualities.1 Despite the difficulties, the infinite family of explicit Sasaki-Einstein metrics

Y5 = Y p,q [4] and its generalization Y5 = La,b,c [5] have been discovered. These manifolds

are toric and specified by coprime integers p and q, and a, b and c respectively. The

duality can be understood via its construction using D3-branes probing the Calabi-Yau

cone singularity with base Y5. The 4d theory is the worldvolume theory on these D3-

branes whilst AdS5 × Y5 is the near horizon geometry of the type IIB D3-brane solution.

Of course, one can also study the correspondence in lower dimensions. One way is

to take the aforementioned four-dimensional theories and compactify them on a (smooth)

Riemann surface Σg with genus g performing a topological twist to preserve supersymmetry.

Additionally, background magnetic fluxes for the continuous flavour symmetries in the 4d

theory can be turned on. Since these fluxes are quantized, every 4d theory leads to a discrete

family of 2d theories. In the IR one expects these theories to flow to a 2d superconformal

field theory (SCFT), however proving the existence of this flow is in general challenging.

Assuming the existence of the SCFT one can compute its central charges and R-charges

from UV data using the technique of c-extremization [6, 7] which is based on anomaly

considerations. In this scenario we are not considering a conventional RG flow from a 2d

UV theory to the 2d IR theory but instead we consider an RG flow across dimensions.

One can obtain evidence for the existence of the 2d SCFT using holography by finding

an explicit supergravity solution with the same central charges and R-charges. Employing

the D3-brane picture, one expects the solution to correspond to the near horizon geometry

of a D3-brane compactified on the Riemann surface. This solution will be of the form

AdS3 × Y7 in which Y7 is a fibration of the Sasaki-Einstein manifold Y5 over the Riemann

surface, with self-dual five-form flux sourced by the D3-branes.

The above has been successfully studied in the case that the 4d parent theory is dual

to AdS5 × Y5 for Y5 = S5 [6–10], i.e. N = 4 super Yang-Mills, and for Y5 = Y p,q [11], see

also [12, 13]. For the latter case of Y5 = Y p,q, local supergravity solutions have been found

in [11] but their global regularity has not been studied so far, see also [14, 15]. However,

even if explicit solutions are not known, one can still employ the recently found geometric

dual of c-extremization [16–18].2 For this technique one has to assume the existence of

a solution and can compute its central charges and R-charges using only topological data

characterizing the internal manifold. The equivalence to c-extremization has been proven

1One can make progress in understanding the gravity theory if one knows the topological data of the

solution [2, 3].
2The closely related geometric dual of I-extremization [19, 20] was also put forward in [16] and further

studied in [21–23].
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in [24] for all toric quivers. Geometric c-extremization has been successfully applied to cer-

tain geometries including a subset of Y5 = Y p,q [17]. The dual of c-extremization from the

perspective of gauged supergravity has been found in [25] and further investigated in [26].

In this paper we extend the above and study compactifications of the 4d La,b,c quiver

gauge theories [27–29] on a Riemann surface Σg. Note that these theories include the

previously studied Y p,q theories [30] as a special limit. We twist the 4d La,b,c theories such

that the resulting 2d theories preserve N = (0, 2) supersymmetry. On the field theory side

we compute their central charges and R-charges using c-extremization. On the geometry

side we compute these same charges, first by employing geometric c-extremization which

has been developed for toric Y5 in [17]. However, as mentioned above, to use this technique

we must assume the existence of the explicit solution. We therefore construct and study

solutions dual to 2d N = (0, 2) SCFTs and match the central charges and R-charges

to the expressions obtained via c-extremization. To complete the existing literature, in

appendix C we also study the global regularity of the local AdS3 × Y7 solutions, where

Y p,q ↪→ Y7 → Σg, as given in [11] and match their central charges and R-charges to the

field theory.

The most important part of this paper contains the construction of new solutions of the

form AdS3×Y7 where La,b,c ↪→ Y7 → Σg. Such solutions are contained in the classification

of supersymmetric AdS3 solutions of type IIB with only five-form flux [31]. The ten-

dimensional solutions are completely determined by a six-dimensional Kähler metric solving

a master equation. We make a sufficiently general ansatz for this 6d metric which is

of cohomogeneity two and depends on three functions. The ansatz is motivated by the

work of [32] in which the La,b,c solutions of [5] were recovered using a Kähler orthotoric

metric ansatz [33] in four dimensions. Their success motivates us to choose a fibration

of the orthotoric metric over a Riemann surface for our ansatz. We extend these local

metrics to globally well-defined metrics by studying their regularity without specifying

the functions entering the ansatz. The resulting conditions from the regularity analysis

place constraints on the roots of the functions in the ansatz and the first derivative of

these functions evaluated there. Subsequently, we perform flux quantization, and compute

the central charges and R-charges of baryonic operators while leaving the functions in the

metric generic. Amazingly, the integrals one needs to compute can be integrated explicitly,

even without solving the master equation. The resulting expressions only depend on the

roots and first derivative of these functions. As a final step one can then determine the

functions by solving the master equation. Plugging the result into the general expressions

we obtain the various charges. The solution we find for the three functions in the ansatz

solving the master equation do not contain enough free parameters to account for all the 2d

SCFTs. However, given these general expressions for the regularity conditions, the central

charges and R-charges, it is simple to match them to the field theory once the most general

solution has been found. The internal manifold of the solutions we find are examples of

GK geometries [34]. These include previously known solutions in the literature of this

form [7, 11, 14, 34–37] as special limits. For completeness note that other type IIB AdS3

solutions have been found and classified in [38–45]. In (massive) type IIA AdS3 solutions

(and some type IIB solutions obtained via dualities) can be found in [42, 46–51].

– 2 –
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Despite the fact that the central charges and R-charges we find from the solution

formally match the charges we compute from the twisted compactifications of the La,b,c

quiver gauge theories we have only found holographic dual pairs for the higher genus

Riemann surfaces Σg>1. The gravity solutions we find for S2 and T2 Riemann surfaces

are characterized by integers a < 0 and b, c > 0, whilst the 4d field theory and therefore

also the resulting 2d theories are characterized by integers a, b, c > 0. When a > 0 (S2

and T2 cases) at least one of the R-charges in the field theory result becomes negative,

which is in contradiction with the chiral origin of the 2d fields. It is therefore not clear

what the 4d theory compactified on S2,T2 flows to in the IR. For the solutions containing

a surface with g > 1 we find gravity solutions with both a > 0 and a < 0. The former

are the solutions which are holographically dual to La,b,c quivers compactified on Σg>1.

In the latter case where a < 0 the central charges and R-charges from field theory and

the corresponding solution again formally agree in spite of the different domains for the

integers. Identifying the 2d SCFTs dual to the AdS3 solutions with a < 0 constructed in

this paper remains an open problem. This same phenomenon has been noted previously

in [16, 17, 39] for solutions with internal space T2×Y p,q, T2×La,b,c and a specific fibration

of Y p,q over S2. In the Y p,q cases the field theory is characterized by integers p > q > 0,

however the naive dual supergravity solutions, when known are instead characterized by

integers q > p > 0. In appendix C we extend the results of the Y p,q case by studying more

general fibrations over a Riemann surface Σg and performing the regularity analysis. We

find that the solutions for Riemann surfaces with g = 0, 1 are also only globally regular

for q > p > 0. However, for g > 1 this is not the case and solutions are valid for p > q > 0,

therefore in the g > 1 case, and only this case, we have found evidence that the solutions

and field theory are dual to each other.

The plan for the paper is as follows. We first study the field theory side in sec-

tion 2 where we review the technique of c-extremization and use it to compute the central

charge and R-charges of the 2d N = (0, 2) SCFTs. In section 3 we review geometric

c-extremization and use it to compute the central charges and R-charges from the geomet-

ric side assuming the existence of the solutions. Subsequently in section 4 we turn our

attention to finding these explicit solutions. We first study the regularity of our ansatz

and compute expressions for the central charge, R-charges and flux quantitation in terms

of this general ansatz. Afterwards we solve the master equation and the conditions that

follow from the regularity analysis to find globally regular solutions dual to 2d SCFTs. We

use the general expressions to compute the central charge and R-charges and match with

the field theory results. We conclude in section 5. Some technical material is relegated to

appendices A and B. In appendix C we study the Y p,q case.

2 Twisted N = 1 field theories and c-extremization

In this section we study the central charges and R-charges of baryonic operators of 2d

N = (0, 2) SCFTs arising from twisted compactifications of certain 4d N = 1 SCFTs on a

compact genus g Riemann surface Σg from field theory. The 4d parent theories are realized

in string theory by N D3-branes probing certain Calabi-Yau threefold singularities. The
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class of non-compact Calabi-Yau threefolds we consider here are metric cones over the

five-dimensional Sasaki-Einstein manifolds La,b,c discovered in [5]. This infinite family of

metrics is labelled by a triplet of integers a, b, c that can be chosen such that

0 < a ≤ d ≤ c ≤ b , gcd(a, c) = gcd(a, d) = gcd(b, c) = gcd(b, d) = 1 , (2.1)

where d = a+b−c. The 4dN = 1 field theories arising from this setup are quiver gauge the-

ories [27–29]. These field theories generically have two flavour symmetries U(1)F1×U(1)F2 ,

a baryonic U(1)B symmetry and in addition a U(1)R R-symmetry. We are interested in

twisted compactifications of these 4d theories on a Riemann surface Σg with the most

general flux configuration of the aforementioned global U(1) symmetries preserving super-

symmetry switched on. The IR fixed point (if it exists) is typically a strongly coupled 2d

SCFT which may not admit a Lagrangian description. Assuming the compactified theory

flows to a 2d N = (0, 2) SCFT, we shall compute the central charges and R-charges of

baryonic operators of this 2d theory. In order to make progress we will utilize the principle

of c-extremization put forward in [6]. This enables the computation of the central charges

of 2d SCFTs using UV data.

We begin by briefly reviewing c-extremization and the 4d N = 1 La,b,c SCFTs in order

to keep this paper as self-contained as possible. Readers familiar with both may safely

skip to section 2.2 in which we apply c-extremization to twisted compactifications of the

4d La,b,c theories on a Riemann surface Σg with constant curvature, turning on fluxes of

global symmetries consistent with preserving supersymmetry. The trial central charge will

be constructed and extremized with respect to the mixing parameters. While performing

these computations in full generality is possible, we will only present the results of certain

special cases which will be compared to their geometric counterparts later, since the results

quickly become unwieldy. We provide a Mathematica package as supplementary material

in which the reader can find the results for the general case if they so wish.

2.1 Topologically twisted 4d field theories and c-extremization

In order to determine the (right-moving) central charge of the 2d SCFTs we employ the

principle of c-extremization [6]. Similar to the more familiar a-maximization in 4d [52], one

constructs a trial central charge ctrial
r (εI), a function depending on parameters εI which

parametrize the mixing of the UV R-symmetry with the remaining global symmetries.

Given a 2d N = (0, 2) UV theory with R-symmetry U(1)R and global symmetries U(1)I
we construct the trial central charge as follows. First define the trial R-symmetry via the

generator

T trial
R = TR +

∑
I 6=R

εITI . (2.2)

The ’t Hooft anomalies of the 2d theory are encoded in the anomaly four-form polynomial

I4 of the 2d theory. The trial central charge is defined via

ctrial
r (εI) = 3ktrial

RR , (2.3)

– 4 –
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where ktrial
RR is the quadratic ’t Hooft anomaly coefficient of the trial R-symmetry in the

anomaly polynomial

I4 ⊃
1

2
ktrial
RR c1(F trial

R ) ∧ c1(F trial
R ) . (2.4)

Here F trial
R is the background gauge field of the trial R-symmetry. The exact supercon-

formal R-symmetry of the 2d (0, 2) SCFT is then obtained at the extremum of the trial

central charge

cR = ctrial
r (ε∗I) ,

∂ctrial
r (εJ)

∂εI

∣∣∣
εI=ε∗I

= 0 . (2.5)

This extremization condition follows from the fact that the superconformal R-symmetry at

the IR fixed point has no mixed ’t Hooft anomalies with any global symmetry, i.e. kRI = 0.

The trial central charge evaluated at the extremum cR = ctrial
r (ε∗I) is then the right-moving

central charge of the SCFT. Furthermore the R-charges of operators can be computed by

inserting ε∗I into the trial R-symmetry (2.2). Let us note that the left-moving central charge

can be computed from the result for the right-moving central charge and the gravitational

anomaly of the 2d SCFT. The difference of the left- and right-moving central charge is

determined by the gravitational anomaly coefficient

I4 ⊃ −
cL − cR

24
p1(TM2) (2.6)

in the anomaly polynomial. This contribution however, scales as O(N0) in the theories

under consideration and since we are only interested in the leading O(N2) contribution in

the large N limit in this paper, we shall not comment further on the subleading corrections.

The 4d N = 1 field theories which we wish to twist on a Riemann surface Σg are

quiver gauge theories with SU(N) nodes and bifundamental matter linking the nodes. The

gauge theory data necessary for our purposes are the bifundamental matter multiplets and

gauginos together with their multiplicities and charges under the global U(1)F1 ×U(1)F2 ×
U(1)B × U(1)R symmetry. The data of the six types of chiral bifundamentals included

in the gauge theory, which are conventionally denoted by Z, Y , U1,2 and V1,2, and the

vector multiplets, is summarized in table 1.3 The integers k, l are solutions of ck + bl = 1

which exist by Bézout’s identity. Note that our fiducial R-symmetry is not the R-charge

assignment of the 4d theory at the 4d IR fixed point. Instead we choose a convenient set

of R-charges such that the R-charge of the superpotential is two as usual.

Upon wrapping the 4d theory on a genus g Riemann surface Σg we perform a partial

topological twist to preserve N = (0, 2) supersymmetry in 2d. We study the most general

twists involving flux for the R-symmetry, flavour, and baryonic symmetries on the Riemann

surface. The total background gauge field configuration on the Riemann surface is

Fflux =
κ

2
Rg + f1F1 + f2F2 +BFB , (2.7)

where FA = TAdvol(Σg) is the field strength associated to the symmetry U(1)A with its

generator TA. Here κ is the (constant) normalized curvature of the Riemann surface with

3The R-charge column is the (fiducial) R-charge r of the fermionic component of the multiplet, the

R-charge of the boson is r + 1.
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Field multiplicity U(1)F1
U(1)F2

U(1)B U(1)R

Z N2a 0 k b −1

U2 N2c −1 −k − l −d 0

Y N2b 1 0 a −1

U1 N2d 0 l −c 0

V1 N2(b− c) −1 −l c− a 0

V2 N2(c− a) 0 k + l b− c 0

λ (N2 − 1)(a+ b) 0 0 0 1

Table 1. Bifundamental matter and vector multiplets in the La,b,c quiver and their charges. In

this paper we often refer to the first four multiplets with (X1, X2, X3, X4) = (Z,U2, Y, U1).

Ricci form Rg. The volume form on the Riemann surface is normalized such that

vol(Σg) =

∫
Σg

dvol(Σg) = 2πηg ≡

{
4π|g − 1| , g 6= 1

4π , g = 1
. (2.8)

In order to construct the trial central charge for the compactified 4d theories that

we will study in this paper, it is useful to work with the anomaly six-form polynomial of

the parent 4d N = 1 theory. The anomaly polynomial for an N = 1 theory with global

symmetries U(1)I and associated background field strengths FI takes the form

I6 =
1

3!
kIJKc1(FI) ∧ c1(FJ) ∧ c1(FK)− 1

24
kIc1(FI) ∧ p1(TM4) , (2.9)

where p1(TM4) is the first Pontryagin class of the four-manifold M4 on which the 4d theory

is defined and c1(FI) are the first Chern classes associated with the global symmetries. The

coefficients in the anomaly polynomial depend on the chiral spectrum of the 4d theory via

the cubic and linear ’t Hooft anomalies

kIJK =
∑

Weyl fermions ψ

QIψQ
J
ψQ

K
ψ , kI =

∑
Weyl fermions ψ

QIψ , (2.10)

where QIψ is the charge of the fermion ψ under U(1)I . We can then compute the anomaly

polynomial I4 of the 2d N = (0, 2) theory by integrating the 4d one over the Riemann

surface Σg. The dimensional reduction of the anomaly polynomial can be performed by

including both the background flux and the mixing of the 2d background gauge fields in

the decomposition of the 4d background gauge fields. The ansatz for the mixing of the UV

R-symmetry with the remaining flavour symmetry can be parametrized by the generator

T trial
R = TR + ε1TF1 + ε2TF2 + εBTB , (2.11)

where εi, εB parametrize the mixing. The field strengths of U(1)F1×U(1)F2×U(1)B×U(1)R
including fluxes and mixing parameters are then identified as

FR = F trial
R +

κ

2
Rg ,

Fi = Fi + εiF
trial
R + fiFFi , (2.12)

FB = FB + εBF
trial
R +BFB ,

– 6 –



J
H
E
P
0
3
(
2
0
2
0
)
0
3
2

where now Fi, FB and F trial
R are the 2d field strengths of the global symmetries and F trial

R is

the field strength of the 2d trial R-symmetry. The trial central charge is then given by the

quadratic ’t Hooft anomaly associated with the trial R-symmetry, i.e. ctrial
r (εi, εB) = 3ktrial

RR .

The ’t Hooft anomaly of the trial R-symmetry can now easily be computed by plugging

the bundle decomposition (2.12) into the anomaly polynomial I6 of the 4d field theory

and integrating the latter over the Riemann surface Σg, thereby obtaining the anomaly

polynomial I4 of the 2d (0, 2) theory. Reading off the coefficient

I4 =

∫
Σg

I6 ⊃
1

2
ktrial
RR c1(F trial

R ) ∧ c1(F trial
R ) , (2.13)

one finds

ctrial
r = −3ηg

∑
fermionsψ

mult(ψ)T flux
ψ

(
Qtrial
R,ψ

)2
. (2.14)

The sum runs over all 4d fermions in the spectrum, mult(ψ) is the multiplicity of ψ, T flux
ψ

is the charge of the fermion under the background gauge field (2.7), and Qtrial
R,ψ is the charge

under the trial R-symmetry. Extremizing the trial central charge ctrial
r (εi, εB) with respect

to εI = (εi, εB) and evaluating it at the extremum gives the value of the right-moving

central charge at the (putative) IR fixed point.

2.2 Central charges and R-charges from c-extremization

It is now straightforward to compute the trial central charge for the La,b,c field theories

compactified on Σg with fluxes using the data given in table 1 and the general formula for

the trial central charge (2.14). One finds

ctrial
r (εI) = − 3N2ηg

[
(b− c)

(
B(c− a)− f1 − f2l

)
+ (c− a)

(
B(b− c) + f2(k + l)

)(
(k + l)ε2 + (b− c)εB

)2
+ d
(
f2l −Bc

)(
lε2 − c εB

)2 − c(dB + f1 + f2(k + l)
)(
ε1 + (k + l)ε2 + d εB

)2
+ b(a εB + ε1 − 1)2

(
aB + f1 −

κ

2

)
+ a(b εB + kε2 − 1)2

(
bB + f2k −

κ

2

)
+

1

2
(a+ b)κ

]
(2.15)

for the most general twisted field theory and flux configuration on Σg.
4 It is possible to

extremize the trial central charge (2.15) in this most general setting and evaluate the latter

at the corresponding extremum. One thus obtains the right-moving central charge and

R-charges of baryonic operators in the 2d SCFT in full generality. However, since the full

expressions are tedious, we refrain from giving the result for the most general case here

and instead specialize to some interesting cases. The interested reader can find the most

general result in the supplementary material as a Mathematica file.

4One can also derive this expression using the general results in [24] upon specializing the toric data to

that of La,b,c.
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2.2.1 Field theory c-extremization for Σg = T2

We now present some explicit computations for the case when the 4d parent theories

are compactified on a torus T2. The formulas for the central charges and R-charges of

the putative 2d SCFT, to which the 4d theory flows in the IR, are given and shall be

compared to the geometric dual of c-extremization and supergravity in sections 3.3 and 4.6

respectively.

Purely baryonic flux. The first case we consider is the 4d La,b,c field theory compactified

on T2 with purely baryonic flux i.e. f1 = f2 = 0. The values of the mixing parameters

εI extremizing the trial central charge (2.15) for this case can be easily computed and are

given by

ε∗1 =
a
(
a− b+ ak(b− c)

)
(a− c)(c− b)

, ε∗2 =
ab

c− a
, ε∗B =

a
(
k(c− b)− 1

)
(b− c)(c− a)

. (2.16)

With these values for the mixing parameters one finds the right-moving central charge

cR = 12N2B
abc (a+ b− c)
(a− c)(b− c)

, (2.17)

and the R-charges of the baryonic operators are given by

R[X1] = R[X3] =
ab

(a− c)(b− c)
, R[X2] = R[X4] = − cd

(a− c)(b− c)
. (2.18)

Note that (2.18) are not well-defined R-charges for chiral multiplets as one of them nec-

essarily is negative when a, b, c satisfy (2.1). This has been noticed in [16] where it was

shown from a gravity computation that this is a generic feature of these compactifications

on a T2 with only baryonic flux. We can now examine for what domain of a, b, c both

the central charge and R-charges are positive. We wish to keep 0 < d ≤ c ≤ b since the

Y p,q limit is given by taking a = p − q, b = p + q and c = d = p for positive integers p

and q. Therefore the natural modification to make is to allow a to take negative values.5

Indeed with these ranges we can simultaneously find a positive central charge and positive

R-charges.

Fluxes B ∝ f2, f1 = 0. Consider now a twisted compactification of the La,b,c quiver

gauge theories without U(1)F1 flux, and baryonic flux proportional to the U(1)F2 flux.

Concretely, we choose a flux configuration where B = −k
b f2, f1 = 0. Extremizing the trial

central charge (2.15) for these fluxes with respect to the mixing parameters εI gives the

extremal value of the central charge

cR =
6akf2N

2(−1 + ak)
[
a+ b− bck + c(−2 + ck)

]
b(−1 + ck) + c(2− ck) + a2k2

[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] , (2.19)

5Technically the Y p,q limit does not fix the order of c and d, however as in the 4d theory we believe we

can take d ≤ c without loss of generality.
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and the R-charges of baryonic operators are given by

R[X1] = − abk(−1 + ak)

b(−1 + ck) + c(2− ck) + a2k2
[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] ,
R[X2] =

(−1 + ak)
[
a+ b− bck − ac2k2 + ack(1 + bk) + c(−2 + ck)

]
b(−1 + ck) + c(2− ck) + a2k2

[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] ,
R[X3] =

a2k(1 + bk − ck)(−1 + ck)

b(−1 + ck) + c(2− ck) + a2k2
[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] ,
R[X4] =

a2ck2 + c(2− ck) + b(−1 + ck)− a(1 + ck)

b(−1 + ck) + c(2− ck) + a2k2
[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] .
(2.20)

We find that at least one of the R-charges is negative when a, b, c satisfy (2.1).

2.2.2 Field theory c-extremization for Σg 6=1

We now move to twisted compactifications of the La,b,c quiver gauge theories on a sphere

and on higher genus Riemann surfaces. The parameter κ 6= 0 gives the distinction between

Σg=0 = S2 and Σg>1.

Baryonic flux and fixed flavour flux. For this field theory compactification we choose

general baryonic flux given by B and flavour fluxes with fixed values f1 = −κ
2ak and

f2 = −κ
2 b. We note that there is nothing special in field theory for these values except that

they give simple results. Extremizing the trial central charge we find

cR =
6abcN2(g − 1)(k − 2Bκ)2(1 + (a+ b− c)(k − 2Bκ))

1 + (k − 2Bκ)
(
a+ a(b− c)(k − 2Bκ)− (b− c)(−1 + c(k − 2Bκ))

) . (2.21)

The R-charges at the conformal fixed point are given by

R[X1] =
b(k − 2Bκ)(a(k − 2Bκ) + 1)

(k − 2Bκ)
(
a(b− c)(k − 2Bκ) + a− (b− c)(c(k − 2Bκ)− 1)

)
+ 1

,

R[X2] =
2− (a+ b− c)(k − 2Bκ)(c(k − 2Bκ)− 1)

(k − 2Bκ)
(
a(b− c)(k − 2Bκ) + a− (b− c)(c(k − 2Bκ)− 1)

)
+ 1

,

R[X3] =
a(k − 2Bκ)(b(k − 2Bκ) + 1)

(k − 2Bκ)
(
a(b− c)(k − 2Bκ) + a− (b− c)(c(k − 2Bκ)− 1)

)
+ 1

, (2.22)

R[X4] =
c(2Bκ− k)((a+ b− c)(k − 2Bκ) + 1)

(k − 2Bκ)
(
a(b− c)(k − 2Bκ) + a− (b− c)(c(k − 2Bκ)− 1)

)
+ 1

.

Here we also find that at least one of the R-charges is negative when a, b, c satisfy (2.1).

However, the central charge and R-charges take positive values when a is negative and

0 < d ≤ c ≤ b.

3 Geometric dual of c-extremization

In this section we utilize the geometric dual of c-extremization [16, 17] to compute the

central charges and R-charges of the La,b,c quiver theories reduced on a Riemann surface

Σg with constant curvature. We apply geometric c-extremization to geometries of the form
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AdS3 × Y7, where Y7 is a fibration of La,b,c over Σg. Note that the previously studied

Y p,q fibrations over Σg considered in [17] can be obtained from La,b,c by taking a certain

limit, see appendix C. We first describe the constraints on the geometry of the holographic

duals of the 2d SCFTs imposed by supersymmetry in section 3.1. We then briefly review

the geometric c-extremization procedure in section 3.2. Again, the reader already familiar

with these concepts may skip to section 3.3 where we compute the central charges and

R-charges applying this formalism. We subsequently compare the results obtained from

the geometric dual to the field theory results of section 2 and find perfect agreement. This

matching was already guaranteed by the recent proof of the equivalence of c-extremization

and its geometric dual for all toric cases [24]. Despite this proof, the matching is a priori

a formal matching since we have not proven the existence of the supergravity solution yet,

this will be the subject of section 4, where we construct explicit solutions. The expressions

we present in this section are essential for constructing the dictionary needed to compare

these explicit solutions to the field theory.

3.1 Holographic AdS3 duals with five-form flux

In this paper we are interested in the 2d SCFTs arising from wrapping D3-branes on a

constant curvature Riemann surface. The holographic duals of these SCFTs fall within the

classification of [31]. There, the most general supersymmetric AdS3 solutions of type IIB

supergravity with only five-form flux are shown to take the form

ds2 = L2e−
w
2

(
ds2

AdS3
+

1

4
(dz + P )2 + ewds2(M6)

)
, (3.1)

F5 = (1 + ∗)dvolAdS3 ∧
(
− 2J +

1

2
d
[
e−w(dz + P )

])
, (3.2)

ew =
1

8
R . (3.3)

The metric on AdS3 with unit radius is denoted by ds2
AdS3

and its corresponding volume

form by dvolAdS3 . Furthermore,M6 is a transverse Kähler metric with Kähler form J and

Ricci scalar R, satisfying the master equation

�R =
1

2
R2 −RijRij . (3.4)

The one-form P is the Ricci-form potential of the Kähler metric satisfying dP = ρ with

ρ the Ricci-form of M6. The scalar w is determined in terms of R. Finally, L is an

overall dimensionful length scale. For a well-defined solution one must impose the flux

quantization condition
1

(2π`s)4gs

∫
ΣA

F5 = NA ∈ Z , (3.5)

where `s is the dimensionful string length, gs is the constant string coupling and ΣA

form an integral basis for the free part of H5(Y7,Z). Note that the solution (3.1) has a

unit norm Killing vector ξ = 2∂z, called the R-symmetry vector, which is dual to the R-

symmetry of the SCFT and defines a foliation Fξ of Y7. Finally, the real cone over Y7, i.e.
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C(Y7) ≡ R>0 × Y7 with metric

ds2 = dr2 + r2ds2
7 , (3.6)

is complex but not Kähler. There is a nowhere-zero, closed and holomorphic (4, 0)-form

Ψ, which has R-charge two, i.e.

LξΨ = 2iΨ , (3.7)

hence ξ is a holomorphic vector field.

3.2 Geometric dual of c-extremization: general formalism

Taking the SCFT as described in section 2 we will assume the existence of a dual solution

satisfying the supersymmetry conditions and the master equation (3.4). Let us review

how geometric c-extremization [16, 17] determines the central charges and R-charges of

the dual SCFT. To apply this technique we take the solution off-shell which is done

by only imposing the BPS-equations. We thus consider solutions of the form (3.1)–(3.3)

satisfying (3.5). The solutions can then be put on-shell by additionally applying the five-

form equation of motion (3.4). The metric cone over the manifold Y7, which we denote by

C(Y7), is a complex cone with holomorphic volume form Ψ and holomorphic U(1)s action

generated by real holomorphic vector fields ∂ϕi , i = 1, . . . , s. The R-symmetry vector ξ is

holomorphic and can be expanded as

ξ =
s∑
i=1

bi∂ϕi . (3.8)

We can choose a basis {∂ϕi}si=1 such that Ψ is only charged under ∂ϕ1 , which by (3.7)

implies that b1 = 2. Once the vector field ξ and thus foliation Fξ is fixed, we have to

choose a transverse Kähler metric with Kähler class [J ] ∈ H1,1
B (Fξ). As remarked earlier,

we must impose flux quantization on the off-shell solution over all compact five-cycles.

The relevant part of the five-form flux is the part solely on the internal space and may be

written as

F5|internal =
1

4

(
4ηR ∧ dηR ∧ J +

1

2
∗ dR

)
, (3.9)

where ηR = 1
2(dz + P ). With this expression the flux quantization conditions (3.5) are

equivalent to ∫
ΣA

ηR ∧ ρ ∧ J =
2(2π`s)

4gs
L4

NA , (3.10)

where ΣA are representative five-cycles on Y7. This is only consistent in homology when∫
Y7

ηR ∧ ρ2 ∧ J = 0 (3.11)

is imposed in addition and H2(Y7,R) ∼= H2
B(Fξ)/[ρ], which holds for the fibered geometries

Y7 we consider here. The constraint equation (3.11) is equivalent to integrating the master

equation (3.4) over Y7. The off-shell central charge is defined by

Z ≡ 3L8

(2π)6g2
s`

8
s

SSUSY =
1

2

3L8

(2π)6g2
s`

8
s

∫
Y7

ηR ∧ ρ ∧ J2 . (3.12)
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The flux quantization condition (3.10), constraint equation (3.11) and trial central

charge (3.12) only depend on the geometry via the choice of ξ and the Kähler class [J ].

The dual of c-extremization is given by extremizing (3.12) over these choices. The central

charge of the dual SCFT is then given by

csugra = Z |on-shell . (3.13)

So far we have given a general description of geometric c-extremization, but now we

will specialize this procedure to geometries that are fibrations of the form

Y5 ↪→ Y7 → Σg , (3.14)

where the fibers Y5 are toric, i.e. they have a U(1)3 isometry group generated by ∂ϕi ,

i = 1, 2, 3, with ϕi having period 2π. Furthermore, we assume that the R-symmetry ξ is

tangent to Y5 such that we can write

ξ =
3∑
i=1

bi∂ϕi . (3.15)

Note that ξ again defines a foliation Fξ on Y5 and we use the same notation for ηR and

its restriction to a fiber. We denote the transverse Kähler form for Fξ by ω. Since C(Y7)

is complex, the cone C(Y5) is also complex with fixed complex structure. Moment map

coordinates can be defined by

yi ≡
1

2
r2∂ϕiy ηR , i = 1, 2, 3 , (3.16)

which are standard coordinates on R3. The image of the moment map is the convex poly-

hedral cone

C = {~y ∈ R3 | (~y,~va) ≥ 0 , a = 1, . . . , f} , (3.17)

where ~v ∈ Z3 are the inward pointing primitive normals to the facets, which we take to be

ordered in an anti-clockwise direction. Furthermore, f is the number of facets and (·, ·) is

the Euclidean inner product. We assume that the cone C(Y5) admits a global holomorphic

(3, 0)-form such that a basis exists in which we can write ~va = (1, ~wa), for ~wa ∈ Z2. In this

basis the holomorphic (3, 0)-form has unit charge under ∂ϕ1 and is uncharged under ∂ϕ2

and ∂ϕ3 , therefore, b1 = 2. The Kähler class of the transverse metric of Y5 [ω] ∈ H2
B(Fξ)

is specified by parameters λa, a = 1, . . . , f of which only f − 2 are independent [53]. The

Kähler class of the Riemann surface is determined by a parameter A. The fibration is

specified by the first Chern numbers ~n = (n1, n2, n3) ∈ Z3 that are associated to the three

U(1) bundles over the Riemann surface. Using the transition functions of these bundles

the manifold Y5 is then fibered over Σg. Requiring the existence of the global (4, 0)-form

Ψ on C(Y7) results in the condition

n1 = 2− 2g , (3.18)
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which is the geometric equivalent of the field theory twist with the fiducial R-symmetry.

Flux quantization (3.10), the master equation (3.11) and trial central charge (3.12) can all

be expressed using the so-called master volume

V(~b; {λa}) =
(2π)3

2

f∑
a=1

λa
λa−1(~va, ~va+1,~b)− λa(~va−1, ~va+1,~b) + λa+1(~va−1, ~va,~b)

(~va−1, ~va,~b)(~va, ~va+1,~b)
(3.19)

and its derivatives, where (~v, ~w, ~u) ≡ det(~v, ~w, ~u) denotes the determinant. The constraint

equation (3.11) is now equal to

A

f∑
a,b=1

∂2V
∂λa∂λb

− 2πn1

f∑
a=1

∂V
∂λa

+ 2πb1

f∑
a=1

3∑
i=1

ni
∂2V
∂λa∂bi

= 0 , (3.20)

and the flux quantization (3.10) becomes

2(2π`s)
4gs

L4
N = −

f∑
a=1

∂V
∂λa

, (3.21)

2(2π`s)
4gs

L4
Ma =

A

2π

f∑
b=1

∂2V
∂λa∂λb

+ b1

3∑
i=1

ni
∂2V
∂λa∂bi

. (3.22)

The flux N comes from taking the fiber Y5 as five-cycle and the fluxes Ma, a = 1, . . . , f

correspond to torus-invariant three-manifolds Sa ⊂ Y5 fibered over Σg. The latter satisfy

the three relations [17]
f∑
a=1

viaMa = −niN , i = 1, 2, 3 , (3.23)

in agreement with the number of independent five-cycles dimH5(Y5,R) = f − 3. The trial

central charge (3.12) is given in terms of V by

Z =
3L8

(2π)6g2
s`

8
s

(
−A

f∑
a=1

∂V
∂λa
− 2πb1

3∑
i=1

ni
∂V
∂bi

)
(3.24)

and depends after setting b1 = 2 on two parameters since we have imposed f relations on

f + 2 parameters. The value of Z at its extremal point is equal to csugra. The R-charges

Ra = R[Sa] of the baryonic operators dual to D3-branes wrapping the supersymmetric

three-manifolds Sa ⊂ Y7 on a fixed point of Σg are given by [16]

Ra = R[Sa] =
L4

(2π)3gs`4s

∫
Sa

e−wdvol(Sa) =
L4

(2π)3gs`4s

∫
Sa

ηR ∧ ω , (3.25)

where ω is the Kähler form of the transverse space. This may be rewritten in terms of the

master volume as

Ra = − L4

(2π`s)4gs

∂V
∂λa

. (3.26)
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Only f − 3 of these are independent because of the relations [17]

f∑
a=1

~vaRa = ~bN . (3.27)

Let us make a final remark that the central charges and R-charges can be expressed in field

theory data using the transformation

Ma = −ηgt[Xa]N , (3.28)

which was conjectured in [17]. In this relation, t[Xa] are the charges of the bosonic fields

(X1, X2, X3, X4) = (Z,U2, Y, U1) of the quiver gauge theory with respect to the background

gauge field (2.7). In the remainder of this section we use this transformation to compare

c-extremization results with their geometric dual and provide further evidence for this

identification of parameters.

3.3 Specifying to Y5 = La,b,c

We now take Y5 = La,b,c and compute the central charges and R-charges using the formalism

reviewed in the previous section. We show how these results agree with the results of c-

extremization on the field theory side. The Sasaki-Einstein metrics La,b,c were constructed

in [5] and the inward pointing normal vectors are given by

~v1 = (1,−al, c) , ~v2 = (1, 0, 0) , ~v3 = (1, 1, 0) , ~v4 = (1, ak, b) . (3.29)

For the computation we use the same steps and substitutions as in [17] for the Y p,q case;

in particular we separate the cases with genus g 6= 1 and the case g = 1. Using the normal

vectors (3.29) we have an explicit expression for the volume function (3.19) and thus for the

constraint equation (3.20), the fluxes (3.21) and (3.22), the off-shell central charge (3.24)

and the R-charges (3.26), where we impose b1 = 2 after taking the derivatives. In the

following we give explicit expressions for the central charge and R-charges for values of the

parameters in which they simplify sufficiently and compare the results to the field theory

computations shown in the previous sections. However, the interested reader can find the

most general solutions to this extremization problem in the supplementary material as a

Mathematica notebook, and can compare to the field theory results to their hearts’ content.

3.3.1 Geometric dual of c-extremization for Σg = T2

For the genus one case we define rescaled fluxes by

Ma ≡ maN , (3.30)

and compute the dictionary translating between geometric and field theory parameters

using (3.28):

B = −m1 + kn3

2b
, f1 =

n2

2
, f2 =

n3

2
. (3.31)

The latter relations will be useful once we wish to compare the results from this section to

the ones from section 2.2.1.

– 14 –



J
H
E
P
0
3
(
2
0
2
0
)
0
3
2

n2 = n3 = 0: baryonic flux only. We first solve the constraint equation (3.20), the

equation for N (3.21) and the equation for M1 in (3.22) in terms of A, b3 and λ4. After

solving the remaining equations in (3.22) for m2, m3 and m4 we find

m2 = −(a+ b− c)m1

b
, m3 =

am1

b
, m4 = −cm1

b
. (3.32)

As a check one can easily see that (3.23) is satisfied. The off-shell central charge (3.24) is

then given by

Z =
6c(a+ b− c)

[
2a+ b2(b− c)

][
− cb2 + a(−2 + b2 + 2ck)

]
m1N

2

a
[
a+ b− bck + c(−2 + ck)

]2 , (3.33)

which can be shown to match with the trial central charge even off-shell. Extremizing with

respect to b2 we find the central charge

cgeo
R =

6ac(a+ b− c)m1N
2

(a− c)(c− b)
. (3.34)

Using that for n2 = n3 = 0 (3.31) boils down to m1 = −2bB, f1 = f2 = 0, we find

perfect agreement with the field theory result (2.17). The R-symmetry vector is given by
~b = (2, b∗2, b

∗
3) where

b∗2 =
a
(
a− c2k + b(−1 + ck)

)
(a− c)(c− b)

,

b∗3 = − bc

a− c
, (3.35)

are the values of the R-symmetry vector components at the extremum of the trial central

charge. For the R-charges of baryonic operators one then finds that they can be written as

R1 =
abN

(a− c)(b− c)
+ bNγ , R2 =

(a+ b− c)cN
(a− c)(c− b)

− (a+ b− c)Nγ ,

R3 =
abN

(a− c)(b− c)
+ aNγ , R4 =

(a+ b− c)cN
(a− c)(c− b)

− cNγ , (3.36)

where γ is given by

γ =
c

(b−c)(c−a)
+
L4
[
b2(λ2−λ1) + b

(
2aλ2 + c(λ1−3λ2)

)
+ (a− c)

(
a(λ2−λ3)− 2cλ2

)]
2πgs`4sNabc(a+ b− c)

.

(3.37)

As in [17] we can interpret γ as parametrizing an undetermined transverse Kähler class

which is not fixed by c-extremization. Note that one has to set γ = 0 to identify the

result (3.36) with the field theory c-extremization result (2.18) upon identifying Ra =

R[Xa]N . Setting γ = 0 is also implied by taking the n2, n3 → 0 limit of the R-charges

in the next paragraph. See [17] for a more extensive discussion of the parameter γ in the

context of c-extremization for Y p,q.
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n2 and n3 not both zero. In this case the constraint equation (3.20) does not just

depend on b2 and b3 but also on λi. Therefore we can follow a slightly different procedure

than in the previous section and first solve for A, λ3 and λ4 using the constraint equa-

tion (3.20), the equation for N (3.21) and the equation for M1 in (3.22). Subsequently we

solve the remaining equations in (3.22) for m2, m3 and m4. This results in

m2 =
cm1 + b(n2 −m1) + n3 − a(m1 + kn3)

b
,

m3 =
am1 − bn2 + akn3

b
, (3.38)

m4 = −cm1 + n3

b
.

Following this, one can extremize the off-shell central charge with respect to b2 and b3.

The resulting central charge and R-charges are equal to the field theory result using the

transformation (3.31). For the sake of readability we only show the expressions for the

central charge and R-charges in a special case again, namely we take m1 = n2 = 0. The

R-symmetry vector is given by ~b = (2, b∗2, b
∗
3) with

b∗2 =
ak
(
a2k + c(2− ck) + b(−1 + ck) + a

[
− 3 + 2ck − c2k2 + bk(−1 + ck)

])
b(−1 + ck) + c(2− ck) + a2k2

[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] ,
b∗3 =

b
[
− a+ c(2− ck) + b(−1 + ck)

]
b(−1 + ck) + c(2− ck) + a2k2

[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] . (3.39)

The extremal value of the off-shell central charge is then given by

cgeo
R =

3ak(−1 + ak)
[
a+ b− bck + c(−2 + ck)

]
n3N

2

b(−1 + ck) + c(2− ck) + a2k2
[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] . (3.40)

Using the translation from geometric to field theory parameters (3.31) adapted to this

case, we find B = −k
b f2 with f2 = n3

2 and f1 = 0. This is precisely the class of twisted

compactifications studied in section 2.2.1 from the field theory perspective and again, we

find perfect agreement between the field theory and geometric c-extremization results as

expected [24]. Finally, the R-charges evaluated at the extremum are given by

R1 = − abk(−1 + ak)N

b(−1 + ck) + c(2− ck) + a2k2
[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] ,
R2 =

(−1 + ak)
[
a+ b− bck − ac2k2 + ack(1 + bk) + c(−2 + ck)

]
N

b(−1 + ck) + c(2− ck) + a2k2
[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] ,
R3 =

a2k(1 + bk − ck)(−1 + ck)N

b(−1 + ck) + c(2− ck) + a2k2
[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] ,
R4 =

a2ck2 + c(2− ck) + b(−1 + ck)− a(1 + ck)N

b(−1 + ck) + c(2− ck) + a2k2
[
c(2− ck) + b(−1 + ck)

]
+ a
[
− 1− 2ck + c2k2 + bk(1− ck)

] ,
(3.41)

which are once more found to be in agreement with the field theory computation upon

identifying Ra = R[Xa]N .
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3.3.2 Geometric dual of c-extremization for Σg 6=1

In this case we rescale the fluxes Ma and flavour flux parameters n2 and n3 according to

Ma ≡ ma(g − 1)N , n2 ≡ s2(g − 1) , n3 ≡ s3(g − 1) . (3.42)

We again solve for A, λ3,4 and m2,3,4 using (3.20)–(3.22). We find

m2 =
cm1 + b(2−m1 + s2) + s3 − a(m1 + ks3)

b
,

m3 =
a(m1 + ks3)− bs2

b
, (3.43)

m4 = −cm1 + s3

b
.

With the expressions for A, λ3,4, m2,3,4, the off-shell central charge (3.24) becomes a func-

tion of g, N, m1, s2,3, b1,2. The dependence on λ1 and λ2 drops out, since only two of the

λi are independent. We then extremize the trial central charge with respect to b2 and b3
giving expressions for the central charge (3.24) and R-charges (3.26) for the most general

flux configuration. Using the charge assignments in table 1 and (3.28) we can solve for B

and f1,2 in terms of m1 and s2,3. We obtain the equalities

B = κ
m1 + ks3 + bk

2b
, f1 = −κs2 + ak

2
, f2 = −κb+ s3

2
(3.44)

for the dictionary between geometric and field theory data for the case g 6= 1. Substituting

these relations into the central charge and R-charges of the field theory, we find that the

results of c-extremization and its geometric dual agree.

s2 = s3 = 0. We now focus on the case where the parameters s2,3 are both taken to be

zero. The R-symmetry vector ~b = (2, b∗2, b
∗
3), is

b∗2 =
a
[
a− c2k + b(−1 + ck)

]
m2

1

b2(m1 − 1)− b(a− c)(m1 − 1)m1 + (a− c)cm2
1

,

b∗3 =
b(b− c)cm2

1

b2(m1 − 1)− b(a− c)(m1 − 1)m1 + (a− c)cm2
1

. (3.45)

The central charge is given by

cgeo
R =

6ac(g − 1)m2
1

[
b(m1 − 1) + (a− c)m1

]
N2

b2(m1 − 1)− b(a− c)(m1 − 1)m1 + (a− c)cm2
1

, (3.46)

and the R-charges are found to be

R1 =
bm1(b− am1)N

b2(m1 − 1)− b(a− c)(m1 − 1)m1 + (a− c)cm2
1

,

R2 =

[
b2(m1 − 2) + b

(
a+ c(m1 − 1)

)
m1 + (a− c)cm2

1

]
N

b2(m1 − 1)− b(a− c)(m1 − 1)m1 + (a− c)cm2
1

,

R3 =
−ab(m1 − 1)m1N

b2(m1 − 1)− b(a− c)(m1 − 1)m1 + (a− c)cm2
1

, (3.47)

R4 =
−cm1

[
b(1−m1) + (c− a)m1

]
N

b2(m1 − 1)− b(a− c)(m1 − 1)m1 + (a− c)cm2
1

.
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From (3.44) we see that on the field theory side this corresponds to both non-vanishing

baryonic flux B = κm1+bk
2b and flavour fluxes f1 = −κ

2ak, f2 = −κ
2 b. Plugging these

relations into the expressions for the central charge (3.46) and R-charges (3.47) we recover

the field theory results (2.21) and (2.22) as expected [24].

4 Explicit supergravity solutions

Having computed central charges and R-charges using c-extremization and its geometric

dual, in this section we will turn our attention to computing these charges with explicit

supergravity solutions. In section 3.1 we saw that these solutions are characterized by

solutions to the master equation (3.4). Our goal here is to find solutions that can be

extended to be globally regular and whose central charges and R-charges can be matched to

the results of the previous sections. In this endeavor we utilize an ansatz of cohomogeneity

two which depends on four unknown functions. We argue that for our purposes we can

constrain the specific form of two of the four functions without loss of generality and then

solve the master equation (3.4) for the remaining two functions. Regularity of the solutions

imposes additional conditions on these functions and as usual we impose flux quantization

for the solutions to be well-defined string theory backgrounds. It transpires that it is

possible to perform the integrals for the expressions for the fluxes, central charge and R-

charges of these solutions without detailed knowledge of these two functions. This means

we are not constrained to perform the analysis independently for all the different cases,

but can obtain final expressions that simply require one to input the final solution. Finally

using the explicit expressions of these functions, we compute the charges of the dual field

theories and match them to expressions derived via c-extremization.

We begin by motivating the ansatz we use in section 4.1. In section 4.2 we then

turn to examining the regularity of these metrics which imposes additional constraints

on the solutions. Following this we impose flux quantization in section 4.3 and then in

section 4.4 we derive general expressions for the central charges and R-charges. We solve the

master equation (3.4) in section 4.5 and subsequently in section 4.6 we solve the regularity

conditions, compute the central charges and R-charges and match the expressions of the

previous sections.

4.1 Ansatz

We have seen in section 3.1 that the geometry is completely determined by the choice of

Kähler metric ds2(M6) satisfying (3.4). To proceed we must determine a suitable ansatz

for the Kähler metric. We wish to describe the La,b,c quiver theories compactified on a

Riemann surface and therefore we demand that Y7 is a fibration over a Riemann surface

Y5 ↪→ Y7 → Σg, with Y5 admitting a U(1)3 isometry. One of the U(1)’s in Y5 will be

identified with the R-symmetry vector, leaving two U(1)’s in the ansatz for the Kähler base

metric ds2(M6). For the Kähler metric we shall modify the orthotoric Kähler metric [33]

used in [32] to recover the La,b,c metrics [5] to include a general fibration over a Riemann
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surface. The ansatz we use is

ds2(M6) = H(η, ξ)ds2(Σg) +
η − ξ
F(ξ)

dξ2 +
F(ξ)

η − ξ

(
dφ+ ∂ξL(η, ξ)dψ + ∂ξH(η, ξ)Ag

)2

+
η − ξ
G(η)

dη2 +
G(η)

η − ξ

(
dφ+ ∂ηL(η, ξ)dψ + ∂ηH(η, ξ)Ag

)2
. (4.1)

The metric ds2(Σg) is the metric on a genus g Riemann surface of constant curvature

normalized to be 0, ±1 depending on the genus.6 The one-form Ag is the potential for

the Kähler form of the Riemann surface and satisfies dAg = Jg. Explicit expressions are

given by

ds2(Σg) =
1

1− κx2
dx2 + (1− κx2)dy2 , Ag = xdy . (4.2)

In the remainder of this section we shall analyze the ansatz that we have chosen. First note

that the function H should be positive. When L = ηξ and H is constant, the metric (4.1)

is the direct product of the orthotoric metric and a Riemann surface. Lastly, observe that

the ansatz (4.1) admits some ‘gauge’ transformations which leaves the internal manifold in-

variant. One can perform an overall rescaling of the Kähler metric by a constant parameter

γ2 whilst concurrently implementing the coordinate transformations

(η, ξ, φ, ψ)→
(
αη + β, αξ + β,

φ

αγ2
, ψ

)
(4.3)

and redefining

F̂(ξ) =
F(αξ + β)

α3γ2
, Ĥ(η, ξ) = γ2H(αη + β, αξ + β) ,

Ĝ(η) =
G(αη + β)

α3γ2
, L̂(η, ξ) = γ2L(αη + β, αξ + β) , (4.4)

and preserve the form of the metric on the internal space. This symmetry will be used later

to simplify the function H such that the master equation (3.4) becomes more tractable.

By construction the metric (4.1) admits a closed two-form given by

J = HJg + dξ ∧
(
dφ+ ηdψ + ∂ξ(H)Ag

)
+ dη ∧

(
dφ+ ξdψ + ∂η(H)Ag

)
. (4.5)

However, it is not in general complex for arbitrary H and L. We impose that the metric

is complex in appendix A which is equivalent to a set of second order non-linear partial

differential equations given by (A.2). We are unable to solve these conditions in general

but if we additionally require that the universal twist solution7 can be obtained from our

ansatz, i.e. by fixing L, we find that the most general solution is given by

H(η, ξ) = α0 + α1(η + ξ) + α2ηξ , L(η, ξ) = ηξ , (4.6)

6For a Riemann surface with our normalization, the Ricci-form satisfies ρg = RJg = κJg where the last

equality follows from our choice of normalization of the metric. For g 6= 1 the Riemann-Roch theorem

implies that the volume of the Riemann surface satisfies vol(Σg) = 4π|g − 1|.
7This is the standard topological twist solution when wrapping on Σg>1 and is obtained by taking a

direct product of the orthotoric metric and the Riemann surface.
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with F and G still undetermined. For the time being we shall refrain from using the explicit

solution for H in order to keep expressions as compact as possible.

Using the expression for L the Ricci scalar of the metric is easily computed to be

R =
2κ(ξ−η) +H

(
F ′′(ξ)+ G′′(η)

)
+2
(
F ′(ξ)∂ξH+ G′(η)∂ηH

)
+ 3
(
F(ξ)∂2

ξH+ G(η)∂2
ηH
)

(ξ − η)H
(4.7)

whilst the Ricci-form connection is

P =Pg −
∂ξ(FH)

2(η − ξ)H
(
dφ+ ηdψ + ∂ξ(H)Ag

)
− ∂η(GH)

2(η − ξ)H
(
dφ+ ξdψ + ∂η(H)Ag

)
.

(4.8)

Here Pg is the Ricci-form connection on the Riemann surface. The full ten-dimensional

solution follows from using (3.1)–(3.3) and the explicit values of F and G given later.

4.2 Regularity analysis

Before proceeding with determining the explicit solutions we shall present a preliminary

analysis of the global regularity of the full seven-dimensional metric. By (3.3) we are

allowed to restrict to the seven-dimensional solution instead of the full ten-dimensional one

if we also require that the Ricci scalar is strictly positive. As the remaining space is a

fibration of the form Y5 ↪→ Y7 → Σg we may first check the global regularity of Y5 before

checking the fibration over Σg. The metric on Y5 is given by

ds2(Y5) =
1

4

(
dz − 1

2(η − ξ)

[(
F ′(ξ) +

F∂ξH
H

)
(dφ+ ηdψ)

+

(
G′(η) +

G(η)∂ηH
H

)
(dφ+ ξdψ)

])2

+
R

8

[
η − ξ
F(ξ)

dξ2 +
F(ξ)

η − ξ
(
dφ+ ηdψ

)2
+
η − ξ
G(η)

dη2 +
G(η)

η − ξ
(
dφ+ ξdψ

)2]
. (4.9)

To make the metric compact we must determine suitable ranges for the η and ξ coordinates,

which are fixed by finding two roots of the functions G and F respectively. Moreover we

require that η − ξ is non-vanishing everywhere.8 Without loss of generality we may take

η > ξ everywhere and consequently we require that both F and G are positive in their

respective domains, i.e. they admit a local maximum between the two roots. The other

case is simply a relabeling η ↔ ξ and G ↔ −F . Moreover since we must impose that the

function H is strictly positive we take without loss of generality that 0 < ξ < η, the other

choice can be recovered by the coordinate transformation (η, ξ) → (−η,−ξ). We denote

the roots by ξ± and η± for F and G respectively with the subscript denoting the larger

(smaller) of the two roots.

8It may be possible to obtain a regular solution if the two ranges overlap at an endpoint. This however,

will lead to a manifold with different topology to those where this is not the case. We shall therefore ignore

this possibility and take η 6= ξ everywhere.

– 20 –



J
H
E
P
0
3
(
2
0
2
0
)
0
3
2

Consider now the metric at one of the roots. At each root the metric has a two-

dimensional surface which degenerates. In the language of toric geometry this is equivalent

to one of the U(1)’s shrinking on the facet of the polytope. This U(1) corresponds to a

specific Killing vector. Like in the classic example of a round S2, requiring that the surface

degenerates smoothly and locally looks like flat space imposes constraints on the period of

the aforementioned Killing vector. The by now well established method for performing the

regularity analysis, is to normalize the surface gravity

κ2
grav =

∂µ|V |2∂µ|V |2

4|V |2
, (4.10)

of the degenerating Killing vector V to be unity on the degeneration surface, see [5].

The metric on Y5 has a U(1)3 isometry group. The three commuting Killing vectors are

∂z, ∂ψ, ∂φ and linear combinations of these three Killing vectors degenerate at the four

degeneration surfaces. The four such Killing vectors located at the roots η± and ξ± are

kη± = ∂z −
2

G′±
(∂ψ − η±∂φ) ,

lξ± = ∂z +
2

F ′±
(∂ψ − ξ±∂φ) , (4.11)

and correspond to translation generators with period 2π. Here and in the following we

denote the evaluation of the functions F , G at their respective roots with a ± subscript,

e.g. F ′± ≡ F ′(ξ±). Clearly as we have four Killing vectors in a three-dimensional vector

space there is a linear relation between them

ckη− + dkη+ − alξ− − blξ+ = 0 , (4.12)

for relatively prime integers a, b, c, d. To avoid conical singularities on the intersection of

two degeneration surfaces we must demand that a, b are each coprime to each of c, d. The

linear relation implies the three conditions

a+ b− c− d = 0 ,

a

F ′−
+

b

F ′+
+

c

G′−
+

d

G′+
= 0 , (4.13)

aξ−
F ′−

+
bξ+

F ′+
+
cη−
G′−

+
dη+

G′+
= 0 .

The Killing vectors ∂z, ∂ψ, ∂φ do not generate an effective torus action. Such a basis, ∂ψi
with 2π period, is given by 

kη+
kη−
lξ+
lξ−

 =


1 0 0

1 ak b

1 −al c
1 1 0


∂ψ1

∂ψ2

∂ψ3

 . (4.14)

Here, by using Bézout’s identity, we have introduced the integers k, l satisfying

bl + ck = 1 . (4.15)
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The manifolds Y5 are characterized by the three integers a, b, c. The toric data of the

family of manifolds Y5 studied in this section, which can be read off from (4.14), coincides

with the toric data of the La,b,c Sasaki-Einstein metrics. Therefore we will, with slight

abuse of notation, also refer in the following to the manifolds fibered over the Riemann

surfaces as Y5 = La,b,c. Of course, at the moment we have not been able to impose any

inequalities on the integers a, b, c, d let alone state that they are positive, this can only be

imposed with an explicit solution.

4.3 Flux quantization

In order for the class of supersymmetric solutions of type IIB supergravity to lead to

well-defined string theory backgrounds we need to impose flux quantization. The only

non-vanishing flux in the class of solutions we consider is the self-dual five-form flux (3.2).

Therefore we need to impose flux quantization over all five-cycles in the compact geometry

Y7. There are two classes of five-cycles to consider. The first is given by the fiber Y5

for a fixed point on the Riemann surface. Since we consider string theory setups with

D3-branes wrapped over a Riemann surface Σg and probing a Calabi-Yau singularity, we

can identify the number of flux quanta through Y5 with the total number of D3-branes

N . The second class consists of five-cycles Σa that are given by three-cycles Sa ⊂ Y5

fibered over the Riemann surface. In going to one of the degeneration surfaces considered

above one necessarily finds the three-cycle Sa. In order to impose flux quantization on

the supergravity background we need to compute integrals of the five-form over these five-

cycles. Once all supersymmetry conditions, regularity conditions and equations of motion

are solved, this is of course a straightforward task. However, as stated before, we keep

the discussion here as general as possible and will not assume any particular form of the

functions F(ξ), G(η) and H(η, ξ) solving the master equation (3.4). Remarkably, all the

integrals can be performed without detailed knowledge of these functions. To perform

the integrals we will only assume that the functions are solutions to the constraints (A.2)

and L = ηξ.

Integration over Y5. We start by integrating the five-form field strength over the five-

cycle Y5. The flux (3.5) can be easily inferred from the general expression (3.2) for super-

symmetric solutions. Defining

N =
1

(2π`s)4gs

∫
Y5

F5 (4.16)

one then finds

N =
L4

(2π`s)4gs

∫
Y5

d(z, η, ξ, φ, ψ)
1

8H2

[
H2
(
F ′′ + G′′

)
−F(∂ξH)2 − G(∂ηH)2 (4.17)

+H
(
F ′∂ξH+ F∂2

ξH+ G′∂ηH+ G∂2
ηH
)]
,

where we used the shorthand notation d(ω1, . . . , ωn) =
∧n
i=1 dωi. The integrand in (4.17)

can be rewritten as a total derivative

N =
L4

(2π`s)4gs

∫
Y5

d(z, η, ξ, φ, ψ)
1

8

[
∂ξ∂η

(
ηF ′ + ξG′

)
+ ∂ξ

(
F
∂ξH
H

)
+ ∂η

(
G ∂ηH
H

)]
,

(4.18)
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which we can now integrate explicitly. The last last two terms in (4.18) vanish upon

performing the η and ξ integration respectively, since F(ξ±) = G(η±) = 0. For the first

term in (4.18) the η, ξ integrations are now trivial. To perform the angular integration we

use three coordinates generating an effective action for the three-torus. These follow from

the relation (4.14) which implies the coordinate transformation

z = ψ1 ,

ψ = − 2

G′+
ψ1 + 2

(
1

F ′−
+

1

G′+

)
ψ2 + 2

(
k

F ′+
− l

G′−
+
l + k

G′+

)
ψ3 , (4.19)

φ =
2η+

G′+
ψ1 − 2

(
ξ−
F ′−

+
η+

G′+

)
ψ2 − 2

(
kξ+

F ′+
− lη−
G′−

+
(l + k)η+

G′+

)
ψ3 ,

with ψi all having period 2π. The angular part is then equal to∫
d(z, φ, ψ) = AJ

∫
d(ψ1, ψ2, ψ3) = (2π)3AJ , (4.20)

where, using the regularity conditions (4.13) and the relation (4.15) for l, we can write

AJ =
4

(a+ b− c)c(η+ − η−)(F ′−F ′+)2

(
b(η− − ξ+)(ξ+ − η+)(F ′−)2

+
[
− a(η+ − ξ−)(η− − ξ+) + b(η− − ξ−)(η+ − ξ+)− c(η− − η+)(ξ− − ξ+)

]
F ′−F ′+

− a(η− − ξ−)(ξ− − η+)(F ′+)2
)
. (4.21)

Combining the angular part with the part coming from the integration over ξ and η re-

sults in

N =
L4

16πgs`4s
AJ
(
(η− − η+)(F ′− −F ′+) + (ξ− − ξ+)(G− − G+)

)
. (4.22)

Note that (4.22) is independent of the function H and is therefore independent of the

flavour twisting.

Integration over Σa. We now turn to the five-cycles Σa which are fibrations of three-

cycles Sa ⊂ Y5 over the Riemann surface. These three-cycles are the degeneration surfaces

of the Killing vectors (4.11) and we denote them by (Sξ+ , Sη+ , Sξ− , Sη−) = (S1, S2, S3, S4).

Thus we have four additional five-cycles Σa ∈ H5(Y7,Z). However, as can be seen

from (3.23), these five-cycles are in fact not independent. Due to these relations there

is only one independent flux quantum number in this class. Nevertheless, we proceed in

the following by performing the integrals of the five-form field strength over all five-cycles

Σξ± and Ση± .

We first perform the integral over Ση+ , for which we have to integrate over ξ, the

Riemann surface and two angular coordinates. From (4.14) we see that the coordinate ψ1

in (4.19) corresponds to the degenerating Killing vector kη+ . Therefore, ψ2 and ψ3 will

give an effective action of the two-torus that is obtained by contracting the one-cycle of

the degenerating Killing vector of the toric T3. It turns out that the integral of the field
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strength can be written as

Mη+ =
L4

(2π`s)4gs

G′+AJ
16

∫
Ση+

Jg ∧ d(ξ, ψ2, ψ3)

[
∂ξ
(
2κξ
)
− ∂ξ

(
H(η+, ξ)

F ′ + G′+
η+ − ξ

)
(4.23)

− ∂ξ
(
∂ξH(η+, ξ)

F
η+ − ξ

)
−

2F∂2
ξH(η+, ξ)− G′+

[
∂ξH(η+, ξ)− ∂ηH(η+, ξ)

]
η+ − ξ

]
.

The last piece in (4.23) seems to spoil the possibility to integrate this equation completely,

as it is not manifestly written as a total derivative. We can now utilize the first equation

in (A.2) and evaluate it at η = η+ from which we find that ∂2
ξH(η+, ξ) = 0. The third

equation of (A.2) evaluated at η = η+ allows us to trade the difference of the ξ and η

derivatives with a total derivative ∂ξ∂ηH(η+, ξ). We have therefore shown that, indepen-

dent of the details of the functions in the metric ansatz, we can write the integrand once

again as a total derivative and we can integrate it explicitly. We obtain

Mη+ = M2 =
L4

(2π)2gs `4s

G′+AJ
16

vol(Σg)

(
2κ(ξ+ − ξ−) +

(F ′− + G′+)H(η+, ξ−)

η+ − ξ−
(4.24)

−
(F ′+ + G′+)H(η+, ξ+)

η+ − ξ+
+ G′+

(
∂ηH(η+, ξ+)− ∂ηH(η+, ξ−)

))
.

Similarly we can integrate the five-form over the remaining three five-cycles Ση− and Σξ± .

Instead of giving the full details about the integration we only give the final results for

the remaining fluxes. Note that for each integration one has to find a coordinate system

as in (4.19) to perform the integration, such that ∂ψ1 is equal to the Killing vector that

degenerates at the relevant degeneration surface. In appendix B we provide the coordinate

systems that we use for the different degeneration surfaces. The value of the flux Mη−

threading through the five-cycle defined by the degeneration surface η = η− is given by

Mη− = M4 = − L4

(2π)2gs `4s

G′−AJ
16

vol(Σg)

(
2κ(ξ+ − ξ−) +

(F ′− + G′−)H(η−, ξ−)

η− − ξ−
(4.25)

−
(F ′+ + G′−)H(η−, ξ+)

η− − ξ+
+ G′−

(
∂ηH(η−, ξ+)− ∂ηH(η−, ξ−)

))
.

The fluxes associated with the ξ+ and ξ− degeneration surfaces are given by

Mξ+ = M1 =
L4

(2π)2gs `4s

F ′+AJ
16

vol(Σg)

(
2κ(η+ − η−) +

(F ′+ + G′−)H(η−, ξ+)

η− − ξ+
(4.26)

−
(F ′+ + G′+)H(η+, ξ+)

η+ − ξ+
+ F ′+(∂ξH(η−, ξ+)− ∂ξH(η+, ξ+)

))
and

Mξ− = M3 = − L4

(2π)2gs `4s

F ′−AJ
16

vol(Σg)

(
2κ(η+ − η−) +

(F ′− + G′−)H(η−, ξ−)

η− − ξ−
(4.27)

−
(F ′− + G′+)H(η+, ξ−)

η+ − ξ−
+ F ′−

(
∂ξH(η−, ξ−)− ∂ξH(η+, ξ−)

))
respectively.
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4.4 General formula for central charge and R-charges

We now continue the general discussion of the AdS3 solutions of interest with the computa-

tion of the central charge and R-charges of the dual 2d SCFT. To leading order in the large

N limit the central charge can be computed by evaluating (3.12) for the solution. Again

we assume no additional form of the functions in the metric ansatz. Using the explicit

expression (4.5) for J , and the expression (4.8) for P to compute ηR and ρ, one obtains

the central charge

csugra =
3L8

64π6g2
s`

8
s

1

4

∫
Y7

d(z, η, ξ, φ, ψ) ∧ Jg
(
H(η, ξ)

(
F ′′(ξ) + G′′(η)

)
+ 2F ′(ξ)∂ξH(η, ξ)

+2κ(ξ − η) + 3F(ξ)∂2
ξH(η, ξ) + 2G′(η)∂ηH(η, ξ) + 3G(η)∂2

ηH(η, ξ)
)
.

(4.28)

Remarkably, it is again possible to rewrite (4.28) as a total derivative,

csugra =
3L8

64π6g2
s`

8
s

1

4

∫
Y7

d(z, η, ξ, φ, ψ) ∧ Jg ∂η∂ξ
[

1

2

(
ηF ′(ξ) (2H(η, ξ)− η∂ηH(η, ξ))

+ ηF(ξ) (2∂ξH(η, ξ)− η∂η∂ξH(η, ξ)) + ξG′(η) (2H(η, ξ)− ξ∂ξH(η, ξ)) (4.29)

+ ξG(η) (2∂ηH(η, ξ)− ξ∂η∂ξH(η, ξ))
)

+ κ
(
ηξ2 − η2ξ

) ]
,

up to terms which vanish upon evaluation on the boundaries of the (η, ξ)-integration.

Integrating the latter equation is now straightforward and leads to the lengthy but fully

general expression for the central charge

csugra =
3L8

(2π)3g2
s`

8
s

AJ
8

vol(Σg)
(

2
(
η−F ′− + ξ−G′−

)
H (η−, ξ−)− 2

(
η−F ′+ + ξ+G′−

)
H (η−, ξ+)

− 2
(
η+F ′− + ξ−G′+

)
H (η+, ξ−) + 2

(
η+F ′+ + ξ+G′+

)
H (η+, ξ+)

− η2
−F ′−∂ηH (η−, ξ−) + η2

−F ′+∂ηH (η−, ξ+) + η2
+F ′−∂ηH (η+, ξ−)

− η2
+F ′+∂ηH (η+, ξ+)− ξ2

−G′−∂ξH (η−, ξ−) + ξ2
+G′−∂ξH (η−, ξ+)

+ ξ2
−G′+∂ξH (η+, ξ−)− ξ2

+G′+∂ξH (η+, ξ+)

− 2κ (η− − η+) (ξ− − ξ+) (η− + η+ − ξ− − ξ+)
)
. (4.30)

The central charge of the dual 2d SCFT is thus expressed in terms of the functions F , G,
H and their derivatives evaluated at the roots. Let us now compute the R-charges of the

baryonic operators which are given by the integrals (3.25) evaluated on the three-cycles Sξ±
and Sη± . For these integrals we again use the coordinate system relevant for the particular

degeneration surface and that the Kähler form of the transverse space may be written as

ω = dξ ∧
(
dφ+ ηdψ

)
+ dη ∧

(
dφ+ ξdψ

)
. (4.31)
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As opposed to the flux integrals and the central charge, where rewriting the integrands

as total derivatives was non-trivial, the integrals for the R-charges are considerably easier

to perform. For all four three-cycles Sa the corresponding integrands are simply constant.

The R-charges are given by:

Rη+ = R2 = − 1

F ′+G′−
L4

2πags`4s
(ξ+ − ξ−)

[
(η+ − η−)F ′+ + (η+ − ξ+)G′− + (ξ+ − η−)G′+

]
,

Rη− = R4 =
1

F ′+G′+
L4

2πags`4s
(ξ+ − ξ−)

[
(η+ − η−)F ′+ + (η+ − ξ+)G′− + (ξ+ − η−)G′+

]
,

Rξ+ = R1 = − 1

G′−G′+
L4

2πags`4s
(η+ − η−)

[
(η+ − η−)F ′+ + (η+ − ξ+)G′− + (ξ+ − η−)G′+

]
,

Rξ− = R3 =
F ′−

F ′+G′−G′+
L4

2πags`4s
(η+ − η−)

[
(η+ − η−)F ′+ + (η+ − ξ+)G′− + (ξ+ − η−)G′+

]
.

(4.32)

For writing the R-charges in this form we used the regularity conditions (4.13). If we

solve (4.22) for the string coupling it is not hard to show that the first component of the

sum (3.27) is indeed satisfied.9 From the remaining two components of (3.27) we can

determine the (off-shell) R-symmetry vector ~b.

4.5 Solving the master equation

In this section we solve the master equation (3.4) in order to determine explicit AdS3

solutions. We will use ansätze for the functions L, H, F and G. As previously stated we

take L = ηξ in order to recover the universal twist solution [36] and this fixes H to be

H = α0 + α1(η + ξ) + α2ηξ . (4.33)

However, some of the parameters are redundant and can be removed by using the symme-

tries (4.3) of the metric (4.1). In writing the simplest form of H we have to distinguish

between different cases. Firstly, when α2 6= 0 we use the symmetry (4.3) to set α1 = 0 and

α2 = 1 by taking

α =
1√
|α2|

, β = −α1

α2
, γ = 1 . (4.34)

Therefore, we can take

H = α0 + ηξ . (4.35)

When α2 = 0 and α1 6= 0 we can use similar transformations to write H in the form

H = η + ξ . (4.36)

The last case is when α1 = α2 = 0, for which we have

H = α0 . (4.37)

9Recall that b1 = 2 is fixed.
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Note that the metric (4.1) in this last case reduces to a direct product of the Riemann

surface and the orthotoric metric ds2(M4),

ds2 = ds2(Σg) + ds2(M4) , (4.38)

which corresponds to the case of no twisting with the flavour symmetries. Since this case

has been considered in the literature for T2 in [16] and Σg>1 in [36] (the S2 case does not

exist), we will not consider it further in this paper.

For the functions F and G we take the ansätze

F(ξ) =
5∑

i=−5

f̃iξ
i , G(η) =

5∑
i=−5

g̃iη
i . (4.39)

Using the expression for H above, we solve the master equation to determine the coefficients

f̃i, g̃i and the remaining coefficients in H. The case (4.36) with α2 = 0 turns out to never

give a sensible globally defined compact solution and therefore we restrict ourselves solely

to the case α2 6= 0 for which H is given by (4.35). To solve the master equation we use the

expression (4.2) for Ag and the metric ds2(Σg) to treat all Riemann surfaces universally.

Solving the master equation with H given by (4.35) and our polynomial ansätze for F and

G implies α0 = 0 and after a suitable redefinition of parameters the functions F and G are

given by

F(ξ) =
−A(ξ + C)2 + κξ2 +Dξ3

ξ
, G(η) =

−B(η + C)2 − κη2 −Dη3

η
, (4.40)

where κ = 1, 0, −1 for Σg = S2, T2, Σg>1 respectively. The functions F , G and H are thus

determined by four parameters A, B, C and D.10 Recall that we have not used up all of

the gauge symmetry and we may use the remainder to set D = ±1. These functions need

to satisfy the regularity conditions (4.13) which allows us to solve for two of the remaining

three parameters in terms of the other one and a, b and c. The final solution thus depends on

four parameters. Consider now the central charge (4.30). The coefficient L8/(g2
s`

8
s) can be

expressed in terms of N2 using (4.22). The central charge, and also the R-charges (4.32),

then depend on five parameters instead of the seven parameters a, b, c, m1, N, n2 and

n3 that we find on the c-extremization side. Ergo, we have not found the most general

class of solutions. We have motivated that the ansatz for H is the most general that we

could take, which implies that the ansätze for F and G should be modified to account

for the extra parameters. Note that the functions (4.40) have three roots which need to

be real. Their domains, given by [ξ−, ξ+] and [η−, η+] respectively, should be such that

0 < ξ− < ξ+ < η− < η+, as assumed without loss of generality in the regularity analysis.

Lastly, the functions should be positive on their respective domains given the above choice.

These conditions translate into restrictions on A, B, and C, which we examine in more

detail in the next subsection.

10Note that here the coefficients A and B do not correspond to the variables in the previous sections

where they correspond to respectively the Kähler class of the Riemann surface and the baryonic flux.
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4.6 Solving the regularity equations and matching to the field theory

So far we have derived the local form of solutions satisfying (3.4), in this section we ex-

tend these local solutions to globally well-defined ones by imposing the regularity condi-

tions (4.13). With the global solutions in hand we can compute the central charges and

R-charges of the solutions and compare to the field theory results, finding perfect agree-

ment. We perform this matching numerically for a large set of solutions, a few of which

we present for exposition.

To solve the regularity conditions we use that the functions F and G (4.40) can be

rewritten in terms of their roots as

F(ξ) =
D(ξ − ξ−)(ξ − ξ+)(ξ − ξ∗)

ξ
, G(η) = −D(η − η−)(η − η+)(η − η∗)

η
. (4.41)

Here we have denoted the third root of F(ξ) and G(η) by ξ∗ and η∗ respectively. The

derivatives of the functions evaluated at ξ±, η± are given by

F ′− =
D(ξ− − ξ+)(ξ− − ξ∗)

ξ−
, G′− = −D(η− − η+)(η− − η∗)

η−
,

F ′+ =
D(ξ+ − ξ−)(ξ+ − ξ∗)

ξ+
, G′+ = −D(η+ − η−)(η+ − η∗)

η+
. (4.42)

With these expressions the fluxes (4.24)–(4.27), central charge (4.30) and R-charges (4.32)

can be expressed in terms of the six roots and D.11 However, these parameters are not

independent. Equating (4.40) and (4.41) results in the conditions

ξ−ξ+ξ∗ =
AC2

D
, ξ−ξ+ + ξ−ξ∗ + ξ+ξ∗ = −2AC

D
, ξ− + ξ+ + ξ∗ =

A− κ
D

,

η−η+η∗ = −BC
2

D
, η−η+ + η−η∗ + η+η∗ =

2BC

D
, η− + η+ + η∗ = −B + κ

D
.

(4.43)

Furthermore, the substitution of (4.42) into the regularity conditions (4.13) results in two

further conditions

aξ−(ξ+ − ξ∗)(ξ− − η−)(η∗ − η+)

= (ξ− − ξ∗)
[
bξ+(ξ+ − η−)(η∗ − η+)− dη+(ξ− − ξ+)(ξ+ − ξ∗)

]
,

aξ−(ξ+ − ξ∗)(ξ− − η+)(η∗ − η−)

= (ξ− − ξ∗)
[
bξ+(ξ+ − η+)(η∗ − η−)− cη−(ξ− − ξ+)(ξ+ − ξ∗)

]
. (4.44)

We thus have eight equations for ten parameters which we will solve for A, B and the

roots. We first study κ = 0 since it is the easiest case before turning our attention to the

κ 6= 0 cases.

4.6.1 Torus fibrations

There are two choices that one can make, i.e. one can take D = ±1. It transpires that

the D = −1 solution is incompatible with our choice of 0 < ξ < η and therefore we take

11Recall, this may be normalized to ±1.
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ξ- ξ+ η- η+

ℱ(ξ)

(η)

1 2 3 4 5

-2

-1

0

1

Figure 1. Plot of F(ξ) and G(η) for a = −1, b = 19, c = 16, C = −1 and D = 1. The domain of

F is given by [ξ−, ξ+] and the domain of G by [η−, η+], this is drawn using the solid line. Outside

of their domains F is given by the dashed blue line and G by the dotted orange line.

D = 1 throughout this section. Since D = 1 we have that the auxiliary root ξ∗ satisfies

ξ∗ > ξ+ > ξ− > 0 and therefore (4.43) implies firstly that A > 0 and secondly that C < 0.

Moreover the positivity of the discriminant of ξF(ξ) and ηG(η) implies

A > −27

4
C > 0 , B <

27

4
C < 0 . (4.45)

It then follows from (4.43) that η∗ > 0. To aid the reader we have plotted a representative

example of the functions F and G and their roots in figure 1.

It is convenient to perform the following redefinition of the auxiliary roots:

η∗ = −C
4

(v2 + 3) , ξ∗ = −3C

4

(
3

u2
+ 1

)
. (4.46)

After this change of coordinates one can solve (4.43) and find that the physical roots are

located at

ξ± = −3C(3 + u2)

(u∓ 3)2
, η± = −C(3 + v2)

(v ∓ 1)2
, (4.47)

whilst the constants A and B take the form

A = −27C(3 + u2)3

4u2(u2 − 9)2
, B =

C(3 + v2)3

4(v2 − 1)2
. (4.48)

The domains of u and v are fixed by imposing 0 < ξ− < ξ+ < η− < η+ and ξ+ < ξ∗, giving

0 < v < 1 , 0 < u <
3(1− v)

v + 3
. (4.49)

The only constraint on the constant C is that it must be strictly negative, i.e. C < 0. One

can also see that these conditions are consistent with the Ricci scalar being strictly positive

definite in the domain as is required by supersymmetry.
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One should now solve the regularity conditions to obtain expressions for u and v in

terms of the integers a, b, c. Expressed in terms of u and v, the conditions are given by

a = −b(1 + u)((u+ 3)2v2 − 9(1− u)2)

(1− u)((u− 3)2v2 − 9(1 + u)2)
, c = b

u(3 + v)(u(v − 3) + 3(1 + v))

3(1− u)(3(1− v) + u(3 + v))
, (4.50)

where we have also solved them for the integers a and c. The solution of these equations

that expresses u and v as function of a, b and c is a bit unwieldy. The variable u is a root

of the quintic

Z[X] =− bc(b− c)(X − 1)
(
3 + 4X +X2

)2
+ a2(1−X)2

(
8bX2 + c(3−X)2(1 +X)

)
+ a(1 +X)

[
8b2X2(1 +X)− c2(3− 4X +X2)2 − 2bc

(
− 9 + 9X − 7X2 + 7X3

)]
.

(4.51)

Given such a root fixes v to be

v = − 1

12ab(a+ b)(a+ b− 2c)

[
12ab(a+ b)2 + 3c(a+ b− c)(13a2 − 54ab+ 13b2)

+ (a2 − b2)(16ab−25(a+ b)c+ 25c2)u+ (5a2−22ab+ 5b2)(8ab− 7(a+ b)c+ 7c2)u2

− (a2 − b2)(32ab− 25(a+ b)c+ 25c2)u3 − 4(a− b)2(a+ b− c)cu4
]
. (4.52)

One has to take the root u such that u, v are in the domain (4.49).

The expressions (4.50) can be used to determine the possible ranges of a, b, c and d

compatible with globally well-defined solutions. Using the domain (4.49) of u and v we

find that regular solutions always have

a < 0 < d ≤ c ≤ b , gcd(a, c) = gcd(a, d) = gcd(b, c) = gcd(b, d) = 1 , (4.53)

where we have taken b > 0 without loss of generality. In particular we see that a < 0

whilst the other three integers are positive. Note that from the naive comparison with the

Sasaki-Einstein La,b,c metric one would have taken a > 0 and not a < 0. This phenomenon

has been noted in the literature previously for the Baryonic twist solutions of La,b,c on the

torus [16], here we have proven that it also extends to the twist solutions presented here.

We now turn to matching these solutions to the field theory side. We have done

this numerically for explicit triples a, b, c satisfying (4.53).12 More concretely we have

matched the central charge csugra and R-charges computed using the supergravity solution,

i.e. by evaluating (4.30) and (4.32), to the central charge cgeo
R and R-charges that were

obtained from geometric c-extremization (see section 3.3.1). We have taken triples a, b,

c with −150 < a < 0, b < 150 and satisfying the conditions (4.53). This resulted in

48289 possible triples to analyze. In order to compare the two central charges we have to

continue the domain of the result on the c-extremization side to allow for negative values

of a. Furthermore, to compute cgeo
R and the R-charges on the c-extremization side one

12We have excluded values where c = d since this is in fact the Y p,q limit and we make further comments

about this in appendix C. In particular we show how to take this limit for the local solution.
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needs the values of m1, n2 and n3. These can be calculated from the solution via the

fluxes (4.24)–(4.27) and the relations (3.23), (3.30), i.e.

m1 =
1

N
Mξ+ , n2 = − 1

N
(Mξ− + akMη− − alMξ+) , n3 = − 1

N
(bMη− + cMξ+) .

(4.54)

The factor L4/(gs`
4
s) appearing in the fluxes is expressed in terms of N via (4.22). We

found matching central charges and R-charges for all triples analyzed. For purposes of

illustration explicit values for m1, n2, n3, csugra = cgeo
R and the R-charges for 3 triples with

a < 0 can be found in table 2.

When a > 0 one can still solve the regularity conditions (4.50) for u and v. However,

one does not find a solution in the domain (4.49). Even though the solution is not regular

one can proceed and compute its central charges and R-charges. These values do still match

with the field theory side, however it turns out that always either the central charge or one

of the R-charges is negative. To illustrate this, we have also presented three triples with

positive a in table 2. It is an opportune moment to remind the reader that the necessity

of negative a can also be shown at the field theory side, namely the cases considered in

section 2.2 did not simultaneously have positive central charge and positive R-charges for

a > 0 for any choice of twist parameters.

We thus only obtain physically meaningful results when a is negative. Note that in

the field theory this analytic continuation is ill-defined if one considers the reduction from

four dimensions since a is related to the multiplicity of a particular field. Ignoring this

subtlety we did find that the expressions for the central charge and R-charges computed

at the field theory side formally agree with the expressions in this section. We emphasize

that the supergravity solutions for negative a constructed here have no pathologies and are

singularity free, globally well-defined solutions. They are not regular for a > 0 however.

This result seems to suggest that one cannot construct a flow solution from AdS5 to AdS3×
T2 in a consistent truncation of La,b,c and it would be interesting to understand why this

is the case. Moreover, identifying the field theory dual to these solutions remains an

open problem. A similar discrepancy has previously been observed for direct products

Y7 = T2 × Y p,q,,13 La,b,c and for a specific fibration of Y p,q ↪→ Y7 → S2 [16, 17, 39]. The

Y p,q field theory is characterized by integers p > q > 0 whilst the solutions are characterized

by integers q > p > 0. In appendix C we extend the Y p,q case by studying more general

fibrations over a Riemann surface Σg and performing the required regularity analysis. We

again find that the solutions with torus fibrations are only regular for q > p > 0 in

agreement with the results presented here.

4.6.2 Sphere fibrations

Let us now turn our attention to the solutions consisting of a fibration over a two-sphere.

The analysis in this case and in the higher genus Riemann surfaces, that we tackle in the

subsequent section, are even more cumbersome than the analysis presented in the previous

section for the torus. The torus case was easier because we could find a coordinate trans-

formation for the auxiliary roots which got rid of a square root in the physical roots. It also

13Y p,q are again, in abuse of notation, the analogues of the Sasaki-Einstein manifolds Y p,q.

– 31 –



J
H
E
P
0
3
(
2
0
2
0
)
0
3
2

(a, b, c) m1 n2 n3 cR Rξ− Rξ+ Rη− Rη+

(−8, 116, 97) −0.49 798.36 211.30 −335.60 1.31 0.33 0.16 0.20

(−27, 91, 62) −4.42 2681.15 411.61 −196.26 1.13 0.84 0.01 0.02

(−53, 139, 79) −3.36 −7722.81 460.05 −270.34 1.16 0.80 0.02 0.03

(7, 133, 111) 0.26 55.57 185.60 −387.21 1.32 −0.26 0.49 0.44

(25, 139, 108) 0.70 −315.87 193.15 −246.98 1.25 −0.81 0.85 0.71

(50, 122, 119) 12.04 −2824.87 167.15 53355.54 −2.37 −14.06 13.69 4.75

Table 2. Values of m1, n2, n3 (divided by C), cgeoR = csugra (divided by CN2) and the R-charges

(divided by N) for certain triples a, b and c. The triples with negative a correspond to globally

well-defined solutions; note that C < 0 and therefore the central charges are positive. The triples

with positive a always have at least one negative R-charge.

made the parameter C drop out of the physical roots and the regularity conditions. For the

κ = ±1 cases we have not found such a coordinate transformation and (therefore) also not

found a solution that expresses ξ∗ and η∗ as function of a, b, c and C. Nevertheless we can

still make progress and identify ranges for the parameters which give global solutions. We

shall supplement the ranges of the parameters with some explicit numerical computations

which show that the results obtained here agree with the results obtained from the field

theory and geometric dual of c-extremization. Again, this matching is up to the domains

of the integers a, b, c characterizing the gravity solution and the field theory. The analysis

is largely analogous to the previous case and we will thus be brief in places. In particular

the matching of the dictionary in equation (4.54) is the same.

For the fibrations over a two-sphere it is possible to find solutions for both D = ±1.

It is also possible to rewrite the regularity conditions such that the integers a and c are

expressed in terms of the auxiliary roots and C as in (4.50). However, these expressions are

exceedingly tedious and we therefore refrain from presenting them in this paper. Despite

this it can be algebraically proven that the integers a, b, c and d are necessarily of the

form (4.53) in order to obtain globally regular solutions. This is the same as in the torus

case studied above and the same discussion appearing there is equally applicable here.

We now focus on the case that D = 1 to provide a few more details. First we make

the coordinate transformations

η∗ = −C(2 + v)

4
, ξ∗ = −C

(
2

u
+ 1

)
. (4.55)

We now use the equations (4.43) to express the physical roots and parameters A and B as

η± =
2(2− C)v − Cv2 ± 2

√
4v2 + C2(v + 2)2(v − 1)− C(v3 + 6v2 + 4v − 8)

(v − 2)2
,

ξ± =
1

8

(
4u+ u2− C(8+6u+u2)±

√
u
[(
C(2 + u)− u

)(
C(16 + 10u+ u2)− (4 + u)2

)])
,

A =
(u+ 2)2(u− C(u+ 2))

4u
, (4.56)

B =
(v + 2)2(C(v + 2)− 4)

4(v − 2)2
.
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(a, b, c) m1 n2 n3 cR Rξ− Rξ+ Rη− Rη+

(−19, 29, 8) −2.38 177.63 −24.21 4.49 1.30 0.68 0.01 0.01

(−8, 26, 15) −0.71 40.41 −17.38 9.09 1.52 0.38 0.05 0.06

(−1, 25, 16) −0.07 8.64 −12.82 14.88 1.60 0.05 0.18 0.18

Table 3. Values of m1, n2, n3, c
geo
R = csugra (divided by N2), and the R-charges (divided by N)

for certain triples a, b, c and κ = 1. Note that the central charges and R-charges are all positive.

One of the domains, where the solution is globally regular, is given by

0 < v < 1 , 0 < u < v ,
v2

v2 + v − 2
< C <

u(u(v − 2) + 4v)

u2(v − 2)− (v − 2)2 + u(6v − 4)
.

(4.57)

We have solved the regularity conditions numerically using this domain for a large number

of triples a, b, c satisfying (4.53). For these triples we also compared the results for the

central charges and R-charges obtained from the solutions to the field theory and geometric

dual results, as we did for the torus case. We have presented the results for three triples

in table 3. For these triples we fixed v = 0.5 and solved the regularity conditions for u and

C within the domain (4.57).

4.6.3 Higher genus Riemann surface fibrations

In this final section we will study the regularity of solutions for which the genus is g > 1.

This case is distinct from the two previous cases in that it is possible to find globally regular

solutions for which the integers a, b, c and d are all positive as one would expect from the

naive comparison with the La,b,c Sasaki-Einstein solutions. Additionally, we find that there

are also regular solutions for integers satisfying a < 0 < d ≤ c ≤ b. We shall therefore split

this section in two parts to give examples of both cases. We furthermore find that there

are no global solutions for D = −1; global solutions only exist for D = 1.

Positive a solutions. We first make the change of parameters

η∗ = −Cv , ξ∗ = −Cu . (4.58)

The physical roots and parameters A and B in terms of these variables are

η± =
1 + (C − 2)v − 2Cv2 ±

√
2Cv(2v2 − 1) + (2v − 1)2 + C2v2(4v − 3)

2(v − 1)2
,

ξ± =
1 + (C − 2)u− 2Cu2 ±

√
2Cu(2u2 − 1) + (2u− 1)2 + C2u2(4u− 3)

2(u− 1)2
,

A = − u2(Cu+ 1)

(u− 1)2
, (4.59)

B =
v2(Cv + 1)

(v − 1)2
.
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(a, b, c) m1 n2 n3 cR Rξ− Rξ+ Rη− Rη+

(1, 19, 11) 0.03 −6.14 −15.77 53.48 0.88 0.29 0.40 0.42

(8, 26, 23) 0.13 61.06 −22.14 87.13 0.86 0.67 0.18 0.29

(14, 22, 19) 0.17 −91.44 −20.50 90.53 0.82 0.75 0.20 0.22

Table 4. Values of m1, n2 and n3 (divided by g− 1), cgeoR = csugra (divided by (g− 1)N2) and the

R-charges (divided by N) for certain triples a, b, c with positive a and κ = −1. Observe that the

central charges and R-charges are all positive.

One of the domains where the solutions can be globally regular is given by

2v

2v − 1
< u <

4v − 3

4v − 4
,

9

8
< v <

1

4
(1 +

√
13) , (4.60)

2uv − u− v
u2 + uv − 2u2v + v2 − 2uv2 + u2v2

< C <
−1 + 4v − 4v2

4v2 − 3v
.

For this domain the integers a, b, c, d corresponding to global regular solutions are also all

positive and satisfy the field theoretic conditions (2.1), i.e.

0 < a ≤ d ≤ c ≤ b , gcd(a, c) = gcd(a, d) = gcd(b, c) = gcd(b, d) = 1 . (4.61)

We can again compare the solutions to the field theory by numerically solving the regularity

conditions and computing the central charge and R-charges. We have found matching

values for all cases we checked. This is strong evidence for new dualities where the gravity

side is given by the solutions we found and the field theories are twisted compactifications

of the 4d La,b,c quiver gauge theories. We have again given a few examples for explicit

triples in table 4. Here we have fixed v = 1.13 and solved the regularity conditions for u

and C taking values according to (4.60).

Negative a solutions. To find globally regular solutions with a < 0 one can make the

parameter redefinitions

η∗ = − v

C ′
, ξ∗ = − 1

C ′u
, C =

1

C ′
. (4.62)

Using the conditions (4.43) we express the physical roots and A, B as

η± =
C ′ + v − 2Cv − 2v2 ∓

√
C ′2(2v − 1)2 + v2(4v − 3) + 2C ′v(2v2 − 1)

2C ′(v − 1)2
,

ξ± =
−2 + u− 2Cu+ Cu2 ∓

√
u(1 + C ′u)

(
4− 3u+ C ′(u− 2)2

)
2C ′(u− 1)2

,

A =− 1 + C ′u

C ′u(u− 1)2
, (4.63)

B =
v2(C ′ + v)

C ′(v − 1)2
.
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(a, b, c) m1 n2 n3 cR Rξ− Rξ+ Rη− Rη+

(−19, 29, 8) 14.38 1685.99 −232.51 103.86 1.08 0.90 0.01 0.01

(−8, 26, 15) 3.93 355.01 −161.14 175.14 1.18 0.71 0.04 0.07

(−1, 25, 16) 0.21 37.82 −76.81 167.57 1.25 0.15 0.29 0.31

Table 5. Values of m1, n2 and n3 (divided by g− 1), cgeoR = csugra (divided by (g− 1)N2) and the

R-charges (divided by N) for certain triples a, b, c with negative a and κ = −1. Observe that the

central charges and R-charges are all positive.

A range of parameters for which the solutions can be globally regular is given by

3

4
< v < 1 , 0 < u <

2(v − 1)2

v(2v − 1 +
√

4v − 3)
, −v(4v − 3)

(2v − 1)2
< C ′ < 0 . (4.64)

For this domain we can show that the solutions of the regularity conditions necessarily have

a < 0 with the remaining integers all positive satisfying (4.53). We can indeed numerically

solve the regularity conditions for explicit values of a, b and c using these domains. The

resulting solutions can again be compared to the field theory by computing their central

charge and R-charges. Three examples can be found in table 5. For these triples we took

v = 0.8 and solved the regularity conditions for u and C ′ obeying the bounds (4.64).

5 Discussion

In this paper we have studied the IR limits of compactifications of the 4d La,b,c N = 1

quiver gauge theories on a Riemann surface Σg with fluxes of global symmetries switched

on. Assuming they flow to an N = (0, 2) SCFT we have computed the central charges and

R-charges of this IR fixed point in three different ways. Field theoretically we computed the

latter by utilizing the technique of c-extremization. With knowledge of UV data it is then

possible to calculate the central charge and R-charges by virtue of ’t Hooft anomaly match-

ing. The second way is the recently found geometric dual formulation of c-extremization.

This technique only depends on topological data of the solution and assumes the exis-

tence of a supergravity solution. Lastly, we have constructed explicit solutions dual to 2d

N = (0, 2) SCFTs and computed their central charges and R-charges directly. We found

an exact matching between the field theoretic and geometric values.

The solutions we have constructed are of the form AdS3×Y7 where La,b,c ↪→ Y7 → Σg.

We have not found the most general solution of this form since it is lacking two parameters

in comparison to the field theory. The ansatz we have used depends on four unknown

functions F , G, H and L and by requiring the recovery of the universal twist solution the

form of H and L is fixed. It is therefore expected, that a suitable generalization of the

ansätze for the functions F and G accounts for the missing parameters.

We have obtained generic expressions for the fluxes, central charge and R-charges

without requiring a solution of the master equation. Recall that the central charge agrees

off-shell for c-extremization and its geometric dual [17, 24]. It would be interesting to

see if one can also obtain a matching to the field theory with our off-shell expressions for

the charges.
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Let us stress again that the matching of central charges and R-charges between field

theory and the solutions is only a formal matching for the S2, T2 and a < 0 case of Σg>1.

While the field theory results are valid for a > 0, globally regular solutions necessarily

have a < 0 in the S2 and T2 cases, whilst they can have both a > 0 and a < 0 for g > 1

compactifications. For the field theories compactified on S2 and T2 with a > 0 we find

at least one negative R-charge, which is inconsistent with representation theory of the

superconformal algebra. This is evidence that the compactified 4d N = 1 theories on these

spaces do not flow to an IR fixed point. It would be of great interest to study the RG flow

trajectories of the compactified 4d theories from first principles, e.g with field theoretical

methods or holographic RG flow across dimensions as was done in [54].

Nevertheless, even for the cases with a < 0, we found well-defined supersymmetric

AdS3 solutions of type IIB supergravity, which according to the AdS/CFT correspondence

should have 2d SCFT duals. The formulation of these SCFTs and if they admit an inter-

pretation as descending via compactification from higher-dimensional SCFTs remains an

interesting puzzle.
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A Ansatz analysis details

As explained in the main text, the metric ansatz always admits a closed non-degenerate

two-form, J , which may be viewed as the almost complex structure of the metric. Despite

this, the metric is not a complex manifold for arbitrary H and L. The vanishing of the

Nijenhuis tensor, and thus the integrability of the almost complex structure still needs to

be imposed. This is most easily enforced by requiring that the exterior derivative of the

holomorphic (3, 0) form Ω, compatible with the chosen almost complex structure, satisfies

dΩ = iP ∧ Ω (A.1)

for some one-form P . The one-form P is the canonical Ricci-form potential defined by

the Kähler metric satisfying dP = ρ, with ρ = 1
2RijklJ

kldxi ∧ dxj the Ricci-form of the

Kähler metric. After a few pages of computation one finds that the necessary and sufficient

conditions for the integrability of the complex structure are the following five non-trivially

coupled differential equations

F(ξ)2∂2
ξH(η, ξ) = G(η)2∂2

ηH(η, ξ) ,

F(ξ)2∂2
ξL(η, ξ) = G(η)2∂2

ηL(η, ξ) ,

(η − ξ)G(η)∂2
ηH(η, ξ) = −F(ξ)

[
(∂η − ∂ξ)H(η, ξ) + (η − ξ)∂η∂ξH(η, ξ))

]
, (A.2)
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(η − ξ)G(η)∂2
ηL(η, ξ) = −F(ξ)

[
(∂η − ∂ξ)L(η, ξ) + (η − ξ)∂η∂ξL(η, ξ))

]
,

∂η∂ξH(η, ξ)(∂η − ∂ξ)L(η, ξ) = ∂η∂ξL(η, ξ)(∂η − ∂ξ)H(η, ξ) .

As a by-product of this analysis the Ricci-form potential is found to be

P =Pg −
∂ξ
(
F(ξ)H(η, ξ)

)
2(η − ξ)H(η, ξ)

(
dφ+ ∂ξL(η, ξ)dψ + ∂ξH(η, ξ)Ag

)
−
∂η
(
G(η)H(η, ξ)

)
2(η − ξ)H(η, ξ)

(
dφ+ ∂ηL(η, ξ)dψ + ∂ηH(η, ξ)Ag

)
−
F(ξ)∂2

ξL(η, ξ) + G(η)∂2
ηL(η, ξ)

η − ξ
dψ −

F(ξ)∂2
ξH(η, ξ) + G(η)∂2

ηH(η, ξ)

η − ξ
Ag , (A.3)

where Pg and Ag are the Ricci-form potential and Kähler form potential on the Riemann

surface respectively. We are unable to solve (A.2) in full generality, but it is not too difficult

to see that a family of solutions is given by

H(η, ξ) = α0 + α1(η + ξ) + α2ηξ , L(η, ξ) = β0 + β1(η + ξ) + β2ηξ . (A.4)

The three constants in L are trivial and can be removed by coordinate transformations of

the angular coordinates and in this manner one can set β0 = β1 = 0 and β2 = 1. The

universal twist solution is obtained by taking L = ηξ and therefore it seems reasonable

that this choice of solution is the correct one for our purposes. Once we have fixed this,

H is fixed to take the form in (A.4). Namely, substituting L = ηξ into the last equation

in (A.2) implies H takes the form presented in (A.4).

B Effective coordinate systems

In this appendix we state the effective coordinate systems which are needed to perform the

integrations over the angular parts. For an explanation of how to construct the transforma-

tion (4.14) see e.g. [29]. From this relation it is easy to derive the corresponding coordinate

transformation (4.19) which was needed for the computation of the flux N and for integra-

tions over the degeneration surface corresponding to kη+ . We now state the transformations

needed for the integrations over the other three degeneration surfaces.

η = η−. The vectors generating the effective torus action are now related to the Killing

vectors via 
kη−
kη+
lξ−
lξ+

 =


1 0 0

1 bk a

1 bl d

1 1 0


 ∂ψ1

∂ψ2

∂ψ3

 , (B.1)

where k, l are solutions of dk − al = 1. The corresponding coordinate transformation is

then given by

z = ψ1 ,

ψ = − 2

G′−
ψ1 + 2

( 1

F ′+
+

1

G′−

)
ψ2 + 2

(
k

F ′−
+

l

G′+
+
k − l
G′−

)
ψ3 , (B.2)

φ =
2η−
G′−

ψ1 − 2

(
ξ+

F ′+
+
η−
G′−

)
ψ2 − 2

(
kξ−
F ′−

+
lη+

G′+
+

(k − l)η−
G′−

)
ψ3 .

– 37 –



J
H
E
P
0
3
(
2
0
2
0
)
0
3
2

Since kη− = ∂ψ1 , at the η− degeneration surface the T3 will degenerate to a T2 which has

as basis of the effective action the coordinates ψ2 and ψ3.

ξ = ξ+. We now have the relation
lξ+
lξ−
kη−
kη+

 =


1 0 0

1 −dk −c
1 −dl −a
1 1 0


 ∂ψ1

∂ψ2

∂ψ3

 , (B.3)

where k, l solve the relation cl− ak = 1. The coordinate transformation that follows from

this relation is

z = ψ1 ,

ψ =
2

F ′+
ψ1 − 2

(
1

F ′+
+

1

G′+

)
ψ2 − 2

(
k

G′−
+

l

F ′−
+
k − l
F ′+

)
ψ3 , (B.4)

φ = −2ξ+

F ′+
ψ1 + 2

(
ξ+

F ′+
+
η+

G′+

)
ψ2 + 2

(
kη−
G′−

+
lξ−
F ′−

+
(k − l)ξ+

F ′+

)
ψ3 ,

where again ψ2 and ψ3 are the coordinates needed for integration over the surface corre-

sponding to lξ+ .

ξ = ξ−. This time the relation between the Killing vectors and the vectors generating an

effective torus action is given by
lξ−
lξ+
kη−
kη+

 =


1 0 0

1 dk c

1 −dl b
1 1 0


 ∂ψ1

∂ψ2

∂ψ3

 , (B.5)

in which k, l solve cl + bk = 1. The coordinate transformation is then equal to

z = ψ1 ,

ψ =
2

F ′−
ψ1 − 2

(
1

F ′−
+

1

G′+

)
ψ2 − 2

(
k

G′−
− l

F ′+
+
k + l

F ′−

)
ψ3 , (B.6)

φ = −2ξ−
F ′−

ψ1 + 2

(
ξ−
F ′−

+
η+

G′+

)
ψ2 + 2

(
kη−
G′−
− lξ+

F ′+
+

(k + l)η−
F ′−

)
ψ3 .

As in the previous cases ψ2 and ψ3 are the relevant coordinates for the corresponding

degenerate surface.

C The return of Y p,q

So far we have analyzed the case of La,b,c, where little is known in the literature. In contrast

the case of Y p,q is far better understood but there are still certain solutions corresponding

to different twists that are yet to be found. We shall extend the known solutions, giving

a more general solution of the form Y5 ↪→ Y7 → Σg with Y5 admitting isometry group

U(1)2 × SU(2). Field theoretically this corresponds to twisting with only the baryonic,

R-symmetry and the abelian flavour symmetry and not the non-abelian SU(2) isometry.
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C.1 Ansatz

To begin we must give an ansatz for the Kähler base. We require a metric which is a

fibration over a Riemann surface and has a U(1) × SU(2) isometry. The most general

metric one can devise with this structure is

ds2 = H(y)ds2(Σg) + dy2 +F (y)(dψ+ cos θdφ+P (y)Ag)2 +G(y)(dθ2 + sin2 θdφ2) (C.1)

with Ag a one-form on the Riemann surface satisfying dAg = Jg with Jg the Kähler form

on the Riemann surface. Imposing that the metric has a closed two-form preserving the

SU(2) isometry imposes

F (y) = G′(y)2 , P (y) = −H
′(y)

G′(y)
. (C.2)

Moreover, the condition that the metric is complex and the closed two-form is indeed the

Kähler form requires

∂y
H ′(y)

G′(y)
= 0 . (C.3)

Either we set the warp factor of the Riemann surface to vanish and therefore consider no

flavour fibration, or we have

H ′(y) = c1G
′(y) . (C.4)

The Kähler metric is

ds2 = (c1G(y) + 4c2)ds2(Σg) + dy2 +G′(y)2(dψ + cos θdφ− c1Ag)2

+G(y)(dθ2 + sin2 θdφ2) . (C.5)

We now introduce a new coordinate satisfying

4xG(y(x)) = 1 (C.6)

and define the function

U(x) =
G′(y(x))2

4x
. (C.7)

The final form of the metric (after multiplying by an overall factor of 4) is

ds2 =
c1 + c2x

x
ds2(Σg)+

dx2

x3U(x)
+
U(x)

x
(dψ+cos θdφ−c1Ag)2+

1

x
(dθ2+sin2 θdφ2) . (C.8)

The parameter c2 can be fixed to a non-zero value by a rescaling x→ x/c2 and multiplying

by an overall factor of 1/c2. We emphasize that (C.8) is the most general ansatz one

can make admitting the required symmetries. Note that the parameter c1 measures the

twisting of the U(1) over the Riemann surface and will therefore be related to the flavour

twist parameter.

The Kähler two-form and (3, 0)-form preserving SU(2) are

J =
c1 + c2x

x
Jg +

1

x2
dx ∧ (dψ + cos θdφ− c1Ag) +

1

x
sin θdθ ∧ dφ , (C.9)

Ω =

√
U(x)(c1 + c2x)

x
3
2

Ωg ∧
(

1

xU(x)
dx+ i(dψ + cos θdφ− c1Ag)

)
∧ (dθ + i sin θdφ) .
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The Ricci scalar and Ricci-form potential are given by

R = 2x2∂xf(x)− 2x(2c1 + c2x)

c1 + c2x
f(x) +

2x(c1 + c2x+ κ)

c1 + c2x
,

P = Pg − cos θdφ+ f(x)(dψ + cos θdφ− c1Ag) , (C.10)

where

f(x) =
(3c1 + 2c2x)U(x)− x(c1 + c2x)U ′(x)

2(c1 + c2x)
. (C.11)

C.2 Regularity analysis

Let us analyze the global regularity of the ten-dimensional metric, which as in section 4

can be done by first checking the regularity of Y5 . To make the metric (C.8) compact we

must require that U takes its values in [x−, x+], where U(x±) = 0 and either 0 < x− < x+

or x− < x+ < 0. This follows from the fact that x = 0 would lead to a singularity due

to the explicit 1
x appearing in the metric.14 Furthermore, we need that U is positive on

its domain. We have four surfaces at which the metric degenerates specified by x = x±
and θ = 0, π. As for La,b,c we need to determine the Killing vectors that vanish at the

degeneration surfaces. By requiring the surface gravity of the relevant Killing vector to

be normalized to one, the metric will extend smoothly onto the degeneration surface. For

Y p,q we find that the Killing vectors located at the roots x = x± and θ = 0, π which satisfy

these conditions are given by

kx± = ∂z +
2

x±U ′±
∂ψ ,

l0 = ∂z + ∂φ − ∂ψ , (C.12)

lπ = ∂z − ∂φ − ∂ψ .

As for F and G in the La,b,c case, we denote the evaluation of U at its roots by U ′± ≡ U ′(x±).

We again have a relation between the vectors (C.12) which is given by

(p+ q)kx+ + (p− q)kx− − pl0 − plπ = 0 , (C.13)

for relatively prime integers p and q. This implies the regularity condition

p+ q

x+U ′+
+
q − p
x−U ′−

= −p . (C.14)

So far we have not imposed any inequalities on p and q, this will follow once we have

obtained explicit solutions.

C.3 General formulas for fluxes, central charge and R-charges

Before solving the master equation (3.4) and obtaining explicit solutions for the function U,

we derive formulas for the fluxes, central charge and R-charges that are valid for arbitrary

functions U and thus for arbitrary metrics of the form (C.8). The integrations needed

to obtain these expressions are considerably easier than in the La,b,c case. Therefore, we

only state the effective system of coordinates we have used for the integration and the

resulting formulas.

14It may be possible to obtain a regular solution with x = 0 an endpoint, however the solution will not

have the required topology.
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Effective coordinates systems. For the integration over the degeneration surface de-

fined by x = x+ we use the effective coordinates

z = ψ1 ,

φ = ψ2 , (C.15)

ψ =
2

x+U ′+
ψ1 −

(
1 +

2

x+U ′+

)
ψ2 + 2

(
µ

x−U ′−
− ν − µ+ 2ν

x+U ′+

)
ψ3 .

The integers µ and ν are a solution of Bézout’s identity µp+ ν(p− q) = 1. The relation of

∂ψi to the Killing vectors is given by
kx+
kx−
lπ
l0

 =


1 0 0

1 0 p

1 −1 p− q
1 1 0


 ∂ψ1

∂ψ2

∂ψ3

 . (C.16)

For the surface determined by x = x− we have the system

z = ψ1 ,

φ = −ψ2 + µψ3 , (C.17)

ψ =
2

x−U ′−
ψ1 −

(
1 +

2

x−U ′−

)
ψ2 +

(
2ν

x+U ′+
− µ− 2(µ+ ν)

x−U ′−

)
ψ3 .

Here µ and ν solve µ(p + q) + νp = 1. Then for the degeneration surface determined by

θ = 0 we used the coordinates

z = ψ1 ,

φ = ψ1 − ψ2 − (2µ+ ν)ψ3 , (C.18)

ψ = −ψ1 +

(
1 +

2

x+U ′+

)
ψ2 + ν

(
1 +

2

x−U ′−

)
ψ3 ,

where µ(p − q) + νp = 1. Lastly, for the surface defined by θ = π the coordinates are

given by

z = ψ1 ,

φ = −ψ1 + ψ2 + (2µ+ ν)ψ3 , (C.19)

ψ = −ψ1 +

(
1 +

2

x−U ′−

)
ψ2 + ν

(
1 +

2

x+U ′+

)
ψ3 ,

with µ(p+q)+νp = 1. Note that to perform integrals over the full angular part parametrized

by z, φ and ψ, one can use any of these coordinate systems and the result will agree.
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Flux quantization. One can compute the flux N corresponding to integrating the five-

form over Y5 using (3.5) and picking any of the effective coordinate systems given in the

previous paragraph to perform the integration over z, φ and ψ. The other flux quantiza-

tion conditions correspond to integrating the five-form over the fibration of the different

degeneration surfaces over the Riemann surfaces. These fluxes Mx± , Mθ0 and Mθπ , which

correspond to the degeneration surfaces defined by x = x±, θ = 0 and θ = π respectively,

are again given by (3.5). The resulting fluxes are then given by

N =
L4

4πgs`4s

(2 + x+U
′
+)2
(
(p+ q)(x− − x+) + px−x+U

′
+

)
(p− q)x−x2

+U
′
+(p+ q + px+U ′+

) ,

Mx+ =
L4

16π2gs`4s
vol(Σg)

2 + x+U
′
+

(p− q)x+

(
2(c1 + c2x+ + κ) + (2c1 + c2x+)x+U

′
+

)
,

Mx− =
L4

16π2gs`4s
vol(Σg)

2 + x+U
′
+

x−(p+ q + px+U ′+)2

×
(

2(p+ q)(c1 + c2x− + κ) + (2qc1 + (p+ q)c2x− + 2κp)x+U
′
+

)
, (C.20)

Mθ0 = Mθπ =
L4

16π2gs`4s
vol(Σg)

2 + x+U
′
+

(p− q)x−x2
+U
′
+

×
(

2κ(x− − x+)− (c1 + c2x−)x−x+U
′
− + (c1 + c2x+)x−x+U

′
+

)
.

Note that the equality of Mθ0 and Mθπ results in a vanishing n2 via the relation (3.23) and

the toric data (C.16).

Central charge and R-charges. One can also integrate the expression for the central

charge (3.12) and this results in

csugra =
3L8

8π3g2
s`

8
s

vol(Σg)
2 + x+U

′
+

(p− q)x2
−x

3
+U
′
+

×
(

(c1 + 2c2x+ + κ)x2
− + (c1 + c2x+)x2

−x+U
′
+

− (c1 + 2c2x− + κ)x2
+ − (c1 + c2x−)x−x

2
+U
′
−

)
. (C.21)

For the R-charges (3.25) we find

Rx+ =
L4

2πgs`4s

2 + x+U
′
+

(p− q)x+
,

Rx− =
L4

2πgs`4s

2 + x+U
′
+

(p+ q + px+U ′+)x−
, (C.22)

Rθ0 = Rθπ =
L4

2πgs`4s

(x− − x+)(2 + x+U
′
+)

(p− q)x−x2
+U
′
+

.

With these expressions and the flux N , one can easily check that the first equation in (3.27)

is obeyed. Using the second and third relation in (3.27) one computes the remaining two

components of the R-symmetry vector ~b.
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C.4 Solving the master equation

Inserting the ansatz (C.8) into the master equation (3.4) results in a fourth-order non-linear

differential equation for the function U :

(c1 + c2x) 2
[
2 (c1 + c2x)

(
2κ− x2 (c1 + c2x+ κ)U ′′(x)

)
+ x2

(
3c2

1 + 3c1c2x− c2
2x

2
)
U ′(x)2

+ x (c1 + c2x)U ′(x)
(
x3 (c1 + c2x)U (3)(x) + c1

(
4− 3x2U ′′(x)

)
+ 4κ

) ]
+ (c1 + c2x)U(x)

[
(c1 + c2x)

{
x2
(
3c2

1 + 6c1c2x+ 2c2
2x

2
)
U ′′(x)

+ (c1 + c2x)
(
x3
(
x (c1 + c2x)U (4)(x) + (c1 + 4c2x)U (3)(x)

)
− 4 (c1 + κ)

)}
− 2c1x

(
3c2

1 + 6c1c2x+ 4c2
2x

2
)
U ′(x)

]
+ c1

(
3c3

1 + 9c2
1c2x+ 9c1c

2
2x

2 + 4c3
2x

3
)
U(x)2 = 0 .

(C.23)

At first sight this seems like a quite imposing differential equation. However it is possible

to integrate this equation twice. One sees that it implies

d

dx

(
U(x)(c1 + c2x)

x

d

dx
R− 4f(x)(c1 + c2x+ κ)

x
+

4κ

x
+

2f(x)2(2c1 + c2x)

x

)
= 0 ,

(C.24)

and therefore

A1x− 4κ = U(x)(c1 + c2x)
d

dx
R− 4f(x)(c1 + c2x+ κ) + 2f(x)2(2c1 + c2x) . (C.25)

Defining the function

g(x) = 2x(c1 + c2x+ κ)U(x)− x3(c1 + c2x)U(x)U ′′(x) +
x3(c1 + c2x)

2
U ′(x)2

− c1x(3c1 + 4c2x)

2(c1 + c2x)
U(x)2 + c1x

2U(x)U ′(x) , (C.26)

equation (C.25) is equivalent to

A1x− 4κ =
d

dx
g(x)− 3

x
g(x) . (C.27)

This simple linear ODE implies

g(x) = 2κx−A1x
2 + x3A2 , (C.28)

where A2 is a second integration constant. We have therefore reduced the fourth order

non-linear differential equation to the following second order one

2κx−A1x
2 + x3A2 = 2x(c1 + c2x+ κ)U(x)− x3(c1 + c2x)U(x)U ′′(x)

+
x3(c1 + c2x)

2
U ′(x)2 − c1x(3c1 + 4c2x)

2(c1 + c2x)
U(x)2 + c1x

2U(x)U ′(x) .

(C.29)
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In principle one can plug into this equation an ansatz, e.g.

U(x) =

4∑
i=−1

ũix
i , (C.30)

to obtain solutions. However, we take a slightly different approach, since solutions of the

form we are interested in have already appeared in [11]. Indeed, taking the solution (3.93)

in [11]15 we find that the function

U(x) =
1

c1 + c2x

(
1

3
(1 + c1 − 4C1) + (1− 4(a− 1)c2

1)c2x

− 4c1

3(c1 − 1)
(a− 1)(−5 + c1 − 4C1)c2

2x
2

− 4

9(c1 − 1)2
(a− 1)

(
7 + c2

1 + 8C1 − 4c1(1 + C1)
)
c3

2x
3

)
(C.31)

solves the master equation (C.23) for κ = 1. Here16

C1 = −1

4

(
1 + c1 − 2

√
1− c1 + c2

1

)
. (C.32)

We now want to generalize the function (C.31) to be a solution of the master equation for

all values of κ. It turns out that this generalization is given by

U(x) =
1

c1 + c2x

(
1

3
(κ+ c1 − 4C1) + (1− 4(a− 1)c2

1)c2x

− 4c1

3(c1 − κ)
(a− 1)(−5κ+ c1 − 4C1)c2

2x
2 − 1

3
(a− 1)

2κ− c1 + 4C1

C1
c3

2x
3

)
,

(C.33)

where

C1 = −1

4

(
κ+ c1 − 2

√
κ2 − κc1 + c2

1

)
. (C.34)

In the limit κ→ 1 this function reduces to (C.31). In the limit κ→ 0 we find that, when

assuming that c1 < 0, the function (C.33) reduces to

U(x) =
12c1 +

(
9c2 − 36(a− 1)c2

1c2

)
x− 48c1(a− 1)c2

2x
2 − 16(a− 1)c3

2x
3

9(c1 + c2x)
. (C.35)

The solution with this function is equal to (A.104) in [11] when identifying a2 = c1 and

q0 = −4
3(a− 1)c3

1, using y = −c1/(c2x) and identifying17

U(x) =
9

64c3
1

(−4
3c2x)3w(− c1

c2x
)

c1 + c2x
. (C.36)

15To write their solution in this form (C.8), one has to set a2 = c1, use y = 1/( 4
3
c2x) and identify

U(x) = (4c2x/3)
3Q(1/(4c2x/3))
c1+c2x

.
16In [11] the expression for C1 has a plus sign in front of the square root. The function U with this plus

sign also solves the master equation for κ = 1, however, after solving the regularity equation one finds that

it does not give a globally defined solution.
17Actually we find their function U with a minus sign, and we assume c1 < 0 while the authors of [11]

assume that c1 > 0.
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The solutions depend on two parameters (c2 can be scaled away) of which one will be fixed

by the regularity equation (C.14). In the field theory there are two parameters [11, 17], i.e.

one of the fluxes and one twist parameter. Therefore, the most general solution should have

one parameter more than the one we give here. Since we have given expressions for the

fluxes, central charge and R-charges in terms of the general function U one can compute

these quantities very easily once a more general solution is found.

The ansatz (C.8) with function U given by (C.33) is a limit of the class of La,b,c

solutions we have constructed in section 4.5. Namely, starting from the ansatz (4.1) with

functions L = H = ηξ and F , G given by (4.40), we can first transform to the coordinates

of [5] using [32]

ξ = (α− β) sin2 θ + γ ,

η = α− x+ γ ,

φ =
(α− β + γ)Ψ

2(α− β)β
− γΦ

2(α− β)α
, (C.37)

ψ =
Φ

2(α− β)α
− Ψ

2(α− β)β
.

The shift with γ is different from [32], but needed here in order to take the Y p,q limit.

After the transformation (C.37) the metric can be written as

ds2 = (α− x+ γ)
(
(α− β) sin2 θ + γ

)
ds2(Σg) +

ρ2

4∆x
dx2 +

ρ2

∆θ
dθ2

+
∆x

ρ2

(
1

α
sin2 θdΦ +

1

β
cos2 θdΨ + 2

(
(α− β) sin2 θ + γ

)
Ag
)2

+
∆θ sin2 θ cos2 θ

ρ2

(
α− x
α

dΦ− β − x
β

dΨ + 2(α− β)(α− x+ γ)Ag
)2

, (C.38)

where

∆x =
1

4
G(α− x+ γ) ,

∆θ =
1

4(α− β)2 sin2 θ cos2 θ
F((α− β) sin2 θ + γ) , (C.39)

ρ2 = α cos2 θ + β sin2 θ − x .

The Y p,q limit is then performed by sending β → α and requiring that in this limit ∆θ =

α [5]. This results in the metric

ds2 = (α− x+ γ)γds2(Σg) +
α− x
4∆x

dx2 +
∆x

(α− x)α2

(
sin2 θdΦ + cos2 θdΨ + 2γαAg

)2
+
α− x
α

(
dθ2 + sin2 θ cos2 θ(dΦ− dΨ)2

)
. (C.40)

We now transform

θ → 1

2
θ , Φ→ 1

2
(Φ−Ψ) , Ψ→ −1

2
(Ψ + Φ) , x→ −4α

x
+ α , (C.41)
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such that in the new coordinates the metric becomes

ds2 =
4αγ + γ2x

x
ds2(Σg) +

16α3

x5∆x
dx2 +

x∆x

16α3

(
dΨ + cos θdΦ− 4γαAg

)2
+

1

x

(
dθ2 + sin2(θ)dΦ2

)
(C.42)

with

∆x =
1

4
G
(

4α

x
+ γ

)
. (C.43)

The metric (C.42) has the form of our ansatz (C.8) when identifying c1 = 4γα, c2 = γ2 and

U(x) =
x2∆x

16α3
=
x2c

3/2
2

c3
1

G
(

c1√
c2x

+
√
c2

)
. (C.44)

We still have to impose that ∆θ = α in the limit β → α. This results in the conditions

Dγ3 −A(γ + C)2 + κγ2 = 0 ,

−2A(γ + C) + 2κγ + 3Dγ2 = 4γα(α− β) , (C.45)

−A+ κ+ 3Dγ = −4γα ,

which are solved by

A = 4C1 ,

C =

√
c2

6(c1 − κ)

(
− 5c1 − 4C1 + κ

)
, (C.46)

D =
−c1 − κ+ 4C1

3
√
c2

.

In the latter expressions we have taken the limit β → α. Here C1 is given by (C.34). The

function U (C.44) is equal to (C.33) when reparametrizing

B = 4(−c3
1 + ac3

1 − C1) .

C.5 Solving the regularity equation and matching to the field theory

We now intend to solve the regularity condition (C.14) in order to see whether the solu-

tions (C.8) with function (C.33) are indeed globally well-defined. We do this as in sec-

tion 4.6. First of all, we write the function U as

U(x) =
u(x)

c1 + c2x
≡ 1

c1 + c2x

3∑
i=0

ũ1x
i . (C.47)

We can then express it via its roots as

U(x) =
ũ3(x− x−)(x− x+)(x− x∗)

c1 + c2x
, (C.48)
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where we have denoted the third root by x∗. By equating the expressions (C.47) and (C.48)

we find that

x− + x+ + x∗ = −ũ2/ũ3 ,

x−x+ + x−x∗ + x+x∗ = ũ1/ũ3 , (C.49)

x−x+x∗ = −ũ0/ũ3 .

Together with the regularity condition (C.14) which can be expressed in terms of the roots

using

U ′(x±) =
ũ3(x± − x∓)(x± − x∗)

c1 + c2x±
, (C.50)

this gives four conditions for five variables. When κ = ±1, these can be solved using the

substitutions

a→ a′

c2
1

+ 1 ,

x± → − 2
c1

c2

(
c1 − 2κ+

√
1− κc1 + c2

1

)
x′± , (C.51)

x∗ → − 2
c1

c2

(
c1 − 2κ+

√
1− κc1 + c2

1

)
x′∗ .

This way we can solve the equations (C.49) for a′, x′+ and x′− in terms of c1 and x′∗ . The

regularity condition (C.14) needs then to be solved numerically for x′∗. We found regular

solutions for κ = 1 when c1,2 < 0 and q > p > 0. Note that the parameter regime for p

and q is different from the field theory, which is only valid for p > q > 0. We comment

extensively on this issue in the main text. For κ = −1 regular solutions are obtained for

values c1,2 > 0 and p > q > 0. The latter inequality is the same as in the field theory, thus

this is evidence that we have found the dual to the field theory.

For κ = 0 we can actually solve all the equations explicitly and we use them to test

the formulas we found for the fluxes, central charge and R-charges. In this case we use the

transformations

a→ a′

c2
1

+ 1 , x± → 3
c1

c2
x′± , x∗ → 3

c1

c2
x′∗ , (C.52)

to solve the equations (C.14) and (C.49) for a, x′± and x′∗ in terms of p, q, c1 and c2.

For this we need that p > 0 and q > 0. Transforming back to the original variables, this

results in

x− = − c1

6c2

(p+ 3q)2

q(p+ q)
, x+ =

c1

6c2

(p− 3q)2

q(p− q)
, x∗ = −4c1

3c2

p2

p2 − q2
,

a =
4c2

1(p3 − 9pq2)2 + 81(q3 − qp2)2

4c2
1p

2(p2 − 9q2)2
. (C.53)

We find that to get regular solutions we need c2 > 0 and q > p > 0, i.e. to get x− < x+.

Previously we have already assumed that c1 < 0. We can then compute the central charge

and R-charges via formulas (C.21) and (C.22) respectively, and find

cgeom =
c1N

2p(p4 − 9q4)

3q4
(C.54)
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and

Rx+ = −N(p− q)(p+ 3q)

3q2
, Rx− = −N(p+ q)(p− 3q)

3q2
, Rθ0 = Rθπ =

Np2

3q2
.

(C.55)

We have used the flux

N = − 54c2L
4

πc1gs`4s

q4

p(p2 − 9q2)2
(C.56)

to replace gs for N . Note that indeed the constant c2 drops out of the expressions as it

should. Also note that the R-charge Rx+ becomes negative for p > q, which again implies

that we need q > p.

The central charge and R-charges have been computed from the field theory and ge-

ometric c-extremization side in [17] but a different basis for the toric data was used. Re-

peating their computations for the toric data derived from (C.16), i.e.

~v1 = (1, 0, 0) , ~v2 = (1, 1, 0) , ~v3 = (1, 0, p) , ~v4 = (1,−1, p− q) , (C.57)

and taking n2 = 0, we find that the central charge is given by

cgeo
R =

6N2p(n3 − pm1)
(
qn2

3 + p(2p− q)m1n3 + p2(q − p)m2
1

)
pq(p− q)m1n3 + p2q2m2

1 + (p2 + pq + q2)n2
3

. (C.58)

As before M1 ≡ m1N. The R-charges are equal to

R1 = Rx+ = −
N(p+ q)

(
(p− q)n2

3 + p(q − 3p)m1n3 + p2(p− q)m2
1

)
pq(p− q)m1n3 + p2q2m2

1 + (p2 + pq + q2)n2
3

,

R3 = Rx− =
N(p+ q)

(
(p+ q)n2

3 + p(p− q)m1n3 + p2(q − p)m2
1

)
pq(p− q)m1n3 + p2q2m2

1 + (p2 + pq + q2)n2
3

, (C.59)

R2 = Rθ0 = R4 = Rθπ =
Np2(n3 − pm1)2

pq(p− q)m1n3 + p2q2m2
1 + (p2 + pq + q2)n2

3

.

The central charge and R-charges indeed match the expressions in [17] by taking n3 → n2

and m1 → m in our expressions. We can match them to the expressions that we got from

the solution by computing n3 and m1 and substituting these values in (C.58) and (C.59).

The values we obtain from the solution are

n3 = −c1(p2 + 3q2)

3q
, m1 =

Mx+

N
=
c1(p− q)(p2 + 3q2)

6pq2
. (C.60)

With these values we can indeed match the solution to the geometric c-extremization result.

The latter has been matched to the field theory. As in the S2 fibration case this is only a

formal matching, as already mentioned the solution is only globally regular for q > p > 0,

while the field theory result is only valid for p > q > 0.
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[10] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds

and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

[11] F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP

07 (2016) 020 [arXiv:1511.09462] [INSPIRE].

[12] A. Amariti, L. Cassia and S. Penati, Surveying 4d SCFTs twisted on Riemann surfaces,

JHEP 06 (2017) 056 [arXiv:1703.08201] [INSPIRE].

[13] A. Amariti, L. Cassia and S. Penati, c-extremization from toric geometry, Nucl. Phys. B 929

(2018) 137 [arXiv:1706.07752] [INSPIRE].

[14] A. Donos, J.P. Gauntlett and N. Kim, AdS solutions through transgression, JHEP 09 (2008)

021 [arXiv:0807.4375] [INSPIRE].

[15] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS3

solutions of type IIB supergravity, Phys. Rev. Lett. 97 (2006) 171601 [hep-th/0606221]

[INSPIRE].

[16] C. Couzens, J.P. Gauntlett, D. Martelli and J. Sparks, A geometric dual of c-extremization,

JHEP 01 (2019) 212 [arXiv:1810.11026] [INSPIRE].

[17] J.P. Gauntlett, D. Martelli and J. Sparks, Toric geometry and the dual of c-extremization,

JHEP 01 (2019) 204 [arXiv:1812.05597] [INSPIRE].

[18] J.P. Gauntlett, D. Martelli and J. Sparks, Fibred GK geometry and supersymmetric AdS

solutions, JHEP 11 (2019) 176 [arXiv:1910.08078] [INSPIRE].

– 49 –

https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
https://doi.org/10.1007/s00220-006-0087-0
https://arxiv.org/abs/hep-th/0503183
https://inspirehep.net/search?p=find+EPRINT+hep-th/0503183
https://doi.org/10.1007/s00220-008-0479-4
https://arxiv.org/abs/hep-th/0603021
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603021
https://doi.org/10.4310/ATMP.2004.v8.n4.a3
https://arxiv.org/abs/hep-th/0403002
https://inspirehep.net/search?p=find+EPRINT+hep-th/0403002
https://doi.org/10.1103/PhysRevLett.95.071101
https://arxiv.org/abs/hep-th/0504225
https://inspirehep.net/search?p=find+EPRINT+hep-th/0504225
https://doi.org/10.1103/PhysRevLett.110.061601
https://arxiv.org/abs/1211.4030
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4030
https://doi.org/10.1007/JHEP06(2013)005
https://arxiv.org/abs/1302.4451
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4451
https://doi.org/10.1016/0550-3213(95)00242-K
https://arxiv.org/abs/hep-th/9501096
https://inspirehep.net/search?p=find+EPRINT+hep-th/9501096
https://doi.org/10.1016/0550-3213(96)00026-0
https://doi.org/10.1016/0550-3213(96)00026-0
https://arxiv.org/abs/hep-th/9511222
https://inspirehep.net/search?p=find+EPRINT+hep-th/9511222
https://doi.org/10.1142/S0217751X01003935
https://arxiv.org/abs/hep-th/0007018
https://inspirehep.net/search?p=find+EPRINT+hep-th/0007018
https://doi.org/10.1007/JHEP07(2016)020
https://doi.org/10.1007/JHEP07(2016)020
https://arxiv.org/abs/1511.09462
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.09462
https://doi.org/10.1007/JHEP06(2017)056
https://arxiv.org/abs/1703.08201
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.08201
https://doi.org/10.1016/j.nuclphysb.2018.01.025
https://doi.org/10.1016/j.nuclphysb.2018.01.025
https://arxiv.org/abs/1706.07752
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.07752
https://doi.org/10.1088/1126-6708/2008/09/021
https://doi.org/10.1088/1126-6708/2008/09/021
https://arxiv.org/abs/0807.4375
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4375
https://doi.org/10.1103/PhysRevLett.97.171601
https://arxiv.org/abs/hep-th/0606221
https://inspirehep.net/search?p=find+EPRINT+hep-th/0606221
https://doi.org/10.1007/JHEP01(2019)212
https://arxiv.org/abs/1810.11026
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.11026
https://doi.org/10.1007/JHEP01(2019)204
https://arxiv.org/abs/1812.05597
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.05597
https://doi.org/10.1007/JHEP11(2019)176
https://arxiv.org/abs/1910.08078
https://inspirehep.net/search?p=find+EPRINT+arXiv:1910.08078


J
H
E
P
0
3
(
2
0
2
0
)
0
3
2

[19] F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS4 from supersymmetric

localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].

[20] S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d N = 2 theories: twisted index,

free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].

[21] J.P. Gauntlett, D. Martelli and J. Sparks, Toric geometry and the dual of I-extremization,

JHEP 06 (2019) 140 [arXiv:1904.04282] [INSPIRE].

[22] S.M. Hosseini and A. Zaffaroni, Geometry of I-extremization and black holes microstates,

JHEP 07 (2019) 174 [arXiv:1904.04269] [INSPIRE].

[23] H. Kim and N. Kim, Black holes with baryonic charge and I-extremization, JHEP 11 (2019)

050 [arXiv:1904.05344] [INSPIRE].

[24] S.M. Hosseini and A. Zaffaroni, Proving the equivalence of c-extremization and its

gravitational dual for all toric quivers, JHEP 03 (2019) 108 [arXiv:1901.05977] [INSPIRE].

[25] P. Karndumri and E. O Colgain, Supergravity dual of c-extremization, Phys. Rev. D 87

(2013) 101902 [arXiv:1302.6532] [INSPIRE].
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[48] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, AdS3 solutions in Massive IIA with

small N = (4, 0) supersymmetry, JHEP 01 (2020) 129 [arXiv:1908.09851] [INSPIRE].
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