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1 Introduction

A generic feature of four-dimensional string compactifications is the existence of scalar fields

with approximate shift symmetries appearing in the effective action. Such axions appear

in many phenomenologically motivated models, including models of cosmic inflation, in

which the axions are considered as inflaton fields [1, 2]. The axion decay constants f ,

determined by the kinetic term of the axions, are of crucial importance and, depending on

the precise application, required to have a certain range of values. For example, in large field

inflationary models large values for f , comparable to the Planck mass, are often required.

It has been suggested long ago, starting with [3], that large axion decay constants cannot be

obtained in string theory, while at the same time controlling the instanton corrections that

need to be included in a consistent formulation of the effective theory. This observation

is formalized in the axion Weak Gravity Conjecture [4], which states that the axion decay

constant times the action of an appropriate instanton coupling to the axion is smaller than

the Planck mass times the instanton charge. Clearly, it is notoriously hard to establish such

a conjecture, since it requires to control the behaviour of the axion decay constants and

then reliably determine the non-perturbative corrections to the effective action as recently

reviewed in [5].

Recently, the Swampland Distance Conjecture [6] has received much attention [7–33].1

It states that an infinite tower of modes becomes exponentially light when approaching a

point that is at infinite geodesic distance in field space. In particular, the recent construc-

tions [15, 23, 27] suggest that effective theories near such infinite distance points exhibit

universal properties that can be investigated model-independently and quantitatively. As

a consequence, one might thus argue that any quantum gravity conjecture should first pass

its validity tests in the limits in field space that lie at infinite geodesic distance. We will see

in this work that this is also a fruitful path to test the axion Weak Gravity Conjecture and

uncover new mechanisms that can be relevant in understanding the underlying reasons for

its validity. In particular, note that it was argued for the Swampland Distance Conjecture

in [15] that the number of relevant states that have to be included into the effective theory

has to grow with a certain rate depending on properties of the infinite distance point. In

the present context we will find the analog statement concerning the growth rate of the

number of instantons that need to be included in the effective theory when approaching

the infinite distance point.

Our focus in this work will be on the dynamics of the R-R three-form axions in Type IIA

string theory compactified on a Calabi-Yau threefold. These axions are part of the N = 2

hypermultiplet field space of the effective theory. The hypermultiplet moduli space of Type

II string theory compactification has been studied in detail, see e.g. [34, 35] for reviews,

or [36–48] for some papers on this subject. The classical dimensional reduction shows

that their kinetic terms, and hence their square axion decay constants, are proportional

to the Hodge star metric in the Calabi-Yau manifold. This implies that they generally

depend very non-trivially on the complex structure moduli of the Calabi-Yau threefold. It

will be the first task of this work to descibe their behaviour near infinite distance points in

1A recent review on the various swampland conjectures can be found in [5].
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correlation with the general classification of infinite distance points in the complex structure

moduli space [23, 49]. We will find that the classical axion decay constants for some of the

axions can, in general, grow to become increasingly large in the infinite distance limits. The

axion Weak Gravity Conjecture is stating that instanton corrections must therefore become

relevant in such limits. These corrections can modify the classical axion decay constants

and ‘tame’ its behavior at such points by directly correcting their quantum expression.

Alternatively, the classical behaviour could dominate still in the full axion decay constants,

which then would imply that the axion Weak Gravity Conjecture states a minimal rate of

the decrease in the instanton action. In either case it is important to identify instantons at

such points, since the classical behavior of the axion decay constants without the presence

of instantons would clearly violate the axion Weak Gravity Conjecture. In other words,

instanton corrections should become relevant at such points in order that the axion Weak

Gravity Conjecture is not violated parametrically. We suggest that these corrections stem

from D-brane states and identify candidate D2-brane instanton states wrapped on three-

cycles of the Calabi-Yau manifold that non-trivially modify the effective theory at such

points. Our construction follows the ideas of [15, 23] to characterize a tower of D3-brane

states wrapped on three-cycles that gives the relevant particles for the Swampland Distance

Conjecture in Type IIB compactifications. Note that we are not able to fully include these

corrections e.g. by computing the quantum corrected axion decay constants. Rather the

aim of this paper is to identify these instantons and study the behavior of their action in

comparison to the classical behavior of the axion decay constants. It is a very complicated

open problem to combine this to do the full quantum analysis.

The axion Weak Gravity Conjecture has already been investigated in various ways,

see for instance [25, 31, 50–65]. One of the main challenges in addressing the axion Weak

Gravity Conjecture arises when dealing with higher-dimensional field spaces. In this case

one does not expect a simple direct link between the instanton actions and the axion decay

constants. In fact, the kinetic term of the axions will generally be given in terms of a

non-diagonal field-dependent metric and instanton actions will generally not align with

any diagonalization attempt. A related issue in each higher-dimensional setting is the fact

that we have to deal with path dependence when approaching an infinite distance point.

In particular, the kinetic term for a certain axion might grow along one specific path, but

might stay finite along another. It is one of our main tasks to address these general issues

for the Type IIA setting under consideration. We will argue that there is a natural basis for

the axions that is adapted to the infinite distance locus under consideration. More precisely,

this special basis will arise from the fact that we can non-trivially associate an sl(2,C)n-

algebra to each infinite distance locus reached by sending n coordinates into a limit [66, 67].

This algebra acts on the three-forms defining the axion basis and thus splits the axion

space into subspaces. We can then generally determine the growth of these subspaces

when reaching the infinite distance point. This allows us to focus on the set of axions that

have decay constants that grow parametrically in a certain path-independent way.

This paper is structured as follows. In section 2 we first review the classification of

infinite distance points in complex structure moduli space. We then introduce a special real

three-form basis adapted to the sl(2,C)n-algebra associated to the infinite distance limit

– 3 –
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and discuss the growth of the associated Hodge metric. In section 3 we then recall some

of the recent insights about the Swampland Distance conjecture for Calabi-Yau moduli

spaces [15, 23] and adapt the presentation to the special three-form basis of section 2,

whereafter we will generalize the stability argument presented in [15] to multi-variable

settings. The axion Weak Gravity Conjecture will then be addressed in section 4. We

identify a candidate tower of D2-brane instantons which prevents the parametric violation

of this conjecture.

Note added. While we were in the process of writing up this paper the reference [31]

appeared, which has some overlap with our work, but is in many respects complementary.

On the one hand, our Type IIA treatment is general and does not focus on particular infinite

distance limits, while [31] focuses on specific limits in the large volume regime. On the

other hand [31] gives an interesting discussion on the modifications of the effective theories,

while we will not address the modifications of the effective theory in the present work.

2 Infinite distances in Calabi-Yau moduli spaces

The aim of this work is to study the couplings of R-R axions in the four-dimensional

effective theory. To motivate the use of the mathematical tools introduced in this section,

let us first briefly recall the relevant structures in Type IIA Calabi-Yau compactifications.

In this case we consider the axions ξI arising from expanding the R-R field C3 into a basis

γI of the third cohomology group H3(Y3,R) via

C3 = ξIγI . (2.1)

The four-dimensional kinetic terms are readily derived to be2

Lkin = GIJ ∂µξ
I∂µξJ , GIJ =

1

2
e2D

∫
Y3

γI ∧ ∗γJ , (2.2)

where eD is the four-dimensional dilaton and ∗ is the Hodge star of the Calabi-Yau threefold.

Note that the metric GIJ , crucial in defining the axion decay constants as we discuss below,

non-trivially depends on the complex structure moduli through ∗.
In this section we will discuss the techniques needed to analyze limits in the moduli

space of Calabi-Yau manifolds in which the axion metric GIJ grows. We will not be able

to introduce the complete mathematical theory relevant to answer these questions, but

rather constrain ourselves to stating some of its main results from [49, 66, 67, 70, 71]. For

a proper mathematical review on the foundations of this subject see e.g. [72]. More details

are also provided in [23].

2Let us stress that in a Calabi-Yau threefold reduction of Type IIA the axions reside in a quaternionic

field space and have additional kinetic terms. These terms play no important role for the considered limits

discussed in section 4, and are absent in Type IIA orientifold truncations [68, 69].
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2.1 On the geometry of the complex structure moduli space

In order to set the stage for the later discussions, let us first recall some basic properties

of the complex structure moduli space Mcs. This moduli space is spanned by the complex

structure deformations that preserve the Calabi-Yau property and has complex dimension

h2,1, where hp,q = dim(Hp,q(Y3,C)) are the Hodge numbers of Y3. Since Mcs(Y3) admits

a special Kähler structure its metric can be derived from a Kähler potential K. Let us

introduce local coordinates zI with I = 1, . . . , h2,1. Furthermore, recall that the Calabi-

Yau threefold Y3 admits a unique (3, 0)-form Ω(z) that varies holomorphically in these

coordinates zI . Ω can be used to define the metric on Mcs via the Kähler potential

K(z, z̄) = − log

[
i

∫
Y3

Ω ∧ Ω̄

]
. (2.3)

Next we introduce a real, integral basis γI for H3(Y3,Z), with I = 1, . . . , 2h2,1 + 2. This

allows us to decompose Ω in its periods ΠI as

Ω(z) = ΠI(z)γI . (2.4)

Furthermore, we can construct a skew-symmetric product 〈·, ·〉 onH3(Y3,C), or component-

wise an anti-symmetric pairing matrix η, given by3

〈v, w〉 =

∫
Y3

v ∧ w, ηIJ = −〈γI , γJ 〉, (2.5)

with v, w ∈ H3(Y3,C). Then we can express the Kähler potential as

K = − log
[
i〈Π, Π̄〉

]
= − log

[
iΠ̄IηIJΠJ

]
. (2.6)

Note that due to the skew-symmetry of 〈·, ·〉 one can choose a symplectic basis γI =

(αK̂ , β
L̂) with K̂, L̂ = 0, . . . , h2,1. This basis satisfies the following properties

〈αK̂ , β
L̂〉 = δL̂

K̂
, 〈αK̂ , αL̂〉 = 〈βK̂ , βL̂〉 = 0. (2.7)

As we will discuss in detail in section 2.4 there is a very special choice of such a symplectic

basis associated to the considered point in moduli space when analyzing asymptotic limits.

2.2 Limits in the complex structure moduli space

We next discuss the relevant limits in this complex structure moduli space Mcs. It will

turn out that the metric GIJ of the axions (2.2) can only grow unboundedly if we approach

a point on inMcs at which the Calabi-Yau manifold Y3 degenerates. Well-known examples

of such degeneration points are the conifold point or the large complex structure point, but

our analysis will be completely general and include also higher-dimensional degeneration

loci. It can be shown that one can blow-up Mcs in such a way that the subspaces at

which Y3 degenerates can locally be described as the vanishing locus of n coordinates

3Note that the skew-symmetric product in [67], and also [15, 23], was denoted by S(v, u) and differs by

a minus sign from the definition used here.

– 5 –



J
H
E
P
0
3
(
2
0
2
0
)
0
2
0

z1 = 0

z2 = 0

N1

N2

γ2

γ1

Figure 1. Two paths γ1, γ2 towards the limiting point t1 → i∞ (z1 = 0) and t2 → i∞ (z2 = 0),

respectively. The paths can lie in different growth sectors, since either the growth of y1 or y2

dominate in these cases. We also indicated the associate log-monodromy matrices N1, N2.

z1 = . . . = zn = 0.4 Instead of working with the zI we will introduce new coordinates

ti = 1
2πi log zi such that the limits of interest are given by

t1 , . . . , tn → i∞ , ζκ fixed , (2.8)

where ζκ are the coordinates that are not taken to a limit.

The growth of the axion metric GIJ in the limits (2.8) will in general depend on the

precise path we are taking to these limiting points. The mathematical machinery we intend

to use does provide us with general growth estimates in case we first divide the space into

sectors, so-called growth sectors, and then demand that the considered path lies within one

of such growth sectors at least for sufficiently large yi = Im ti. One of such growth sectors

is given by

R12···n =

{
ti = xi + iyi

∣∣∣∣ y1

y2
> λ , . . . ,

yn−1

yn
> λ, yn > λ, xi < δ

}
, (2.9)

where we can chose arbitrary positive λ, δ. Other growth sectors can be obtained by the

same expression but with permuted yi. Clearly, if a path lies within one of these sectors we

can relabel the yi such that the respective sector is given by (2.9). In figure 1 we illustrate

two paths for the case that two ti are send to the limit. Let us stress that the requirement

that the considered path resides in one growth sector introduces a mild path dependence

into our analysis, since we exclude paths which are so complicated that they always pass

through multiple sectors.

It is a famous mathematical result [66] that the limiting behaviour of the periods Π,

and also the metric GIJ , crucially depends on the monodromy matrix Ti associated to

the ti = i∞ point. This monodromy matrix appears if one asks how Π transforms under

ti → ti − 1 for some index i, i.e. one has

Π(. . . , ti − 1, . . .) = TiΠ(. . . , ti, . . .) . (2.10)

4This equation describes the intersection of n divisors in the blown-up Mcs.
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The monodromy matrices Ti turn out to possess several very useful properties. Firstly,

all Ti associated to the limit (2.8) commute with each other. Secondly, if a Ti possesses a

non-trivial unipotent part, it defines a nilpotent matrix5

Ni = log Ti . (2.11)

The Ni also form a commuting set of matrices and one has ηNi = −NT
i η. The nilpotent

orbit theorem of [66] allows us to express Π in terms of the nilpotent matrices6

Π = e−t
iNiA(e2πiti , ζ) = e−t

iNi
(
a0(ζ) +O(e2πiti , ζ)

)
, (2.12)

where we sum in the exponential over i = 1, . . . , n. Here a0 is a holomorphic function in

the coordinates that are not send to a limit (2.8). Note here that the exponential yields a

polynomial in ti, since the Ni are nilpotent matrices. The important statement is that the

vector A is holomorphic in zA = e2πitA and ζ, which allows for the above expansion with

leading term a0. This vector a0 determines the asymptotic behavior of Π in the limit (2.8),

since the other terms will be suppressed if we take Im ti to be large. a0 naturally defines a

so-called nilpotent orbit given by

Πnil(t, ζ) = e−t
iNia0(ζ) (2.13)

This nilpotent orbit is the starting point for our analysis of the asymptotic regions in Mcs.

2.3 Classifying infinite distance limits

The information captures by Πnil or (Ni,a0) can be used to classify infinite distance limits.

Recall that the distance between two points P,Q along a path γ is determined by the

integral

dγ(P,Q) =

∫
γ

√
gkl̄ ṫ

k ˙̄tlds (2.14)

where in the complex structure moduli space one has to use the metric gkl̄ = ∂tk∂t̄lK

determined from (2.6). In order that the geodesic distance between points P,Q is infinite,

every path γ between P,Q has to be of infinite lengths. This can only potentially happen

if one of the points, say P , is located at one of the loci t1 = . . . = tn = i∞. However, not

every such locus is at infinite distance. In fact, using the nilpotent orbit (2.13) and the

properties of a0 one shows that [71]

P at infinite distance : N(n)a0 6= 0 , (2.15)

as discussed in detail in [23]. Here we have defined N(n) = N1 + . . . + Nn, but stress that

every linear combination of the Ni with positive coefficients could equally be used.

5In the following we will assume that we have transformed the variables zi and ti, such that only the

uni-potent part of Ti is relevant in the transformation (2.10). This procedure causes us to lose some of the

information about the monodromies of orbifold singularities, but the aspects crucial to the infinite distances

are retained.
6Note that this statement is true up to an overall holomorphic rescaling of Π. Such rescalings yield to a

Kähler transformation of K given in (2.6). Unless otherwise indicated the following discussion is invariant

under such rescalings.
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Type di Index range
rank of

eigenvalues of ηN(i)
N(i) N2

(i) N3
(i)

Ia 0 a = 0, . . . , h2,1 a 0 0 a negative

IIb 1 b = 0, . . . , h2,1 − 1 2 + b 0 0 2 positive, b negative

IIIc 2 c = 0, . . . , h2,1 − 2 4 + c 2 0 not needed

IVd 3 d = 1, . . . , h2,1 2 + d 2 1 not needed

Table 1. Classification of limits in the complex moduli space.

It was shown in [15, 23] that it is crucial to actually distinguish several cases of infinite

distance limits. In order to do that one needs to analyze the properties of N(n) and η. In

fact, one can analyze the occurring singularity for any step sending t1, . . . , ti → i∞, for

i = 1, . . . , n, associating an N(i) = N1 + . . .+Ni. For each such pair (N(i), η) one finds one

of 4h2,1 types of limiting behaviours denoted by [49]

Ia , IIb , IIIc , IVd , (2.16)

where a, b, c, d are indices with index ranges listed in table 1. The table also gives the rules

that allow to associate the types to (N(i), η). Let us stress that each of this limits corre-

sponds to making Y3 singular and (2.16) provides a classification of all allowed singularities.

One can show that the type at each step i also determines the highest integer di such

that

Ndi
(i)a0 6= 0 , (2.17)

with di = 0, 1, 2, 3 for the four types I, II, III, and IV, respectively. We have included

these labels in table 1. Since we are interested in limits that lie at infinite distance, we can

use (2.15) to infer

infinite distance limits: (N(n), η) is of type IIb , IIIc or IVd . (2.18)

It will be these limits in which we will study the behaviour of the axion metric GIJ given

in (2.2).

2.4 A special three-form basis and the sl(2)-splitting

Having classified the infinite distance limits in Mcs we next want to connect this informa-

tion with the axion metric (2.2) for the axions ξI arising in the expansion (2.1). In order to

do that it turns out to be very useful to introduce a special basis γI for H3(Y3,R), which

is adapted to the limiting locus that we approach. More precisely, the basis will depend

on the following set of data:

(1) the monodromy matrices Ni relevant for the considered limit;

(2) the limiting vector a0 relevant for the considered limit;

(3) the growth sector (2.9) in which the considered path resides.

– 8 –
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The rough idea is to split up H3(Y3,R) into a direct sum of smaller subspaces whose

elements have a particular growth in the fields yi = Im ti approaching infinity. Furthermore,

one finds a ‘limiting Hodge metric’, in which these spaces are orthogonal. At first, this

seems like an impossible task, since even the approximate periods (2.13) contain numerous

mixed terms due to the general form of the Ni and a0. However, there is the famous

formalism of [66, 67] that allows to systematically approach this problem.

The in-genius idea of [67] is to reformulate this structure such that it non-trivially

‘decomposes’ into sl(2,C)-blocks that decouple in a well-defined sense. More precisely, [67]

constructs a set of n mutually commuting sl(2,C)-triples acting on H3(Y3,R) form the

above local data (1)-(3). We will not describe the steps to actually perform this construc-

tion, but refer the reader to [23] for a detailed review and the study of an explicit example.

Let us simply assert that we went through the relevant steps and introduce the

commuting sl(2,C)-triples : (N−i , N
+
i , Yi) , i = 1, . . . , n . (2.19)

These triples satisfy the standard commutation relations [Yi, N
±
i ] = ±2N±i and [N+

i , N
−
i ] =

Yi. We can now use these triples to split H3(Y3,R) into eigenspaces. Let us introduce

H3(Y3,R) =
⊕
`∈E

V` , ` = (`1, . . . , `n) , (2.20)

where `i ∈ {0, . . . , 6} are integers representing the eigenvalues of Y(i) = Y1 + . . .+ Yi, i.e.

v` ∈ V` : Y(i)v` = (`i − 3)v` . (2.21)

We have denoted by E the set of all possible vectors ` labelling non-trivial V` and collecting

all eigenvalue combinations of (Y(1), . . . , Y(n)). Let us stress that the range of `i labelling

non-empty V` is correlated with the type of limit associated to (N(i), η) when sending

t1, . . . , ti → i∞ as listed in table 1. In fact, one finds

I, II : `i = 2, . . . , 4 , III : `i = 1, . . . , 5 , IV : `i = 0, . . . , 6 . (2.22)

Note that using the fact that the singularity can only increase sending more ti to the limit

we find that the range of `i successively increases with i.

One can derive several interesting properties of the vector spaces V`. Most important

for us is the fact that

dimV` = dimV6−` , (2.23)

where we abbreviated 6 = (6, . . . , 6). This implies that we can one-to-one identify a basis

vector of V` and V6−`. Furthermore, these spaces V` satisfy certain orthogonality relations,

as follows from

(ri − 3)〈V`, Vr〉 = 〈V`, Y(i)Vr〉 = −〈Y(i)V`, Vr〉 = (3− `i)〈V`, Vr〉 , (2.24)

by using (2.21) and that 〈·, Y(i)·〉 = −〈Y(i)·, ·〉. Namely, it implies that the product between

these spaces can only be non-zero if `i + ri = 6. And since this should hold for all i, the

vector spaces V` satisfy the orthogonality property

〈V`, V`′〉 = 0 unless `+ `′ = 6 . (2.25)

– 9 –
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It should now be clear from (2.23), (2.25), and the skew-symmetry of the inner product

〈·, ·〉 that the V` define naturally a special symplectic basis with the properties (2.7).

Importantly the limiting vector a0 turns out to not generally fall into one of the spaces

V` ⊗ C of the splitting (2.20). However, as shown in [67] and discussed in detail in [23],

there are always two real matrices ζ ′, δ which rotate ã0 = eζ
′
e−iδa0, such that

ã0 ∈ V3+d ⊗ C , d = (d1, . . . , dn) , (2.26)

with di defined in (2.17). Crucially, this construction is such that one also finds that the

complex conjugate of ã0 lies in Vd, such that

Re ã0 , Im ã0 ∈ V3+d , d = (d1, . . . , dn) . (2.27)

The vector ã0 generally depends on the remaining coordinates ζκ not taken to a limit

in (2.8). It can be used to define the so-called Sl(2)-orbit

ΠSl(2)(y, ζ) = e−iy
iN−i ã0(ζ) . (2.28)

This orbit asymptotically approximates the nilpotent orbit (2.13) in the limit
y1

y2
, . . . , y

n−1

yn , yn →∞ and xi = 0.

It should be stressed that many key properties of our later constructions are contained

in this very non-trivial sl(2)-split (2.20) of H3(Y3,R). One of these properties, namely the

growth of the Hodge metric of this basis, we will discuss next.

2.5 Asymptomatic behavior of the Hodge norm

One of the remarkable applications of the sl(2)-splitting, which we introduced in section 2.4,

is to obtain an asymptotic expression for the Hodge metric that appears, for example, in

the definition (2.2) of the axion metric GIJ .

Let us first introduce some notation and define the Hodge norm of a three-forms

v ∈ H3(Y3,C) by

‖v‖2 = 〈v̄, ∗v〉 =

∫
Y3

v̄ ∧ ∗v . (2.29)

As stressed above, the Hodge star ∗ in general depends very non-trivially on the complex

structure moduli. In order to make this dependence explicit, one can decompose v into

its components in Hp,q(Y3,C), with p + q = 3. The individual components can then be

expressed in terms of the period vector Π and its Kähler-covariant derivatives. It turns

out that one can control the asymptotic of the periods Π in the limits (2.8) which then

leads to an asymptotic expression for the Hodge metric.7

To make the asymptotic form of the metric explicit, we first introduce a limit Hodge

norm [67, 72]

‖v‖2∞ = 〈v̄, ∗∞v〉 . (2.30)

While we will not define ∗∞ in any detail, let us record some of its properties. Firstly,

‖ · ‖∞ is finite in the limit (2.8), since ∗∞ does no longer depend on the fields t1, . . . , tn.8

7This again non-trivially applies the sl(2)-splitting introduced in the previous subsection.
8Note that ∗∞ can still depend on the coordinates ζ and hence become singular if these are sent into

special limits.
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It is adapted to the splitting of the vector space H3(Y3,R) introduced in (2.20) via the

orthogonality relations

〈V`, ∗∞V`′〉 = 0 unless ` = `′ . (2.31)

The norm (2.30) can be used to give an asymptotic expression for the original Hodge

norm (2.29) in the limit (2.8). Decomposing a general real three-form u into its components

u` ∈ V` one has [67, 70]

‖u‖2 ∼
∑
`∈E

(
y1

y2

)`1−3

. . .

(
yn−1

yn

)`n−1−3

(yn)`n−3 ‖u`‖2∞ , u =
∑
`∈E

u` . (2.32)

This expression will be our main tool in the rest of this paper to evaluate the growth of

the axion metric GIJ and the associated D2-brane instanton actions.

3 The swampland distance conjecture for Calabi-Yau moduli

In this section we revisit the recent constructions of [15, 23] that provided strong evidence

for the validity of the Swampland Distance Conjecture (SDC) for all infinite distance limits

inMcs(Y3). The crucial observation of these works is, that one can relate the classification

of infinite distance points, recalled in section 2.3, with the existence of a tower of D3-branes

wrapped on three-cycles of Y3 with masses becoming exponentially light when approaching

the infinite distance points. One of the main tasks in establishing such a picture is the

search for suitable three-cycles that can host such states. While it will not add much to the

strategy presented in [15, 23], we will reformulate and generalize the statements using the

special basis introduced in section 2.4. This reformulation turns out to be an elegant way

of stating the findings and will serve as a prelude to section 4, where we will consider axion

decay constants and Euclidean D2-branes wrapping three-cycles of Y3. Furthermore, we will

generalize the stability properties of the D3-brane states of [15], where they studied the one-

parameter setting, to the multi-parameter infinite distance limits considered in [23], which

will play an important role in the test of the axion Weak Gravity Conjecture in section 4.

3.1 Construction of the D3-brane states

Let us begin by introducing the necessary basic properties of the three-cycles that can

host the D3-brane states required to satisfy the SDC. In order to specify the state that

we obtain from wrapping a D3-brane on a three-cycle of Y3, we will give its Poincaré dual

three-form Q ∈ H3(Y3,R). Since we are mainly interested in the mass of this state we will

not discuss the quantization of Q in the following.9 Since we are performing a Calabi-Yau

compactification the four-dimensional theory is an N = 2 supergravity theory. Our aim is

to considere candidate charges Q that correspond to BPS states. This non-trivial assertion

will have severe consequences, as we discuss below. In the following we will first establish

the conditions on Q in order that the corresponding D3-branes state becomes light in an

infinite distance limit t1, . . . tn → i∞ introduced in (2.8).

9We note that many aspects of the structure introduced here can be generalized over Q.
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Given a BPS D3-brane state with charge Q we can compute its mass by evaluating its

central charge using M(Q) = |Z(Q)|, with the central charge given by

Z(Q) =
〈Q,Π〉
‖Π‖

, (3.1)

where Π are the periods appearing in (2.6) and 〈·, ·〉, ‖ · ‖ were defined in (2.5), (2.29). We

are interested in finding the charge vectors Q such that the states become massless in the

infinite distance limit. Since ∗Π = −iΠ we can apply Cauchy-Schwarz inequality to find

the following upper bound on the mass of the state

M(Q) =
|〈Q, ∗Π〉|
‖Π‖

≤ ‖Q‖ . (3.2)

This implies that a sufficient condition for becoming light in the limit (2.8) is that ‖Q‖ → 0.

Classifying in a higher-dimensional moduli space the states that admit such a behaviour

for a general path approaching the infinite distance point is clearly challenging. However,

as we will see in the following the machinery introduced in section 2 allows us to do this

for all paths that reside in a single growth sector.

Let us now consider a path with (2.8) that approaches an infinite distance point and

eventually resides in the growth sector (2.9). In this case we can apply the growth re-

sult (2.32). The requirement that Q behaves as ‖Q‖ → 0 along each such path, leads us

to define the vector space

Vlight =
⊕

`∈Elight

V` , Elight = {` ∈ E | `1, . . . , `n−1 ≤ 3, `n < 3} , (3.3)

where we recall that V` are the vector spaces introduced in (2.20). If we require Q ∈ Vlight we

thus have a corresponding state that becomes massless at the infinite distance point. Let us

remarks in order here. Firstly, the requirement Q is a sufficient condition for masslessness,

since ‖Q‖ gives an upper bound for M(Q). In other words, there could be states that

become massless in the infinite distance limit whose charges are not in Vlight.
10 Secondly,

the set Vlight labels states that are massless along any path in the considered growth sector.

Along special paths there could be more states becoming light than captured by Vlight. Let

us already mention that this path-independence requirement will be equally relevant when

studying the axion decay constants and thus will be discussed further in section 4.

Next we want to make a distinction between two types of components for Q, such that

we can write it as

Q = QG + QF , (3.4)

where the subscripts indicate that we are dealing with Type G states and Type F states, re-

spectively.11 We define this split, such that the former are intimately linked to the presence

of gravity, while the latter are also present in purely field theoretic settings. Concretely,

10In particular, all Type F states introduced in (3.5) become massless at the infinite distance point. Note,

however, that this condition together with the BPS condition is likely very strong.
11In [15] Type G and F states were dubbed Type I and II states respectively. It is convenient to change

the name to avoid confusion with the types of limits in (2.16).
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we require that Type G states become massless as a power law in the yi, whereas Type F

states do so at an exponential rate. These growth rates can be inferred from the product

of the charge vectors Q with the nilpotent orbit Πnil. Namely, by using the nilpotent orbit

approximation for Π we neglect exactly the exponential terms that determine the mass of

Type F states. Then the conditions for Type F and Type G states can be phrased as

〈Πnil,Q
F〉 = 0 , 〈Πnil,Q

G〉 6= 0 . (3.5)

Note that this does not define a unique split. The set of Type F states defines a vector

space. However, QG should be viewed as representing an equivalence class, since we are

free to add any Type F charges to a Type G state. This last feature will be crucial in the

context of the axion Weak Gravity Conjecture later on.

Although Type G states do not form a vector space, we can still write down a basis

of representatives {q̂Î}Î=0,1,... for the Type G charges. However, relating such a basis to

the subspaces V` turns out more difficult. Let us therefore derive a sufficient condition

that determines a set of Type G vectors. The main issue is that the nilpotent orbit

approximation relies on the vector a0, whereas it is Re ã0 and Im ã0 that have a definite

location (2.27) in the spaces V`. To relate the nilpotent orbit and the Sl(2)-orbit (2.28)

directly, we must take a special limit. Namely, if we take the limit y1

y2
, . . . , y

n−1

yn , yn →∞
we can replace Πnil by ΠSl(2). Now let us apply this to the defining property of a Type F

state. Since it should hold for all values of yi, we find the following implication

〈Πnil,Q
F 〉 = 0 =⇒ 〈ΠSl(2),Q

F 〉 = 0 . (3.6)

We can use the negation of this statement to find Type G states. Namely, it tells us that

〈ΠSl(2),q〉 6= 0 =⇒ 〈Πnil,q〉 6= 0 , (3.7)

with q ∈ H3(Y3,R). Thus the search for a basis of Type G states can be partly fulfilled

by finding vectors q that satisfy 〈ΠSl(2),q〉 6= 0. And because ΠSl(2) can be expressed

in terms of ã0, we can directly relate such vectors to the vector spaces V`. We can thus

use (3.7) to derive a relevant set of Type G states. With these preliminaries, we are now

able to further discuss the construction of the charge vectors Q for the infinite tower of

states. We already noted that we will restrict our considerations to charges Q ∈ Vlight

defined in (3.3). Furthermore we pointed out that only the Type G charge of these states

is relevant in the context of the SDC. These can be determined using the condition (3.7),

and the polarization constraint

− i3−dn〈ã0, (N
−
1 )d1(N−2 )d2−d1 . . . (N−n )dn−dn−1 ¯̃a0〉 > 0 , (3.8)

where d = (d1, . . . , dn) was given in (2.27). Hence, we see that by using the sl(2,C)n-algebra

a set of candidate vectors generating the Type G states is given by acting sufficiently many

times with N−1 , . . . , N
−
n on the vectors Re ã0 and Im ã0, such that the resulting vectors are

in Vlight. In order to do that it is convenient to recall that

N−i V` ⊆ V`′ with `′ = (`1, . . . , `i−1, `i − 2, . . . , `n − 2) , (3.9)
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and the location of Re ã0 and Im ã0 is Vd+3 as given in (2.27). Let us denote by {qÎ}Î=0,1,...

the set of charge vectors obtained by acting with N−1 , . . . , N
−
n on Re ã0, Im ã0 that are

located in Vlight.

Having constructed representatives qÎ of all Type G states, we can check their respec-

tive growths by using (2.32). By definition of Vlight all such states will have decreasing

norm ‖ ·‖ when approaching the singularity. Let us denote by q0 the state with the slowest

decrease. In order to do that we consider the growth of a vector qI to be smaller or equal

to the growth of qJ , if there exists a finite constant γ such that

||qI ||
||qJ ||

< γ , (3.10)

along every path approaching t1, . . . , tn → i∞ in the considered growth sector (2.9). It is

not hard to check in examples that this gives a well-defined transitive order among the qÎ ,

since they are in Vlight and constructed from Re ã0, Im ã0. It is, however, important to stress

that there are cases in which there is no unique element with the slowest decrease. We then

can consider the set of elements with the slowest decrease and pick any element calling it q0.

We have now the sufficient preparation to introduce the infinite set of charge vectors

that we will consider. We thus define

QG(q0|mI) = q0 +
∑
I

mIqI , (3.11)

with mI some integer coefficients. For simplicity, we will take the mI to be non-negative

in the rest of this paper. It was argued in [15] that the tower of states relevant to the SDC

should arise from increasing the numbers mI . The intuitive argument for this statement

was by considering stability of BPS states, i.e. by asking if the states (3.11) labelled by mI

can possibly decay. For the general expression (3.11) of QG(q0|mI) stability is very hard

to analyze. However, as noted in [15] the situation improves if the charges QG(mI) can be

represented as an orbit

QG(q0|mI) = exp

(∑
I

mIN
−
I

)
q0 . (3.12)

In this case one can argue for a stability argument by using the phase shifts and we will

discuss this in more detail in section 3.2. However, as we will see below and was already

pointed out in [15], such an orbit does not exist for every type of limit. In these cases one

can still write down a tower of states (3.11) labelled by integers mI by using several Type G

states with the same growth. However, in such cases one loses the stability arguments valid

for the orbit (3.12) and different arguments would have to be employed.12 We stress here,

that a slightly more involved the construction of (3.11) and (3.12) was suggested in [23].

Namely, it was shown that there exists a natural construction of the orbit and hence the

qI if the type of the singularity enhances further when sending more than n coordinates

to a limit. We will not need this construction in the following when working with (3.11).

12This was also stressed in [30].
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Having discussed the Type G component QG of the charge vectors, let us next turn

to the Type F component QF. As mentioned above, we are in principle free to add any

Type F charges to our charge vector, since these will only result in additional terms for

the central charge Z(Q) that are exponentially suppressed. Thus from the perspective of

the SDC, we do not have to keep track of such components of the state. However, it will

be crucial from the perspective of the axion WGC to include these Type F charges for the

state. We can therefore consider the following generalized charge vector

Q(q0|mI , m`) = QG(q0|mI) + QF(m`) = q0 +
∑
I

mIqI +
∑′

`∈Elight, α`

m
α`

` v`α`
(3.13)

where the prime indicate that we should exclude the basis vectors q0,qI in the sum over the

Type F charge vectors. This means that the Type F charges m
α`

` exclude these components

as well.

3.2 On the stability of the D3-brane states

Now that we have discussed which D3-brane states become light in the infinite distance

limit, we want to examine the stability properties of this tower of states. In [15] it was

already found for one-parameter Type IV infinite distance limits that, at a given instance

along the limit, only a finite number of these states are stable against decays. Let us denote

this finite number by mI
crit for the charge generated by qI , which indicates the critical length

of our tower of states. They found that this critical length scaled as m1
crit ∼ y1, such that

the length of the tower increases as we move further along the infinite distance limit, and

that the tower becomes of infinite size as we send y1 → ∞. Here we will generalize this

feature to multi-parameter infinite distance limits, which will play an important role in the

test of the axion Weak Gravity Conjecture in section 4.

The arguments made in [15] relied crucially on aspects of N = 2 BPS states, and thus

so will ours. Let us therefore begin by shortly recalling their stability properties, and refer

to the original articles [73–83]. Consider three BPS states A,B and C, with their charge

vectors denoted by qA,qB and qC respectively. We want to study the situation where

state C is unstable against decay into anti-state Ā and state B. The charge vectors of

these states must satisfy

qC = qĀ + qB , (3.14)

with qĀ = −qA. The masses of these states satisfy

M(qC) ≤M(qĀ) +M(qB) , (3.15)

which follows from the linearity of the central charge in the charges. The state C then

becomes unstable against decay if this inequality is saturated. This statement can be made

more explicit by considering the (normalized) phase of the central charge

ϕ =
1

π
Im logZ(q) . (3.16)
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The alignment of the phases ϕ(B) = ϕ(Ā) then indicates that C becomes unstable against

the decay into Ā and B, which corresponds to

ϕ(B)− ϕ(A) = 1 . (3.17)

The loci of this equation in Mcs are called curves of marginal stability, such that if we

cross this curve in the moduli space, the state C is only marginally stable against decay. In

essence, this boils down to a restriction of this phase to a range (−1, 1) in order for the state

C to remain stable, as discussed in more detail in [75, 78] in the context of so-called stable

pairs. This aspect played an important role in the argument presented in [15], where they

generated the states of the tower by circling the infinite distance point until the phase of

the central charge began to rotate and they thus crossed such a curve of marginal stability.

Then the number of windings before they encountered this curve set the critical length

m1
crit of the tower.

It is important to mention that the product states Ā, B cannot be chosen arbitrarily

such that (3.14) holds, but they must be mutually non-local as well, that is, 〈qĀ,qB〉 6=
0 [73, 74]. Phrased oppositely, it tells us that two states can only form a bound state if their

charges are mutually non-local. Then for states that lie in Vlight it is useful to recall that,

by use of orthogonality relations (2.25), this vector space satisfies the following property

〈Vlight, Vlight〉 = 0 . (3.18)

Therefore no two states that lie in Vlight can form a bound state together. In particular, this

tells us that any two states Q(q0|mI ,m`),Q(q0|m′I ,m′`) in our infinite tower are mutually

local, such that they cannot bound together. It also indicates that the product states that

result from the decay of a state Q(q0|mI ,m`) of our tower must necessarily have charges

that do not lie in Vlight to have a non-zero intersection product between these states.

Before we argue for stability properties of our tower of states, it will prove to be useful

to examine the asymptotic properties of the central charge of Type G charge vectors in more

detail. To be more precise, we want to consider Type G charges that are constructed out of

ã0 by applying lowering operators N−i , which will always be realized in our constructions.

Therefore, we want to rewrite the nilpotent orbit (2.13) using the sl(2,C)-data. This can

be done by rewriting the orbit as [67, 72]

Πnil = α(x, y) e−x
iNie−1(y) p(y) e

−iN−
(n) ã0 , (3.19)

where α(x, y) is some overall coefficient function that accounts for the freedom to rescale

the periods. Crucially, the nilpotent orbit contains the matrix-valued function

e(y) = exp

[
1

2

n−1∑
j=1

log

(
yj

yj+1

)
Y(j) +

1

2
log(yn)Y(n)

]
(3.20)

=

(
y1

y2

) 1
2
Y(1)

. . .

(
yn−1

yn

) 1
2
Y(n−1)

(yn)
1
2
Y(n) ,

which encodes the asymptotic behaviour in the limit y1, . . . , yn →∞ and is the origin of the

scaling in (2.32). The complex matrix-valued function p(y) is a polynomial in (y1/y2)−1/2,
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. . ., (yn−1/yn)−1/2, (yn)−1/2 with constant term 1. Note that the other terms in this

polynomial can be bounded by factors of λ−1/2 within the growth sector (2.9).

Then consider the central charge Z(q) of a Type G charge q that is located in a single

eigenspace V`. For simplicity let us set x = 0, since we want to determine the growth in

the coordinates yi. Then we obtain

Z(q) = α(x, y) eK/2〈e−1(y) p(y) e
−iN−

(n) ã0,q〉 . (3.21)

By properties of the symplectic product 〈·, ·〉 we can move e−1 to the other side of the

product as e, and application on q then results in the same growth behavior as one finds

for ‖q‖ using (2.32). Inserting (3.19) into the expression for eK/2 we then obtain

Z(q) ∼ eiθ
(
y1

y2

) `1−3
2

. . .

(
yn−1

yn

) `n−1−3

2

(yn)
`n−3

2 〈p(y)e
−iN−

(n) ã0,q〉 , (3.22)

where θ is the overall phase inherited from α and we stress that this equation is true only

up to overall numerical factors. Note that for relative phases between two central charges

the factor eiθ cancels, such that the only remaining part of the phase is determined by

〈p(y)e
−iN−

(n) ã0,q〉.
To simplify this expression even further, consider a Type G charge vector q that

is constructed out of ã0 by acting with lowering operators N−i . We can infer from the

polarization condition (3.8) that the intersection product of e
−iN−

(n) ã0 via the constant 1

in the expansion of p(y) with q is non-zero by construction.13 Then (3.22) reduces to

Z(q) ∼ eiθ
(
y1

y2

) `1−3
2

. . .

(
yn−1

yn

) `n−1−3

2

(yn)
`n−3

2 〈e−iN
−
(n) ã0,q〉 . (3.23)

In this case 〈e−iN
−
(n) ã0,q〉 indicates the relevant part of the phase of the central charge.

Now we want to investigate how far we can move up into our tower before states start

to become unstable, where we will set the Type F charges to zero for simplicity. Thus we

consider a state q0, and look at how the phase of its central charge ϕ(q0) shifts as we move

up in the tower to a non-zero value mJ for a Type G charge. Then we find that

|ϕ
(
QG(mJ)

)
− ϕ(q0)| = 1

π

∣∣∣∣Im log

[
1 +

Z(mJqJ)

Z(q0)

]∣∣∣∣
∼ mJ‖qJ‖

π‖q0‖

∣∣∣∣∣Im 〈e−iN
−
(n) ã0,qJ〉

〈e−iN
−
(n) ã0,q0〉

∣∣∣∣∣
.
mJ‖qJ‖
π‖q0‖

(3.24)

where we expanded this logarithm and used (3.22). Note the analogy with [15], where they

circled the infinite distance loci to generate the tower of states, which resulted in these

13Other terms in this expansion of p(y) can potentially lead to non-zero intersections as well, but these

contributions can never exceed the growth of Z(q) that follows from the constant term 1, since these other

terms are bounded by factors of λ−1/2.
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phase shifts. This expression is simply the generalized version of those phase shifts to multi-

parameter infinite distance limits, which reduces to the one-parameter result ‖q0‖/‖q1‖ ∼
y1 by picking q0 = (N−1 )2ã0 and q1 = (N−1 )3ã0 using (2.32). It hints at some critical scale

mJ
crit ∼ ‖q0‖/‖qJ‖ , (3.25)

such that the phase of the central charge Z(QG(q0|mJ) potentially shifts by 1
2 . If this phase

shift actually occurs, depends on whether the central charges of q0 and qI differ in phase,

as can be seen in the second line of (3.24). For charge vectors given in orbit form (3.12)

this phase difference is always realized, since qJ = N−J q0, and thus the numerator picks

up a factor of i less than the denominator by use of the polarization condition (3.8). For

charge vectors that cannot be written in orbit form, one needs to go more carefully through

the polarization conditions (3.8).

We can then see this shift in phase of the central charge Z(QG(mJ)) as we increase

mJ as an indication that the states will become unstable after a certain critical scale mJ
crit.

Namely, we know from the stability properties of BPS states that a state can become

unstable when phases of central charges rotate, and we have

ϕ(QG(mJ)) =

{
ϕ(q0) + 1

2 , for ‖q0‖/‖qJ‖ � mJ ,

ϕ(q0) , for ‖q0‖/‖qJ‖ � mJ .
(3.26)

Thus the phase of Z(QG(mJ)) must rotate in the region given by ‖q0‖/‖qJ‖ ∼ mJ , such

that relative phase between product states can potentially rotate out of the stable range

(−1, 1), and QG(mI) then becomes unstable. Therefore it is a sufficient condition to require

mJ . mJ
crit ∼ ‖q0‖/‖qJ‖ to ensure the stability of the states that we consider at a given

instance along the limit. Note that different arguments would have to be employed for

the growth of the tower in the case that the norms of q0 and qJ have the same growth

behavior. However, for the purposes of this work such properties will not be needed.

We expect a similar story to hold for the Type F charges of our states, that is, the

charges m` must have some upper bound mcrit as well. This bound can be motivated

from the fact that their contribution to the central charge vanishes asymptotically by

construction (3.5), since Type F charges enter the central charge via the exponentially

suppressed corrections to the nilpotent orbit approximation (2.13). Then the upper bound

mcrit for Type F charges should grow such that contributions to the central charge still

vanish asymptotically, which suggests scales comparable to exponential growth.

3.3 One-parameter infinite distance limits

It is instructive to briefly review the properties of the towers of states that arise in one-

parameter infinite distance limit. This means that we consider Type IIb, IIIc, and IVd

infinite distance limits with one parameter y1. A first task is to determine the dimensions

of the vector spaces V`. Using appendix A.1 and the classification in [23, 49], we readily

find the result listed in table 2.

The next step is to find the vectors that generate the Type G charges. As discussed

in the section 3.1 they satisfy

〈ΠSl(2),q〉 6= 0 . (3.27)
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name dimV0 dimV1 dimV2 q0,q1

Ia 0 0 a -

IIb 0 0 b+2
q0 =N−1 Re(ã0)

q1 =N−1 Im(ã0)

IIIc 0 2 c
q0 = (N−1 )2Re(ã0)

q1 = (N−1 )2Im(ã0)

IVd 1 0 d
q0 = (N−1 )2ã0

q1 = (N−1 )3ã0

Table 2. This table lists the dimensions of the spaces V` for ` ∈ Em = {0, 1, 2} for the possible

one-parameter infinite distance limits. In addition, it includes the vectors that span the Type G

charges for the charge vector QG.

Here ΠSl(2) can be expressed in terms of nilpotent matrices N−1 and the vector ã0. Therefore

it will prove to be useful to recall some polarization conditions for this vector ã0. To be

begin with, we know that

− i3−d〈ã0, (N
−
1 )d ¯̃a0〉 > 0 , (3.28)

with d = 1, 2, 3 for a Type II, III or IV infinite distance limit respectively. Furthermore,

we have that ¯̃a0 = ã0 for a Type IV infinite distance limit, such that ã0 is real. And for a

Type II or III singularity we have an additional polarization condition that tells us that

〈ã0, (N
−
1 )dã0〉 = 0 . (3.29)

Together these relations suffice to identify basis vectors q0,q1 for the Type G charges of our

charge vector Q, which have been included in table 2. We should note that q0,q1 ∈ V3−d
for Type II and III infinite distance limits, whereas q0 ∈ V2 and q1 ∈ V0 for a Type IV

singularity.

Now let us discuss the stability of the tower of states for each of these infinite dis-

tance limits, that is, we will comment on the critical size m1
crit of the tower of states at

a given instance along the infinite distance limit. For Type IV infinite distance limits it

has already been argued that m1
crit ∼ y1 in [15], which is in agreement with our discussion

in section 3.2. In contrast, for Type II and III infinite distance limits we cannot apply

directly the stability arguments after (3.24), since q0,q1 have the same growth. In specific

examples, one might be able to argue for an mcrit using global properties of the moduli

space [27, 30]. Fortunately, we will not need an expression for mcrit in these cases.

4 The weak gravity conjecture for R-R axions

In this section we study the couplings of R-R axions in the context of the Weak Gravity

Conjecture (WGC) for axions. Let us therefore shortly recall this conjecture [4]. In the case
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that one has only one axion, the conjecture states that there exists an instanton coupled

to the axion such that14

fS ≤ qMp , (4.1)

where f denotes the axion decay constant, S is the instanton action, and q is the instanton

charge. For a given axion ξ, with a periodic field range ξ ∼= ξ + 2π, we define its decay

constant f via its kinetic term

Lkin = −f2 ∂µξ∂
µξ . (4.2)

The instanton charge is defined by noting that axion couples to the instanton via the

exponential e−S+iqξ. This implies that the periodicity of this contribution is 2π/q and the

field range of the canonically normalized axion 2πf/q.

The formulation of the axion WGC becomes significantly more subtle in a higher-

dimensional axion space. In order to treat such cases requires us to introduce the vectors

zIa =
∑
J

fIJ qaJ
Sa

, (4.3)

where fIJ are the inverse axion decay constants, Sa instanton action of an instanton

labelled by a, and qaJ encodes the axion coupling such that the instantons are weighted by

a factor exp(−Sa+iqaJ ξ
J ). The axion decay constants are defined to diagonalize the metric

of the axions as GIJ = (fT·f)IJ . It was suggested in [50, 52] that the generalization of (4.1)

is the statement that the convex hull that is spanned by ±za = ±zIaγI contains the unit ball

(i.e. with radius M−1
p ), where γI are the basis vectors in axion space normalized such that

the axion ξI has a 2π periodicity. It is important to notice that there are various refinements

of this conjecture which propose stronger conditions [4, 15, 62, 64, 65]. Most relevant for us

will be the statement of the strong axion WGC, which states that the convex hull condition

should be satisfied for the za constructed from the instantons with the smallest actions. In

other words, one orders the instantons coupling to some axion direction by the value of their

action and only retains the one with the smallest value Sa to construct the vectors (4.3).

Before we proceed with the analysis of the general multi-axion setup, let us already give

a qualitative outline of what we can expect. In the four-dimensional Type IIA Calabi-Yau

compactifications that we will be considering, the quantities f and S vary non-trivially over

the complex structure moduli space Mcs(Y3). If we take an infinite distance limit in Mcs,

we will find that f and S have certain growth rates in the coordinates yi by use of growth

properties (2.32). The axion WGC (4.1) then suggests that the parametrical growth of

the axion decay constant f should be cancelled by the decrease of the instanton action S.

Therefore, our task is to find, for an axion direction with a parametrically growing decay

constant, an instanton that couples to this axion with an instanton action that decreases

at a sufficient rate. It is at this stage that the three-cycles of Y3 discussed in the previous

section become relevant. Namely, instead of wrapping D3-branes on these three-cycles to

find states that become massless in infinite distance limits, these three-cycles can now host

Euclidean D2-branes with a parametrically decreasing action. We will find that we can

14We should note that we have set Mp = 1 throughout the rest of this section.
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couple every R-R axion to one of these instantons, provided that its axion decay constant

f grows in a path-independent manner. The fact that our tower of instantons also grows at

a certain rate specified by mcrit, discussed in section 3.2, implies that the instanton charge

q grows parametrically as well, which will play a crucial role in this test of the axion WGC.

Namely, we will find that the decrease of the instanton action S will not always suffice

to cancel the growth of the axion decay constant f completely, and that then the leftover

growth is matched by the growth of the instanton charge q.

4.1 Asymptomatic axion decay constants for R-R axions

For completeness, we will first recall some basic aspects of R-R axions. As mentioned

before, these axions ξI follow from expanding the R-R field C3 into a basis of harmonic

3-forms γI of Y3 via

C3 = ξIγI , (4.4)

with the kinetic terms for these fields given by

Lkin = GIJ ∂µξ
I∂µξJ , GIJ =

1

2
e2D〈γI , ∗γJ 〉 , (4.5)

where D denotes the four-dimensional dilaton, and 〈·, ·〉 is defined in (2.5). Then the field

range of these axions is ξI ∼= ξI + 2π, such that the metric GIJ defines the axion decay

constants. A suitable basis for this metric adapted to the infinite distance limit is the

special threeform basis discussed in section 2.4, since it decomposes the Hodge norm in

blocks that have the same growth rate (2.32). Let us therefore split up these fields into

axions ξ
`
α` corresponding to the basis vectors v

α`

` , α` = 1, . . . , dimV`, that span the vector

spaces V`. Collecting all v
α`

` we have, by using (2.20), a basis of H3(Y3,R) and the ξ
`
α`

parameterize all axion directions. The kinetic terms for these fields are then given by

Lkin =
1

2
e2D

∑
`,r∈E

∑
α`,βr

〈vα`

` , ∗v
βr
r 〉 ∂µξ`α`

∂µξ
r
βr
, (4.6)

which, by using (2.31) and (2.32), we can rewrite in the infinite distance limit into

Lkin ∼
1

2
e2D

∑
`∈E

∑
α`,β`

(
y1

y2

)`1−3

. . .

(
yn−1

yn

)`n−1−3

(yn)`n−3〈vα`

` , ∗∞v
β`
` 〉 ∂µξ

`
α`
∂µξ

`
β`
. (4.7)

Some comments about (4.7) are in order here. Firstly, note that this expression is

an asymptotic expression for the kinetic terms, as indicated by the symbol ∼, which can

be used to bound the actual field space metric. As it is equally true for (2.32), it does

not capture the numerical factors and in fact it does not follow from our considerations

how large the numerical constants in (4.7) need to be chosen such that it provides a good

approximation to (4.6). In fact, the more precise statement it is the actual Hodge norm

is bounded by the norm asymptotic norm (2.32) when multiplied by some finite constant

depending only on how close one is to the limiting point. Accordingly our results will

always only gives bounds with undetermined numerical coefficients. Secondly, we note that

we have used the orthogonality (2.31) among the V`. This simplifies the result significantly,
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but needs to be read, with our first remark in mind, as the statement that the off-diagonal

terms among different V` are sub-dominant when considering sufficiently large y1, . . . , yn.

Nevertheless, it divides the axions into various sets that ‘decouple’ at least when considering

the dominant growth. It is clear from (4.7) that we can make no such decoupling statements

when considering axions coming from the same V`. All axions from a fixed V` grow with

the same rate in y1, . . . , yn.

Let us now look at the growth of the various terms in (4.7) in more detail. Clearly,

depending on the values of ` and the considered path in the y1, . . . , yn the kinetic terms

either go to zero, stay constant, or grow to become infinitely large in the limit. Clearly,

in order to test the axion WGC (4.1) we are interested in increasing kinetic terms and

axion decay constants. In this work, however, we will restrict our considerations to axions

whose decay constants grows in a certain path-independent way. More precisely, we will

demand that f2 grows for any path that resides in a growth sector such as (2.9). This

immediately implies constraints on the integers `k. Namely, we find by inspecting (4.7)

together with (2.9) that the basis vectors v` of the considered axions must be elements of

Vheavy =
⊕

`∈Eheavy

V` , Eheavy = {` ∈ E | `1, . . . , `n−1 ≥ 3, `n > 3} . (4.8)

Note, in particular, that Vheavy is defined in an opposite fashion compared to the vector

space Vlight in (3.3), which contained all vector spaces whose Hodge norm decreased along

every path with (2.8) in the growth sector. In fact, we can use these two definitions to

decompose the vector space H3(Y3,R) as

H3(Y3,R) = Vlight ⊕ Vheavy ⊕ Vrest . (4.9)

The last part Vrest are the remaining directions in the vector space decomposition. They

parametrize axions whose decay constants grow, decrease, or stay constant depending on

the considered path approaching the limit y1, . . . , yn → ∞. Recall that the products

between vectors out of two spaces V`, V`′ can only be non-zero if `+ `′ = 6. This implies

〈Vheavy, Vheavy〉 = 0 , 〈Vlight, Vlight〉 = 0 . (4.10)

Furthermore, we find that the vector spaces Vheavy and Vlight are dual to each other under

the product 〈·, ·〉 and indices in the index sets Elight and Eheavy can be canonically identified.

In other words, we find that for every vector vheavy ∈ Vheavy there exists a vector vlight ∈
Vlight such that

〈vheavy,vlight〉 6= 0 (4.11)

This canonical duality between Vheavy and Vlight will be crucial in arguing that we can

couple every axion direction v` ∈ Vheavy to a D2-brane instanton Q ∈ Vlight.

Now that the asymptotic behavior of the kinetic terms has been discussed in detail, we

are ready to analyze the asymptomatic axion decay constants. From (4.7) we can deduce

that only the couplings between axions in the same subspace V` are relevant in the infinite
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distance limit, and that axions that reside in different subspaces decouple. Therefore the

asymptomatic axion decay constants are given by

(fIJ ) ∼ diag

[
eD
(
y1

y2

) `1−3
2

· · ·
(
yn−1

yn

) `n−1−3

2

(yn)
`n−3

2 f̂α`,β`

]
, (4.12)

where we stress that we find a matrix with blocks along the diagonal labelled by ` and

each index I is associated with one pair `, α`. The axion decay constants for the individual

blocks are proportional to f̂α`,β` defined as

(f̂T ·f̂)α`,β` =
1

2
〈vα`

` , ∗∞v
β`
` 〉 . (4.13)

As discussed already in the context of the kinetic terms and in section 2.5, this matrix

remains finite in the infinite distance limit, and, in fact, does not depend on the coordinates

yi. Thus the asymptomatic behavior in yi of the axion decay constants is captured by the

power law in (4.12).

4.2 D2-brane instantons and the axion WGC

Having discussed the kinetic terms (4.6), (4.7) and the resulting axion decay con-

stants (4.12), we now study D2-brane instantons. Recall that the world-volume action

of an Euclidean D2-brane wrapping a three-cycle specified by Q is given by

SD2 = e−D|Z(Q)|+ i〈C3,Q〉 , (4.14)

with Z(Q) being the central charge defined in (3.1). The coupling functions, such as the

moduli space metric, of the effective theory thus receive corrections of the form e−SD2 .

Expanding C3 in ξ
`
α`v

α`

` then tells us that the charges of this instanton are given by

q`α`
(Q) = 〈vα`

` ,Q〉 . (4.15)

Let us next focus on identifying candidate D2-brane instantons which have an instanton

action S that decreases along the infinite distance limit. The instanton action S of a

Euclidean D2-brane is given by the real part of SD2 in (4.14), from which we obtain

S = e−D|Z(Q)| . (4.16)

The idea is to consider the charges Q introduced in (3.13) that described asymptotically

massless D3-brane states in the SDC consideration of section 3. Wrapping Euclidean D2-

branes on these three-cycles then provides us with candidate instantons that can couple to

the R-R axions. More specifically, the mass of these D3-brane states was previously given

by |Z(Q)|, and it now gives us the instanton action S. Thus the fact that the D3-brane

states became massless in the infinite distance limit ensures us that S is decreasing as well,

and we have

S = e−D|Z(Q)| ∼ e−D‖q0‖ . (4.17)

– 23 –



J
H
E
P
0
3
(
2
0
2
0
)
0
2
0

Note that in order to get this asymptotic expression for the central charge we have

used (3.22). Moreover, since q0 is the slowest decreasing charge in Q the leading growth

of (3.22) agrees with the growth of ‖q0‖ up to a finite prefactor.

We are now ready to determine the vectors za defined in (4.3). Since our instantons

are labeled by the charge vector Q we thus need to determine z(Q). Inserting (4.12), (4.15)

and (4.16) into the vectors (4.3) we find

zI(Q) ∼
(
y1

y2

) 3−`1
2

· · ·
(
yn−1

yn

) 3−`n−1
2

(yn)
3−`n

2

∑
β`

f̂α`,β`q
`
β`

(Q)

|Z(Q)|
, (4.18)

where as before I is split into `, α`.

In the following we will simplify our discussion by no longer indicating the block struc-

ture and hence suppress the indices α`, β` and the finite asymptotic axion decay constants

f̂α`,β` . This can be done since the asymptotic behavior is entirely captured by the yi-

dependent growth factors and we will keep this relevant information for evaluating the

axion WGC constraint. More precisely, we will consider the vectors

zI(Q) ∼
(
y1

y2

) 3−`1
2

· · ·
(
yn−1

yn

) 3−`n−1
2

(yn)
3−`n

2
q`(Q)

|Z(Q)|
, (4.19)

when discussing the axion WGC introduced at the beginning of this section. Since we are

only concerned with parametric control, we thus ask, if the zI(Q) is bounded from below

in the directions with parametrically growing axion decay constants. Recall that we will

be only discussing directions where this happens path-independently in a growth sector.

This implies that we consider

z(Q) = zI(Q)γI ∈ Vheavy . (4.20)

To make the growth of (4.19) fully explicit we next use (4.17) and q0 ∈ Vr in (4.19) to

determine

zI(Q) ∼
(
y1

y2

) 6−`1−r1
2

· · ·
(
yn−1

yn

) 6−`n−1−rn−1
2

(yn)
6−`n−rn

2︸ ︷︷ ︸
ẑ`(q0)

q`(Q) , (4.21)

where we have evaluated the growth of q0 using (2.32). Therefore, in order to show that

the axion WGC is not parametrically violated, it will often suffice to argue that the yi-

dependent pre-factor ẑ`(q0) in (4.21) is bounded from below. However, in order to capture

all cases it turns out to be important to also consider the growth of the tower encoded by

q`(Q). In fact, in the next subsections we will argue that one can use (4.11) together with

the growth of the tower discussed in section 3.2 to always identify appropriate combinations

of Type G and Type F charges specifying Q given in (3.13) such that the convex hull

condition for the multi-axion WGC is never parametrically violated.
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space decomposition dimensions

Vlight V0 ⊕ V2 1 + d

Vheavy V6 ⊕ V4 1 + d

Vrest V3 2(h2,1 − d)

Table 3. Decomposition of H3(Y3,R) for IVd. Note that we have used different colors to indicate

the dimensions of the individual subspaces.

4.3 Axion WGC in one-parameter infinite distance limits

To illustrate how to construct the D2-brane instantons relevant for the axion WGC, let

us first look at an example before moving to more general settings. Concretely, we first

consider a one-parameter Type IVd infinite distance limit. As detailed in appendix A.1 we

can decompose Vlight, Vheavy and Vrest into the vector spaces V` as listed in table 3.

We can reformulate the charge vectors found in [15] as

QG(m1) = q0 +m1q1 , QF(mi
2) =

∑
vi
2 6=q0

mi
2v

i
2 , (4.22)

with the representatives for the Type G charges given by

q0 = (N−1 )2ã0 ∈ V2 , q1 = (N−1 )3ã0 ∈ V0 . (4.23)

Note that the sum over Type F charges for QF indeed excludes the two basis vectors q0,q1,

and only sums over the remaining d−1 basis vectors for V2. In the following we will discuss

how these instantons Q allow us to examine the WGC for axion directions in each of the

subspaces of Vheavy via the vectors z(Q).

First consider an axion direction v4 ∈ V4 for z(Q). Its growth in this component z4(Q)

can be deduced from (4.21), and using that q0 ∈ V2 we find that all factors of y1 cancel each

other, such that ẑ4(q0) remains finite along the infinite distance limit. Then to provide

evidence for the axion WGC for this direction, the only remaining thing to show is that we

can ensure that one of our D2-brane instantons has non-zero charge with respect to this

axion, that is, q4(Q) = 〈Q,v4〉 6= 0. This axion direction can couple to either the Type G

charge vector q0 or some Type F charge vector vi2 of V2 under the product 〈·, ·〉, which can

be seen from its orthogonality properties (2.25). If it couples to q0 then every instanton

in our tower (4.22) suffices to argue that the axion WGC is not violated parametrically

in this direction, whereas if it couples to some vi2 we must pick a non-zero Type F charge

mi
2 6= 0 to ensure a non-zero charge with respect to this axion.

Now consider the direction v6 ∈ V6. The orthogonality properties (2.25) of 〈·, ·〉 tell

us that this axion direction couples to q1, since V6 and V0 are dual to each other and both

vector spaces are one-dimensional. This axion therefore couples to one of the D2-brane

instantons (4.22) provided that m1 6= 0. However, at first sight this axion direction seems

to violate the WGC for axions, because we find by use of (4.21) that the growth of z6(Q) is

given by ẑ6(q0) = (y1)−1, since q0 ∈ V2. This suggests that the convex hull cannot envelop
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a ball of finite size in this direction, and that instead the convex hull seems to shrink along

this direction as we move further along the infinite distance limit. We can resolve this issue

by using that we have a tower of instantons. Namely, if we consider a D2-brane instanton

with m1 = m1
crit, with m1

crit ∼ y1 the growth of our tower discussed in section 3.2, we find

that its charge grows as

q6(Q) = 〈QG(m1
crit),v6〉 = 〈q0 +m1

critq1 ,v6〉 = m1
crit〈q1 ,v6〉 ∼ y1 . (4.24)

Then combined with the growth specified by (4.21), we find that

z6(Q) ∼ ẑ6(q0) q6(Q) ∼ (y1)−1(y1) ∼ 1 (4.25)

which thus provides us with a vector z(Q) whose component in the direction v6 is bounded

in size from below, what suffices to argue that the axion WGC is not violated parametrically

in this direction either.

In summary we have thus found, for every direction in Vheavy, a vector z(Q) by picking

an appropriate instanton Q out of (4.22), such that its component in that direction is

bounded in size from below along this infinite distance limit. Therefore we found a set of

vectors z(Q) that span a convex hull which will always contain a certain ball of finite size.

From a physics perspective, this means that we have found that the axion WGC cannot be

violated parametrically by considering axion decay constants that grow path-independently

in this example, since we have showed that there always exists an appropriate instanton

with decreasing action that couples to such axions. The fact that our tower has a critical size

mcrit which increases parametrically was crucial for arguing that the WGC for axions cannot

be violated parametrically. We will motivate this feature more generally in the next sub-

section, where it falls under case (2), and a demonstrative figure is also provided in figure 2.

From the discussion in 2.3 we know that the remaining one-parameter infinite distance

limits are Type II and III limits, which turn out to be slightly less interesting than the

Type IV infinite distance limit. Namely, the Type G charge vectors q0,q1 that generate the

states are located in the same eigenspace V1 for a Type III limit, or V2 for a Type II limit,

as can be inferred from table 2. Furthermore, the Hodge norm on these eigenspaces V1 and

V2 possesses the largest decrease out of all eigenspaces for the corresponding limits by use

of the growth properties (2.32), since these eigenspaces have the lowest index.15 And since

the decrease of the instanton action is determined by ‖q0‖ via (4.17), we know that the

growth of any axion decay constant will be matched or even exceeded by the decrease of the

instanton action, using the duality between Vheavy, where the axion directions reside, and

Vlight, where the instanton charges reside. This tells us that none of the axion directions

can violate the axion WGC parametrically in these examples either. Note in particular that

we do not need the parametrical growth of mcrit to fullfill the WGC for axion directions

that couple to q1, because q1 lies in the same eigenspace as q0, whereas it played a crucial

role for the Type IV infinite distance limit.

15For Type III the non-empty eigenspaces are V1, V2, V3, V4, V5, and for Type II we have V2, V3, V4.
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4.4 Strategy for general infinite distance limits

Here we argue that the axion WGC cannot be violated parametrically by the R-R axions

under consideration for general infinite distance limits. In doing so, we will only need to

use the reformulated expression for the charge vector (3.13) of the D2-brane instantons,

together with some requirements on the growth rate of the size of the tower mcrit that we

argued for in section 3.2. We can strategically analyze the axion directions v` ∈ Vheavy by

breaking them down to the following four cases, where we have that:

(1) q`(QG(mI)) 6= 0 for some mI , and ẑ`(q0) is bounded from below;

(2) q`(QG(mI)) 6= 0 for some mI , and ẑ`(q0) unbounded from below;

(3) q`(QF(ms)) 6= 0 for some ms, and ẑ`(q0) is bounded from below;

(4) q`(QF(ms)) 6= 0 for some ms, and ẑ`(q0) unbounded from below.

The purpose of this separation of cases is to investigate how every axion direction v` ∈
Vheavy can be coupled to one of the D2-brane instantons Q specified by (3.13) such that,

provided we pick the right charges, the growth of this component z`(Q(q0|mI ,ms)) can be

bounded from below. Namely, by showing that we can pick a vector z(Q) for every direction

in Vheavy such that its component in that direction is bounded in size from below, we know

that the associated convex hull must contain a ball of finite size. The first condition then

indicates whether this axion couples to our tower of D2-brane instantons via one of their

Type G charges or one of their Type F charges. This coupling can be ensured via the

canonical duality (4.11) between Vheavy and Vlight, since the Type F and Type G charge

vectors of our D2-brane instantons together span the whole of Vlight by construction (see

section 3.1), such that we only need to pick the right combination of instanton charges.

Therefore we are left with analyzing the growth rate of the vectors z(Q(q0,mI ,ms) in that

direction, which is given by z`(Q(q0|mI ,ms) in (4.21). Then wether the growth of ẑ`(q0)

is bounded from below tells us directly if this component remains finite for all paths within

the growth sector (2.9). However, the growth of ẑ`(q0) is not necessarily bounded from

below, such that there can be directions where the convex hull seems to shrink along the

infinite distance limit. The fact that we still have to account for the possible parametrical

growth of charge q`(Q) in (4.21) will resolve this issue for cases (2) and (4). Below we

examine these cases separately in more detail, such that we can argue that each of these

cases does not violate the axion WGC parametrically.

Case (1). We have that q`(QG(mI)) = 〈QG,v`〉 6= 0 for some mI , so the axion direction

couples to a Type G charge of our charge vector. Additionally, we know that the growth of

ẑ`(q0) in (4.21) is bounded from below, such that the convex hull can envelop a ball of finite

size in this direction, which indicates that these axions can therefore never violate the axion

WGC parametrically. For example, the axion direction N−1 ã0 ∈ V4 in the one-parameter

Type IV limit belonged to this case.
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Case (2). This case seems to violate the axion WGC at first sight, since ẑ`(q0) cannot be

bounded from below, that is, ẑ`(q0)→ 0 for certain paths within the growth sector (2.9),

which suggests that the convex hull can shrink in this direction as we move along the infinite

distance limit, similar to the axion direction ã0 ∈ V6 we encountered in the one-parameter

Type IV in section 4.3. However, we did not account for the charge of this instanton yet,

which is given by16

q`(QG(mI)) = 〈QG(mI),v`〉 =
∑
I

mI〈qI ,v`〉 . (4.26)

We know that this axion must couple to a Type G charge, so we must have that 〈qJ ,v`〉 6= 0

for some J , and thus qJ ∈ V6−` by use of (2.25). Then increasing this mJ results in

increasing the charge q`(Q), such that if we pick mJ = mJ
crit ∼ ‖q0‖/‖qJ‖ following (3.25),

we find

z`(Q(q|mJ
crit)) ∼ ẑ`(q0)mJ

crit

∼
(
y1

y2

) 6−`1−r1
2

· · ·
(
yn−1

yn

) 6−`n−1−rn−1
2

(yn)
6−`n−rn

2
‖q0‖
‖qJ‖

∼ 1 ,

(4.27)

where we used that the growths of the norms of q0 and qJ cancel the growth rate in front

precisely, using that q0 ∈ Vr and qJ ∈ V6−`. Thus we found that the tower of D2-brane

instantons grows at exactly the right rate to avoid parametrical violations of the WGC for

these axion directions, since it allowed us to pick appropriate instanton charges such that

the component of z(Q) in this direction is bounded in size from below, which indicates that

the convex hull can envelop a ball of finite size in this direction. Note that this crucially

relies on the growth of the instanton charge q`(Q), which means that one cannot use only

the smallest charge with respect to these axions. A depiction of this interplay between the

growth of the tower and the convex hull condition of the axion WGC has been provided in

figure 2.

Case (3). By picking the right Type F charges ms we can ensure that such an axion

direction couples to a D2-brane instanton Q out of our tower (3.13), and the fact that

ẑ`(q0) is bounded from below then indicates that the convex hull can envelop a ball of

finite size in this direction, which tells us that these axions cannot violate the WGC. As an

example, in the one-parameter Type IV limit in 4.3 an axion direction v4 ∈ V4 that does

not couple to the Type G charge vector q0 falls under this case.

Case (4). We know that v` must couple to one of the Type F charge vectors via

q`(QF(ms)) = 〈QF(ms),v`〉 =
∑′

i

mi
6−`〈vi6−`,v`〉 , (4.28)

16The fact that ẑ`(q0) cannot be bounded from below indicates that ‖q0‖‖v`‖ can grow parametrically for

certain paths, such that (2.32) tells us that the eigenspaces Vr, V` in which they reside are not dual to each

other under the product 〈·, ·〉. Therefore we must have 〈q0,v`〉 = 0 by use of orthogonality properties (2.25).
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with the relevant Type F charge vectors given by vi6−` ∈ V6−` ⊂ Vlight. However, we cannot

bound ẑ`(q0) from below, such that we can have ẑ`(q0)→ 0 for certain paths to the infinite

distance limit. It indicates that the convex hull shrinks along these directions, and to avoid

this we must pick mi
6−` ∼ ‖q0‖‖v`‖, such that we do not have parametrical violations of

the axion WGC, similar to case (2). In section 3.2 we argued that the upper bound mcrit

for Type F charges increases at a sufficient rate to allow for such choices of Type F charge.

We should note that this case did not occur in the one-parameter examples, but can occur

in multi-parameter limits.

4.5 Axion WGC in two-parameter infinite distance limits

In this section we provide some examples to demonstrate the strategy outlined above. We

go through all two-parameter infinite distance limits t1, t2 → i∞ and construct the relevant

charge vectors. It should be stressed that in contrast to [23] we will not require the charge

vector Q to be in orbit-form. This allows us to address all possible enhancements and show

a general result.

In the case of considering a limit t1, t2 → i∞ one has two log-monodromy matrices

N1, N2 and hence one has two singularity types (2.16) associated to N1 and N(2) = N1 +N2

according to our discussion in section 2.3. Denoting these types by Type A and Type B,

the two-parameter configurations are split into all possible enhancements Type A → Type

B. Going through all relevant cases we will determine the split (4.9) with Vlight and Vheavy

defined in (3.3) and (4.8). The various components are given as direct sums in the vector

spaces V` ≡ V`1`2 . By use of appendix A.2 we first give the dimensions of the V`1`2 and

indicate the positions of the basis of Type G representatives q0,qI in Vlight, such that we

can write the charge vectors in the formulation introduced in section 3.1. Then we consider

each axion direction v`1`2 that lies in a subspace V`1`2 of Vheavy and identify the candidate

D2-brane instanton that ensures that the axion WGC is not violated parametrically. In

doing so, we employ the orthogonality properties (2.25) of the product 〈·, ·〉 and the growth

properties (2.32) for the sl(2,C)-eigenspaces V`1`2 . Furthermore, we point out for each of

these axion directions v`1`2 to which cases it belongs in the strategy outlined in the previous

section. In particular, wether ‖v`1`2‖‖q0‖ can grow unboundedly indicates directly, by use

of (4.21), if the growth of ẑ`1`2(Q) is bounded from below, or if it is unbounded and we

need to consider growth of instanton charges as well.

4.5.1 Enhancement Ia → IVd

Let us first consider the enhancement from type Ia to IVd, which can occur for d = r + a

with r ≥ 1. Then H3(Y3,R) decomposes as in table 4.

The charge vectors found in [23] can be reformulated as

QG(m1) = q0 +m1q1 ,

QF(m22,m32) =
∑
i

mi
22v

i
22 +

∑
vj
32 6=q0

mj
32v

j
32

(4.29)

with the basis of representatives for the Type G charges given by

q0 = (N−2 )2ã0 ∈ V32 , q1 = (N−2 )3ã0 ∈ V30 . (4.30)
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space decomposition dimensions

Vlight V30 ⊕ V22 ⊕ V32 1 + a+ r

Vheavy V36 ⊕ V44 ⊕ V34 1 + a+ r

Vrest V33 2(h2,1 − a− r)

Table 4. Decomposition of H3(Y3,R) for Ia → IVd . Note again that we use colors to indicate the

dimensions of individual subspaces.

space decomposition dimensions

Vlight V20 ⊕ V22 ⊕ V32 1 + b+ r − 1

Vheavy V46 ⊕ V44 ⊕ V34 1 + b+ r − 1

Vrest V42 ⊕ V33 ⊕ V24 1 + 2(h2,1 − b− r) + 1

Table 5. Decomposition of H3(Y3,R) for IIb → IVd .

Now let us go systematically through axion directions for each of the subspaces of Vheavy:

• The axion direction v44 ∈ V44 must couple to some Type F charge vector vj22. For

certain paths we can have that ‖v44‖‖q0‖ can grow unboundedly, which means that

we must require mi
22 ∼ ‖q0‖‖v44‖ such that we do not violate the WGC for axions

parametrically. These axion directions belong to case (4).

• The axion direction v36 ∈ V36 couples to the Type G charge vector q1, thus we must

pick m1 6= 0 such that it couples to the D2-brane instanton. Furthermore we have

that ‖v36‖‖q0‖ grows unboundedly, which indicates that we must pick m1 = m1
crit ∼

‖q0‖/‖q1‖ to avoid parametrical violations of the axion WGC. This axion direction

belongs therefore to case (2).

• The axion direction v34 ∈ V34 can couple to either the Type G charge vector q0 or

some other Type F charge vector vi32. For both cases we have that the growth of

‖q0‖‖v34‖ is bounded, so we cannot have a parametrical violation of the axion WGC.

If it couples to q0 this axion belongs to case (1), whereas if it couples to some other

vi32 we must pick mi
32 6= 0, and thus it belongs to case (3).

4.5.2 Enhancement IIb → IVd

This type of enhancement from Type IIb to IVd can occur if we have d = r+ b with r ≥ 1.

The vector spaces Vlight, Vheavy and Vrest can be decomposed as in table 5.

The charge vectors found in [23] can be reformulated as

QG(m1) = q0 +m1q1 ,

QF(mi
32,m

j
22) =

∑
i

mi
32v

i
32 +

∑
vj
22 6=q0

mj
22v

j
22

(4.31)
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space decomposition dimensions

Vlight V10 ⊕ V12 ⊕ V22 ⊕ V32 1 + 1 + c+ (r + 1)

Vheavy V56 ⊕ V54 ⊕ V44 ⊕ V34 1 + 1 + c+ (r + 1)

Vrest V33 2(h2,1 − c− r − 2)

Table 6. Decomposition of H3(Y3,R) for IIIc → IVd .

with the basis of representatives for the Type G charges given by

q0 = N−1 N
−
2 ã0 ∈ V22 , q1 = N−1 (N−2 )2ã0 ∈ V20 . (4.32)

Let us go through each of the subspaces of Vheavy systematically:

• For v46 ∈ V46 we know that it couples to the Type G charge vector q1 from or-

thogonality conditions, since V20, V46 are dual one-dimensional vector spaces. We

also know that ‖v46‖‖q0‖ can grow unboundedly, and that we therefore must pick

m1 = m1
crit ∼ ‖v46‖‖q0‖. Thus this axion direction belongs to case (2).

• For v44 ∈ V44 we can have that it couples either to the Type G charge vector q0 or

to some other Type F charge vector vj22. Either way the growth rates of ‖q0‖ and

‖v44‖ cancel each other. In the first case we have that it couples to Type G charge

and thus belongs to (1), and in the other case it couples to Type F charge and thus

belongs to (3).

• For v34 ∈ V34 we know that it couples to some Type F charge vector vi32, and that the

growth rates of ‖v34‖ and ‖q0‖ cancel each other. Therefore these axion directions

belong to case (3).

4.5.3 Enhancement IIIc → IVd

The enhancement from type IIIc to IVd can occur if we have d = r+ c+ 2 and r ≥ 0. The

vector spaces can then be decomposed as listed in table 6.

The charge vectors can be given by

QG(m1,m2) = q0 +m1q1 +m2q2 ,

QF(mi
32,m

j
22) =

∑
α22

mj
22v

j
22 +

∑
vi
32 6=q0

mi
32v

i
32 ,

(4.33)

with the basis of representatives for the Type G charges given by

q0 = N−1 N
−
2 ã0 ∈ V32 , q1 = (N−1 )2ã0 ∈ V12 , q2 = N−2 (N−1 )2ã0 ∈ V10 . (4.34)

Note that these charge vectors QG differ from the ones found in [23]. There they generated

the tower by acting with eN
−
2 on q1, such that only q1,q2 were used to span the charges

of the states. A non-zero component for Q in the direction q0 will be necessary to couple

certain axion directions in V34 to the tower of D2-brane instantons.
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space decomposition dimensions

Vlight V21 ⊕ V22 ⊕ V32 2 + (b− 2) + r

Vheavy V45 ⊕ V44 ⊕ V34 2 + (b− 2) + r

Vrest V43 ⊕ V33 ⊕ V23 2 + 2(h2,1 − b− r − 1) + 2

Table 7. Decomposition of H3(Y3,R) for IIb → IIIc .

Now let us go through each of the subspaces of Vheavy:

• For v56 ∈ V56 we know that the axion couples to the Type G charge q2. We can

increase m2 = m2
crit ∼ ‖q0‖‖v56‖, such that we cancel the growth of ‖q0‖‖v56‖. This

axion direction belongs therefore to case (2).

• For v54 ∈ V54 we know that it couples to the Type G charge q1 from orthogonality

conditions. Again we have that ‖q0‖‖v54‖ can grow unboundedly, thus we must

increase m1 = m1
crit ∼ ‖q0‖‖v54‖ to cancel this growth. Therefore this axion direction

belongs to case (2) as well.

• For v44 ∈ V44 we have that it couples to some Type F charge vj22. The growth rate of

‖v44‖ can exceed the growth of ‖q0‖. We must therefore increase mj
22 ∼ ‖v44‖‖q0‖.

This tells us that these axion directions belong to case (4).

• For v34 ∈ V34 we can have that it either couples to the Type G charge q0 or to some

other Type F charge vi32. For both cases we have that ‖v34‖‖q0‖ is bounded. If it

couples to q0 it belongs to case (1), whereas if it couples to some vi32 we must pick

mi
32 6= 0 and it belongs to case (3).

4.5.4 Enhancement IIb → IIIc

The enhancement Type IIb to Type IIIc can occur if we have c = b+ r− 2 and r ≥ 0. The

vector spaces are then decomposed as in table 7.

Here we consider charge vectors different from [23], given by

QG(m1) = q0 +m1q1 ,

QF(mi
32,m

j
22) =

∑
j

mj
22v

j
22 +

∑
i

mi
32v

i
32 ,

(4.35)

and the basis for the representatives for the Type G charges can be given by

q0 = N−1 N
−
2 Re ã0 ∈ V21 , q1 = N−1 N

−
2 Im ã0 ∈ V21 . (4.36)

Then let us go through each of the subspaces of Vheavy for the axion directions:

• The axion direction v45 ∈ V45 can couple to Type G charge vectors q0 and q1. In

both cases the growth of ‖v45‖ is matched by the decrease of ‖q0‖. These axion

directions therefore belong to case (1).
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• The axion direction v44 ∈ V44 couples to some Type F charge vj22. The growth rate

of ‖v44‖ can never exceed the decrease of ‖q0‖, and thus we can just pick mj
22 6= 0.

Therefore these axion directions belong to case (3).

• The axion direction v34 ∈ V34 couples to a Type F charge vector vi32. We have that

the growth of ‖v34‖ never exceeds the decrease of ‖q0‖. Thus we pick mi
32 6= 0 and

therefore such axion directions belong to case (3).

5 Conclusions

In this paper we studied the axion Weak Gravity Conjecture for asymptotic regimes in field

space that are at infinite geodesic distance. Specifically we focused on the axions arising

from the R-R three-forms in Type IIA string theory compactified on a Calabi-Yau threefold.

The kinetic terms of these axions depend non-trivially on the complex structure moduli

of the threefold, but we showed the this dependence can be made explicit in asymptotic

regimes that are at infinite geodesic distance. The infinite distance points in general Calabi-

Yau threefold moduli spaces that are obtained by sending any number of coordinates to

a limit can be classified [23, 49]. We have shown that the data characterizing a limit can

also be used to group the axions into subsets, with each subset having a kinetic term with

a common growth behaviour. We then focused on the axions that have growing kinetic

terms for any path, in a growth sector of the form (2.9), and hence growing axion decay

constants. In order that these do not violate the axion Weak Gravity Conjecture, instantons

have to become relevant with actions decreasing with the inverse rate when approaching

the infinite distance point. By using recent insights about the SDC [15, 23], we have argued

that one can always find such instantons, since an infinite number of candidate D2-brane

states has vanishing action at the infinite distance point. In order to address the axion

WGC for multiple axions, we have constructed a set of vectors z(Q) that depend on the

axion decay constants, the instanton action, and instanton charge. Here it was crucial to

introduce appropriate charge vectors Q(q0|m) in (3.13) such that these instantons actually

correct the effective theory. These instantons will form only a subsector of the set of D2-

brane instantons becoming relevant along the infinite distance limits, since in general there

are more instantons whose action becomes small in these regimes. The convex hull of such

vectors should contain the unit ball, in order that the axion WGC is satisfied. We stress that

this statement does not have to be true for the smallest charge coupling the instanton to the

axion. Indeed we have shown that there are many infinite distance limits in moduli space,

namely the limits that contain type IV enhancements, for which the convex hull of the z(Q)

cannot contain a unit ball if one considers the smallest instanton charge. The emerging

picture is, however, compelling: the closer we approach such infinite distance points the

higher the instanton charge of the instanton relevant in (4.3) has to be. We have depicted

this result in figure 2. This implies that actually an ever increasing tower of instanton states

becomes relevant when approaching the infinite distance point. Clearly, such a picture is

reminiscent of the SDC where an increasing tower of particles needs to be included in the

effective theory. It is interesting that our findings can also be viewed as providing evidence
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z(Q(0))

z(Q(mcrit))

m = 0

m = 1

m = 2

mcrit = 3

m = 0
m = 1
m = 2

· · · · · ·

mcrit = 9

approach limit point

Figure 2. Depiction of the convex hull spanned by the vectors ±z(Q(0)) and ±z(Q(mcrit)), which

correspond to the lowest and highest instanton in our tower respectively. Note that we explicitly

depicted the steps that we go through as we move up in this tower of instantons. As we move

further along the infinite distance limit, we find that these steps become smaller and smaller, which

is compensated by the fact that our tower of instantons is becoming larger, such that the total length

of this side of the convex hull remains finite and thus that the convex hull will always contain a

ball of finite size.

for the strong axion WGC, if the charge vectors Q(q0|m) are indeed describing the lightest

stable states relevant for the SDC. The instanton actions for all charges Q(q0|m) have the

same leading growth determined by q0 and are thus equally relevant in the effective theory.

It would be very interesting to explore this further and, in particular, clarify the role of

individual Type G and Type F states that are not of the form Q(q0|m).

In our analysis of the D2-brane instantons it was crucial to collect information about

D-brane states with asymptotically vanishing actions. We started our considerations by

asserting that these states are BPS and their action can be determined by evaluating

the central charge. Furthermore, at least for a certain large class of possible limits, it

was essential to argue how the number of stable states changes when approaching the

infinite distance point. In order to do that we generalized the stability argument of [15] to

multiple variables. More precisely, we derived a maximal growth of the tower of states that

are stable when approaching the infinite distance point by ensuring the absence of decays

of these states. Our stability arguments apply to situations in which one can identify a

charge vector q0 that has a distinguished slowest decrease of the associated central charge.

Such an identification was also important in the construction of the charge orbits of [23]

to which our results naturally apply. It is important to stress, however, that even if the

instanton charges do not take the form of a charge orbit our findings suffice to provide

general evidence that the axion WGC is not parametrically violated. It should be clear

that our findings cannot be conclusive when it comes to checking the BPS properties of

D-brane states. It would be interesting to explore these issues further and, in particular,

study stability at limits in moduli space that do not allow for a local construction of a

charge orbits. A potential avenue was suggested in [23], and exemplified in [27], in which

charge orbits were transferred along the moduli space.
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Our results were obtained in full generality for any infinite distance limit in complex

structure moduli space and hence do not apply to only a specific example or a class of ex-

amples. This was achieved by using the powerful mathematical machinery of [66, 67], which

describes so-called limiting mixed Hodge structures. One of the central results of these pa-

pers is the introduction of n commuting sl(2,C)-algebras associated to an infinite distance

locus obtained by sending n coordinates to a limit. These algebras act on the vector space

H3(Y3,C) and induce a canonical splitting of H3(Y3,R), which we argued to be crucial in

studying the axion kinetic terms. The sl(2,C)-data arises from log-monodromy matrices

Ni, the limiting period vector a0, and the growth sector (2.9) associated to the path along

which one takes the limit. We believe that this approach will be fruitful in many further ap-

plications [84]. However, it should be stressed that it is particularly powerful when it comes

to estimates, such as the ones encountered for the axion WGC. This can be traced back to

the fact that the asymptotic behaviour of periods Π can be bounded by using the sl(2,C)-

structure, but the corrections are only under parametric control. It would be very interest-

ing to systematically classify the corrections arising in the link of Π to the sl(2,C)-structure.

This leaves us to close with highlighting further interesting open problems for future

projects. A first direction is to address the generalization of our considerations to any path

in complex structure moduli space and hypermultiplet moduli space. On the one hand, this

would require to go beyond the growth sector description presented here. On the other

hand, it would also amount to consider paths in which one sends the four-dimensional

dilaton eD to a limit. Satisfying the axion WGC then requires to consider more general

D-brane configurations as very recently also discussed in [31–33]. We stress that it is an

interesting and challenging task to unify the mathematical structure presented here, with

the general insights about the hypermultiplet moduli space [34, 35]. A second open question

is to address the issue of emergence in hypermultiplet moduli space. More precisely, it was

suggested in [15], that infinite distances in moduli space could be emergent from integrating

out the infinite tower of states relevant to the SDC. Furthermore, it was very recently argued

in [31] that in certain situations the inclusion of D-instanton corrections into the moduli

space metric can render formerly infinite distance points to lie at finite distance. It would

be interesting to check if this is indeed true for all infinite distance limits investigated

here. Studying how these non-perturbative corrections alter the behavior of the axion

decay constants would be interesting as well, especially in the context of the axion WGC.

We expect that such corrections indeed change their asymptotic behavior, and believe this

results in slower growth of the decay constants along the infinite distance limits. Finally,

let us close with the rather obvious statement that we did not check the precise numerical

constraint suggested by the axion WGC. While the introduced mathematical machinery

gives bounds on the relevant quantities, the appearing numerical coefficients are not further

constraint. While they can be derived in explicit examples, it would be very exciting to

check if there are general constraints arising from geometry.
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A Derivation of eigenspaces for infinite distance limits

In this appendix we decompose the eigenspaces V` in the primitive subspaces P p,q(N(k))

for one- and two-parameter infinite distance limits, including their dimensions. We make

the location of the vectors that follow from ã0 ∈ P 3,dn(N−(n)) explicit,17 because of their

importance in constructing Type G charge vectors in sections 3 and 4. These results

can be argued from the Hodge-Deligne diamonds in each step of the enhancement chain,

which were given in [23]. We explain this procedure for the one- and two-parameter infinite

distance limits separately. Note that the V` given in this appendix are the complexifications

of the vector spaces used in the main text.

A.1 Eigenspaces V` for one-parameter infinite distance limits

Here we give the decomposition and the dimension of the eigenspaces V` for all types of one-

parameter infinite distance limits considered in section 3. The content of these spaces can

be read off from the rows of the Hodge-Deligne diamond which were given in [15, 23], with

the index of the row indicating the subscript `. This follows from the fact that elements of

the same row have the same eigenvalue under the generator Y1 of the sl(2,C)-triple.

A.1.1 Type Ia

For a Type Ia infinite distance limit the eigenspaces V` and their dimensions are given by

V4 = P 2,2(N−1 ) , dimV4 = a ,

V3 = P 3(N−1 ) , dimV3 = 2(a′ + 1) , (A.1)

V2 = N−1 P
2,2(N−1 ) , dimV2 = a .

Note that ã0 ∈ P 3,0(N−1 ) ⊆ P 3(N−1 ).

A.1.2 Type IIb

For a Type IIb infinite distance limit the eigenspaces V` and their dimensions are given by

V4 = spanC{ã0, ¯̃a0} ⊕ P 2,2(N−1 ) , dimV4 = b+ 2 ,

V3 = P 3(N−1 ) , dimV3 = 2b′ , (A.2)

V2 = spanC{N−1 ã0, N
−
1

¯̃a0} ⊕N−1 P
2,2(N−1 ) , dimV2 = b+ 2 .

Note that ã0 ∈ P 3,1(N−1 ) ⊆ P 4(N−1 ).

17Recall that dn = 0, 1, 2, 3 for an n-parameter Type Ia, IIb, IIIc or IVd infinite distance limit respectively.
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A.1.3 Type IIIc

For a Type IIIc infinite distance limit the eigenspaces V` and their dimensions are given by

V5 = spanC{ã0, ¯̃a0} , dimV5 = 2 ,

V4 = P 2,2(N−1 ) , dimV4 = c ,

V3 = spanC{N−1 ã0, N
−
1

¯̃a0} ⊕ P 3(N−1 ) , dimV3 = 2(c′ + 1) , (A.3)

V2 = N−1 P
2,2(N−1 ) , dimV2 = c ,

V1 = spanC{(N−1 )2ã0, (N
−
1 )2¯̃a0} , dimV1 = 2 .

Note that ã0 ∈ P 3,2(N−1 ) ⊆ P 5(N−1 ).

A.1.4 Type IVd

For a Type IVd infinite distance limit the eigenspaces V` and their dimensions are given by

V6 = spanC{ã0} , dimV6 = 1 ,

V4 = spanC{N−1 ã0} ⊕ P 2,2(N−1 ) , dimV4 = d+ 1 ,

V3 = P 3(N−1 ) , dimV3 = 2d′ , (A.4)

V2 = spanC{(N−1 )2ã0} ⊕N−1 P
2,2(N−1 ) , dimV2 = d+ 1 ,

V0 = spanC{(N−1 )3ã0} , dimV0 = 1 .

Note that ã0 ∈ P 3,3(N−1 ) ⊆ P 6(N−1 ).

A.2 Eigenspaces V`1`2 for two-parameter infinite distance limits

Here we give the spaces V`1`2 for the two-parameter infinite distance limits considered in sec-

tion 4.5. Let us first shortly explain the procedure used to derive these spaces V`1`2 , which

uses the Hodge-Deligne diamonds considered in [23]. We start with the Hodge-Deligne

diamond induced by N−1 . This diamond can be split up into components (N−1 )aP b(N−1 ),

with P b(N−1 ) the primitive vector space of weight b associated with N−1 . The row to which

this component belongs determines the number `1 = b− 2a, similar to the one-parameter

infinite distance limits. Then N−2 induces a mixed Hodge structure on these components

(N−1 )aP b(N−1 ) individually. In practice, this means that (N−1 )aP b(N−1 ) is split up into

further pieces, and each piece belongs to a specific point in the Hodge-Deligne diamond

induced by N−(2). Then we can determine `2 from the row at which this piece ends up in

the Hodge-Deligne diamond induced by N−(2).

A.2.1 Enhancement Ia → IVd

Here we consider the enhancement of a Type Ia infinite distance limit to a Type IVd

infinite distance limit by sending an additional coordinate to infinity, i.e. y2 → ∞. The

decompositions and dimensions of the eigenspaces V`1`2 are then given by

V44 = P 2,2(N−1 ) , dim(V44) = a ,

V36 = spanC{ã0} , dim(V36) = 1 ,

– 37 –



J
H
E
P
0
3
(
2
0
2
0
)
0
2
0

V34 = spanC{N−2 ã0} ⊕
(
P 3(N−1 ) ∩ P 2,2(N−(2))

)
, dim(V34) = r ,

V33 = P 3(N−(2)) , dim(V33) = 2(a′ − r) , (A.5)

V32 = spanC{(N−2 )2ã0} ⊕N−2
(
P 3(N−1 ) ∩ P 2,2(N−(2))

)
, dim(V32) = r ,

V30 = spanC{(N−2 )3ã0} , dim(V30) = 1 ,

V22 = N−1 P
2,2(N−1 ) , dim(V22) = a .

Note that ã0 ∈ P 3,3(N−(2)).

A.2.2 Enhancement IIb → IVd

Here we consider the enhancement of a Type IIb infinite distance limit to a Type IVd

infinite distance limit. The decompositions and dimensions of the eigenspaces V`1`2 are

then given by

V46 = spanC{ã0} , dim(V46) = 1 ,

V44 = spanC{N−2 ã0}⊕
(
P 2,2(N−1 )∩P 2,2(N−(2))

)
, dim(V44) = b ,

V42 = spanC{(N−2 )2ã0} , dim(V42) = 1 ,

V34 =P 3(N−1 )∩P 2,2(N−(2)) , dim(V34) = r−1 ,

V33 =P 3(N−(2)) , dim(V33) = 2(b′−r+1) , (A.6)

V32 =N−2

(
P 3(N−1 )∩P 2,2(N−(2))

)
, dim(V32) = r−1 ,

V24 = spanC{N−1 ã0} , dim(V24) = 1 ,

V22 = spanC{N−1 N
−
2 ã0}

⊕N−1 N
−
2

(
P 2,2(N−1 )∩P 2,2(N−(2))

)
, dim(V22) = b ,

V20 = spanC{(N−1 (N−2 )2ã0} , dim(V33) = 1 .

Note that ã0 ∈ P 3,3(N−(2)).

A.2.3 Enhancement IIIc → IVd

Here we consider the enhancement of a Type IIIc infinite distance limit to a Type IVd

infinite distance limit. The decompositions and dimensions of the eigenspaces V`1`2 are

then given by

V56 = spanC{ã0} , dim(V56) = 1 ,

V54 = spanC{N−2 ã0} , dim(V54) = 1 ,

V44 =P 2,2(N−1 ) , dim(V44) = c ,

V34 =
(
P 3(N−1 )∩P 2,2(N−(2))

)
⊕spanC{N−1 ã0} , dim(V34) = r+1 ,

V33 =P 3(N−(2)) , dim(V33) = 2(c′−r−1) , (A.7)

V32 =N−2

(
P 3(N−1 )∩P 2,2(N−(2))

)
⊕spanC{N−1 N

−
2 ã0} , dim(V32) = r+1 ,
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V22 =N−1 P
2,2(N−1 ) , dim(V33) = c ,

V12 = spanC{(N−1 )2ã0} , dim(V12) = 1 ,

V10 = spanC{N−2 (N−1 )2ã0} dim(V10) = 1 .

Note that ã0 ∈ P 3,3(N−(2)).

A.2.4 Enhancement IIb → IIIc

Here we consider the enhancement of a Type IIb infinite distance limit to a Type IIIc
infinite distance limit. The decompositions and dimensions of the eigenspaces V`1`2 are

then given by

V45 = spanC{ã0, ¯̃a0} , dim(V45) = 2 ,

V44 = P 2,2(N−1 ) , dim(V44) = b− 2 ,

V43 = spanC{N−2 ã0, N
−
2

¯̃a0} , dim(V43) = 2 ,

V34 = P 3(N−1 ) ∩ P 2,2(N−(2)) , dim(V34) = r ,

V33 = P 3(N−(2)) , dim(V33) = 2(b′ − r) , (A.8)

V32 = N−2

(
P 3(N−1 ) ∩ P 2,2(N−(2))

)
, dim(V32) = r ,

V23 = spanC{N−1 ã0, N
−
1

¯̃a0} , dim(V23) = 2 ,

V22 = N−1 P
2,2(N−1 ) , dim(V22) = b− 2 ,

V21 = spanC{N−1 N
−
2 ã0, N

−
1 N

−
2

¯̃a0} , dim(V33) = 2 .

Note that ã0 ∈ P 3,2(N−(2)).
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[26] E. Gonzalo, L.E. Ibáñez and Á.M. Uranga, Modular symmetries and the swampland

conjectures, JHEP 05 (2019) 105 [arXiv:1812.06520] [INSPIRE].

[27] P. Corvilain, T.W. Grimm and I. Valenzuela, The swampland distance conjecture for Kähler

moduli, JHEP 08 (2019) 075 [arXiv:1812.07548] [INSPIRE].

– 40 –

https://doi.org/10.1007/JHEP01(2017)088
https://doi.org/10.1007/JHEP01(2017)088
https://arxiv.org/abs/1610.00010
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.00010
https://doi.org/10.1007/JHEP06(2017)098
https://doi.org/10.1007/JHEP06(2017)098
https://arxiv.org/abs/1611.00394
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.00394
https://doi.org/10.1007/JHEP07(2017)145
https://arxiv.org/abs/1703.05776
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.05776
https://doi.org/10.1007/JHEP08(2017)034
https://arxiv.org/abs/1705.04328
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.04328
https://doi.org/10.1007/JHEP12(2017)033
https://arxiv.org/abs/1708.06761
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.06761
https://doi.org/10.1007/JHEP02(2018)040
https://arxiv.org/abs/1709.01790
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.01790
https://doi.org/10.1007/JHEP05(2018)001
https://arxiv.org/abs/1801.05434
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.05434
https://doi.org/10.1007/JHEP08(2018)143
https://arxiv.org/abs/1802.08264
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.08264
https://doi.org/10.1103/PhysRevLett.121.051601
https://arxiv.org/abs/1802.08698
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.08698
https://doi.org/10.1007/JHEP06(2018)052
https://arxiv.org/abs/1803.04989
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.04989
https://doi.org/10.1103/PhysRevD.98.066012
https://doi.org/10.1103/PhysRevD.98.066012
https://arxiv.org/abs/1806.01874
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.01874
https://doi.org/10.22323/1.318.0175
https://arxiv.org/abs/1804.10504
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.10504
https://doi.org/10.1007/JHEP10(2018)164
https://arxiv.org/abs/1808.05958
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.05958
https://doi.org/10.1007/JHEP07(2019)181
https://arxiv.org/abs/1808.09966
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.09966
https://doi.org/10.1016/j.nuclphysb.2018.11.001
https://arxiv.org/abs/1810.05169
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.05169
https://doi.org/10.1007/JHEP03(2019)016
https://arxiv.org/abs/1811.02571
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.02571
https://doi.org/10.1007/JHEP05(2019)176
https://doi.org/10.1007/JHEP05(2019)176
https://arxiv.org/abs/1812.05016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.05016
https://doi.org/10.1007/JHEP03(2019)192
https://arxiv.org/abs/1812.05626
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.05626
https://doi.org/10.1007/JHEP05(2019)105
https://arxiv.org/abs/1812.06520
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.06520
https://doi.org/10.1007/JHEP08(2019)075
https://arxiv.org/abs/1812.07548
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.07548


J
H
E
P
0
3
(
2
0
2
0
)
0
2
0

[28] S.-J. Lee, W. Lerche and T. Weigand, Modular fluxes, elliptic genera and weak gravity

conjectures in four dimensions, JHEP 08 (2019) 104 [arXiv:1901.08065] [INSPIRE].
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[60] L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion monodromy and the weak

gravity conjecture, JHEP 04 (2016) 020 [arXiv:1512.00025] [INSPIRE].

[61] A. Hebecker, F. Rompineve and A. Westphal, Axion monodromy and the weak gravity

conjecture, JHEP 04 (2016) 157 [arXiv:1512.03768] [INSPIRE].

[62] B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with

dimensional reduction, JHEP 02 (2016) 140 [arXiv:1509.06374] [INSPIRE].

[63] C. Long, L. McAllister and J. Stout, Systematics of axion inflation in Calabi-Yau

hypersurfaces, JHEP 02 (2017) 014 [arXiv:1603.01259] [INSPIRE].

[64] B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture,

JHEP 08 (2017) 025 [arXiv:1606.08437] [INSPIRE].

[65] S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A tower weak gravity conjecture from

infrared consistency, Fortsch. Phys. 66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].

[66] W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent.

Math. 22 (1973) 211.

– 42 –

https://doi.org/10.1088/1126-6708/2009/11/025
https://arxiv.org/abs/0904.1133
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1133
https://doi.org/10.1007/JHEP03(2011)111
https://arxiv.org/abs/1010.5792
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5792
https://arxiv.org/abs/1705.03117
https://doi.org/10.1103/PhysRevLett.113.051601
https://doi.org/10.1103/PhysRevLett.113.051601
https://arxiv.org/abs/1402.2287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.2287
https://doi.org/10.1103/PhysRevLett.114.151303
https://doi.org/10.1103/PhysRevLett.114.151303
https://arxiv.org/abs/1412.3457
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3457
https://doi.org/10.1088/1475-7516/2015/09/020
https://doi.org/10.1088/1475-7516/2015/09/020
https://arxiv.org/abs/1503.00795
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.00795
https://doi.org/10.1007/JHEP08(2015)032
https://arxiv.org/abs/1503.03886
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03886
https://doi.org/10.1007/JHEP10(2015)023
https://arxiv.org/abs/1503.04783
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04783
https://doi.org/10.1007/JHEP01(2016)091
https://arxiv.org/abs/1503.07853
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07853
https://doi.org/10.1007/JHEP04(2016)017
https://arxiv.org/abs/1504.00659
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00659
https://doi.org/10.1007/JHEP02(2016)128
https://arxiv.org/abs/1504.03566
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03566
https://doi.org/10.1007/JHEP12(2015)108
https://arxiv.org/abs/1506.03447
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03447
https://doi.org/10.1007/JHEP10(2015)188
https://arxiv.org/abs/1508.00009
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00009
https://doi.org/10.1007/JHEP04(2016)020
https://arxiv.org/abs/1512.00025
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00025
https://doi.org/10.1007/JHEP04(2016)157
https://arxiv.org/abs/1512.03768
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03768
https://doi.org/10.1007/JHEP02(2016)140
https://arxiv.org/abs/1509.06374
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.06374
https://doi.org/10.1007/JHEP02(2017)014
https://arxiv.org/abs/1603.01259
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.01259
https://doi.org/10.1007/JHEP08(2017)025
https://arxiv.org/abs/1606.08437
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08437
https://doi.org/10.1002/prop.201800020
https://arxiv.org/abs/1802.04287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.04287
https://doi.org/10.1007/bf01389674
https://doi.org/10.1007/bf01389674


J
H
E
P
0
3
(
2
0
2
0
)
0
2
0

[67] E. Cattani, A. Kaplan and W. Schmid, Degeneration of Hodge structures, Annals Math. 123

(1986) 457.

[68] T.W. Grimm and J. Louis, The effective action of type IIA Calabi-Yau orientifolds, Nucl.

Phys. B 718 (2005) 153 [hep-th/0412277] [INSPIRE].

[69] T.W. Grimm, Axion inflation in type-II string theory, Phys. Rev. D 77 (2008) 126007

[arXiv:0710.3883] [INSPIRE].

[70] M. Kashiwara, The asymptotic behavior of a variation of polarized Hodge structure, Publ.

Res. Inst. Math. Sci. 21 (1985) 853.

[71] C.-L. Wang, On the incompleteness of the Weil-Petersson metric along degenerations of

Calabi-Yau manifolds, Math. Res. Lett. 4 (1997) 157.

[72] E. Cattani and A. Kaplan, Degenerating variations of Hodge structure, in Théorie de Hodge
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