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Abstract: Extensions of the standard model with a U(1) gauge symmetry contain gauge

invariant kinetic mixing, sinχ, and gauge non-invariant mass mixing, δM2, between the

hypercharge and the new gauge boson Z ′. These represent a priori incalculable but phe-

nomenologically important parameters of the theory. They become calculable if there exist

spontaneously or softly broken symmetries which forbid them at tree level but allow their

generation at the loop level. We discuss various symmetries falling in this category in the

context of the gauged Lµ − Lτ models and their interplay with lepton mixing. It is shown

that one gets phenomenologically inconsistent lepton mixing parameters if these symmetries

are exact. Spontaneous breaking of these symmetries can lead to consistent lepton mixing

and also generates finite and calculable values of these parameters at one or two loop order

depending on the underlying symmetry. We calculate these parameters in two specific cases:

(i) the standard seesaw model with µ-τ symmetry broken by the masses of the right-handed

neutrinos and (ii) in a model containing a pair of vectorlike charged leptons which break

µ-τ symmetry. In case (i), the right-handed neutrinos are the only source of gauge mixing.

The kinetic mixing parameters are suppressed and vanish if the right-handed neutrinos

decouple from the theory. In contrast, there exists a finite gauge mixing in case (ii) which

survives even when the masses of vectorlike leptons are taken to infinity, exhibiting non-

decoupling behaviour. The seesaw model discussed here represents a complete framework

with practically no kinetic mixing and hence can survive a large number of experimental

probes used to rule out specific ranges in the coupling g′ and mass MZ′ . The model can

generate non-universality in tau decays, which can be tested in future experiments.
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1 Introduction

The observed deviations from the Standard Model (SM) predictions in the anomalous

magnetic moment of muon, B meson decays, and the need to explain the origin of the

dark matter in the universe has led to various extensions of the SM gauge symmetry. One

of the simplest extensions corresponds to the addition of a U(1) gauge group and the

most economical among them are the ones which do not require extension in the fermionic

content of the SM. Three such possibilities corresponding to differences in the leptonic

flavour indices Lα − Lβ have been identified long ago [1–3]. Most conspicuous of these

three choices is the U(1) gauge group corresponding to Lµ−Lτ . In the simplest form, the

gauge boson of Lµ−Lτ does not couple to quarks and the first generation leptons, thereby

avoiding many constraints coming from these sectors. Phenomenology of Lµ − Lτ gauge

symmetry has been extensively discussed in a number of papers (see for incomplete list of

references [4, 5, 5–34]) in various contexts.

The additional U(1) symmetry may be broken at a scale smaller than the electroweak

scale in which case the new interactions are constrained by a variety of low energy pro-

cesses. The new gauge boson having mass in the range 100-400MeV is advocated (see, for

example, [35]) as an interesting possibility in case of the Lµ −Lτ symmetry. Such a gauge

boson is consistent with various constraints from the laboratory experiments and may also

explain the possible discrepancy between the measured value of the muon (g− 2) and that

predicted in the SM [5]. Alternatively, if U(1)Lµ−Lτ is broken at a scale significantly larger

than the electroweak scale, then all the effects associated with the new gauge boson would

be suppressed by its mass. Such effects would appear as non-renomalizable operators in
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the effective theory below the Lµ − Lτ breaking scale. An exception to this, in case of all

the U(1) gauge groups, is a dimension four operator allowed by gauge symmetries. It is

conveniently parameterized as [36–38]

−
sinχ

2
FB
µνF

µν
Z′ (1.1)

where FB
µν , F

µν
Z′ are the field strength tensors for the hypercharge and the Z ′ gauge bosons

respectively. An associated operator which can result after breaking of hypercharge and

U(1) symmetry is the mass mixing among two gauge bosons B and Z ′:

δM2BµZ ′
µ . (1.2)

These two parameters provide a window into new gauge symmetry if it is broken at a very

large scale.

The Kinetic Mixing (KM) parameters, sinχ and δM2, are arbitrary a priori but can

be constrained from various experiments. The main effect of these parameters is to mix the

additional gauge boson with Z thereby coupling quarks and electron to Z ′ and changing

the existing couplings of Z to fermions. This leads to observable effects in precision elec-

troweak tests, atomic parity violation [38], neutrino trident production [39], the low energy

elastic scattering of the solar neutrino with electrons observed in Borexino [40] and coherent

elastic νN scattering [41]. One obtains significant bounds on sinχ from these processes.

These are model dependent. A summary of various constraints can be found, for exam-

ple, in [42]. In models with a diagonal charged lepton mass matrix, one obtains [35, 42]:

sinχ ∼ 10−5−10−6 for MZ′ ∼ 100−200 MeV. One can obtain some meaningful predictions

for sinχ and δM2 by invoking discrete symmetry which forbids them at the tree level. If this

symmetry remains unbroken, then the Lµ−Lτ symmetry broken at a very high scale would

remain completely hidden. On the other hand, the spontaneous breaking of such discrete

symmetry would lead to calculable values for the said parameters. One possible symmetry

forbidding eqs. (1.1), (1.2) was considered first in [4]. This corresponds to interchanging µ

and τ degrees accompanied by a change in sign of Z ′. One could consider various general-

izations of this symmetry any of which can be used to forbid interactions in eqs. (1.1), (1.2)

at the tree level. One of the aims of this paper is to discuss possible classes of symmetries

which forbid eqs. (1.1), (1.2) and their implications for the leptonic mixing. The symme-

tries invoked to forbid KM parameters directly influence the neutrino mixing pattern since

they also constrain the leptonic Yukawa couplings. We show that none of the symmetries

used here to forbid the KM parameters at tree level can remain unbroken if one is to obtain

consistent mixing angles and CP violation in the leptonic sector. The breaking of these sym-

metries then generates the KM parameters at the 1-loop or at the 2-loop level as we discuss.

KM parameter sinχ gets generated at the 1-loop level by the charged leptons in the

standard scenario adopted in many works [20, 22, 35, 36, 43]. This happens however for

a specific case in which the charged lepton mass matrix is Lµ − Lτ invariant and hence

diagonal and break µ-τ symmetry. The neutrino mass matrix in this case cannot also

be invariant under the µ-τ symmetry if it is to reproduce the observed leptonic mixing

angles. One gets an additional contribution to KM from this mass matrix. The neutrino
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contribution to sinχ is suppressed by the neutrino masses, i.e. sinχ ∼ O(m
2
ν

q2
), but the

contribution to δM2 contains a divergent piece if the charged leptons and three light

Majorana neutrinos are the only sources which generate eqs. (1.1), (1.2). This makes the

resulting Z-Z ′ mixing incalculable. The divergent contribution can be removed only in a

complete theory with spontaneously or softly broken µ-τ symmetry. The other aim of the

paper is to provide explicit models within which all the infinities which would arise through

ad-hoc breaking of µ-τ symmetry vanish. We present two specific examples, one which leads

to unobservablly small and the other with a fairly large value of sinχ. The first example

is the standard seesaw model in which the source of µ-τ breaking is confined in the Right-

Handed (RH) neutrino mass matrix. The standard contribution from the charged leptons

considered in the literature actually vanish in this case. We present detailed calculations

showing that one gets finite sinχ and δM2 at the 1-loop from the neutrino sector. Both

these parameters are suppressed in the model and vanish in the limit of very large RH

neutrino masses. However, δM2 can get finite non-decoupling contribution, independent of

the RH neutrino masses, in the presence of µ-τ symmetry breaking in the Dirac neutrino

mass matrix. The second example we discuss corresponds to adding the charged vectorlike

fermions to the SM. Their mass terms, allowed by gauge symmetry, provide the only source

of the µ-τ (or other analogous symmetry) breaking and are responsible for generation of

finite contribution to mixing parameters. This model shows the non-decoupling effects and

contains a direct contribution from the vectorlike fermions, which does not vanish when

vectorlike masses are taken to infinity. This contribution thus could be large.

The paper is organized as follows. We discuss symmetries which lead to vanishing

KM in section 2 and their consequences on the leptonic mixing in section 3. Evaluation of

KM at 1-loop in a general framework is given in section 4 and two specific examples are

discussed in details in section 5. We summarize our results in 6 and give a short discussion

of the already existing literature of the phenomenology of the type of models discussed here.

2 Symmetries for vanishing kinetic mixing in Lµ − Lτ model

The minimal version of the Lµ − Lτ model is obtained by assigning equal and opposite

U(1) charges to the leptonic doublets L′
µ and L′

τ , where L
′
α = (ν ′αL, l

′
αL)

T , α = e, µ, τ . The

right handed charged leptons l′µR and l′τR carry the same Lµ − Lτ charges as L′
µ and L′

τ ,

respectively. Rest of the SM fermions are neutral under the additional U(1). The neutral

current interactions of leptons are then given by

−LNC=gY Bµ

(

−
1

2
L
′
αγ

µL′
α−l

′
αRγ

µl′αR

)

+g′Z ′
µ

(

l
′
µγ

µl′µ−l
′
τγ

µl′τ+ν ′µLγ
µν ′µL−ν ′τLγ

µν ′τL
)

,

(2.1)

LNC is invariant under the following transformations [4]:

L′
µ ↔ L′

τ , l′µR ↔ l′τR, Bµ → Bµ, Z ′
µ → −Z ′

µ . (2.2)

This symmetry acts as the standard µ-τ interchange symmetry on the leptons. It also

changes the sign of the new gauge boson in addition. The µ-τ interchanges symmetry
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forbids the kinetic and mass mixing terms of eqs. (1.1), (1.2) at tree level. If this symmetry

is also respected by the Higgs sector and the Yukawa couplings of leptons then the entire

Lagrangian is invariant under it, and the KM remains absent to all orders. If this is not

the case, the KM will get generated at the loop level. It is easy to derive conditions under

which the leptonic contribution to KM remains zero at 1-loop.

We collectively represent l′αL, l
′
αR, ν

′
αL as f ′

α. The mixing matrix Uf connecting the

mass eigenstates fi of fermions to the weak eigenstates f ′
α is defined as

f ′
α = (Uf )αifi . (2.3)

In the mass basis, the couplings to Z ′ boson given in eq. (2.1) change to

g′Z ′
µ F

f
ij f iγ

µfj , (2.4)

with

F f
ij = (Uf )

∗
µi(Uf )µj − (Uf )

∗
τi(Uf )τj . (2.5)

The diagonal couplings, F f
ii , vanish if

|(Uf )µi|
2 = |(Uf )τi|

2 . (2.6)

This equation, termed as the µ-τ reflection symmetry, has useful phenomenological con-

sequences [44–46] when applied to the leptonic mixing matrix UPMNS. It has implication

for the KM as well. Since B has only flavour diagonal couplings, and Z ′ has only off-

diagonal couplings when eq. (2.6) is satisfied, the fermion loop connecting them in vacuum

polarization diagram is absent and the KM cannot arise at the 1-loop level. This however

requires that eq. (2.6) holds individually for all the fermion mixing matrices UlL , UlR and

UνL . Eq. (2.6) in this case represents sufficient conditions for vanishing of the leptonic

contribution to KM parameters at the 1-loop level.

The µ-τ interchange symmetry is a special case leading to eq. (2.6). If the Yukawa

couplings of leptons and the Higgs sector respect this symmetry then the Majorana neutrino

and the charged lepton mass matrices Mν and Ml respectively satisfy [47]

STMνS = Mν , S†MlM
†
l S = MlM

†
l , S†M †

l MlS = M †
l Ml , (2.7)

where

S =







1 0 0

0 0 1

0 1 0






(2.8)

is the µ-τ interchange matrix. These equations lead to the corresponding diagonalizing

matrices as

UlL = Uµτ (θL)QL , UlR = Uµτ (θR)QR , UνL = Uµτ (θν)Qν , (2.9)

where QL, QR, Qν are diagonal phase matrices and

Uµτ (θ) =







cos θ − sin θ 0
1√
2
sin θ 1√

2
cos θ − 1√

2
1√
2
sin θ 1√

2
cos θ 1√

2






. (2.10)
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Each of the unitary matrices in eq. (2.9) satisfy the conditions depicted in eq. (2.6). Both

the kinetic and mass mixing vanish in this case to all orders as long as symmetry in eq. (2.2)

remains unbroken.

Eq. (2.6) provides clue to other possible symmetries which can be used to forbid KM.

One such well-studied example [45] corresponds to imposing the following symmetry on

the leptonic fields

L′
e ↔ L′CP

e , e′R ↔ e′CP
R , L′

µ ↔ L′CP
τ , l′µR ↔ l′CP

τR , (2.11)

where f ′CP = γ0Cf
′T
. If this symmetry is respected by the vacuum and Yukawa interac-

tions, then the leptonic mass matrices satisfy

STMνS = M∗
ν , S†MlM

†
l S = (MlM

†
l )

∗, S†M †
l MlS = (M †

l Ml)
∗. (2.12)

The first of the above has been extensively studied in the diagonal basis of the charged

leptons [44, 45]. Forbidding kinetic mixing would require that the entire eq. (2.12) be

satisfied simultaneously. Above conditions imply [44, 45] that the mixing matrices UlL,R
,

Uν have the form:

UlL = UHS
lL

QL , UlR = UHS
lR

QR , UνL = UHS
νL

Xν , (2.13)

where QL,R are diagonal matrices of unphysical phases and Xν is a diagonal matrix with

X2
ν = 1. The matrices UHS

lL
, UHS

lR
and UHS

νL
possess the Harrison-Scott form [44]

UHS =







x1 x2 x3
z1 z2 z3
z∗1 z∗2 z∗3






. (2.14)

with x1,2,3 real. The above form of UlL,R
, UνL satisfies eq. (2.6) and the KM cannot arise

at the 1-loop level. Eq. (2.12) is more general and can forbid the KM to all orders. This

follows from the fact that the neutral current interactions in eq. (2.1) are invariant if the

leptonic symmetry, eq. (2.11), is supplemented with the following transformation on the

gauge bosons B, Z ′:
Z ′
µ → Z ′µ, Bµ → −Bµ . (2.15)

Action of this symmetry on Bµ corresponds to the standard CP transformation and thus

CP invariance of the gauge interactions assures the above mentioned symmetry for the

hypercharge current of fermions and scalars. But the Z ′ needs to be transformed in the

opposite manner compared to B to make the corresponding term in eq. (2.1) invariant under

this generalised CP. This ensures that the KM parameters remain zero to all orders as long

as eq. (2.12) holds and the Higgs sector also respects appropriately defined µ-τ reflection

symmetry.

3 Vanishing kinetic mixing and leptonic mixing

The two examples of symmetries discussed in the previous section which forbid the KM

in Lµ − Lτ model have implications on the leptonic mixing. It is known that the µ-

τ interchange or reflection symmetry when simultaneously imposed on the charged leptons
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and the neutrinos do not lead to phenomenologically viable leptonic mixing. In the case

of µ-τ interchange symmetry, the obtained forms of UlL and UνL given in eq. (2.9) imply

that the leptonic mixing matrix UPMNS = U †
lL
UνL has vanishing atmospheric and reactor

mixing angles [48]. This does not happen if one uses µ-τ reflection symmetry to forbid

KM. But in this case, one gets vanishing leptonic CP violation. This general result can

be shown following the arguments given in [49] in a slightly different context. In the case

of µ-τ reflection symmetry, UlL and UνL given in eq. (2.13) diagonalize MlM
†
l and Mν of

eq. (2.12), respectively. The UHS
lL

and UHS
νL

satisfy

SUHS
lL

= (UHS
lL

)∗ , SUHS
νL

= (UHS
νL

)∗ . (3.1)

As a consequence,

U∗
PMNS = U †

lL
S2UνL = UT

lL
U∗
νL

= UPMNS , (3.2)

and thus leads to a real UPMNS. Since Xν in eq. (2.13) is trivial, the Dirac and Majorana

phases vanish and there is no CP violation in the lepton sector. UPMNS matrix in this

case is otherwise general and allows arbitrary values of all the three mixing angles. If the

leptonic CP violation is found to be absent, then the µ-τ reflection symmetry can provide

an explanation of this and would also forbid KM parameters to all orders. However, one

would need to break this symmetry if non-trivial CP violation is to be obtained.

Both the above discussed symmetries forbid KM parameters at the 1-loop level but

fail in generating phenomenologically acceptable leptonic mixing. This can be changed by

generalizing the definition of µ-τ interchange or reflection symmetries. It is assumed that

these symmetries are symmetries of the Yukawa interactions but get broken in such a way

that the leptonic mass matrices Ml and Mν are invariant under different residual symme-

tries. The idea of using different residual symmetries for the charged leptons and neutrinos

is extensively used in constraining leptonic mixing patterns through discrete symmetries

(see [50–53] for reviews). Denoting these symmetries by SlL,R
and SνL , we demand

S†
lL
MlM

†
l SlL = (MlM

†
l )

∗ , S†
lR
M †

l MlSlR = (M †
l Ml)

∗ , ST
νL
MνSνL = M∗

ν . (3.3)

The symmetry operators SlL , SlR and SνL are required to constraint the diagonalizing

matrices UlL , UlR and UνL such that each satisfy eq. (2.6) needed to obtain vanishing KM

parameters at 1-loop. The most general solution of eq. (2.6) can be written as

U = P UHSQ , (3.4)

where P and Q are diagonal phase matrices and UHS is defined in eq. (2.14). Choosing the

above form for UlL , UlR and UνL , we conveniently define

UlL = PLU
HS
L QL , UlR = PRU

HS
R QR , UνL = PνU

HS
ν Xν , (3.5)

with

PL = Diag.(1, eiφ1L , eiφ2L) , PR = Diag.(1, eiφ1R , eiφ2R) , Pν = Diag.(1, eiφ1ν , eiφ2ν ) , (3.6)
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and QL, QR are diagonal phase matrices. Xν is a trivial diagonal matrix with elements

±1 as before. The mass matrices which can be diagonalized by the above unitary matrices

have the form:

Mν = Ũ∗
νL
DνŨ

†
νL

, MlM
†
l = ŨlL |Dl|

2Ũ †
lL
, M †

l Ml = ŨlR |Dl|
2Ũ †

lR
. (3.7)

The above definitions together with eqs. (3.5) imply

SL ≡ PLSPL , SR ≡ PRSPR , Sν ≡ PνSPν (3.8)

and satisfy eq. (3.3). These symmetries thus represent the generalization of the µ-τ reflec-

tion symmetries. One recovers the µ-τ reflection symmetry if the phases satisfy φ1a = −φ2a

for a = L,R, ν. By construction, the generalized symmetries lead to mixing matrices which

assure vanishing KM parameters at 1-loop. Moreover, the newly defined symmetries do not

satisfy eq. (3.1) used in proving real UPMNS as long as PL 6= Pν in eq. (3.5). One therefore

gets a non-real and general UPMNS which allows Dirac CP violation. The Majorana phases

still remain zero due to triviality of Xν in eq. (3.5). The action of the above symmetries

on the leptonic fields is given by

µ′
L → ei(φ1L+φ2L)τ ′CP

L , µ′
R → ei(φ1R+φ2R)τ ′CP

R , ν ′µL → ei(φ1ν+φ2ν)ν ′CP
τL ,

τ ′L → ei(φ1L+φ2L)µ′CP
L , τR → ei(φ1R+φ2R)µ′CP

R , ν ′τL → ei(φ1ν+φ2ν)ν ′CP
µL . (3.9)

The neutral current interactions given below in eq. (4.1) are invariant under these trans-

formation if one also transforms the gauge fields as in eq. (2.15). This forbids KM at the

tree and 1-loop level. But now the charged current interactions do not remain invariant

under these symmetries when PL 6= Pν in eq. (3.5). This would lead to kinetic mixing at

the two loop level in general.

One can analogously define generalisation of the µ-τ symmetry with similar conse-

quences. This is given by

ŜL ≡ PLSP
∗
L , ŜR ≡ PRSP

∗
R , Ŝν ≡ PνSP

∗
ν (3.10)

In this case eq. (3.3) is replaced by

Ŝ†
LMlM

†
l ŜL = MlM

†
l , Ŝ†

RM
†
l MlŜR = M †

l Ml , ŜT
ν Mν Ŝν = Mν . (3.11)

Again, the neutral current couplings are invariant under this symmetry and do not lead to

KM at the tree and 1-loop level but the charged current interactions violate this symmetry

in general. The leptonic mixing matrix is quite general in this case and unlike in the case of

µ-τ interchange symmetry, one does not get the unwanted result of vanishing θ23 and θ13.

4 Kinetic mixing: general considerations

As discussed in the previous section, the exact µ-τ interchange or reflection symmetry

forbidding the KM in gauged Lµ − Lτ is inconsistent with the observed lepton mixing

pattern. One therefore needs to break these symmetries either in the charged lepton or in

– 7 –
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the neutrino sector. In the absence of such symmetries, the KM gets generated at 1-loop

level even if it is assumed to be absent at the tree level. In this section, we first derive

a general formula for 1-loop induced kinetic and mass mixing in the SM extended with

U(1)X gauge symmetry. We then discuss their implications for Lµ − Lτ models.

Let f ′
aL and f ′

aR with a = 1, 2, . . . , n be n copies of left and right-handed fermions with

hypercharges Y ′
La and Y ′

Ra, respectively. The corresponding U(1)X charges are X ′
La and

X ′
Ra. These n copies include three generations of the SM fermions with a = i, j = 1, 2, 3

and (n − 3) additional fermions with a = m = 4, . . . , n. The neutral current interactions

between these fermions and vector bosons of abelian symmetries are given by

−LNC = gY Bµ

(

Y ′
Laf

′
aLγ

µf ′
aL + Y ′

Raf
′
aRγ

µf ′
aR

)

+ g′Z ′
µ

(

X ′
Laf

′
aLγ

µf ′
aL +X ′

Raf
′
aRγ

µf ′
aR

)

,

(4.1)

where gY and g′ are the gauge couplings corresponding to U(1)Y and U(1)X gauge groups,1

respectively. All the n fermions f ′
aL,R of a given charge and helicity mix among themselves.

The mass basis, denoted by faL and faR, is defined by

f ′
aL,R =

(

UfL,R

)

ab
fbL,R , (4.2)

where UfL,R
are n× n matrices. Eq. (4.1) can be rewritten in terms of the mass basis as

−LNC = gY Bµ

(

YLabfaLγ
µfbL + YRabfaRγ

µfbR
)

+g′Z ′
µ

(

XLabfaLγ
µfbL +XRabfaRγ

µfbR
)

,

(4.3)

where the matrices XL,R and YL,R denote gauge charges in the mass basis. They are

obtained as

XL,R = U†
fL,R

X ′
L,R UfL,R

,

YL,R = U†
fL,R

Y ′
L,R UfL,R

, (4.4)

where X ′
L,R = Diag.(X ′

L,R1
, X ′

L,R2
, . . . , X ′

L,Rn
) and Y ′

L,R = Diag.(Y ′
L,R1

, Y ′
L,R2

, . . . , Y ′
L,Rn

).

The interactions in eq. (4.3) can contribute to the mixing between the B and Z ′ bosons
at loop level through the vacuum polarization effects. Denoting the amplitude of vacuum

polarization as iΠµν
BZ′(q2), it is parametrized as

Πµν
BZ′(q

2) =
(

gµνq2 − qµqν
)

ABZ′ + gµν BBZ′ . (4.5)

Here, the parameter ABZ′ can be identified with KM while BBZ′ would give rise to mass

mixing between the B and Z ′ bosons. Within this framework, 1-loop computation of the

vacuum polarization diagrams gives

ABZ′ =
gY g

′

4π2

[

−
1

6
Tr(Y ′

LX
′
L+Y ′

RX
′
R)E+

∑

a,b

(YLabXLba + YRabXRba) b2[ma,mb, q]

]

, (4.6)

1The hypercharge is normalized such that the electric charge is Q = T3 + Y ′ and gY = e
cos θW

.

– 8 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
1

and

BBZ′ =
gY g

′

8π2

[(

1

2
Tr(D2({YL, XL}+ {YR, XR}))− Tr(YLDXRD + YRDXLD)

)

E

−
∑

a,b

(YLabXLba + YRabXRba) (m
2
ab1[ma,mb, q] +m2

bb1[mb,ma, q])

+
∑

a,b

(YLabXRba + YRabXLba)mamb b0[ma,mb, q]

]

. (4.7)

Here,

E =
2

ǫ
− γ + ln(4π)− ln(µ2) , (4.8)

and ǫ = 4 − d in the dimensional regularization scheme. The parameter µ is an arbitrary

subtraction scale. The terms proportional to E in both ABZ′ and BBZ′ are divergent in

four dimensions. ma is the mass of ath fermion and D = Diag.(m1,m2, . . . ,mn). The loop

integration functions b0, b1, b2 are listed as eq. (A.1) in appendix A.

ABZ′ and BBZ′ in eqs. (4.6), (4.7) characterize 1-loop contributions to kinetic and

mass mixing parameters. More explicitly, at 1-loop:

sinχ = (sinχ)tree +
∑

f

ABZ′ , δM2 = (δM2)tree +
∑

f

BBZ′ , (4.9)

where the sum is over different kind of fermions present in the underlying model. In the

presence of non vanishing sinχ or δM2, the gauge bosons B and Z ′ mix and their mass

eigenstates B̃ and Z̃ ′ can be obtained as [38]:

B̃ = cos ξ B + sin(ξ + χ)Z ′ ,

Z̃ ′ = − sin ξ B + cos(ξ + χ)Z ′ , (4.10)

where

tan 2ξ =
−2 cosχ (δM2 −M2

B sinχ)

M2
Z′ −M2

B cos 2χ+ 2 δM2 sinχ
(4.11)

The angle ξ is a phenomenologically useful parameter which quantifies the overall effect

of gauge boson mixing. Non-zero value of ξ gives rise to deviation in the neutral current

couplings associated with the Z boson from their values predicted in the SM.2

As seen from eq. (4.6), the divergent part in ABZ′ vanishes if the fermions faL,R
have universal hypercharges and Tr(X ′

L,R) = 0. Consequently, finiteness of ABZ′ at 1-

loop follows from the charge assignments of fermions and it does not require additional

symmetry.3 This is the case in the standard Lµ − Lτ models used in many works for

generating KM at 1-loop through the charged lepton exchanges. One is left with finite and

nonzero 1-loop contribution to sinχ in this case for non-vanishing diagonal elements in XL

2For mixing with the standard Z boson instead of B, the mixing angle ξ is obtained by the replacements

sinχ → − sin θW sinχ and MB → MZ in eq. (4.11).
3Additional symmetries can play role in finiteness of KM at higher loops [54].
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and XR. For example, if the charged lepton mass matrix Ml is diagonal then one obtains

the well-known [36] result

ABZ′ ≈ −
gY g

′

16π2
ln

m2
µ

m2
τ

(4.12)

from eq. (4.6) in the limit q2 ≪ m2
µ. If µ-τ interchange or reflection symmetry is imposed

on Ml then the resulting condition eq. (2.6) leads to vanishing diagonal elements in XL,R

which gives ABZ′ = 0. Finiteness of ABZ′ obtained at 1-loop may not hold at higher loops

if there is no µ-τ interchange like symmetry or its breaking is hard.

The divergent part in BBZ′ does not vanish in general. If fermions f ′
aL,R carry universal

hypercharges Y ′
L,R, then their contribution BBZ′ can be written as

gY g
′

8π2
(Y ′

L − Y ′
R) Tr(D

2(XL −XR))E . (4.13)

This piece vanishes only under the specific circumstances: (a) universal masses ma since

Tr(XL,R) = 0, (b) vectorial hypercharge, i.e. Y ′
L = Y ′

R, (c) vectorial Z
′ current, i.e. XL =

XR or (d) generalised µ-τ symmetry as defined by eq. (2.6) for which diagonal elements

of XL,R vanish individually. None of these conditions are automatically satisfied for the

charged leptons with a general non-Hermitian mass matrix Ml. Only if Ml is Hermitian

or possesses one of the symmetries discussed in the previous sections, the divergent piece

in BBZ′ vanishes. Otherwise, the 1-loop contribution to BBZ′ is divergent. Thus, in spite

of finite and calculable contribution from eq. (4.6), the charged lepton contribution to

the Z-Z ′ mixing remains incalculable. Similarly, for the neutrino sector, if the fields f ′
Li
,

f ′
Ri

represent the standard light Majorana neutrinos with f ′
R = Cf

′T
L then Y ′

L = −Y ′
R and

(XL)ii = −(XR)ii in eq. (4.13). As a consequence, the light Majorana neutrino contribution

to BBZ′ is always divergent unless they are degenerate or the neutrino mass matrix is

invariant under one of the symmetries discussed earlier. Since parameter BBZ′ contributes

to ξ, the resultant Z-Z ′ mixing remains divergent and incalculable in the minimal set up

with general mass matrices for the charged leptons and neutrinos.

There exists one specific scenario for which the 1-loop expression of KM parameter

as given in eq. (4.12) holds, Z-Z ′ mixing is calculable, and the neutrino mixing is also

consistent with the current results. This corresponds to assuming unbroken Lµ − Lτ sym-

metry for the charged leptons and µ-τ reflection symmetry for the neutrino sector. In this

case, neutrinos do not contribute to ABZ′ and BBZ′ at 1-loop as discussed in the previous

section, the charged lepton contribution to BBZ′ vanishes and their contribution to ABZ′

is finite and given by eq. (4.12). Unbroken µ-τ reflection symmetry in the neutrino sector

predicts maximal atmospheric mixing angle as well as maximal Dirac CP violation.

The divergent part of BBZ′ can be renormalized by introducing suitable counter term as

the µ-τ symmetry is already broken in the effective framework. Hence, there is no reason

for such counter terms to be not present in the theory. However, in the full ultraviolet

completion of the model in which the µ-τ interchange or reflection symmetry is restored,

the divergences in the kinetic and mass mixing terms must not arise. In these models,

the KM parameters are calculable, and its origin can be linked with the mechanism of
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µ-τ symmetry breaking. We provide two characteristically different frameworks as the

concrete realization of this statement in the next section.

5 Models of calculable kinetic mixing

We consider (A) the standard seesaw model and (B) a model with vectorlike charged leptons

in which the underlying µ-τ symmetry is broken spontaneously or softly leading to finite

sinχ and δM2 at 1-loop. Both of these represent special cases of the general formalism

discussed in the last section.

5.1 Kinetic mixing in the standard seesaw model

The model is the standard seesaw model augmented with a gauge Lµ−Lτ symmetry and a

µ-τ symmetry. Breaking of Lµ −Lτ occurs spontaneously through SU(2)L ×U(1)Y singlet

fields. As a consequence, parameter δM2
Z does not get generated at tree level even after

breaking of the Lµ − Lτ and SM gauge symmetries. The charged lepton masses in the

model are characterized by the following mass Lagrangian

−Ll
m =

(

e′L µ′
L τ ′L

)

Ml







e′R
µ′
R

τ ′R






+ h.c , (5.1)

with

Ml = v







λl
ee λl

eµ λl
eµ

λl
µe λl

µµ λl
µτ

λl
µe λl

µτ λl
µµ






. (5.2)

Here, v is the vacuum expectation value (VEV) of the standard model doublet assumed

neutral under Lµ − Lτ and µ-τ symmetry. The off-diagonal couplings λl
µτ , λ

l
eµ, λ

l
µe can

be regarded as VEVs of the spurion fields with Lµ − Lτ charge 2, −1 and 1, respectively.

It is assumed that these fields break Lµ − Lτ symmetry spontaneously but do not break

the µ-τ interchange symmetry which leads to the above form of Ml. Similarly, the Dirac

neutrino mass matrix is also assumed to be invariant under the µ-τ interchange symmetry

and has the form

mD = v







λD
11 λD

12 λD
12

λD
21 λD

22 λD
23

λD
21 λD

23 λD
22






. (5.3)

Non-zero off-diagonal couplings in mD arise because of the spontaneous breaking of Lµ −

Lτ symmetry.

Unlike in the case of Ml and mD, the µ-τ symmetry is assumed to be broken by the

Majorana masses of RH neutrinos. This can be achieved by introducing an appropriately

charged spurions field whose VEV break both the µ-τ and Lµ − Lτ symmetries sponta-

neously. This allows a completely general form for the RH neutrino mass matrix MR

and thereby leads to a general lepton mixing matrix. We shall work out the radiatively

generated KM parameters for this general matrix. Special cases can be obtained by re-

stricting the structure of Ml and MR. Specific neutrino mass structures and associated
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phenomenology has been discussed in a number of papers [6, 55–57] in the context of the

Lµ − Lτ symmetry. The neutrino mass Lagrangian is defined as

−Lν
m =

1

2
n′T
L CMν n

′
L + h.c , (5.4)

where n′
L ≡ (ν ′L, (ν

′
R)

c)T is a six dimensional column vector of the left-handed fields. The

right-handed components are analogously defined as n′
R = (n′

L)
c = ((ν ′L)

c, ν ′R)
T . The 6× 6

Majorana neutrino mass matrix is

Mν =

(

0 mT
D

mD MR

)

. (5.5)

Six neutrino mass eigenstates are then obtain using the following unitary transformations:

n′
L = U nL , n′

R = U∗ nR . (5.6)

The chiral components nL,R of six Majorana mass eigenstates can be identified with the

light and heavy neutrino mass eigenstates as: niL = νiL, n(i+3)L = (νiR)
c and niR = (niL)

c.

The mixing matrix U is required to satisfy

UT Mν U = Dν ≡ Diag.(mνi ,Mi) (5.7)

where mνi ,Mi are respectively light and heavy neutrino masses.

The neutral current interactions of neutrinos in the n′
L basis are given by

− LNC = gY Bµ Ỹan
′
aLγ

µn′
aL + g′Z ′

µX̃an
′
aLγ

µn′
aL , (5.8)

where Ỹ = −1
2Diag.(1, 1, 1, 0, 0, 0) and X̃ = Diag.(0, 1,−1, 0,−1, 1). Using the Majorana

property n′
aLγ

µn′
aL = −nc′

aLγ
µnc′

aL = −n′
aRγ

µn′
aR, the above equation can be cast in the

following form:

− LNC =
gY
2
Bµ Ỹa

(

n′
aLγ

µn′
aL − n′

aRγ
µn′

aR

)

+
g′

2
Z ′
µ X̃a

(

n′
aLγ

µn′
aL − n′

aRγ
µn′

aR

)

. (5.9)

Following the arguments presented between eqs. (4.1) and (4.4) for the general case, we

obtain in the mass basis

− LNC =
gY
2
Bµ nγ

µ
(

U†Ỹ UPL − UT Ỹ U∗PR

)

n+
g′

2
Z ′
µ nγ

µ
(

U†X̃UPL − UT X̃UPR

)

n .

(5.10)

Eq. (5.9) can be seen as special case of the general expression eq. (4.3) with the identification

(YL)ab =
1

2

(

U†Ỹ U
)

ab
, (XL)ab =

1

2

(

U†X̃U
)

ab
,

(YR)ab = −
1

2

(

UT Ỹ U∗
)

ab
, (XR)ab = −

1

2

(

UT X̃U∗
)

ab
. (5.11)

The above expressions also follow directly from eq. (4.4) by noting that (i) the left and

right handed mixing matrices are related as UL = U∗
R ≡ U (see eq. (5.6)), and (ii) the U(1)
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charges of nR and nL are opposite to each other. One can use eq. (5.11) to directly obtain

KM parameters in the present case. In this we closely follow the treatment of radiative

corrections given in [58–60].

It is trivial to see from the comparison with eq. (4.6) that the divergent part in ABZ′

vanishes for the present case as Tr(X̃Ỹ ) = 0. To show finiteness of BBZ′ , it is useful to

decompose U as

U =

(

VL

V ∗
R

)

(5.12)

in terms of 3× 6 matrices VL and VR. The matrices XL,R and YL,R are then given by

XL = −X∗
R =

1

2
(V †

LX3VL − V T
R X3V

∗
R) , YL = −Y ∗

R = −
1

4
V †
LVL . (5.13)

Here, X3 = Diag.(0, 1,−1). Eq. (5.7) and unitarity of U can be used to derive the relations

VLV
†
L = 13×3 , VLV

T
R = 03×3 , VRV

†
R = 13×3 , (5.14)

VLDνV
T
L = 03×3 , VRDνV

†
L = mD , VRDνV

T
R = MR . (5.15)

Here, 13×3 and 03×3 respectively denote the 3×3 identity and null matrix. The expressions

for KM parameters follow by substituting eq. (5.11) in the general formula eqs. (4.6), (4.7).

Finiteness of BBZ′ then follows from the following identities

1

2
Tr

(

D2
ν({YL, XL}+ {YR, XR})

)

= −
1

4
Tr

(

m†
DmDX3

)

, (5.16)

Tr (YLDνXRDν + YRDνXLDν) = −
1

4
Tr

(

mDm
†
DX3

)

. (5.17)

We have used the definition of XL, YL and eqs. (5.14), (5.15) in proving above equations.

The divergent part in BBZ′ vanishes for µ-τ symmetric mD given in eq. (5.3) as both the

eqs. (5.16), (5.17) vanish individually. The finite parts can be written as

ABZ′ =
gY g

′

2π2

∑

a,b

Re [YLabXLba] b2[ma,mb, q] , (5.18)

BBZ′ = −
gY g

′

4π2

∑

a,b

(

Re [YLabXLba] (m
2
ab1[ma,mb, q] +m2

bb1[mb,ma, q]) ,

+Re [YLabX
∗
Lba]mamb b0[ma,mb, q]

)

. (5.19)

The above considerations are valid in general seesaw model without taking the stan-

dard limit mD ≪ MR. We now consider this limit in order to further simplify the finite

contributions to KM parameters. U can be written as

U =

(

1− 1
2ρρ

† −ρ

ρ† 1− 1
2ρ

†ρ

)(

KL 0

0 KR

)

. (5.20)

In the seesaw limit, ρ† ≈ −M−1
R mD, while KL and KR are 3×3 matrices which diagonalize

the light and heavy neutrino matrices mν = −mT
DM

−1
R mD and MR respectively. Parame-

ters ABZ′ and BBZ′ can be simplified in a special case of the second and third generations.
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Further simplification can be achieved if mD is assumed to be invariant under Lµ−Lτ and

thus diagonal. In this case, it is proportional to 2× 2 identity matrix and explicitly

mD ≡ m12×2.

The light neutrino mass matrix is then given by −m2M−1
R and therefore the matrices KL

and KR are related as KR = K∗
L. In this case, VL and VR defined in eq. (5.12) simplify to

VL = (KL,−ρKR) ≈ (KL,mKLD
−1
R ) , V ∗

R = (ρ†KL,KR) ≈ (−mK∗
LD

−1
R ,K∗

L) , (5.21)

where DR = Diag.(M2,M3). We parametrise 2× 2 matrix KL as

KL =

(

cos θ sin θ

− sin θ cos θ

)

. (5.22)

This together with eq. (5.21) determine the parameters (XL)ab, (YL)ab and lead to

ABZ′ ≈
gY g

′

16π2
cos 2θ

(

b2(mν3 ,mν3 , q)− b2(mν2 ,mν2 , q)

+
m2

M2
3

(4b2(M3,mν3 , q)− b2(M3,M3, q)− 3b2(mν3 ,mν3 , q))

−
m2

M2
2

(4b2(M2,mν2 , q)− b2(M2,M2, q)− 3b2(mν2 ,mν2 , q)) +O

(

m4

M4
2,3

))

,

BBZ′ ≈
gY g

′

16π2
cos 2θm2

(

b0(M3,M3, q)− 2b1(M3,mν3 , q)

−b0(M2,M2, q) + 2b1(M2,mν2 , q) +O

(

m2

M2
2,3

))

, (5.23)

In the limit m2
ν2,3

≪ |q2| ≪ M2
i , using the approximate solutions of integration func-

tions provided in eqs. (A.2), (A.3), (A.4) in appendix, we obtain

ABZ′ ≈
gY g

′

16π2
cos 2θ

(

∆atm

−q2
−

(

m2

M2
2

−
m2

M2
3

)(

5

18
−

1

2
ln

−q2

µ2

)

−
m2

2M2
2

ln
M2

2

µ2
+

m2

2M2
3

ln
M2

3

µ2

)

,

BBZ′ ≈ −
gY g

′

32π2
cos 2θ q2

(

m2

M2
2

−
m2

M2
3

)

, (5.24)

at the leading order in m2/M2. The first term in ABZ′ corresponds to the contribution

from the effective light neutrino mass matrix and the other two contributions of O(m
2

M2 )

arise due to light heavy neutrino mixing. All these contributions vanish in the limit of the

RH neutrino masses going to infinity.

The parameter θ in eq. (5.24) is the neutrino part of the atmospheric mixing angle.

The charged lepton contribution to it is maximal because of µ-τ symmetry of Ml and one
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thus gets θ23 = θ− π
4 . One therefore requires small θ and hence almost diagonal MR. The

RH neutrino masses M2,3 in this case are directly linked to the Lµ − Lτ breaking scale.

As a consequence, the Z ′ mass would be similar to the RH neutrino masses unless g′ is
very small. Light Z ′ is still a possibility if the RH neutrino mass scale is around TeV, e.g.,

M2,M3 ∼ TeV and g′ ∼ 10−3 would give MZ′ ∼ GeV. The KM is still suppressed by the

light neutrino masses. For M2,3 ∼ TeV and −q2 ∼ MeV2, the dominant contribution to

ABZ′ comes from the last two terms in eq. (5.24) and is given by

ABZ′ ∼ gY g
′ 3 · 10−16

(

TeV

M3

)

.

There can be additional contributions to KM from the Higgs sector. Such contributions

would vanish in the exact µ-τ symmetric limit. The µ-τ breaking in our case comes from

the right-handed neutrino masses, which could be explicit or induced through singlet VEVs.

But singlet fields do not directly couple to Z and cannot induce Z − Z ′ mixing. There

can be indirect coupling through the quartic interaction λη†ηφ†φ of the singlet field η with

the SU(2) doublet φ. This induced coupling of η to Z will be suppressed by 〈φ〉
〈η〉 and the

resulting mixing would also be suppressed.

In the above example, we have assumed µ-τ symmetric mD which leads to finite BBZ′

at the 1-loop. Alternatively, the 1-loop divergences in BBZ′ also vanish if mD is not µ-

τ symmetric but it possesses unbroken Lµ − Lτ symmetry. In this case, the finiteness of

BBZ′ follows from cancellation between the contributions (5.16) and (5.17) in eq. (4.7)

because of diagonal mD. This case is phenomenologially more important since it leads to

a non-vanishing contribution even when the RH neutrino masses are taken to infinity. We

discuss an explicit example which shows this. Assume again two generations with

mD =

(

m2 0

0 m3

)

, MR =

(

M2 0

0 M3

)

. (5.25)

KL,R defined in eq. (5.20) are 2× 2 identity matrices and ρ = −mDM
−1
R is also diagonal.

The 2 × 4 matrices VL, VR can be obtained in this case from eq. (5.21) and one can

work out the resulting 4 × 4 matrices YL,R, XL,R using eq. (5.13). This leads through

eqs. (5.18), (5.19) to the following expressions for ABZ′ and BBZ′ :

ABZ′ ≈
gY g

′

16π2

(

b2(mν3 ,mν3 , q)− b2(mν2 ,mν2 , q)

+
m2

3

M2
3

(4b2(M3,mν3 , q)− b2(M3,M3, q)− 3b2(mν3 ,mν3 , q))

−
m2

2

M2
2

(4b2(M2,mν2 , q)− b2(M2,M2, q)− 3b2(mν2 ,mν2 , q)) +O

(

m4
2,3

M4
2,3

))

BBZ′ ≈
gY g

′

16π2

(

m2
3(b0(M3,M3, q)− 2b1(M3,mν3 , q))

−m2
2(b0(M2,M2, q)− 2b1(M2,mν2 , q)) +O

(

m2
2,3

M2
2,3

))

, (5.26)

– 15 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
1

In the limit m2
ν2,3

≪ |q2| ≪ M2
2,3, we obtain

ABZ′ ≈
gY g

′

16π2

(

∆atm

−q2
−

(

m2
2

M2
2

−
m2

3

M2
3

)(

5

18
−

1

2
ln

−q2

µ2

)

−
m2

2

2M2
2

ln
M2

2

µ2
+

m2
3

2M2
3

ln
M2

3

µ2

)

,

BBZ′ ≈ −
gY g

′

32π2

(

3(m2
2 −m2

3) + q2
(

m2
2

M2
2

−
m2

3

M2
3

))

. (5.27)

Unlike in the previous case, there is a finite non-decoupling contribution in BBZ′ which does

not vanish when the right handed neutrino masses are taken to infinity. This contribution

is proportional to the amount of µ-τ breaking, m2
2−m2

3, in mD. ABZ′ is still seen to vanish

when the RH neutrino masses go to infinity.

5.2 Kinetic mixing in a model with vectorlike charged leptons

In this case, the effective 3 × 3 Majorana4 neutrino mass matrix Mν is assumed to be

invariant under µ-τ interchange symmetry. It is explicitly given as

Mν = vν







λν
ee λν

eµ λν
eµ

λν
eµ λν

µµ λν
µτ

λν
eµ λν

µτ λν
µµ






. (5.28)

The couplings λν
eµ, λ

ν
µµ can be seen as spurions which break Lµ − Lτ symmetry sponta-

neously but preserve the µ-τ interchange symmetry. Because of the later, the neutrinos by

themselves do not induce the KM between the B and Z ′ bosons.
The charged lepton sector is extended by a pair of vectorlike leptons, f ′

4 and f ′
5, singlet

under SU(2)L and with hypercharge −1. Under the gauged Lµ − Lτ symmetry, f ′
4 and f ′

5

have charges +1 and −1, respectively. Further, f ′
4 and f ′

5 get interchanged under the µ-

τ symmetry in addition to the transformations defined in eq. (2.2). After the spontaneous

breaking of Lµ − Lτ and electroweak symmetry, the charged lepton mass term in the

Lagrangian is given by

−Ll
m =

(

e′L µ′
L τ ′L f

′
4L f

′
5L

)

Ml















e′R
µ′
R

τ ′R
f ′
4R

f ′
5R















+ h.c , (5.29)

where

Ml =

(

(Ml)3×3 (ml)3×2

(m̃l)2×3 (Mf )2×2

)

. (5.30)

The matrix Ml is invariant under µ-τ symmetry and has the same form as in eq. (5.2).

The explicit forms of the matrices m and m̃ are

ml =







me4 me4

mµ4 mµ5

mµ5 mµ4






, m̃l =

(

m4e m4µ m4τ

m4e m4τ m4µ

)

, (5.31)

4Although we assume neutrinos as Majorana fermions, the same results are obtained if they are Dirac

fermions.
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Both m and m̃ are invariant under µ-τ interchange symmetry. The mass terms me4,

m4e, mµ5 and m4τ are spurious which break the Lµ − Lτ symmetry spontaneously. We

assume general form for matrix Mf which breaks the µ-τ interchange symmetry softly

unless (Mf )11 = (Mf )22 and (Mf )12 = (Mf )21. This soft breaking of µ-τ symmetry in Mf

leads to breaking of the same symmetry in the effective theory obtained after integrating

out the vectorlike charged leptons. Therefore, the KM between B and Z ′ gets generated

at 1-loop in this setup.

The five mass eigenstates of the charged leptons are obtained using the following

unitary transformation.














e′L,R
µ′
L,R

τ ′L,R
f ′
4L,R

f ′
5L,R















= UL,R















eL,R
µL,R

τL,R
f4L,R
f5L,R















(5.32)

such that

U†
LMl UR = Diag. (me,mµ,mτ ,m4,m5) ≡ Dl . (5.33)

For simplification, the 5× 5 unitary matrices UL,R can be represented as

UL,R =

(

UL,R

VL,R

)

, (5.34)

where UL,R and VL,R are matrices of dimensions 3×5 and 2×5 respectively. The unitarity

of UL,R and the relation in eq. (5.33) can be used to obtain the following relations:

UL,RU
†
L,R = 13×3 , VL,RV

†
L,R = 12×2 , UL,RV

†
L,R = 03×2 , (5.35)

ULDlU
†
R = Ml , ULDlV

†
R = ml , VLDlU

†
R = m̃l , VLDlV

†
R = Mf . (5.36)

We now discuss the KM between B and Z ′ bosons induced at one loop within this

setup. The general formalism developed in section III can be straight forwardly used to

compute such mixing. The fermionic currents associated with Z ′ and B bosons in this

framework can be read from eqs. (4.1) with fa = {e, µ, τ, f4, f5} and

X ′
L = X ′

R = Diag. (0, 1,−1, 1,−1) , Y ′
L = Diag.

(

−
1

2
,−

1

2
,−

1

2
,−1,−1

)

, Y ′
R = −1 .

(5.37)

Using eq. (4.4) and definition in eq. (5.34), the gauge couplings in the mass basis are

obtained as

YL = −
1

2
U †
LUL − V †

LVL , YR = −1 , (5.38)

XL,R = U †
L,R X3 UL,R + V †

L,R X2 VL,R , (5.39)

where X2 = Diag.(1,−1). Eq. (5.37) implies Tr(Y ′
LX

′
L + Y ′

RX
′
R) = 0 making ABZ′ finite in

the present framework. Moreover, using eqs. (5.38), (5.39) and the relations obtained in
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eqs. (5.35), (5.36) we find

1

2
Tr(m2({YL, XL}+ {YR, XR}))− Tr(YLmXRm+ YRmXLm)

=
1

2
Tr

(

(MlM
†
l −M †

l Ml +mlm
†
l )X3 −m†

lmlX2

)

, (5.40)

which vanishes identically for the above considered forms of Ml and ml. Therefore, the

divergent part in BBZ′ also vanishes making the KM finite and calculable in the underlying

framework. The values of ABZ′ and BBZ′ can be explicitly computed using the expressions

of finite parts given in eqs. (4.6), (4.7) with YL,R and XL,R obtained in eqs. (5.38), (5.39)

for this model.

We explicitly calculate the KM in a specific “seesaw-like” case, i.e. Ml < ml, m̃l ≪ Mf ,

within this model. The effective mass matrix for the three light charged leptons is obtained

as Ml
eff. ≈ Ml −mlM

−1
f m̃l. Let uL,R and vL,R are matrices which diagonalize Ml

eff. and

Mf , respectively, such that

u†LMl
eff. uR = Diag.(me,mµ,mτ ) , v†LMf vR = Diag.(m4,m5) . (5.41)

The 5× 5 unitary matrices UL,R can suitably written as

UL,R ≈

(

uL,R −ρL,R vL,R
ρ†L,R uL,R vL,R

)

, (5.42)

where ρL ≈ −mlM
−1
f and ρ†R ≈ −M−1

f m̃l. Further, we take λl
eµ = λl

µe = 0 and consider

the following ansatz for the matrices ml and m̃l:

ml = m







0 0

1 0

0 1






, m̃l = m̃

(

0 1 0

0 0 1

)

. (5.43)

The above forms are achieved if Lµ − Lτ symmetry remains unbroken in ml, m̃l. In this

case, the unitary matrices uL,R and vL,R can be parametrized as

uL,R =







1 0 0

0 cθL,R
sθL,R

0 −sθL,R
cθL,R






, vL,R =

(

cφL,R
sφL,R

−sφL,R
cφL,R

)

, (5.44)

where cθ = cos θ and sθ = sin θ. The general results given in eqs. (4.6), (4.7) are then used

to compute the KM using the above simplifications. The leading contributions to kinetic
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and mass mixing are obtained as:

ABZ′ ≈ −
gY g

′

4π2

(

(c2φL
+ c2φR

) (b2[m4,m4, q]− b2[m5,m5, q]) (5.45)

+
1

2
(c2θL + 2c2θR) (b2[mµ,mµ, q]− b2[mτ ,mτ , q]) +O

(

m2, m̃2

m2
4,5

))

,

BBZ′ ≈
gY g

′

16π2

(

(

m2 − 2m̃2
)

(c2φL
− c2φR

)(b0[m4,m4, q]− b0[m5,m5, q])

+ (c2θL − c2θR)
(

m2
τ b0[mτ ,mτ , q]−m2

µ b0[mµ,mµ, q]
)

+O

(

m2, m̃2

m2
4,5

))

.

For |q2| ≪ m2
5,m

2
4, the above expressions can further be simplified as

ABZ′ ≈ −
gY g

′

24π2

(

(c2φL
+ c2φR

) ln
m2

4

m2
5

+
1

2
(c2θL + 2c2θR) ln

m2
µ

m2
τ

)

, (5.46)

BBZ′ ≈
gY g

′

16π2

(

(

m2 − 2m̃2
)

(c2φL
− c2φR

) ln
m2

4

m2
5

+ (c2θL − c2θR)

(

m2
τ ln

m2
τ

µ2
−m2

µ ln
m2

µ

µ2

))

.

The first terms in ABZ′ and BBZ′ in eq. (5.46) quantify the 1-loop contribution induced

by the vectorlike charged leptons. Since these fermions are charged under both the U(1)Y
and Lµ − Lτ gauge symmetries, their contribution to KM is nonzero unless Mf is µ-

τ symmetric, i.e. φL,R = π/4 or m4 = m5. This is in contrast to the standard seesaw

case discussed in the previous subsection where the RH neutrinos do not couple to B

and hence they do not induce KM by themselves. The second terms in ABZ′ and BBZ′

correspond to contributions from the SM charged leptons. This along with the other sub-

leading contributions in eq. (5.45) vanish in the decoupling limit, m4,5 → ∞. Note that

Ml
eff. = Ml is µ-τ symmetric in the same limit which leads to θL,R = π/4 and vanishing of

the charged lepton contributions. In this case, the first terms in ABZ′ and BBZ′ provide

non-decoupling contributions to the kinetic and mass mixing respectively.

Mf is a diagonal matrix in the Lµ − Lτ symmetric limit. As a result, the masses of

vectorlike leptons need not be linked to the Lµ − Lτ symmetry breaking scale, unlike in

the seesaw case discussed in the previous subsection. This allows the Lµ − Lτ breaking

scale to be smaller than the vectorlike lepton masses which are required to be large for

the phenomenological reasons. The Z ′ boson in this case can be light and leave signal in

the low energy process. The other advantage of this is that one gets almost diagonal Mf

resulting in φL,R ≈ 0. If one also assumes that the elements of Ml are vanishingly small

and the second and the third generation masses arise through the seesaw like contribution

Ml
eff. ≈ −mlM

−1
f m̃l ≈ −mm̃Diag.(m−1

4 ,m−1
5 ) (5.47)

– 19 –



J
H
E
P
0
3
(
2
0
2
0
)
0
0
1

then this leads to seesaw contribution which is almost diagonal and results in small θL,R.

With a small θL the atmospheric mixing gets dominant contribution from the µ-τ symmetric

neutrino mass matrix and is nearly maximal as required phenomenologically. Further,

m4/m5 ≈ mτ/mµ if φL is vanishingly small. Replacing these in eq. (5.46) results in

ABZ′ ≈
gY g

′

48π2
ln

m2
µ

m2
τ

, BBZ′ ≈ O

(

m4, m̃4

m2
4,5

)

. (5.48)

The µ-τ symmetry in the charged lepton sector is badly broken giving rise to large but

finite ABZ′ . The leading order contribution to mass mixing parameter BBZ′ vanish in this

case because of φL ≈ φR.

The above setup can straightforwardly be implemented in the quark sector extending

Lµ−Lτ symmetry to include the second and third generations of quarks transforming in an

analogous way. The µ-τ interchange symmetry can also be generalized as 2-3 interchange

symmetry [48]. The up-type quark mass matrix can be assumed invariant under 2-3 in-

terchange symmetry. A similar assumption for the down-type quarks would then imply

Vcb = Vub = 0 and therefore breaking of 2-3 interchange symmetry would be necessarily

required for the realistic quark mixing angles. Such breaking can be incorporated by extend-

ing the down-type quark sector by a pair of vectorlike quarks in an analogous way discussed

above. One obtains similar expressions for ABZ′ and BBZ′ as in eq. (5.46) with appropriate

change in hypercharges and an overall color factor. The difference compared to the lep-

tonic case is that one requires a small deviation from θL = π/4 in order to produce realistic

quark mixing. This can easily be reproduced through small seesaw-like contribution, and

one need not assume vanishing Ml as it is done in the leptonic case. The mild breaking of

2-3 interchange symmetry gives rise to relatively small kinetic and mass mixing in this case.

6 Summary and discussions

The SM extended with gauged Lµ−Lτ symmetry offers phenomenologically rich framework

in which the new physics effects can arise directly through the couplings of the second and

the third generation leptons with the Z ′ boson and indirectly through the KM between the

Z and Z ′ bosons. The later makes it possible for the SM quarks and the first generation

of leptons to couple to Z ′ boson and therefore the KM is of particular interests from the

phenomenological considerations. KM in the standard Lµ − Lτ models can be forbidden

to all orders if one imposes µ-τ interchange or reflection symmetry under which one of the

two gauge bosons also transforms non-trivially. However, the same symmetries do not give

phenomenologically viable mixing in the lepton sector. Invariance of leptonic Lagrangian

under µ-τ interchange symmetry leads to vanishing atmospheric and reactor mixing angles

while the same under µ-τ reflection symmetry implies CP conservation in the lepton sector.

We showed that it is possible to create more general versions of these symmetries, which

can lead to realistic lepton mixing. However, these symmetries can forbid the KM up to

1-loop level only.

In the absence of µ-τ symmetry, the kinetic and mass mixing in Lµ − Lτ models is

given by arbitrary parameters which cannot be determined from the other fundamental
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parameters of the theory and can be constrained only from the experimental observations.

However, the KM parameters become calculable if µ-τ symmetry is imposed in a full

theory, and the mechanism of its breaking is known. The magnitude of KM in this case

depends on the details of the new sector responsible for µ-τ breaking. We provided two

explicit examples of this in section 5. Both the kinetic mixing parameters are shown to be

small and inversely proportional to the right handed neutrino masses in a class of seesaw

models in which the µ-τ symmetry breaking is present only in the heavy neutrino sector.

The neutrino mass mixing parameter can be large and independent of the right handed

neutrino masses if the Dirac mass matrix also break the µ-τ symmetry. On the contrary if

µ-τ breaking is introduced through heavy vectorlike charged leptons, the KM parameters

are dominantly determined by the new sector, and its magnitude can be large.

Phenomenological consequences of the SM with Lµ−Lτ extensions are widely discussed

and used to constrain the parameters g′ and MZ′ . One could divide the tests of this model

in two categories, one which exploits KM and use electron or hadron induced interactions.

These include a large variety of processes, such as precision electroweak tests, atomic par-

ity violation, beam dump experiments, νe − e elastic scattering in Borexino, and coherent

neutrino-nucleus scattering observed in the COHERENT experiment. Constraints from

these experiments mainly for light Z ′ are presented in [42]. These constraints do not hold

in the type of seesaw model discussed in section 5.1 due to very suppressed Z-Z ′ mixing.

The other class of tests involve only µ and τ sector. Anomalous magnetic moment of µ and

τ and the muon neutrino indued trident production through the process νN → νNµ+µ−

fall in this category, and have been used to constrain the purely leptonic couplings of Z ′.
The latter process is found to be quite constraining and rules out most of the parameter

space corresponding to MZ′ > 400MeV which otherwise can be used to explain the dis-

crepancy in (g − 2)µ. It turns out that the neutrino trident process is not a useful probe

of models considered here and in [4, 5]. The general µ-τ reflection symmetry requirement

in eq. (2.6) imposed to get vanishing KM parameters at 1-loop also implies that the Z ′

couplings to leptons are purely off-diagonal in their mass basis. Immediate consequence is

that the trident process νN → νNµ+µ− cannot take place at tree level and is unable to

constrain the parameters of the model. Instead, the rare tau decays could provide strin-

gent constraint on the model. If Lµ − Lτ symmetry is broken only through Higgs doublet

VEV then the rare decay τ → µZ ′ (for light Z ′) and the decay τ− → µ−νµντ together

rule out the entire space which is responsible for the explanation of (g − 2)µ [4, 5]. Small

parameter space is still allowed if SU(2) singlet field is responsible for the Lµ−Lτ breaking

as is assumed here. This is analyzed in [5]. The flavour off-diagonal couplings of Z ′ to
the charged leptons, as obtained in eq. (2.5), depend on the exact structure of the mixing

matrices UlL and UlR . These matrices have the form given in eq. (2.10) in the limit of the

exact µ-τ symmetry. This gives the following couplings of Z ′:

g′Z ′
µ(cos θL τLγ

µµL + sin θL τLγ
µeL + cos θR τRγ

µµR + sin θR τRγ
µeR) , (6.1)

where θL,R are angles entering in definitions of UlL,lR as given in eq. (2.10). This equation

implies non-universality in the decay of τ to e and µ. The above equation coincides with the

one assumed in [4, 5] for θL = θR = 0. It is found in [5] that the above coupling can explain
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the (g − 2)µ anomaly and be consistent with the observed rare tau decay τ− → µ−νµντ
for a very narrow ranges in parameters g′ and MZ′ . We update their analysis considering

the latest values of (g − 2)µ from [61] and BR(τ− → µ−νµντ ) from [16]. We observe that

the positive deviation at 1.6σ found in the branching ratio of the decay τ− → µ−νµντ
compared to its SM value and the anomaly in (g−2)µ can be simultaneously reconciled for

0.004 ≤ g′ ≤ 0.006 and 1.12GeV ≤ MZ′ ≤ 1.24GeV

which practically coincides with the one already found in [5]. One can obtain MZ′ ∼ g′vs ∼
O(1) GeV for the Lµ − Lτ breaking scale around TeV if the above range in parameters is

to be realized. Possible constraint on this model can come at the muon collider [5] through

the process µ+µ− → τ+τ−, search for rare tau decays at Belle II and detection of four

charged leptons at colliders as discussed in details in [16].

Acknowledgments

The work of KMP was partially supported by research grant under INSPIRE Faculty

Award (DST/INSPIRE/04/2015/000508) from the Department of Science and Technology,

Government of India.

A Loop integrals

The definition of the loop integration functions are as the following [62].

b0[mi,mj , q] =

∫ 1

0
dx ln(∆(mi,mj , q)/µ

2) ,

b1[mi,mj , q] =

∫ 1

0
dxx ln(∆(mi,mj , q)/µ

2) ,

b2[mi,mj , q] =

∫ 1

0
dxx(1− x) ln(∆(mi,mj , q)/µ

2) , (A.1)

where ∆(mi,mj , q) = xm2
j+(1−x)m2

i −x(1−x)q2. µ is an arbitrary subtraction scale. The

functions b0 and b2 are symmetric under the interchange of i and j. Also, b1[mi,mi, q] =
1
2b0[mi,mi, q].

For special cases of interests, the above integrals can be approximated as the following.

For m2 ≪ q2,

b0[m,m, q] ≈ −2 + ln

(

−
q2

µ2

)

−
m2

q2

b2[m,m, q] ≈ −
5

18
+

1

6
ln

(

−
q2

µ2

)

−
m2

q2
. (A.2)
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For m2 ≪ q2 ≪ M2 (O(m2/q2) terms not shown),

b0[m,M, q] ≈ −1 + ln
M2

µ2
−

q2

2M2
,

b1[m,M, q] ≈ −
1

4
+

1

2
ln

M2

µ2
−

q2

6M2
,

b1[M,m, q] ≈ −
3

4
+

1

2
ln

M2

µ2
−

q2

3M2
,

b2[m,M, q] ≈ −
5

36
+

1

6
ln

M2

µ2
−

q2

12M2
. (A.3)

For q2 ≪ M2,

b0[M,M, q] ≈ ln
M2

µ2
−

q2

6M2
,

b1[M,M, q] ≈
1

2
ln

M2

µ2
−

q2

12M2
,

b2[M,M, q] ≈
1

6
ln

M2

µ2
−

q2

30M2
. (A.4)
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