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1 Introduction

An important role in investigating strong interaction contributions to various physical

quantities is played by the so-called R-ratio

R(s) ≡ σ(e+e− → hadrons)

σ0(e+e− → µ+µ−)
=

3s

4πα2
∗

σ(e+e− → hadrons), (1.1)

where α∗ is the fine structure constant in electrodynamics and s is the square of the center a

mass total energy. For example, one way to obtain a value of the strong coupling constant is

to compare a theoretical prediction for R(s) with the experimental data [1]. Experimental

and theoretical results for the R-ratio can be used for determining the strong interaction

contribution to the muon anomalous magnetic moment coming from the hadronic vacuum

polarization effects [2].
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The theoretical prediction for the R-ratio is closely related to the Adler D-function [3],

D
(
ᾱs(P

2)
)
= P 2

∞∫

0

ds
R(s)

(s+ P 2)2
. (1.2)

Here P is the Euclidean momentum, and the function ᾱs(P
2) is defined as a solution of the

equation dᾱs/d lnP = β(ᾱs) with the boundary condition ᾱ(µ2) = αs, where µ denotes a

scale of the renormalization (or the renormalization point).

The D-function allows comparing the theoretical QCD predictions with the experimen-

tal data for R(s) [4]. Its theoretical expression can be defined by different ways. For exam-

ple, in the region where the perturbation theory is applicable it can be found by calculating

the QCD corrections to the electromagnetic coupling constant encoded in the expression

D(αs) = −3π

2

∂

∂ lnP
d−1(α0, αs0, P/Λ)

∣∣∣
α→0

= −3π

2

∂

∂ lnP
d−1(α, αs, P/µ)

∣∣∣
α→0

, (1.3)

where α and αs are the renormalized electromagnetic and strong coupling constants, re-

spectively, while α0 and αs0 are the corresponding bare couplings. The inverse invariant

charge d−1 is related to the polarization operator Π by the equation

d−1(α, αs, P/µ) = α−1 + 4πΠ(α, αs, P/µ). (1.4)

It is important that in eq. (1.3) the electromagnetic coupling constant is set to 0. Therefore,

only quantum corrections coming from the quark and gluon loops are taken into account,

while the electromagnetic field is treated as an external one,

D(αs) = −6π2 ∂

∂ lnP
Π(α → 0, αs, P/µ) ≡ −6π2 ∂

∂ lnP
Π(αs, P/µ), (1.5)

so that only QCD corrections survive. Graphically, this implies that the expression (1.3)

is contributed to by the diagrams with two external lines corresponding to the electromag-

netic field in which all internal lines correspond to quarks and gluons (and there are no

internal lines of the eletromagnetic field).

Note, that starting from the O(α2
s) level the truncated perturbatve expression for

the D-function depends on a subtraction scheme. In this paper we reveal how various

renormalization prescriptions effect the D-function for the N = 1 sypersymmetric quantum

chromodynamics (SQCD) interacting with the electromagnetic superfield. In this case the

theoretical expression for the Adler function (1.3) can be obtained from the massless SQCD

corrections to the renormalization of the electromagnetic coupling constant.

Another definition of the D-function,

D̃(αs) = −3π

2

d

d lnµ
α−1(α0, αs0,Λ/µ)

∣∣∣
α0,αs0=const; α0→0

, (1.6)

was introduced in ref. [5]. In appendix A we demonstrate that

D(αs) = D̃(αs) (1.7)
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in the special renormalization scheme when the SQCD-renormalization of the electromag-

netic coupling constant is made with the help of the momentum (MOM)-like prescription

(
d−1(α, αs, P/µ = 1)− α−1

)∣∣∣
α→0

= 4πΠ(αs, P/µ = 1) = 0. (1.8)

To some extent, this equation resembles the condition α0(α,Λ/µ = 1) = α used in ref. [6] for

constructing the NSVZ scheme for N = 1 SQED. However, the boundary condition (1.8)

is imposed to the Green function at a certain value of the momentum, while the above

mentioned condition of ref. [6] is actually imposed to the renormalization constant at a

certain value of the normalization point.

It is important that the prescription (1.8) fixes the subtraction scheme for the SQCD-

renormalization of the electromagnetic coupling, while the renormalization prescription for

the SQCD coupling remains unfixed.1

The Adler function D(αs) is known for various theories in sufficiently large orders of

the perturbation theory. In QCD it has been calculated in the three-loop approximation

in [7, 8] analytically and in [9] numerically; in the four-loop approximation in ref. [10]

(see also [11, 12]); in the five-loop approximation in [13, 14]. Also the Adler function was

calculated for some other models. For instance, the three-loop result for QCD supplemented

by coloured scalars has been obtained in [15]. For N = 1 SQCD the two-loop Adler D-

function has been evaluated in [16, 17].

In refs. [18, 19] the all-loop expression for the D-function of N = 1 SQCD has been

written down. This exact equation relates the D-function to the anomalous dimension of

the matter superfields,2

D̃(αs) =
3

2

Nf∑

α=1

q2α

(
dim(R)− tr γ̃(αs)

)
, (1.9)

and can be considered as an analog of the exact NSVZ β-function [20–23] for N = 1

supersymmetric gauge theories. However, it is known that the NSVZ equation is scheme-

dependent. In particular, for N = 1 SQED it is valid only for a certain class of the

renormalization prescriptions [24]. The general equation describing, how it changes under

finite renormalizations, can be found in [25, 26]. Numerous calculations [27–32] demon-

strated that the NSVZ relation is not valid in the DR scheme (i.e. for a theory regularized

by the dimensional reduction [33] supplemented by the modified minimal subtractions [34]).

However, investigation of supersymmetric theories revealed essential advantages of using

the higher covariant derivative (HD) regularization [35, 36] in the supersymmetric ver-

sion [37, 38]. In this case N = 1 supersymmetry is a manifest symmetry and remains

unbroken in all loops. Moreover, the HD regularization allows deriving eq. (1.9) in a nat-

ural and beautiful way, because for this regularization an equation similar to (1.9) takes

1The scheme (1.8) exists, because if d−1(α, αs, P/µ = 1) = α−1 + f(αs) +O(α), where f(αs) is a finite

function, then eq. (1.8) is satisfied for d−1(α′, αs, P/µ) ≡ d−1(α(α′), αs, P/µ) with (α′)−1 = α−1 + f(αs).
2Here we present this equation for the case of a general simple group G and a general representation R,

see ref. [5].
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place for the functions defined in terms of the bare coupling [18, 19],

D(αs0) =
3

2

Nf∑

α=1

q2α

(
dim(R)− tr γ(αs0)

)
, (1.10)

where

D(αs0) = −3π

2

d

d ln Λ
α−1
0 (α, αs,Λ/µ)

∣∣∣
α,αs=const;α0→0

; (1.11)

γ(αs0)i
j = − d

d ln Λ
lnZ(αs,Λ/µ)i

j
∣∣∣
αs=const

. (1.12)

Here Λ is the dimensionful parameter of the regularization and the condition α0 → 0 ex-

tracts only SQCD corrections to the electromagnetic coupling constant. In ref. [5] eq. (1.10)

has been verified in the order O(α2
s0) inclusive. By other words, the relation between the

three-loop D-function and the two-loop anomalous dimension has been checked by explicit

calculations.

The relation (1.10) follows from the factorization of the loop integrals giving the left

hand side into integrals of double total derivatives with respect to the loop momentum.

It seems to be an inherent feature of supersymmetric theories and theories with softly

broken supersymmetry. The factorization into total and double total derivatives was first

noted in [39] and [40] for N = 1 supersymmetric electrodynamics (SQED), respectively.

Subsequently, a similar structure of loop integrals giving the left hand side of the NSVZ and

NSVZ-like equations has been confirmed by numerous calculations for various theories [41–

49]. For some of them the all-loop proves have been done [50–52].

The NSVZ and NSVZ-like equations for the renormalization group functions (RGFs)

defined in terms of the bare couplings obtained with the higher derivative regularization

allow constructing the all-loop renormalization prescription under which these relations

are valid for RGFs defined in terms of the renormalized couplings [6, 26, 53–55]. Namely,

it is necessary to regularize a theory by higher covariant derivatives and include into the

renormalization constants only powers of lnΛ/µ. This prescription is analogous to the

minimal subtractions [34], so that we call it “HD+MSL” [5, 56, 57], where HD and MSL

stand for Higher Derivatives and Minimal Subtraction of Logarithms, respectively. Validity

of eq. (1.9) in the HD+MSL scheme has been confirmed by the explicit calculation of ref. [5]

in the order O(α2
s), where the scheme dependence manifests itself.

However, the Adler function (1.3) is not certainly obtained in the HD+MSL scheme.

Moreover, most calculations of the phenomenological interest in SQCD have been done in

the DR-scheme, so that it is desirable to find the result for the D-function in this case as

well. In particular, to calculate the D-function (1.3), we should use the condition (1.8) for

the SQCD-renormalized electromagnetic coupling constant and the DR prescription for the

renormalization of the SQCD coupling constant and the matter superfields. Fortunately, in

ref. [5] the function (1.6) has been calculated for an arbitrary renormalization prescription

supplementing the higher covariant derivative regularization. The function D(αs) can be

obtained from this result by a proper fixing of the renormalization scheme ambiguity. This

will be done in this paper. Also we will find the result for the function (1.6) in the DR
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scheme (for the SQCD coupling constant, the SQCD-renormalized electromagnetic coupling

constant, and the renormalization of the matter superfields). Moreover, we will investigate

the scheme dependence of the D-function and subtraction schemes in which the NSVZ-like

relation for it takes place. The results for the D-function will be presented in the form of

the β-expansion, earlier used in the QCD case [58, 59].

The paper is organized as follows: in section 2 we describe the theory under con-

sideration and recall the result of ref. [5] obtained with the higher covariant derivative

regularization for an arbitrary renormalization prescription. In the next section 3 we fix

the renormalization scheme by the prescription (1.8) for the SQCD-renormalized electo-

magnetic couping constant α and by the DR prescription for the SQCD coupling constant

αs and the matter superfields. As a result, we obtain the function D(αs) and demonstrate

that it does not satisfy the NSVZ-like equation (1.9). Section 4 is devoted to the calculation

of the D-function (1.6) in the case when the DR prescription is used for all renormalization

constants. We demonstrate that the result also does not satisfy eq. (1.9). Moreover, in this

section we calculate the function D(α0) (defined in terms of the bare couplings) for the the-

ory regularized by dimensional reduction and show that (unlike the case of using the higher

covariant derivative regularization) it does not satisfy the NSVZ-like relation (1.10). The

scheme dependence of the D-function is investigated in section 5, where we obtain the equa-

tion describing how the D-function changes under finite renormalizations. Using this equa-

tion in section 6 we discuss various ways to restore eq. (1.10) for the three-loopD-function in

the case of using the regularization by dimensional reduction. In particular, we demonstrate

that even the function D(αs) can satisfy this relation for a proper choice of a prescription

for the renormalization of the matter superfields. In section 7 the results for the D-function

are presented in the form of the β-expansion. In this section we also discuss the dependence

of the β-expansion on a renormalization prescription in the considered approximation and

collect the scheme dependent coefficients for various subtraction schemes in table 1.

2 The three-loop expression for D̃(αs) for N = 1 SQCD regularized by

higher derivatives

In this paper we consider massless N = 1 SQCD (with a simple gauge group G and the

matter superfields in a certain representation) interacting with the external electromagnetic

field in the supersymmetric way. Such a theory is invariant under the G × U(1) gauge

transformations, and, therefore, contains two coupling constants g and e corresponding to

the factors G and U(1), respectively. It is convenient to write the action of this theory in

terms of the N = 1 superfields, because in this case N = 1 supersymmetry is manifest,

S =
1

2g20
Re tr

∫
d4x d2θW aWa +

1

4e20
Re

∫
d4x d2θW aWa

+

Nf∑

α=1

1

4

∫
d4x d4θ

(
φ+
α e

2V+2qαV φα + φ̃+
α e

−2V t
−2qαV φ̃α

)
. (2.1)

Here g0 and e0 are the bare coupling constants. (Also we will use the notations αs0 ≡ g20/4π

and α0 ≡ e20/4π.) The non-Abelian gauge superfield corresponding to the subgroup G is

– 5 –
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denoted by V , while V is the external Abelian gauge superfield corresponding to the

subgroup U(1). The corresponding gauge superfield strengths are defined as

Wa =
1

8
D̄2(e−2V Dae

2V ); Wa =
1

4
D̄2DaV . (2.2)

The chiral matter superfields φα, φ̃α in the representations R and R̄ with the electric

charges qα and −qα, respectively, describe Dirac fermions and their scalar superpartners.

The three-loop D-function (1.6) for this theory has been calculated in ref. [5] in the

case of using the supersymmetric version of the higher covariant derivative regularization.

The main idea of this regularization [35, 36] is to add a higher derivative term to the

action, so that the divergences remain only in the one-loop order. These remaining diver-

gences are regularized by inserting relevant Pauli-Villars determinants into the generating

functional [60]. The masses of the Pauli-Villars superfields should be proportional to the

dimensionful parameter Λ in the higher derivative term. This ensures that the regularized

theory contains the only dimensionful parameter.

For the theory (2.1) it is possible to use two sets of the Pauli-Villars superfields: three

chiral superfields ϕa in the adjoint representation of the gauge group andNf anticommuting

chiral superfields Φα and Φ̃α with the same quantum numbers as φα and φ̃α, respectively.

The former superfields cancel one-loop divergences introduced by the gauge superfield V

and ghosts, while the latter ones cancel one-loop divergences coming from the matter loop.

Their masses are related to the parameter Λ in the higher derivative term by the equations

Mϕ = aϕΛ; M = aΛ, (2.3)

where aϕ and a are coupling-independent parameters. Their values can of course be fixed

by a certain prescription, if necessary.

The result for the three-loop D-function obtained in [5] with the help of the higher

covariant derivative regularization (for the regulator functionR(x) = 1+xn, in the Feynman

gauge, see ref. [5] for details) can be written as

D̃(αs) =
3

2

Nf∑

α=1

q2α

{
dim(R) +

αs

π
trC(R) +

α2
s

π2

[
3

2
C2trC(R)

(
ln aϕ + 1 + d2 − b11

)

−NfT (R) trC(R)
(
ln a+ 1 + d2 − b12

)
− 1

2
tr
(
C(R)2

)]}
+O(α3

s). (2.4)

In this equation αs = g2/4π is the renormalized SQCD coupling constant,

tr (TATB) = T (R)δAB ; C(R)i
j = (TATA)i

j ;

C2δ
CD = fABCfABD; r = δAA = dimG, (2.5)

where TA and fABC are the generators of the representation R and the structure constants,

respectively. In our notation the generators of the fundamental representation are supposed

to be normalized by the condition tr(tAtB) = δAB/2.

It is important that the result (2.4) is valid for an arbitrary subtraction scheme char-

acterized by the finite constants b11, b12, and d2. Fixing the renormalization prescription
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we fix values of these constants. To be exact, the constants b11 and b12 appear in the

one-loop approximation in the equation relating the bare (αs0 = g20/4π) and renormalized

(αs = g2/4π) SQCD coupling constants,

1

α0s
=

1

αs
+

1

2π

[
3C2

(
ln

Λ

µ
+ b11

)
− 2NfT (R)

(
Λ

µ
+ b12

)]
+O(αs), (2.6)

where µ is a renormalization point. Similarly, the finite constants d1 and d2 determine the

relation between the bare (α0 = e20/4π) and SQCD-renormalized (α = e2/4π) electromag-

netic coupling constants in the two-loop order,

1

α0
=

1

α
− 1

π

Nf∑

α=1

q2α dim(R)

(
ln

Λ

µ
+ d1

)
− αs

π2

Nf∑

α=1

q2α trC(R)

(
ln

Λ

µ
+ d2

)
+O(α2

s). (2.7)

And again we stress that d1 and d2 enter only in the SQCD part of the electromagnetic

coupling constant renormalization.

3 The three-loop Adler function D(αs) in the DR scheme for the SQCD

coupling constant and the matter superfields

First, we would like to obtain the expression for the Adler function D(αs) defined by

eq. (1.3) in the case when the theory is regularized by dimensional reduction and the

DR renormalization prescription is used for the renormalization of the SQCD coupling

constant and of the matter superfields. Certainly, this expression can be obtained from

eq. (2.4), which is valid for an arbitrary choice of a subtraction scheme. In the case we are

interested in this section it is necessary to find such values of the constants b11, b12, and

d2 that correspond to the considered renormalization prescription, i.e. DR scheme for the

SQCD coupling constant and the matter renormalization, and MOM-like eq. (1.8) for the

SQCD-renormalized electromagnetic coupling constant.

Following ref. [5], we find the values of b11 and b12 (defining the renormalization of

the SQCD coupling constant) by comparing the expressions for the two-loop anomalous

dimension of the matter superfields calculated with the higher covariant derivatives and in

the DR scheme. This gives the equations [5]

b11 = ln aϕ + g1 +
1

2
; b12 = ln a+ g1 +

1

2
, (3.1)

where g1 is a finite constant entering the one-loop renormalization of the matter superfields,

lnZi
j =

αs

π
C(R)i

j

(
ln

Λ

µ
+ g1

)
+O(α2

s). (3.2)

Therefore, we also need to know the constant g1. It can be found by comparing the

one-loop renormalized two-point Green functions of the matter superfields written in terms

of the renormalized couplings calculated with the higher covariant derivative regularization

and with dimensional reduction supplemented by the modified minimal subtractions. A

– 7 –
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Figure 1. The superdiagrams giving the two-point Green function of the matter superfields in the

one-loop approximation.

part of the effective action corresponding to this Green function can be written in terms

of the renormalized quantities as

Γ
(2)
φ =

1

4

Nf∑

α=1

∫
d4p

(2π)4
d4θ

(
φ∗i
Rα(θ,−p)φRαj(θ, p)+φ̃∗

Rαj(θ,−p) φ̃i
Rα(θ, p)

)
(ZG)i

j(αs, p/µ),

(3.3)

where the subscript R marks the renormalized superfields. In the one-loop approximation

the contribution to the function (GR)i
j = (ZG)i

j(αs, p/µ) is given by the superdiagrams

presented in figure 1. In the case of using the higher derivative regularization (in the

Feynman gauge with the regulator R(x) = 1 + xn) the result can be written as

(
GR,HD

)
i
j = lim

Λ→∞

Zi
k

(
δjk−8παs0,HDC(R)k

j

∫
d4k

(2π)d
1

k2Rk(k + p)2
+O(α2

s0,HD)

)
, (3.4)

where (for the considered regulator function) Rk = 1 + k2n/Λ2n. Using the result for the

integral in eq. (3.4) calculated in refs. [61, 62] and substituting the renormalization constant

Zi
k from eq. (3.2), we obtain

(
GR,HD

)
i
j = δji −

αs

π
C(R)i

j

(
ln

µ

P
+

1

2
− g1

)
+O(α2

s). (3.5)

From the other side, calculating the considered Green function with the help of dimen-

sional reduction, we obtain

(
GR,DR

)
i
j = lim

ΛDR→∞; ε→0
(ZDR)i

k

(
δjk − 8παs0,DRC(R)k

j(ΛDR)
ε

∫
ddk

(2π)d
1

k2(k + p)2

+O(α2
s0,DR

)

)
, (3.6)

where ε ≡ 4− d and ΛDR is the dimensionful parameter of the regularized theory.3 Intro-

ducing the parameter ΛDR makes the coupling constant e0 dimensionless. In this paper we

do not follow the usual convention ΛDR = µ. This is convenient, because then the results

obtained with the dimensional technique will look similar to the ones found with the higher

covariant derivative regularization, see [63, 64]. By construction, in the version of the DR

3Note that in the case of using dimensional reduction the tadpole diagram in figure 1 vanishes and does

not contribute to eq. (3.6).
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scheme adopted in this paper the renormalization constant (ZDR)i
k contains only ε-poles

and powers of ln Λ̄/µ, where

Λ̄ ≡ ΛDR exp(−γ/2)
√
4π. (3.7)

Using this prescription, we obtain

(
ZDR

)
i
j = δji +

αs

π
C(R)i

j

(
1

ε
+ ln

Λ̄

µ

)
+O(α2

s); (3.8)

(
GR,DR

)
i
j = δji −

αs

π
C(R) ji

(
ln

µ

P
+ 1

)
+O(α2

s). (3.9)

However, the renormalized all-order perturbative expansion of the Green function

should not depend on the regularization and renormalization details,

(
GR,HD

)
i
j =

(
GR,DR

)
i
j . (3.10)

The Green functions entering the left and right hand sides this equation are given by

eqs. (3.5) and (3.9), respectively. From eq. (3.10) we obtain such a value of the constant

g1 for which the corresponding renormalization prescription (with the higher derivative

regularization) is equivalent to the DR scheme,

g1 = −1

2
. (3.11)

This value was calculated by equating the finite parts of the considered Green functions.

Substituting it to eq. (3.1), we obtain

b11 = ln aϕ; b12 = ln a. (3.12)

Also eq. (2.4) contains the finite constant d2 which determines the renormalization

scheme for the SQCD-renormalized electromagnetic coupling constant. It can be found by

a similar method, namely, by comparing the renormalized two-point Green functions of the

Abelian gauge superfield V in the two-loop approximation. The corresponding part of the

effective action has the form

Γ
(2)
V

= − 1

16π

∫
d4p

(2π)4
d4θV (θ,−p) ∂2Π1/2V (θ, p) d−1(α, αs, p/µ), (3.13)

where the supersymmetric transverse projection operator is denoted by Π1/2 ≡
−DaD̄2Da/8 = −D̄ȧD2D̄ȧ/8. Note that in calculating the Adler D-function the Abelian

superfield V is considered as the external one, so that the function d−1 depends on α0 only

in the tree approximation. This implies that

d−1(α, αs, P/µ) = α−1 + 4πΠ(αs, P/µ), (3.14)

where the polarization operator Π is independent of α, and P is the Euclidean momentum.

For the considered theory it can be equivalently defined by the equation

〈J(x1, θ1)J(x2, θ2)〉 =
i

2

∫
d4p

(2π)4
Π(αs, p/µ) ∂

2Π1/2δ
4(θ1 − θ2) exp (−ipα(x

α
1 − xα2 )) ,

(3.15)
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 2. The superdiagrams giving the two-point Green function of the Abelian gauge superfield

V in the two-loop approximation.

where the corresponding SQCD current superfield is

J =
1

2

Nf∑

α=1

qα

(
φ+
α e

2V φα − φ̃+
α e

−2V t

φ̃α

)
. (3.16)

To obtain the expressions for the function d−1 in the considered approximation, it is

necessary to calculate the superdiagrams presented in figure 2. In this figure the bold exter-

nal wavy lines correspond to the electromagnetic superfield V , the solid lines denote matter

propagators, and the usual wavy lines denote propagators of the non-Abelian gauge super-

field V . Note that the result can be obtained from the corresponding result forN = 1 SQED

with Nf flavors by multiplying the latter to the factor
∑

α q
2
α dim(R)/Nf in the one-loop

approximation (the diagrams (1) and (2)) and to factor
∑
α
q2α trC(R)/Nf in the two-loop

approximation (the diagrams (3)–(8)).4 In the case of using the higher covariant derivative

regularization this prescription allows obtaining the function d−1 expressed in terms of the

renormalized quantities from the N = 1 SQED result which can be found by combining the

results presented in refs. [6, 53] (derived on the base of the calculation made in ref. [39]),

d−1
HD = α−1 +

1

π

Nf∑

α=1

q2α dim(R)

(
ln

µ

P
+ ln a+ 1− d1

)

+
αs

π2

Nf∑

α=1

q2α trC(R)

(
ln

µ

P
+

3

2
− 3

2
ζ(3)− d2

)
+O(α2

s). (3.17)

In this equation the finite constants d1 and d2 originate from the SQCD-renormalization

of the electromagnetic coupling constant, see eq. (2.7). Their values should be fixed by the

boundary condition (1.8). Setting µ = P and equating the coefficients of αs powers, we find

d1 = ln a+ 1; d2 =
3

2
− 3

2
ζ(3). (3.18)

4For the version of the higher covariant derivative regularization used in ref. [5] the interaction vertices

in the diagrams presented in figure 2 do not contain higher derivative terms.
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Substituting the finite constants (3.12) and (3.18) into eq. (2.4) we obtain the function

D(αs) in the case when the renormalization of the SQCD coupling constant and of the

matter superfields is made by the DR prescription,

D(αs) =
3

2

Nf∑

α=1

q2α

{
dim(R) +

αs

π
trC(R) +

α2
s

π2

[
− 1

2
tr
(
C(R)2

)
(3.19)

+ trC(R)

(
− 3

2
C2 +NfT (R)

)(
− 5

2
+

3

2
ζ(3)

)]}
+O(α3

s).

For the particular case of the group G = SU(N) and the matter superfields in the

(anti)fundamental representation the result (3.19) is written in appendix B.

Let us compare the expression (3.19) with the two-loop anomalous dimension in DR

scheme. It can be found, e.g., in ref. [27], and, in the notation of this paper, is written as

γ̃(αs)i
j = −αs

π
C(R)i

j +
α2
s

2π2

[(
− 3

2
C2 +NfT (R)

)
C(R)i

j +
(
C(R)2

)
i
j

]
+O(α3

s). (3.20)

We see that the NSVZ-like equation (1.9) is not satisfied,

D(αs) =
3

2

Nf∑

α=1

q2α

{(
dim(R)− tr γ̃(αs)

)
+

α2
s

π2
β0 trC(R)

(
−2+

3

2
ζ(3)

)}
+O(α3

s). (3.21)

In this equation β0 denotes the first coefficient of the SQCD β-function5 (such that β̃(αs) =

α2
sβ0/π +O(α3

s)), which is given by the expression

β0 = −3

2
C2 +NfT (R). (3.22)

(At present the SQCD β-function is known up to the three-loop approximation [31].)

Below in section 6 we will see that it is possible to tune a finite renormalization of

the matter superfields in such a way that the NSVZ-like relation will be valid for D(αs),

while finite renormalizations of the SQCD coupling constant do not affect the NSVZ-like

equation in the considered order.

4 The three-loop D-function in the DR scheme for all renormalization

constants

Calculating the three-loop result (3.19) for the function D(αs) defined by eq. (1.3) we use

the DR prescription only for the renormalization of the SQCD coupling constant and the

matter superfields, while for the SQCD-renormalized electromagnetic coupling constant we

use the MOM-like prescription (1.8). Now, let us calculate the three-loop result for the

function (1.6) in the case when the DR scheme is used for both coupling constants. As

we will see, the corresponding perturbative expression is different from the one for the

5Following ref. [6] in this paper we mark the β-function (standardly) defined in terms of the renormalized

couplings by a tilde.
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Adler function defined by eq. (1.3), but is related to it by a finite renormalization. The

result can be obtained from eq. (2.4) for a certain values of the finite constants b11, b12,

and d2. As for b11 and b12, they determine the subtraction scheme for the SQCD coupling

constant and, therefore, as in the case considered in the previous section, are given by

eq. (3.12). Thus, it is necessary to find only the value of the constant d2. This can be done

by comparing the expressions for the functions d−1 calculated with the higher covariant

derivative regularization and with the dimensional reduction in the DR scheme. The DR

result can be obtained similarly to the case of N = 1 SQED considered in [63],

d−1
DR

= α−1+
1

π

Nf∑

α=1

q2α dim(R)

(
ln

µ

P
+1

)
+

αs

π2

Nf∑

α=1

q2α trC(R)

(
ln

µ

P
+

7

4
− 3

2
ζ(3)

)
+O(α2

s).

(4.1)

Taking into account that the renormalized all-loop expression for Green function should

not depend on the regularization and renormalization prescriptions, we should equate the

results (3.17) and (4.1),

d−1
HD = d−1

DR
. (4.2)

From this equation we find the values of the constants d1 and d2 corresponding to the DR

scheme,

d1 = ln a; d2 = −1/4. (4.3)

Note that again they have been derived from the equality of the finite parts of the Green

functions. Substituting the values of the finite constants (3.12) and (4.3) into eq. (2.4) we

obtain the result for the D-function (1.6) in the DR scheme

D̃(αs) =
3

2

Nf∑

α=1

q2α

{
dim(R) +

αs

π
trC(R) +

α2
s

π2

[
− 1

2
tr (C(R)2) (4.4)

−3

4
trC(R)

(
− 3

2
C2 +NfT (R)

)]}
+O(α3

s).

We note that in the Abelian case (G → U(1)) it is related to the three-loop function

β̃(α)/α2 in N = 1 SQED with Nf flavors which can be found from the results of ref. [27].

In this case we really reproduce this function setting dim(R) → 1, C(R)i
j → 1, T (R) → 1,

C2 → 0 and making the replacement 3π/2
∑Nf

α=1 q
2
α → Nf . This fact can be considered as

a confirmation of the calculation correctness.

Also we see that in the DR scheme the D-function does not satisfy the NSVZ-like

relation (1.9),

D̃(αs) =
3

2

Nf∑

α=1

q2α

{(
dim(R)− tr γ̃(αs)

)
− α2

s

4π2
β0 trC(R)

}
+O(α3

s), (4.5)

where the anomalous dimension in the DR scheme is given by eq. (3.20).

Starting from eq. (4.4) it is possible to calculate the D-function (1.11) defined in terms

of the bare couplings for the theory regularized by dimensional reduction. The details of
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this calculation are described in appendix C, and the result is

D(αs0) =
3

2

Nf∑

α=1

q2α

{
dim(R) +

αs0

π
trC(R) +

α2
s0

π2

[
− 1

2
tr

(
C(R)2

)
(4.6)

−
(
3

4
+

1

2ε

)
trC(R)

(
− 3

2
C2 +NfT (R)

)]}
+O(α3

s0).

This expression (for a fixed regularization) is independent of the renormalization prescrip-

tion, see, e.g., ref. [6]. Therefore, it does not contain any finite constants defining the

subtraction scheme (i.e. eq. (4.6) is valid for an arbitrary renomalization procedure in the

case of using the regularization by dimensional reduction). It is worth mentioning that the

result (4.6) differs from the D-function (4.4) calculated in the DR scheme by the presence

of the ε-pole, as it should be [64]. Also we see that

D(αs0) =
3

2

Nf∑

α=1

q2α

{(
dim(R)− tr γ(αs0)

)
− α2

s0

π2
β0 trC(R)

(
1

4
+

1

2ε

)}
+O(α3

s0), (4.7)

where the anomalous dimension γ(αs0) defined in terms of the bare coupling constant for

the theory regularized by the dimensional reduction has the form

γ(αs0)i
j = −αs0

π
C(R)i

j +
α2
s0

2π2

[(
− 3

2
C2+NfT (R)

)
C(R)i

j +
(
C(R)2

)
i
j

]
+O(α3

s0), (4.8)

see appendix C. Thus, unlike the higher covariant derivative regularization [18, 19], the

three-loop Adler D-function defined in terms of the bare coupling constant calculated with

the dimensional reduction does not satisfy the NSVZ-like relation and explicitly depends

on ε similar to the N = 1 SQED case considered in [64].

5 Scheme dependence of the D-function

In the previous sections we have demonstrated that the NSVZ-like equation for the D-

function is not satisfied in the DR scheme. This is a typical situation, see, e.g., [27–32].

However, the NSVZ-like relations can be restored by a properly tuned finite renormalization

1

α
→ 1

α′
=

1

α
+ f(αs); αs → α′

s(αs); Z ′(α′

s)i
j = z(αs)i

kZ(αs)k
j . (5.1)

Under this transformation the D-function (defined in terms of the renormalized coupling

constant) changes as

D̃′(α′

s) = −3π

2

d

d lnµ

(
1

α′

)
= D̃(αs)−

3π

2

df(αs)

dαs
β̃(αs), (5.2)
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where it is assumed that the right hand side is expressed in terms of α′

s. In the lowest

order the finite renormalization (5.1) can be presented in the form

1

α′
=

1

α
+

1

π

Nf∑

α=1

q2α

(
f0 + f1

αs

π
+O(α2

s)

)
; (5.3)

1

α′

s

=
1

αs
+

δ0
π

+O(αs); (5.4)

z(αs)i
j = δji +

αs

π
(z1)i

j +O(α2
s), (5.5)

where f0, f1, δ0, and (z1)i
j are finite constants. In particular, this implies that in the consid-

ered approximation αs = α′

s+ δ0 (α
′

s)
2/π+O

(
(α′

s)
3
)
. Note that it is reasonable to include

into the finite constants some group theory factors. Really, the SQCD quantum corrections

to 1/α are proportional to dim(R) and trC(R) in the one- and two-loop approximations,

respectively. The one-loop quantum corrections to 1/αs are proportional to either C2

or NfT (R), and the one-loop quantum correction to the matter renormalization contains

C(R)i
j . That is why it is expedient to consider only the finite renormalizations with

f0 = dim(R) f̃0; f1 = trC(R) f̃1; (5.6)

δ0 = −3

2
C2 δ̃01 +NfT (R) δ̃02; (5.7)

(z1)i
j = C(R)i

j z̃1, (5.8)

where the factor −3/2 in eq. (5.7) is introduced for the further convenience. Substituting

eqs. (5.3)–(5.5) into eq. (5.2), we obtain that the D-function in the new subtraction

scheme is given by the expression

D̃′(α′

s) = D̃(α′

s) +
(α′

s)
2

π
δ0

dD̃(α′

s)

dα′

s

− 3π

2

df(αs)

dαs
β0

α2
s

π
+O

(
(α′

s)
3
)

= D̃(α′

s) +
3

2

Nf∑

α=1

q2α
(α′

s)
2

π2

(
δ0 trC(R)− f1β0

)
+O

(
(α′

s)
3
)
. (5.9)

The equation describing the transformation of the anomalous dimension under a finite

renormalization is well known [65]. For the finite renormalizations (5.3)–(5.5) it gives

γ̃′(α′

s)i
j = γ̃(αs)i

j +
d ln zi

j

dαs
β̃(αs)

= γ̃(α′

s)i
j +

(α′

s)
2

π
δ0

dγ(α′

s)i
j

dα′

s

+
(α′

s)
2

π
β0

d ln zi
j

dαs
+O

(
(α′

s)
3
)

= γ̃(α′

s)i
j +

(α′

s)
2

π2

(
β0(z1)i

j − δ0C(R)i
j
)
+O

(
(α′

s)
3
)
. (5.10)

From the equations presented above it is possible to find out how various coefficients

of the perturbative expansions for the D-function and the anomalous dimension trans-

form under the finite renormalization and which of them are scheme independent. For
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this purpose we take the finite constants in the form (5.6)–(5.8). Then (after the formal

replacement α′

s → αs) we obtain

D̃′(αs) = D̃(αs)+
3

2

Nf∑

α=1

q2α
α2
s

π2

(
− 3

2
C2 δ̃01+NfT (R) δ̃02 − f̃1β0

)
trC(R)+O(α3

s); (5.11)

γ̃′(αs)i
j = γ̃(αs)i

j+
α2
s

π2

(
β0z̃1+

3

2
C2 δ̃01−NfT (R) δ̃02

)
C(R)i

j+O(α3
s). (5.12)

The consequences of these equations will be discussed below in sections 6 and 7 in more

detail.

6 The NSVZ-like scheme with dimensional reduction in the three-loop

approximation

Using a possibility of making finite renormalizations it is possible to tune a substraction

scheme in such a way to restore the NSVZ-like relation (1.9). Using the transformations of

the D-function and the anomalous dimension given by eqs. (5.9), (5.10), (5.11), and (5.12)

we see that the difference between the left and right hand sides of eq. (1.9) changes as

[
D̃′(αs)−

3

2

Nf∑

α=1

q2α

(
dim(R)−tr γ̃′(αs)

)]
−
[
D̃(αs)−

3

2

Nf∑

α=1

q2α

(
dim(R)−tr γ̃(αs)

)]

=
3

2

Nf∑

α=1

q2α
α2
s

π2
β0

(
trz1−f1

)
+O(α3

s)=
3

2

Nf∑

α=1

q2α
α2
s

π2
β0

(
z̃1− f̃1

)
trC(R)+O(α3

s). (6.1)

From this equation we see that in the considered approximation the NSVZ-like relation can

be broken only by terms proportional to the first coefficient of the N = 1 SQCD β-function.

The constant δ0 (or, equivalently, the constants δ̃01 and δ̃02) does not enter this equa-

tion. This implies that it is impossible to restore eq. (1.9) by making a finite renormalization

of the SQCD coupling constant only. From eq. (6.1) it is clear that for this purpose we need

either to change the SQCD-renormalized electromagnetic coupling constant or to perform

the finite renormalization of the matter superfields.

Now, let us construct finite renormalizations restoring the NSVZ scheme in the case of

using the various renormalization prescriptions described above with the help of eq. (6.1).

First, we consider the Adler function D(αs) defined by eq. (1.3) calculated in the

DR-scheme. Certainly, this prescription should be used for the renormalization of the

SQCD coupling constant and the matter superfields only, because the SQCD-renormalized

electromagnetic coupling constant is unambiguously determined by eq. (1.8). Therefore,

there is no arbitrariness in choosing the function f(αs) in eq. (5.1). This implies that in

this case we should set f0 = 0, f1 = 0, so that the only possibility to restore the NSVZ-like

equation is to make the finite renormalization with

(z1)i
j =

(
2− 3

2
ζ(3)

)
C(R)i

j or, equivalently, z̃1 = 2− 3

2
ζ(3), (6.2)
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while the parameter δ0 can take arbitrary values.6 This finite renormalization removes the

last term in eq. (3.21), so that eq. (1.9) will be satisfied by the functions D′(α′

s) and γ̃′(α′

s).

Note that the renormalization scheme which is obtained after the transformation (6.2) can

be also defined with the help of the boundary condition imposed on the SQCD coupling

constant and the renormalization constant of the matter superfields Zi
j ,

α−1
s

(
αs0, ln

Λ̄

µ
= 0,

1

ε
→ 0

)
= α−1

s0 +
δ0
π

+O(αs0);

Zi
j

(
αs, ln

Λ̄

µ
= 0,

1

ε
→ 0

)
= δji +

αs

π

(
2− 3

2
ζ(3)

)
C(R)i

j +O(α2
s), (6.3)

where the (formal) condition 1/ε → 0 removes ε-poles. If we choose

δ̃01 = δ̃02 ≡ δ̃0, (6.4)

then in this renormalization scheme the Adler function and the anomalous dimension take

the form

D(αs) =
3

2

Nf∑

α=1

q2α

{
dim(R)+

αs

π
trC(R)+

α2
s

π2

[
− 1

2
tr
(
C(R)2

)
(6.5)

+β0 trC(R)

(
− 5

2
+
3

2
ζ(3)+ δ̃0

)]}
+O(α3

s);

γ̃(αs)i
j = −αs

π
C(R)i

j+
α2
s

π2

[
β0

(
5

2
− 3

2
ζ(3)− δ̃0

)
C(R)i

j+
1

2

(
C(R)2

)
i
j

]
+O(α3

s) (6.6)

and evidently satisfy the NSVZ-like relation in the considered approximation.

Next, we construct the NSVZ-like scheme for the function D̃(αs) defined by eq. (1.6)

calculated in the DR scheme for all renormalization constants. In this case it is possible

to make finite renormalizations of both coupling constants and of the matter superfields.

From eq. (4.5) we see that the parameters in eqs. (5.3)–(5.5) and (5.6)–(5.8) should satisfy

the condition

z̃1 − f̃1 =
1

4
. (6.7)

The corresponding renormalization prescription can be formulated by imposing the bound-

ary conditions

α−1

(
α0,αs0, ln

Λ̄

µ
= 0,

1

ε
→ 0

)
=α−1

0 +
1

π

Nf∑

α=1

q2α

(
dim(R)f̃0+trC(R) f̃1

αs0

π
+O

(
α2
s0

))
;

α−1
s

(
αs0, ln

Λ̄

µ
= 0,

1

ε
→ 0

)
=α−1

s0 +
δ0
π
+O(αs0);

Zi
j

(
αs, ln

Λ̄

µ
= 0,

1

ε
→ 0

)
= δji +

αs

π

(
1

4
+ f̃1

)
C(R)i

j+O(α2
s). (6.8)

6Note that the parameter δ0 does not also affect the NSVZ relation for the N = 1 SQCD β-function.

According to [27], in the three-loop approximation the NSVZ scheme for N = 1 supersymmetric gauge

theories regularized by dimensional reduction is constructed by tuning the next coefficient δ1 defined by the

equation 1/α′

s = 1/αs + δ0/π + δ1αs/π
2 +O(α2

s).
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We see that (similar to the case of N = 1 SQED considered in [24]) the NSVZ scheme is

not unique and the conditions (6.8) describe the class of the NSVZ schemes parameterized

by the finite constants δ0, f̃0, and f̃1. If we choose δ̃01 = δ̃02, so that δ0 = β0δ̃0, then in

this renormalization scheme the D-function and the anomalous dimension are given by the

expressions

D̃(αs) =
3

2

Nf∑

α=1

q2α

{
dim(R) +

αs

π
trC(R) +

α2
s

π2

[
− 1

2
tr
(
C(R)2

)
(6.9)

+β0 trC(R)

(
− 3

4
+ δ̃0 − f̃1

)]}
+O(α3

s);

γ̃(αs)i
j = −αs

π
C(R)i

j +
α2
s

π2

[
β0

(
3

4
− δ̃0 + f̃1

)
C(R)i

j +
1

2

(
C(R)2

)
i
j

]
+O(α3

s). (6.10)

Finally, we note that for the function D(αs0) defined by eq. (1.11), it is certainly

impossible to restore the NSVZ-like equation by making any finite renormalization, because

D(αs0) is scheme-independent for a fixed regularization.

7 β0-expansion

It is convenient to present the expression for the Adler D-function using the β-expansion

formalism proposed in ref. [58]. According to this formalism, the scheme-dependent coeffi-

cients of the massless perturbative quantum corrections are expanded in the monomials of

the QCD β-function coefficients. The remaining terms are not affected by the renormal-

ization prescription for the QCD coupling constant and satisfy certain relations, which can

be obtained in the so-called conformal symmetry limit [59, 66]. The β-expansion formal-

ism generalizes the Brodsky-Lepage-Mackenzie (BLM) scale-fixing prescription [67] (see

refs. [58, 68–71] for the detailed discussion).

There are various procedures for fixing the coefficients of β-expanded expressions for

the Adler D-function [58, 59, 68, 69, 71, 72]. Here we apply the β-expansion procedure to

the next-to-leading order (NLO) of SQCD expression for the Adler D-function. The results

can be compared with the ones for QCD, see refs. [68–72]. Note that in the considered

approximation the β-expansion coincides with the β0-expansion considered in ref. [73],

where β0 is the first (scheme-independent) coefficient of the β-function.

Within the β0-expansion the results for the SQCD Adler function and for the anoma-

lous dimension of the matter superfields are presented in the form

D(αs) =
3

2

Nf∑

α=1

q2α

{
dim(R) + trC(R)

2∑

n=1

Dn

(
αs

π

)n}
+O(α3

s); (7.1)

γ̃(αs)i
j =

2∑

n=1

(
γn

)
i
j

(
αs

π

)n

+O(α3
s), (7.2)

where D(αs) stands for either D(αs) or D̃(αs). Similar equations can be also written for

D(αs0) and γ(αs0)i
j , but then it is necessary to make a formal substitution αs → αs0. The
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Function Regularization α αs and Zi
j D2[1] γ2[1] NSVZ

D(αs) DRED MOM-like DR −5

2
+

3

2
ζ(3)

1

2
−

D(αs) DRED MOM-like NSVZ −5

2
+

3

2
ζ(3)+ δ̃0

5

2
− 3

2
ζ(3)− δ̃0 +

D̃(αs) DRED DR DR −3

4

1

2
−

D̃(αs) DRED DR+finite

renormal.
NSVZ −3

4
+ δ̃0− f̃1

3

4
− δ̃0+ f̃1 +

D̃(αs) HD; aϕ = a HD+MSL HD+MSL −1− lna 1+lna +

D(αs0) DRED arbitrary arbitrary −3

4
− 1

2ε

1

2
−

D(αs0) HD; aϕ = a arbitrary arbitrary −1− lna 1+lna +

Table 1. Scheme-dependent coefficients of the β0-expansions for different definitions of the D-

function and of the anomalous dimension of the matter superfields in various renormalization

schemes.

coefficients in eqs. (7.1) and (7.2) have the structure

D1 = D1[0]; D2 = β0D2[1] +D2[0]; (7.3)

(
γ1
)
i
j = γ1[0]i

j ;
(
γ2
)
i
j = β0C(R)i

j γ2[1] + γ2[0]i
j , (7.4)

where β0 is defined by eq. (3.22). For the renormalization prescriptions which do not

break the NSVZ-like relation (1.9) the coefficients of eqs. (7.1) and (7.2) are related by the

equations

Dn trC(R) = −tr γn for n = 1, 2. (7.5)

According to eq. (6.9) the structure (7.3) is not broken by the finite renormalizations

satisfying the condition (6.4). From eqs. (6.9) and (6.10) we also see that the coefficients

D1[0] = 1; D2[0] = −tr(C(R)2)

2 trC(R)
; γ1[0]i

j = −C(R)i
j ; γ2[0]i

j =
1

2

(
C(R)2

)
i
j

(7.6)

are scheme-independent, while the coefficients D2[1] and γ2[1] under the finite renormal-

ization (5.1) (in which the parameters are given by eqs. (5.6)–(5.8)) change as7

D2[1] → D2[1] + δ̃0 − f̃1; γ2[1] → γ2[1] + z̃1 − δ̃0. (7.7)

Qualitatively, this can be understood as follows. Let us use for N = 1 SQCD the Banks-

Zaks prescription [75], when a gauge group and a number of matter supermultiplets are

7The scheme dependence of the coefficient D2[1] was first noted in ref. [74].
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fixed in such a way that β0 = 0. For N = 1 SQCD this implies that Nf = 3C2/(2T (R)).

Then, involving the argumentation and terminology of ref. [66], in this case we obtain

the conformal symmetry limit, so that the coefficients D1[0], D2[0], γ1[0]i
j , and γ2[0]i

j

surviving in this limit should be scheme independent.

The values of the parameters D2[1] and γ2[1] for various definitions of the renormaliza-

tion group functions in various subtraction schemes considered in this paper are collected

in table 1. In particular, for the most interesting case, when the functions D(αs) and

γ̃(αs)i
j are calculated in the DR-scheme (eqs. (3.19) and (3.20)), they take the form

D2[1] = −5

2
+

3

2
ζ(3); γ2[1] =

1

2
. (7.8)

It is necessary to recall that in our notation γ̃(αs)i
j is the anomalous dimension of the

matter superfields which includes quarks and squarks as components, γ2[1] being a coef-

ficient of β0C(R)i
j . The result (7.8) has a similar structure to the QCD one derived in

refs. [7, 9, 76–78] in the O(α2
s) order.

8 Conclusion

In this paper we obtain the three-loop expression for the Adler D-function (1.3) in the case

of using the DR scheme for the renormalization of the SQCD coupling constant and the

matter superfields. This allows to compare the structures of the perturbation theory series

in QCD and SQCD, including the form of the β-expansion at theO(α2
s)-level, and to demon-

strate special features caused by supersymmetry. In particular, supersymmetry leads to the

NSVZ-like equation (1.9), which is absent in the non-supersymmetric case. This equation

allows relating the coefficients Dn and γn of the β-expansions for the D-function and the

anomalous dimension of the matter superfields, respectively. Although the result (3.19)

does not satisfy the NSVZ-like equation, it is possible to find such a finite renormalization

of the matter superfields after that this equation will take place in both original and β-

expanded forms. It is worth mentioning that the NSVZ-like relation cannot be restored by

making the finite renormalization of the SQCD coupling constant only, see eq. (6.1).

We have also calculated the D-function defined by eq. (1.6) in the case when the DR

scheme is used for constructing all renormalization constants, including the one for the

SQCD-renormalized electromagnetic coupling constant. Again, the NSVZ-like equation

is not valid in this case, but it can be restored by a finite renormalization of the mat-

ter superfields or (and) the SQCD-renormalized electromagnetic coupling constant. The

D-function (1.11) defined in terms of the bare couplings does not satisfy the NSVZ-like

equation (1.9), if the theory is regularized by dimensional reduction, and explicitly depends

on ε = 4− d.

The results for the Adler D-function obtained in this paper may be used for analyzing

some indirect manifestations of supersymmetry, which could be revealed by comparing

experimental data with the theoretical predictions. Certainly, for this purpose it will be also

necessary to take into account superpartner thresholds appearing due to supersymmetry

breaking. Although at present the effects of higher order quantum corrections seem to be

too small, they may be useful for future research.
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A The relation between various definitions of the D-function

Let us demonstrate that the Adler function (1.3) coincides with the D-function (1.6) in

the case of using the boundary condition (1.8) for the SQCD renormalized electromagnetic

coupling constant. The equation (1.8) is written in the form

Π(αs, P/µ = 1) = 0, (A.1)

where Π denotes the renormalized polarization operator. With the help of the chain rule

for the derivative d/d lnµ the D-function defined by eq. (1.3) can be written as

D(αs) = −6π2 ∂

∂ lnP
Π(αs, P/µ) = 6π2 ∂

∂ lnµ
Π(αs, P/µ)

= 6π2

(
d

d lnµ
Π(αs, P/µ)

∣∣∣
αs0=const

− β̃(αs)
∂

∂αs
Π(αs, P/µ)

)
. (A.2)

(This equation was also written in some earlier papers, see, e.g., [9, 79].) Setting in this

equation P = µ and using the boundary condition (A.1) we obtain

D(αs) = 6π2 d

dlnµ
Π(αs,P/µ)

∣∣∣
αs0=const

=
3π

2

d

dlnµ

(
d−1(α,αs,P/µ)−α−1

)∣∣∣
α0,αs0=const;α→0

= −3π

2

d

dlnµ
α−1

∣∣∣
α0,αs0=const;α→0

=D̃(αs). (A.3)

B The Adler function D(αs) in the DR scheme for G = SU(N) and

matter in the (anti)fundamental representation

Here we will consider the special case of the SU(N) × U(1) gauge group and the matter

superfields lying in the fundamental (φ) and antifundamental (φ̃) representations. More-

over, we rewrite the result in another notation system adopted in ref. [66]. If the matter

superfields lie in an irreducible representation of the group G, then this notation system is

related to the one accepted in the present paper as

C2 → CA; r = δAA → NA; T (R) → TF ;

dim(R) = δii → dF ; C(R)i
j = C(R)δji → CF δ

j
i . (B.1)

Then the three-loop result (3.19) can be presented as

D(αs) =
3

2
dF

Nf∑

α=1

q2α

{
1 +

αs

π
CF +

α2
s

π2

[
− 1

2
C2
F

+CF

(
− 3

2
CA +NfTF

)(
− 5

2
+

3

2
ζ(3)

)]}
+O(α3

s). (B.2)
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For the particular case G = SU(N) and the (anti)fundamental representation for the matter

CA = N ; TF =
1

2
; NA = N2 − 1; dF = N ; CF =

N2 − 1

2N
. (B.3)

Therefore, the function D(αs) for N = 1 SQCD in this case takes the form

D(αs) =
3

2
N

Nf∑

α=1

q2α

{
1 +

αs

π

N2 − 1

2N
+

α2
s

π2

[
− 1

2

(
N2 − 1

2N

)2

(B.4)

+
N2 − 1

8N

(
3N −Nf

)(
5− 3ζ(3)

)]}
+O(α3

s).

Note that for N = 1 SQCD (unlike the case of usual QCD) the Banks-Zaks prescription

β0 = 0 [75] always gives integer values of Nf , namely, Nf = 3N .

C The three-loop D-function defined in terms of the bare coupling con-

stant

To calculate the D-function defined in terms of the bare coupling constant αs0, first, it

is necessary to find a relation between the bare and SQCD-renormalized electromagnetic

coupling constants. For this purpose we substitute the DR result (4.4) into eq. (1.6),

express the SQCD coupling constant αs in terms of the bare SQCD coupling constant αs0

from the DR equation

1

αs0
=

1

αs
+

1

2π

(
3C2 − 2NfT (R)

)(1

ε
+ ln

Λ̄

µ

)
+O(αs), (C.1)

and integrate with respect to lnµ. Certainly, it is necessary to take into account that in

the variant of the DR scheme adopted in this paper all renormalization constants contain

only ε-poles and powers of ln Λ̄/µ, where Λ̄ is given by eq. (3.7). The above described

procedure gives

1

α
=

1

α0
+

1

π

∑

α

q2α

{
dim(R) ln

Λ̄

µ
+

αs0

π
trC(R) ln

Λ̄

µ
+

α2
s0

π2

[
− 1

2
tr
(
C(R)2

)
ln

Λ̄

µ

+
1

4
trC(R)

(
3C2 − 2NfT (R)

)(
ln2

Λ̄

µ
+

2

ε
ln

Λ̄

µ
+

3

2
ln

Λ̄

µ

)]
+ ε-poles +O(α3

s0)

}
. (C.2)

Here we take into account that this expression also contains some ε-poles (with the coef-

ficients depending on αs0) which vanish after differentiating with respect to lnµ. To find

these ε-poles we note that the relation between α−1 and α−1
0 is constructed by requiring

finiteness of the function d−1 expressed in terms of the renormalized quantities. In the case

of using the regularization by dimensional reduction this function can be written in the form

d−1
DR

= α−1
0 +

(
ΛDR

)ε
I1 + αs0

(
ΛDR

)2ε
I2 + α2

s0

(
ΛDR

)3ε
I3 +O(α3

s0) +O(α0), (C.3)
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where I1, I2, and I3 are the one-, two-, and three-loop integrals, respectively. They have

the structure

(
ΛDR

)ε
I1 =

1

π

∑

α

q2α

(
Λ̄

P

)ε(c1,1
ε

+ c1,0

)
;

(
ΛDR

)2ε
I2 =

1

π2

∑

α

q2α

(
Λ̄

P

)2ε(c2,1
ε

+ c2,0

)
;

(
ΛDR

)3ε
I3 =

1

π3

∑

α

q2α

(
Λ̄

P

)3ε(c3,2
ε2

+
c3,1
ε

+ c3,0

)
, (C.4)

where ci,j are some numerical coefficients. (Expanding (Λ̄/P )nε we obtain terms containing

ln Λ̄/P ). Substituting α−1
0 from eq. (C.2), αs0 from eq. (C.1) and requiring that all ln Λ̄

vanish, we find the coefficients

c1,1 = dim(R); c2,1 =
1

2
trC(R); c3,2 =

1

6

(
3C2 − 2NfT (R)

)
trC(R);

c3,1 =
(
3C2 − 2NfT (R)

)(1

2
c2,0 +

1

8
trC(R)

)
− 1

6
tr
(
C(R)2

)
. (C.5)

Note that the coefficient c3,1 cannot be completely found in this way, because (due to the

presence of 1/ε in eq. (C.1)) it appears to be related to c2,0, which should be calculated

separately. Substituting the values of ci,j from eq. (C.5) into eqs. (C.3) and (C.4) we obtain

ε-poles in the function d−1
DR

which should be cancelled by the ε-poles in the function (C.2).

This gives the relation between the bare and SQCD-renormalized electromagnetic coupling

constant,

1

α0
=

1

α
− 1

π

∑

α

q2α

{
dim(R)

(
1

ε
+ln

Λ̄

µ

)
+
αs

π
trC(R)

(
1

2ε
+ln

Λ̄

µ

)
+
α2
s

π2

[
− 1

2
tr
(
C(R)2

)

×
(

1

3ε
+ln

Λ̄

µ

)
− 1

4
trC(R)

(
3C2−2NfT (R)

)( 1

3ε2
+
1

ε
ln

Λ̄

µ
+ln2

Λ̄

µ
− 1

2ε
− 3

2
ln

Λ̄

µ

)]

+O(α3
s)

}
. (C.6)

Next, we substitute α−1
0 from (C.6) into eq. (1.11) and rewrite the result in terms of the

bare SQCD coupling constant αs0. This gives the three-loop D-function defined in terms

of the bare coupling constant for the theory regularized by the dimensional reduction,

D(αs0) =
3

2

∑

α

q2α

{
dim(R) +

αs0

π
trC(R) +

α2
s0

π2

[
− 1

2
tr
(
C(R)2

)
(C.7)

+

(
3

2
+

1

ε

)
trC(R)

(
3

4
C2 −

1

2
NfT (R)

)]
+O(α3

s0)

}
.

Also we need the anomalous dimension defined in terms of the bare coupling constant

for the theory regularized by the dimensional reduction. It is calculated by the same

method. We start with the expression (3.20) (in which αs should be expressed in terms of
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αs0 with the help of eq. (C.1)) and substitute it into the renormalization group equation

γ̃(αs)i
j =

d

d lnµ
lnZ(αs, ln Λ̄/µ, 1/ε)i

j

∣∣∣∣
αs0=const

. (C.8)

Integrating with respect to lnµ and rewriting the result in terms of the bare SQCD coupling

constant αs0 with the help of eq. (C.1) we obtain

lnZi
j =

αs0

π
C(R)i

j ln
Λ̄

µ
+

α2
s0

π2

[
1

4

(
3C2 − 2NfT (R)

)
C(R)i

j

(
ln2

Λ̄

µ
+

2

ε
ln

Λ̄

µ
− ln

Λ̄

µ

)

−1

2

(
C(R)2

)
i
j ln

Λ̄

µ

]
+ ε-poles +O(α3

s0), (C.9)

where the coefficients of the ε-poles depend on αs0. To find these ε-poles, we note that the

expression lnZi
j + lnGi

j should be finite, while the function lnGi
j is given by the sum of

Feynman diagrams of the structure

lnGi
j = αs0

(
ΛDR

)ε(
G1

)
i
j + α2

s0

(
ΛDR

)2ε(
G2

)
i
j +O(α3

s0), (C.10)

where

(
ΛDR

)ε(
G1

)
i
j =

1

π

(
Λ̄

P

)ε(1

ε

(
k1,1

)
i
j +

(
k1,0

)
i
j

)
;

(
ΛDR

)2ε(
G2

)
i
j =

1

π2

(
Λ̄

P

)2ε( 1

ε2
(
k2,2

)
i
j +

1

ε

(
k2,1

)
i
j +

(
k2,0

)
i
j

)
. (C.11)

From eqs. (3.8) and (3.9) we conclude that

(
k1,1

)
i
j =

(
k1,0

)
i
j = −C(R)i

j . (C.12)

The same value of
(
k1,1

)
i
j is certainly obtained from the requirement that the one-loop

contribution to the function
(
GR,DR

)
i
j does not contain ln Λ̄. The similar requirement for

the two-loop contribution gives

(
k2,2

)
i
j = −1

4

(
3C2 − 2NfT (R)

)
C(R)i

j ;

(
k2,1

)
i
j =

1

4

(
C(R)2

)
i
j − 5

8

(
3C2 − 2NfT (R)

)
C(R)i

j . (C.13)

When these values of the coefficients
(
km,n

)
i
j are known, then it is possible to find all ε-

poles in the function lnGi
j . They should be canceled by the ε-poles in the function lnZi

j .

Therefore, we are able to find the complete expression for this renormalization constant,

lnZi
j =

αs

π
C(R)i

j

(
1

ε
+ln

Λ̄

µ

)
+
α2
s

π2

[
− 1

4

(
3C2−2NfT (R)

)
C(R)i

j

(
1

ε2
+
2

ε
ln

Λ̄

µ
+ln2

Λ̄

µ

− 1

2ε
− ln

Λ̄

µ

)
− 1

2

(
C(R)2

)
i
j

(
1

2ε
+ln

Λ̄

µ

)]
+O(α3

s). (C.14)
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Differentiating the result with respect to ln Λ̄ gives the anomalous dimension defined in

terms of the bare coupling constant,

γ(αs0)i
j = − d

d ln Λ̄
lnZi

j

∣∣∣∣
αs=const

(C.15)

= −αs0

π
C(R)i

j +
α2
s0

π2

[
− 1

4

(
3C2 − 2NfT (R)

)
C(R)i

j +
1

2

(
C(R)2

)
i
j

]
+O(α3

s0),

where we took into account that the result should be expressed in terms of the bare SQCD

coupling constant αs0.
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