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1 Introduction

With the advent of Run II of the Large Hadron Collider (LHC), a wealth of experimental

measurements is expected to be performed at very high luminosities, probing the high en-

ergy scales extensively for the first time. To exploit the full potential of these experimental

measurements, theoretical predictions for the scattering processes are required with an un-

precedented accuracy and precision. In several cases, the foreseen experimental precision

will demand the inclusion of higher order terms in the perturbative expansions of the gauge

coupling constants of the standard model, de facto requiring the evaluation of multi-loop

amplitudes. Even though for processes that can be mediated by heavy particles specific

results have been obtained over the years [1–8], a general algorithm to efficiently, analyt-

ically and automatically compute the corresponding amplitudes is still lacking and poses

an enormous challenge. As of now, practical methods often rely on approximations [9–14]

and/or expansions [15, 16].

In general, a multi-loop amplitude can be expressed in terms of a finite set of integrals,

usually known as master integrals. Although various methods for calculating the master

integrals have been proposed (see ref. [17] for a review), a fully general/universal one is

not yet available (see refs. [18–20] for recent developments). However, the master inte-

grals can be shown to satisfy differential equations [21–23], which after the reduction to a

canonical form [24, 25], can be in some cases solved, iteratively. Although various results

have been obtained in presence of the massive particles [26–34], the final results are often

represented as (iterated) integrals whose integrands consist of polylogarithms and other

irrational functions, which still require numerical integration.

On the other hand, although solving differential equations numerically is a well-studied

topic in applied mathematics, only a few phenomenological applications [35–37] have been

reported, till now. In such cases, the initial condition was obtained via expansions around

a singular point, and finding out such expansions for other processes is highly non-trivial.

In the present work, we explore the possibility of evaluating Feynman integrals numer-

ically through differential equations, where the initial conditions are provided using the

sector decomposition method [38]. The basic idea is simple: obtain the initial conditions in
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the unphysical region, which is a fast and accurate procedure, and then use the differential

equations to analytically continue the results into the desired physical region.

This work is organised as follows. In section 2 we describe the method in detail. In

section 3 we illustrate the reach of our method by computing several two loop examples

relevant for gg → γγ and qq̄ → γγ mediated by the top quark. We draw our conclusions

in section 4.

2 Method

We define a (scalar) Feynman integral In d = 4− 2ε dimensions by

I =

(
eεγE

iπ
d
2

)L ∫ L∏
i=1

ddki
1∏N

j=1D
aj
j

, (2.1)

where L is the number of loops, ki is the loop momentum, N is the number of propagators

and Dj = q2
j −m2

j + i0+ is the denominator of the j-th propagator, where qj is the linear

combination of the loop momenta and the external momenta, and mj is the corresponding

mass. The aj denotes the respective power of the denominator.

The modern approach of multi-loop integrals consists in dividing the integrals into dif-

ferent topologies depending on their propagators. For each topology, a set of integration-by-

parts (IBP) identities [39], relating different integrals, is generated exploiting the Poincaré

invariance of the integrals. With such system of linear identities at hand, any integral with

the same topology can be written as a linear combination of a finite subset of integrals,

called the master integrals. Using the fact that derivatives of the master integrals with

respect to the external kinematic variables and internal masses yield a linear combination

of Feynman integrals in the same topologies, IBP relations can be used to reduce them

back to the linear combination of the master integrals, leading to a system of first order

partial differential equations.

Let us consider a vector of M master integrals I = (I1, I2, · · · , IM )T, depending on

K independent kinematic variables x = (x1, x2, · · · , xK) and ε, one can express the set of

equations as
∂I(x; ε)

∂xi
= Ji(x; ε)I(x; ε), i = 1, · · · ,K , (2.2)

where Ji is an M ×M matrix, whose elements are rational functions of the kinematics x

and the dimension d. Each element of Ji contains singularities originating from both the

kinematics and the dimension d. The singularities from the kinematics are governed by

the Landau equations [40], while the poles on d must be rational numbers.

Although formally eq. (2.2) is a set of partial differential equations, only one initial

condition is needed to fix the solution and as a result such system can be integrated itera-

tively with respect to the kinematics, thereby making them similar to ordinary differential

equations. Therefore, the method for initial value problems [41] can be applied straight-

forwardly to obtain the solution of the differential equation of the integrals. The main

challenge is to obtain the suitable initial conditions and design subsequent integration

contours to fully fix the solution.
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In the previous studies, an expansion around singular points [18, 19, 37] was suggested.1

However, such expansion is highly non-trivial, and the short distance to singular points

would lead to loss of accuracy and efficiency.2

As the numerical algorithms are based on or related to the Taylor series expansion, the

ideal initial conditions should be at the regular points, far away from all the singularities.

However, the computation of the integrals at those points by analytical or semi-analytical

methods is as complicated as obtaining results at any regular points in the physical region.

In this work, we propose to obtain the initial conditions for the differential equations

through the sector decomposition method [38]. All the ultraviolet and infrared divergences

of the integrals are isolated in terms of a Laurent series in ε, by dividing the integration do-

main and performing variable transformations according to well-designed strategies [43, 44].

The series can be expressed in the following form

I =
+∞∑
i=0

ciε
p+i, (2.3)

where c0 represents the leading term, and the integer p ∈ Z is determined by the strength

of the divergence of the integral. The numerical values of the coefficients ci are obtained

after performing a multi-dimensional integration. In the unphysical region, where the i0+

prescription is no longer needed,3 especially in the Euclidean region, the integrands are

sufficiently flat to achieve high precision through suitable multi-dimensional integration

algorithm such as quasi-Monte Carlo algorithm [45]. At this point, one can exploit the an-

alytic properties of the Feynman integrals: considering the integral as a complex function,

the differential equations themselves can provide the analytical continuation from the un-

physical to the physical region. As a consequence, the results of the integral in the physical

region can be obtained as a Laurent series in ε as expressed in eq. (2.3). On the other hand,

with suitable contour deformations [46, 47], the sector decomposition method can also pro-

vide the results for the physical kinematics. Such a deformation, however, requires a rather

complicated variable transformation. In addition, the integrands still having large oscilla-

tions exhibit poor convergence in numerical integration. Therefore, the direct computation

via sector decomposition in the physical region tends to be computationally quite heavy.

An alternative path can be followed, by choosing the initial conditions in the unphysical

region first and then by carefully choosing the contour of the integration. To preserve the

physical i0+ prescription, the general idea is that along the contour except the target point,

the integral do not require i0+ prescription, and the target point is approached following

the i0+ prescription. In general, constructing such contour is highly non-trivial, and we

give an example of a contour for those master integrals later in section 3. The contour is

1In ref. [42], the results of the integral at singular points were adopted, which conflicts the Lipschitz

condition and becomes ill-defined, thus requiring a modification, which is equivalent to an expansion around

singular points.
2Here the loss of accuracy means the accuracy on the target points are much lower than the accuracy

on the initial conditions.
3Here we refer it as the unphysical region, but it also includes the physical region below all the thresholds

of the internal particles so that the i0+ prescription is not needed.
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constructed carefully after the study of the branch cuts of the integrals and we leave the

automation of the choice of the contours for the future.

As argued in the ref. [37], explicit methods are sufficient to solve the system of differ-

ential equations. They can be broadly organised into three classes: one-step (Runge-Kutta

methods), multi-step, and extrapolation methods. In practice, the final choice of a method

in a specific problem depends on several criteria, including efficiency and availability. In

this work, we focus on one-step methods, mainly due to the following reasons:

1. One-step methods only require one initial condition, in contrast with multi-step meth-

ods.4 This offers a great advantage since providing multiple initial conditions is a

problem and may enhance uncertainty. In addition, it grants more freedom on the

choice of the integration contour, as a piecewise contour can be adopted naively, e.g.,

the contour in section 3.

2. The one-step methods are linear and with simple numerical coefficients. This yields

negligible overhead time and very good numerical stability.

We find that in order to achieve optimal efficiency, it is desirable to also introduce an

adaptive step-size control, as implemented in the Runge-Kutta-Fehlberg method. In this

method, for each step, two estimates of the results are obtained, and the difference ∆I

of them is calculated. Now, we have to define a relative error based on the ∆I and

I, and then the adaptive step-size control is obtained through the comparison of this

relative error to the desired local accuracy. Since ∆I and I are Laurent series in ε, the

definition of the relative error is ambiguous. Now, for the purpose of defining a relative

error, we observe the following facts. Firstly, as the integrals contribute in a non-trivial

way to the evaluation of the amplitude, the uncertainty of each integral at the target point

should be determined from the required precision on the value of the total amplitude itself.

However, this determination can be very complicated in practical applications. Secondly,

the uncertainties for the intermediate points should be based on the uncertainty of the

final target point only, which is not known a priori, hence impossible to apply. Thirdly, we

observe that while calculating the amplitude, the uncertainties from different orders of ε

usually mix together. Keeping these points in mind, we introduce the notion of the relative

error of the integral, a quantity which is independent of any prefactor and based on the

whole master integral rather than its individual terms in the ε expansion. Considering a

master integral I with the difference ∆I described previously, we define the relative error

εrel[∆I, I] based on the ratio ∆I
I as following:

∆I

I
=

∑n
i=0 ∆ciε

i+p +O(εn+p+1)∑n
i=0 ciε

i+p +O(εn+p+1)
=

n∑
i=0

biε
i +O(εn+1) , (2.4)

εrel [∆I, I] = max
i
|bi| . (2.5)

And the maximum value of relative errors εrel[∆I, I] in the whole family is compared to

the desired local accuracy, to control the step-size.

4Some implementations of multi-step methods only apparently require one initial condition as one-step

methods are used to provide other initial conditions.
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p3

p4

(d) Isub2

Figure 1. The three four-point two-loop integral families and Isub2 are shown here. p1, p2 are

incoming and p3, p4 are outgoing. Thin lines represent massless particle, while thick lines are

massive particles.

3 Results

In the following, we demonstrate our method with three different planar and non-planar

two-loop integral families, which appear in di-photon, di-jet production mediated by the

heavy quarks. The diagrams are given in figure 1, where p1, p2 are incoming and p3, p4 are

outgoing. The thin lines represent the massless particles, while the thick lines represent

massive particles. All external lines are on-shell p2
1 = p2

2 = p2
3 = p2

4 = 0, and the kinematic

variables are defined as s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2, which satisfy

s + t + u = 0. We normalise the invariants by the squared internal mass m2, effectively

setting m2 = 1, and the m2 dependence can be recovered later, by power counting.

As explained before, for each master integral, we adopt Nift [48] to obtain the numer-

ical results in the Euclidean region by the sector decomposition method, where the final

numerical integration is performed with the quasi-Monte Carlo algorithm. We perform

the IBP reduction with the C++ version of FIRE5 [49] together with LiteRed [50, 51],

to obtain the corresponding differential equations in s and t, treating them as indepen-

dent variables. We perform the numerical integration of the differential equations with

odeint [52], and the Runge-Kutta-Fehlberg 7(8)-th order method [41, 53] is chosen, based

on our experimentation on one-loop integrals.

We consider the target physical region defined by s > 4, t < 0, u < 0, and choose the

initial conditions lying in the region with s < 0, t < 0, u < 4. We perform the evolution

from the initial point (sa, ta) to the target point (sb, tb) along the following contour formed

by six line segments:

(sa, ta)

→ (i
√
−4sa, ta)

→ (2 + i
√−sa + i

√
sb − 4, ta)

→ (2 + i
√−sa + i

√
sb − 4, (ta + tb)/2 + 0.1i)

→ (2 + i
√−sa + i

√
sb − 4, tb)

→ (4 + i
√

4(sb − 4), tb)

→ (sb, tb).

(3.1)
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F1 F2 F3

s = 0 N Y N

s = 4 Y Y Y

s = −16 – N –

t = 0 N N N

t = 4 Y Y Y

u = 0 N N N

u = 4 – Y Y

t = u – N N

st+ 4u = 0 Y/N Y/N Y/N

tu+ 4s = 0 – Y/N Y/N

su+ 4t = 0 – Y/N Y/N

4t2 − s(t− 1)2 = 0 N N N

4u2 − s(u− 1)2 = 0 – – N

Table 1. The full list of singularities other than infinity is shown, as well as whether it is a

branching point (marked as “Y”) or not (marked as “N”). If such point is not a singular point of

corresponding family, “-” is shown. Note that we adopt u = −s− t to show the crossing symmetry.

For st + 4u = 0 it becomes a branching point only when s > 0, t > 0, thus we mark it as “Y/N”,

similarly for the other two tu+ 4s = 0 and su+ 4t = 0.
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0

0.5

1

1.5
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3

−6 −4 −2 0 2 4 6
Re(s)
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(s
)

contour
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Im
(s
)

contour
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Figure 2. The integration contour (red) and relevant branch cuts (black) are shown for F3, starting

from IC1. Note that the branch cut corresponding to u = 4 to u =∞ is not present for F1, and for

F2 one has an additional branch cut from s = 0 to s = 4.

In particular, we consider the target point with (s, t) = (5,−2), and we choose two dif-

ferent points in the Euclidean region as the initial points: one is marked as IC1, with

(s, t) = (−1.33,−0.891); another is marked as IC2, with (s, t) = (−1.63,−0.632). The

difference between the results obtained from those two different initial conditions provides

an estimate of the uncertainties. We list all branch points on the physical Riemann sheet

in table 1, and we verified that the above contour never crosses branch cut, as can be

seen in figure 2. Alternatively, instead of determining the branch points and the branch

cuts, along the contour the sector decomposition method can be adopted to calculate the

numerical values of the Feynman integrals directly, since we require that along the contour

the i0+ prescription is not needed. Such numerical values provide another cross check on

the results obtained from the numerical integration of differential equations.
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All the timings reported here are based on a laptop with Intel Core i5-6200U CPU

and the time cost consists of the evaluation of all the master integrals in the whole family.

We require the relative error on the initial conditions less than 10−7, and the relative error

tolerance in each step of the differential equations is set to 10−10.

We begin with the family F1, where the analytical results in d = 4 dimension have

been reported in ref. [26]. We choose the denominators as:5

D1 = k2
1 −m2, D2 = (k1 − p1)2 −m2, D3 = (k1 − p1 − p2)2,

D4 = k2
2 −m2, D5 = (k2 − p3)2 −m2, D6 = (k2 − p1 − p2)2 −m2,

D7 = (k1 − k2)2.

(3.2)

We denote the integrals in this family as I(F1, a1a2a3a4a5a6a7), where ai is the correspond-

ing propagator power, as described in eq. (2.1). Working in d = 4−2ε dimension, after the

IBP reduction, we obtain 29 master integrals. In table 2, we show the initial conditions

of one of the top level master integrals I1 = I(F1, 1111111). As mentioned before, the

relative uncertainty on the initial conditions are required to be less than 10−7, and our

results are consistent with analytical ones [26] within such uncertainty. Using those two

initial conditions, we evaluate these integrals for the benchmark value(s = 5, t = −2) in the

physical region, and the results of I1 are shown in table 3. We also report the numerical

value obtained from the analytical expression in ref. [26]. We find that the uncertainty

of our numerical results compared to the analytical one is less than 10−6. Moreover, the

difference between the results obtained using the initial conditions from IC1 and IC2 is also

of the same order, providing a good estimate on the uncertainty. We note that to reach

such high precision takes only 0.1s.

The next example is the family F2, shown in figure 1b, with the following denominators:

D1 = k2
1, D2 = (k1 − p1)2, D3 = (k1 − p1 − p2)2,

D4 = k2
2 −m2, D5 = (k2 − p1 − p2 + p3)2 −m2,

D6 = (k1 − k2)2 −m2, D7 = (k1 − k2 − p3)2 −m2.

(3.3)

There are 36 master integrals in this family, and some of them involve infrared divergences.

The most complicated integrals in this family, i.e. the seven-propagator master integrals,

are still unknown in literature.6 Instead, for comparison, we show numerical results for

one non-planar integral in the lower sector, defined by Isub
2 = I(F2, 1011111),7 (shown in

figure 1d), which has been studied in ref. [54] and in fact is independent of t. In table 2, we

show our numerical initial conditions obtained from Nift as well as the analytical one on

Isub
2 . The uncertainties on the initial conditions are less than 10−7 and the computing time

is well under control. In table 3, we show our numerical results as well as the analytical

5Technically, to perform the IBP reduction, two extra denominators should be chosen. However, we

choose all master integrals to be scalar master integrals without any numerator, hence the results are

independent of the exact form of the auxiliary denominators in the IBP reduction. We neglect the two

extra denominators here for simplicity. The above comment also applies to the other two families.
6Partial results has been reported in ref. [55] recently.
7An alternative numerical evaluation for this topology has been reported in ref. [56].
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c0 time(s)

I1

IC1
Nift −0.059087788(6) 1.93

Ref. [26] −0.059087788 –

IC2
Nift −0.056016652(5) 1.74

Ref. [26] −0.056016650 –

Isub
2

IC1
Nift 0.28729542(1) 3.55

Ref. [54] 0.28729543 –

IC2
Nift 0.26181028(1) 3.57

Ref. [54] 0.26181029 –

Table 2. The comparison of our numerical initial conditions obtained from Nift [48] with the

analytical ones for the Feynman integral I1 and Isub2 . The two initial points are: IC1(s = −1.33,

t = −0.891) and IC2(s = −1.63, t = −0.632). c0 is the leading term of the ε expansion of these

finite integrals.

(s = 5, t = −2) c0 time(s)

I1

IC1 0.573661717− i0.45602298 0.11

IC2 0.573662051− i0.45602316 0.10

Ref. [26] 0.573661756− i0.45602309 –

Isub
2

IC1 −0.077764616 + i0.34306744 0.26

IC2 −0.077764595 + i0.34306737 0.23

Ref. [54] −0.077764620 + i0.34306741 –

Table 3. The comparison of our numerical results with the analytical ones for the Feynman integral

I1 and Isub2 at the point (s = 5, t = −2). The IC1 and IC2 denotes the two different choices of the

initial conditions. c0 is the leading term of the ε expansion of these finite integrals.

one on Isub
2 in the physical region with s = 5. Similarly to I1, the uncertainty from our

approach is less than 10−6. The time cost is several times larger than F1, but still less than

1 second. At the same time, we also obtain the results for the seven-propagator integral

I2 = I(F2, 1111111). As no analytical results are known for this, we use pySecDec [57] to

obtain the results for cross check. In table 4 we show the results for all the coefficients

starting from ε−2 to ε0 in ε expansion. By estimating the uncertainties of our method

through the difference between the two results, the relative error is at O(10−6). This is

much more accurate than directly evaluating it via the sector decomposition method in the

physical region.

Finally, we consider family F3, shown in figure 1c. This family8 contains 51 master

integrals, and in particular five of them belong to the seven-propagator sector, indicating

more complicated differential equations than the family F1 and F2. The propagators are

8Results in the Euclidean region has been reported recently in ref. [55].
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(s= 5, t=−2) c0 c1 c2 time(s)

I2

IC1 0.02188084−i0.00000002 −0.0870259+i0.05170117 −0.246416−i0.17602070 0.26

IC2 0.02188080+i0.00000001 −0.0870262+i0.05170118 −0.246417−i0.17602072 0.23

pySecDec 0.02187(3) +i0.00003(3) −0.0869(3) +i0.0518(4) −0.248(2) −i0.175(2) O(104)

I3

IC1 −0.0599222+i0.4204527 −1.2093294+i1.1271787 −3.737851+i0.435880 0.74

IC2 −0.0599219+i0.4204528 −1.2093298+i1.1271798 −3.737851+i0.435879 0.78

pySecDec −0.05998(7)+i0.42048(8) −1.2100(7) +i1.1262(7) −3.737(3) +i0.430(3) O(104)

Table 4. Comparison between numerical results obtained with our algorithm from two differential

choices of initial conditions for the Feynman integral I2 and I3 at the point (s= 5, t=−2). c0, c1
and c2 denotes the first three coefficients in the Laurent series of ε. The results obtained from

pySecDec [57] is also shown for consistency check and the corresponding setup is not optimal.

given by:

D1 = k2
1, D2 = (k1−p1)2,

D3 = k2
2−m2, D4 = (k2−p4)2−m2, D5 = (k2−p3−p4)2−m2,

D6 = (k1−k2)2−m2, D7 = (k1−k2+p2)2−m2.

(3.4)

We use the same points IC1 and IC2 to obtain the initial conditions. We show the numerical

results for I3 = I(F3, 1111111) in the table 4 and further checked with pySecDec. The

computing cost of our method is still less than one second, and the precision of our results

is still at O(10−6).

The computing cost on multi-dimensional integration for obtaining the initial condi-

tions varies from 17 seconds to 2 minutes depending on the complexity, which is much

less than the time spent for IBP reduction, hence negligible in practical application. The

number of steps for the numerical integration of the differential equations ranges from

61 to 133, thereby indicating that the discretisation error associated with the differential

equations is at most around 10−8. As explained before, the dominant uncertainties come

from the uncertainties on the initial conditions, and we verified it by adjusting the relative

error tolerance on the initial conditions and/or the differential equations. Further informa-

tion, including numerical results for all master integrals in the three integral families are

available as supplementary files attached to this paper.

Remarkably, one does not need to start from the Euclidean region each time. Once

the results at one physical point are obtained according to previous procedure, they can

be adopted as the new initial condition, for other physical points. As the branch points

and branch cuts in the physical region are well-understood, comparing to the general cases,

much simpler contours can be adopted.

4 Conclusion and discussion

In this paper, we have presented a method to compute the Feynman integrals numerically.

The main idea is to integrate the differential equations numerically, with the initial condi-

tion in the Euclidean region provided through the sector decomposition method. We have
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compared numerical results achieved by our method with the available analytical ones, for

several two-loop examples, and shown O(10−6) accuracy can be reached within one second.

Using the above method, we have provided numerical results of several two-loop integrals,

whose analytical expressions are currently unknown. Those two-loop integrals complete

the two-loop master integrals for gg → γγ and qq̄ → γγ scattering mediated by the top

quark, and thus our results can be applied directly to investigate the role of top quark in

di-photon production at the LHC.

The differential equations of the integral encode the full ε dependence, while the sector

decomposition can provide any higher order terms in ε. Therefore, the results of the integral

at any order of ε expansion can be achieved within our method, which is usually desirable

and required in practical applications.

Although in this paper we restricted it to the case with real masses only, our method

can be applied to the case with complex masses. Clearly, the sector decomposition method

works with complex masses. On the other hand, the integration contour still doesn’t cross

any branch cut if the width is small. Such complex mass scheme, is crucial and essential to

describe the threshold behaviour for processes involving unstable particles. In that case,

we hope our method will provide an important role to obtain the precise prediction of

relevant processes.

Our method builds up on the idea that the differential equations of the master integrals

can be integrated numerically, providing an initial condition in the unphysical region and

a suitable integration contour.

However, it is not always possible to obtain the differential equations of the master

integrals as the IBP reduction usually fails in case of the integrals having a large number

of scales. In this context, for example, the recent proposal [58, 59] of the use of intersection

theory could overcome this problem. The initial conditions are obtained by using the sector

decomposition method, which is quite efficient in the Euclidean region. While it can be

a problem for massless cases, for processes with massive loop propagators, usually such

region can be found.

Finally, we note that as both the IBP reduction and sector decomposition can be

done systematically and automatically, our method could play a potential role towards an

automated approach and framework to multi-loop computations. This, of course, only if an

algorithm for the automatic determination of the integration contours could be identified.

Work in this direction is in progress.
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