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1 Motivation

Triangulations and Calabi-Yau manifolds are objects of intrinsic mathematical interest

in combinatorics and algebraic geometry, respectively. In the former case, elementary

operations on triangulations such as flips may be used to determine when two triangulations

are canonically related to one another, or to populate large ensembles of triangulations.

Similarly, elementary topology changing operations on Calabi-Yau manifolds such as flop or

conifold transitions may relate two such manifolds to one another by finite distance motion

in metric moduli space; these may be utilized to generate large ensembles of geometries. In

the case of Calabi-Yau hypersurfaces in toric varieties, Calabi-Yau data is encoded in the

structure of a triangulation, and operations on the triangulation often induce topological

transitions in the Calabi-Yau hypersurface. The transitions between these objects naturally

generate a large network that encodes ensemble structure.
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In string theory, Calabi-Yau manifolds are some of the simplest and best-studied back-

grounds on which to compactify the extra dimensions of space while preserving supersym-

metry in four dimensions [1]. There, flop [2] and conifold [3] transitions induce space-time

topology change in a physically consistent manner and may be utilized to generate large

ensembles of string compactifications; generalized fluxes [4, 5] also give rise to large ensem-

bles [6]. The associated collection of four-dimensional effective potentials and metastable

vacua form the so-called string landscape, which is central to understanding the implica-

tions of string theory for particle physics and cosmology.

A natural direction is to understand cosmological dynamics on the landscape and

associated mechanisms for vacuum selection. Such dynamics, together with statistical

properties of vacua [7], could then lead to concrete statistical predictions for physics in

four dimensions. Global structures in the landscape, such as large networks, may play a

role in the dynamics. For example, dynamical vacuum selection [8] on a network of string

geometries [9] in a well-studied bubble cosmology [10] selects models with large numbers

of gauge groups and axions, as well as strong coupling. However, concrete studies of the

landscape are difficult due to its enormity [9, 11–15], computational complexity [16–20], and

undecidability [17]. It is therefore natural to expect that, in addition to the formal progress

that is clearly required, data science techniques such as supervised machine learning will

be necessary to understand the landscape; see for initial works [8, 21–23] in this directions

and [8, 24–29] for additional promising results.

One concrete goal is to understand the full ensemble of Calabi-Yau threefolds, network-

like structures induced by transitions between them, and associated implications for cos-

mological dynamics and vacuum selection in compatifications of string theory. However,

this is far out of reach currently for reasons of enormity and complexity.

Instead, in this paper we take a modest but necessary first step in this direction. We

will estimate the number of Calabi-Yau threefold hypersurfaces in toric varieties, which

are one of the most-studied ensembles in string theory. Many such manifolds are naturally

associated to a triangulation of a 4d reflexive polytope; the latter were classified in a seminal

work [30] by Kreuzer and Skarke. With 473,800,776 reflexive polytopes in four dimensions,

the number of possibilities already borders on intractible. However, the number grows

further since many of these toric varieties contain singularities that must first be resolved

in order to obtain a smooth Calabi-Yau hypersurface. The desingularization process takes

place via a series of blowups, of which there are typically many possibilities, resulting in

significant growth in the number of compactification geometries. The goal in this work is

to estimate this growth.

Let us comment further on the desingularization process, since we will be studying the

manifolds resulting from this process. In order for the Calabi-Yau threefold hypersurface to

be non-singular, its resolved ambient toric variety must have no worse than 1-dimensional

singularities. In the language of toric geometry, this corresponds to blowing up all ≥ 2-

dimensional singularities, which in turn corresponds to a fine (i.e. maximal) subdivision of

all 2-codimensional cones in the corresponding 4d reflexive polytope. By considering only

integral points on the convex hull for this subdivision, we preserve the canonical divisor of

the toric variety, and thereby the class of the Calabi-Yau hypersurface itself. Furthermore,
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each configuration of simplexes in the maximally subdivided (i.e. fine, star) polytope consti-

tutes a triangulation, and each gives rise to a distinct choice of desingularization of the toric

variety. Finally, by considering only regular triangulations such that they can be obtained

by projecting down from a higher dimension, we preserve projectivity of the variety.

The number of such fine, regular, star triangulations (FRST) grows exponentially as

the complexity of the singular toric variety increases. While this number is partially offset

by the necessity to group subsets of triangulation into topologically-equivalent classes,

the number of distinct FRSTs gives a concrete upper bound. Our main result is this

upper bound

nFRST ' 1010,505.2±292.6, (1.1)

where nFRST is the number of FRSTs arising in the Kreuzer-Skarke ensemble. We obtain

this estimate with deep learning, specifically a novel neural network architecture known as

an equation learner (EQL) [31], which we demonstrate is significantly better at extrapolat-

ing triangulation predictions to large h1,1 than a standard feed-forward neural network. In

particular, by demonstrating accurate extrapolation to high h1,1 in the analogous problem

for 3d reflexive polytopes, we lend credibility to the 4d prediction, which requires extrapo-

lation significantly beyond the regime in which training data is available. Predicting nFRST

provides an estimated upper bound on the number of Calabi-Yau threefold hypersurfaces

in toric varieties.

Given these accurate predictions of nFRST, it is interesting to study the interpretabil-

ity of the predictions made by the neural network. Sometimes refered to as intelligible

artificial intelligence, interpretability is a major current goal of machine learning research,

and it is one of the reasons for developing the EQL architecture; see [32] for the related

idea of conjecture generation, by which interpretable numerical decisions may be turned

into rigorous results. In the EQL context, the idea is to mimic what happens in natu-

ral sciences such as physics, where a physical phenomenon is often described in terms of

an interpretable function that allows for understanding and generalization. Accordingly,

by utilizing simpler functions than standard architectures, EQLs in principle increase the

likelihood of intepretability.

In the case of nFRST, we found that an EQL that utilizes quadratic functions makes

accurate predictions; see sections 4 and 5 for quadratic functions associated to trained

EQLs. By studying an associated heat map of coefficients, we demonstrate that some vari-

ables and cross-correlations are clearly of more importance than others, but the existence

of a large number of warm spots suggest that many variables matter, which makes inter-

pretability difficult. This could be an artifact of having used a quadratic function, which

may be suboptimal, but it could also be the case that there is no simple interpretation of

nFRST predictions. That is, sufficiently complex phenomena in complex systems may not

admit descriptions in terms of simple equations in human-understandable variables.

This paper is organized as follows: in section 2, we give an overview of our approach

for estimating the number of FRSTs in the 4d Kreuzer-Skarke database. In section 3 we

discuss the method by which we classified the 3d facets of the 4d reflexive polytopes, the

results of this classification, and our success in obtaining FRTs of these facets. In section 4
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we discuss our unsuccessful initial machine learning attempts, our input features, and our

successful EQL model. In section 5, we perform a similar analysis for the 3d reflexive

polytopes and show that a model of a similar architecture is able to extrapolate far outside

its training range.

2 Approach

Batyrev has shown [33] that a hypersurface in a toric variety can be chosen to be Calabi-

Yau if the object underlying the construction of the variety, a lattice polytope, obeys the

condition of reflexivity.

A reflexive polytope ∆ is defined as the convex hull of a set of points {v} ∈ Zn whose

dual polytope

∆◦ = {w ∈ Zn |w · v ≥ −1 ∀v ∈ ∆} (2.1)

is itself a lattice polytope. In four dimensions, there are 473, 800, 776 reflexive polytopes, as

classified by Kreuzer and Skarke [30]. The ambient 4d space described by these polytopes

is generally a singular toric variety. A proper Calabi-Yau manifold will therefore be a

hypersurface in a suitably de-singularized ambient space. The process of de-singularization

is equivalent to obtaining a fine, regular, star triangulation (FRST) of the 4d reflexive

polytope.

Crucially, there are typically very many inequivalent FRSTs for a given polytope.

While software packages such as PALP [34] and TOPCOM [35] can, in principle, produce all

possible triangulations of a given polytope; in practice, such a request becomes increas-

ingly problematic computationally as the overall size of the polytope grows. A good proxy

for this computational load is the value of the topological quantity h1,1 associated with

the polytope. For example, in [36], all triangulations of all 4d reflexive polytopes with

h1,1 ≤ 6 were obtained. The nearly 652,000 unique triangulations required approximately

120,000 core-hours of processing time to obtain. The computational burden can be miti-

gated somewhat by exploiting the reflexivity property of these polytopes [37]. Even with

this assistance, however, obtaining more than a single, canonical triangulation for a given

polytope (in a reasonable computational time) becomes difficult for h1,1 >∼ 10 [38]. It would

appear, therefore, that an enumeration of the unique triangulations in the KS 4d reflexive

polytope dataset must remain unobtainable, barring dramatic advances in computational

power or a vastly superior triangulation algorithm. It is this impasse which forms the

motivation for the current work.

There is reason to believe that application of machine learning techniques may allow for

an estimate of the total number of triangulations in the KS dataset to be achieved. A proof

of principle already exists in the KS set of 3d reflexive polytopes, of which there are 4319.

In [39], the number of FRSTs for many of the 3d reflexive polytopes was computed, and an

estimation of the total number was obtained, using standard triangulation techniques. Soon

thereafter, another estimate was obtained using supervised machine learning. Specifically,

a decision-tree regression model was trained on known results, and used to estimate the

number of FRSTs for the remaining cases [32]. The results were in good agreement with
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the original estimate of [39]. The objective of the current work was to obtain such an

estimate for the 4d reflexive polytopes via similar techniques.

As was done for the 3d case, the method employed here is to estimate the number of

FRSTs of a given polytope as the product of the number of fine, regular triangulations

(FRTs) of each of its facets. However, counting the number of vertices in the 4d reflexive

dataset (which equals the number of facets by duality) shows that there are over 7.5

billion facets. In order to better get a handle on this set, as well as avoid unnecessary

computational repetition, the first step was a classification of these 3d facets. The procedure

for doing so is the subject of section 3.

With this classification in hand, we then explicitly computed the number of FRTs for

as many of the facets as possible. Due to computational constraints, this consisted of only

1.03% of the total — primarily consisting of facets that first appear in dual polytopes

at low values of h1,1. The data associated with these explicitly-triangulated facets then

became the training data for supervised machine learning. Ultimately, a neural network

was employed to construct a model which predicts the natural logarithm of the number of

FRTs of each facet. From this we arrive at an estimate of the total number of FRSTs of

the 4d reflexive polytopes. The machine learning techniques, and FRST estimate, are the

subject of section 4.

Any such machine learning estimate will obviously have limitations, and ours come

from the two main issues that we faced. First, as noted above, we were only able to obtain

known results for 1.03% of cases, meaning that it was necessary to estimate the value for

nearly 99%. Second, as the facets that were able to be triangulated were necessarily ones

with fewer triangulations, this problem involved extrapolation to output values beyond

the range seen in the training set. However, as we will discuss below, we believe that

our estimate is sound. The equation learning (EQL) neural network architecture that we

ultimately employed was developed especially for extrapolation outside of a given training

set. By withholding the subset of our known results that first appeared at h1,1 ≥ 12 when

training, we were able to see that our model extrapolated with stable results over a large

number of cases as the number of triangulations increased. We comment further on these

limitations, and the potential overcounting associated with our approach, in section 6.

3 Facet classification

In this section we review methods that easily determine when two facets are equivalent,

and then apply those methods to the classification of facets in 4d reflexive polytopes.

3.1 Distinguishing unique facets

We must distinguish between three-dimensional (3d) facets of the four-dimensional (4d)

reflexive polytopes, since individual facets may appear in multiple polytopes. In particular,

we must determine under what conditions two facets should be considered to be equivalent,

and then find a method to determine whether the conditions are satisfied.

For their classification of the 3d and 4d reflexive polyhedra [30], Kreuzer and Skarke

defined a normal form, with the property that two reflexive polyhedra have the same normal
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form if and only if they are related by a GL(n,Z) transformation. While powerful, this

normal form has the restriction that it can only be used on full-dimensional polytopes.

To circumvent this issue, and thereby be able to use the normal form, we employ the

method of Grinis and Kasprzyk, as described in section 3.2 of [40]. The origin is interior to

every reflexive polytope, and thus we know that none of the facets contain the origin. Thus,

for each facet F , we constructed the associated subcone defined by CF = conv(F ∪ {0}).
The subcone is a full-dimensional polytope, and so its normal form can be computed.

Additionally, as the origin is the sole interior lattice point of a reflexive polytope, the

origin is the only lattice point in CF \ F . This also means that we need not worry about

lattice translations when comparing subcones. As the origin is fixed under any GL(n,Z)

transformation, two subcones CF1 and CF2 have the same normal form if and only if their

associated facets F1 and F2 are related by a GL(n,Z) transformation.

As an example, consider the following two facets F1 and F2, both of which appear

as dual facets to the same h1,1 = 2 polytope (given by POLYID 21 in the ToricCY

database [36]). Each of the facets are the convex hulls of four vertices, as below:

F1 = conv({{−1, 0, 0, 0}, {−1, 0, 0, 1}, {−1, 0, 1, 0}, {−1, 1, 0, 0}}) (3.1)

F2 = conv({{−1, 0, 0, 1}, {−1, 0, 1, 0}, {1, 0, 0, 0}, {2,−1,−1,−1}}) . (3.2)

Adding the origin to each facet, we obtain the associated subcones

CF1 = conv({{0, 0, 0, 0}, {−1, 0, 0, 0}, {−1, 0, 0, 1}, {−1, 0, 1, 0}, {−1, 1, 0, 0}}) (3.3)

CF2 = conv({{0, 0, 0, 0}{−1, 0, 0, 1}, {−1, 0, 1, 0}, {1, 0, 0, 0}, {2,−1,−1,−1}}) (3.4)

Computing the normal form for each subcone, we find that

NF(CF1) = NF(CF2) = {{0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}) . (3.5)

We see that the two subcones have the same normal form, and thus the facets are equivalent.

Removing the origin, we see that both facets are equivalent to the 3d polytope with vertices

{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}.
As discussed in section 3.3 below, this particular facet, known as the standard 3-

simplex, is the most common facet among the 4d reflexive polytopes. It accounts for

20.45% of all facets, while no other facet accounts for more than 8.57%.

3.2 Performing the classification

The primary practical challenge of the facet classification was the volume of the 4d polytope

dataset itself. In order to have a consistent direction for our computation, we worked

through the polytopes in order of increasing h1,1(X), where X is an associated Calabi-

Yau hypersurface. As it is the dual polytope that is triangulated when constructing this

Calabi-Yau, we identified the facets of the dual polytope in each case. Hence, for each h1,1

value, we identified the facets that appeared in each dual polytope, keeping both a master

list of unique facets as well as recording which facets appeared in each dual polytope (and

with which multiplicity).
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Figure 1. (Left) The logarithm of the number of new facets at each h1,1 value. (Right) The

logarithm of the number of reflexive polytopes at each h1,1 value.

Computation was done on Northeastern University’s Discovery cluster using the

SLURM workload manager. As identifying the dual facets is an independent computation

for each polytope, we were able to use distributed computing to decrease our real-world

running time by several orders of magnitude. Filtering and removal of duplicate facets

was performed after identification had been completed for each h1,1 value. The dual and

normal form computations were done using a C++ lattice polytope implementation of our

own creation which used the PALP source code for many of its underlying calculations. This

offered significantly faster performance than the LatticePolytope class in Sage, allowing

the classification to be finished on the timespan of a few weeks.

3.3 Classification results

Using the above method for the facets of every 4d reflexive polytope, we found that there

are a total of 45, 990, 557 unique 3d facets, which is an order of magnitude less than the

number of polytopes themselves. This is approximately 0.6% of the total number of facets,

which is 7, 471, 985, 487. We found that a relatively small number of facets accounted for

the majority of the facets that appear across the polytopes, with the most common facet

accounting for just over 20% of the total.

As we performed the classification procedure, we recorded the number of facets which

appeared for the first time at each h1,1 value; i.e., the same facet may appear in many

different polytopes with different values of h1,1, and we recorded the smallest such value.

The distribution of these new facets per h1,1 value is shown in the left panel of figure 1,

which should be compared to the distribution of the number of polytopes of a given h1,1

value, which is given in the right panel of figure 1. The shape of the two distributions

are very similar, albeit decreased by around an order of magnitude. We note that the two

distributions have different peaks: the number of reflexive polytopes peaks at h1,1 = 27,

while the number of new facets peaks at h1,1 = 33.
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Figure 2. (Left) The number of new facets at each h1,1 value, as a fraction of the number of

polytopes at that h1,1. (Right) The total number of facets found through each h1,1 value, as a

fraction of the total number of polytopes up to that point.

Along with the cumulative distribution, we also show these distributions as fractions of

the relevant numbers of polytopes in figure 2. In the left panel, we show the number of new

facets that appear at a given h1,1 value, as a fraction of the total number of polytopes at that

h1,1 value. The scatter that emerges for h1,1 >∼ 250 represents the relatively small number

of polytopes at these rather large h1,1 values. Coupled with the information contained in

figure 1, it is clear that the overwhelming majority of facets are encountered well before

h1,1 ' 250, though (as we will see), the number of triangulations are dominated by the

outliers in the very large h1,1 bins.

Finally, the right panel of figure 2 shows the number of new facets at a given h1,1

value, normalized by the cumulative number of polytopes to that particular h1,1 value. We

see that after the peak in the right panel of figure 1, the ratio quickly saturates to a value

of approximately 0.1. This is nothing more than the ratio of total unique facets found

(47× 106) to the number of 4d reflexive polytopes in the KS database (470 × 106).

In understanding the reliability of our estimation methods, it is important to ask how

often the unique facets that we have enumerated actually appear in the 4d polytopes in the

KS database. This is the subject of figure 3, in which we show a histogram of the number

of appearances of a given facet.

One can see from the left panel of figure 3 that a small number of facets dominate the

database, with the frequency counts decreasing linearly on a logarithmic scale (the right

panel of figure 3). The 100 most common facets account for 74% of the total number. As

mentioned in section 1, we were able to achieve all possible FRTs for a very small set of

the total number of 3d facets, but these cases represent over 88% of facets by appearance.

This is indicated by the blue shading in both panels of figure 3.
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Figure 3. Histograms of the frequencies of facet appearances, with bins spaced linearly (left panel),

and logarithmically (right panel). The orange bars represent the total number of facets, while the

blue bars show the amount for which the number of FRTs is explicitly computed, and thus known.

The most common facet is the 3d polyhedron known as the standard 3-simplex (S3S),

which has normal form vertices

{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}} . (3.6)

The S3S appears a total of 1, 528, 150, 671 times in the database, accounting for 20.45%

of all facets, and appears in 87.8% of the polytopes. It first appears as a dual facet at

h1,1 = 1 and maintains a consistent presence through the database, as evidenced by the

graphs in figure 4. However, the S3S, being itself a simplex with no interior points, has

only one FRT, and thus has essentially no effect on the total number of polytope FRSTs.

4 Machine learning numbers of triangulations

In supervised machine learning (often called simply supervised learning), the output of the

machine learning algorithm is a function, commonly called a model, which takes a specified

set of inputs and produces a unique output value. This function contains numerical param-

eters, or weights, which are adjusted by the machine learning algorithm. The algorithm is

trained on a set of input → output pairs, and attempts to minimize a predetermined loss

function by adjusting the weights of the function.

In this section we will estimate the number of FRSTs of 4d reflexive polytopes by using

supervised learning to predict the number of FRTs of the facets. For this application, the

input is a set of features which describe a facet, and the desired output is the number of

FRTs for that facet. We describe in this section the features which we used as input and

the structure of the model that we obtained via supervised learning.
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Figure 4. (Left) The percentage of dual polytopes that contain S3S at each h1,1 value. (Right) The

same graph, truncated at h1,1 ≤ 120. We note that the erratic portion of the figure 4 for h1,1 >∼ 120

accounts for fewer than 1 million polytopes. The truncated graph (figure 4b) shows more clearly

the prevalence of S3S.

h1,1 Facets Triangulated % Triangulated

1− 11 142,257 142,257 100%

12 92,178 92,162 99.983%

13 132,153 108,494 82.097%

14 180,034 124,700 69.625%

15 236,476 3,907 1.652%

> 15 45,207,459 1,360 0.003%

Total 45,990,557 472,896 1.028%

Table 1. Dual facet FRT numbers obtained, binned by the first h1,1 value at which they appear.

4.1 Training data

The first step in our machine learning process was to generate data on which to train a

model. In this case, this meant it was necessary to triangulate as many of the 3d facets as

possible, in order to obtain the best possible training set.

Due to computational restrictions, we were only able to find the actual number of

FRTs for 472, 880 of the facets, which represents 1.03% of the total. These consist almost

entirely of facets which first appear in the dual polytope at relatively low h1,1 values.

Table 1 shows our progress. As one can see, h1,1 = 14 was the last value at which we were

able to obtain an appreciable fraction of the real FRT values. While the triangulated set

may constitute only a small fraction of the unique facets, they account for over 88% of all

facet appearances.
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To obtain the FRT values, we first computed the 2-skeleton of each facet using our

C++ code. The n-skeleton of a lattice polytope consists of all points which are not interior

to any (n+1)-dimensional face. We then passed the 2-skeleton to the TOPCOM executable

points2nfinetriangs in order to obtain the FRT number. As with the classification

process, we used Northeastern’s Discovery cluster to run simultaneous calculations for

several hundred facets at a time.

When training with this data, and throughout our process of finding a good model,

we organized the facets by the first h1,1 at which they appeared as a dual facet, which

we will refer to from here on as the h1,1 value of the facet. Our reason for this was that

there is a rough correlation between this h1,1 value and the number of triangulations. This

is reflected in table 1: as h1,1 increased, fewer cases were able to complete as the facets

became more complex. For this reason, the training set for each model only contained

facets with h1,1 up to some maximum value (typically 11). This allowed us to see how

well the model would extrapolate to FRT numbers higher than it had seen, something that

would prove to be an issue throughout our attempts.

4.2 Initial attempts

Our first attempt at obtaining a model was to follow the same pattern used for the 3d

polytopes in section 3 of [32]. As was done in the 3d case, for each polytope we constructed

the 4-tuple (np, ni, nb, nv), consisting of the number of points, interior points, boundary

points, and vertices, respectively. Our metric for determining the model’s success was the

mean absolute percent error (MAPE), which is defined as

MAPE =
100

n
×

n∑
i=1

∣∣∣∣Ai − Pi

Ai

∣∣∣∣ , (4.1)

where n is the number of data points, and Pi and Ai are the predicted and actual values

for the output, which here is ln(NFRT) for the ith facet.

We trained models using the same four algorithms as discussed in [32]: Linear Discrim-

inant Analysis (LDA), k-Nearest Neighbors (KNNR), Classification and Regression Trees

(CART), and Naive Bayes (NB). Of these, the CART algorithm gave impressive perfor-

mance on the training set, as well as on the test data for the h1,1 values that it had trained

on. However, its ability to extrapolate to higher h1,1 values was poor. As the majority of

the facets lie at higher h1,1 values, the inability to extrapolate well was unacceptable.

As an example, we show here the results from one of these attempts. The model is an

ExtraTreesRegressor model from the scikit-learn Python package, using 35 estimators.

We trained the model on a data set consisting of 60% of the known values from the range

5 ≤ h1,1 ≤ 10. On the training set, the model achieved a MAPE of 5.723. It performed

similarly on the test set consisting of the other 40% of these values, with a MAPE of 5.821.

If we could be confident of a similar accuracy for the rest of the facets, this could be an

acceptable model. However, when we used the model to predict on facets from higher h1,1

values whose FRT numbers are known, we obtained the results shown in table 2.

As one can see, the MAPE value consistently increases with the h1,1 value, indicating

that the model is less accurate farther away from its training region. Further, the rightmost

– 11 –



J
H
E
P
0
3
(
2
0
1
9
)
1
8
6

h1,1 MAPE Actual mean Predicted mean

11 6.566 9.582 9.189

12 9.065 10.882 9.903

13 11.566 11.755 10.067

14 17.403 12.638 10.179

Table 2. Prediction results for ln(NFRT), using the ExtraTreesRegressor model, for h1,1 values

outside of its training region.

two columns illustrate the problem with this model: it is under-predicting on facets with a

higher number of triangulations. The model never predicts a ln(NFRT) value greater than

12.467, which is similar to 12.595, the highest value in its training set.

This example is emblematic of the problems we faced with traditional machine learning.

Models either fit the training data poorly, or had trouble extrapolating outside of their

training regions. The primary difference between the 3d case (where this simple approach

worked), and the 4d case, is the inability to generate a representative training set. In the 3d

case, the number of FRTs for all facets that appear up through h1,1 = 22 were triangulated,

in a set where the maximum value of h1,1 is 35. Conversely, in the 4d case, the number of

FRTs was only obtained for all facets up through h1,1 = 11, and for a majority of cases up

to h1,1 = 14, in a data set where the maximum h1,1 value is 491.

4.3 Neural networks

Given the poor performance of traditional supervised machine learning as described above,

we shifted our focus to artificial neural networks. In particular, a feed-forward network

seemed the most suited to our purposes.

We recall briefly here the definitions of a neuron and a neural network. A neuron

is a function f(
∑k

i wi · xi + b) whose argument xi is the input. The value of f is called

the output. The parameters wi are called weights, b is called the bias (or offset), and ·
represents the appropriate tensor contraction. The function f itself is called the activation

function and the choice of f is one of the characteristics that define the neuron.

A neural network is a (finite) directed graph, each node of which is a neuron. For each

arrow in the graph, the output of the neuron at the tail is used as the input for the neuron

at the head. Conceptually, a neural network is organized into layers, such that there are no

connections between nodes in the same layer. The set of nodes whose arguments explicitly

involve the original input data is known as the input layer, while the set whose output

involves the actual output data is called the output layer. All other layers are referred to

as hidden layers.

In the general case, a neural network may contain cycles, allowing for complicated

connections between layers. In a feed-forward neural network, there are no cycles, and so

information moves only in one direction. Cycles in a neural network allow for the current

output to be influenced by the previous output. As the number of triangulations of a

given facet is independent of the number for other facets, we can restrict ourselves to the

feed-forward case.
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We initially tried applying a feed-forward network to our 4-tuples of data, but despite

trying a variety of architectures faced similar issues as in the previous subsection, with

models consistently underpredicting outside of the training regime. To aid our networks

in their prediction attempts, additional input data was generated. In addition to the

numbers of points, interior points, boundary points, and vertices, the following quantities

were computed for each facet to be used as inputs to the neural network:

• The number of points in the 1- and 2-skeletons

• The first h1,1 value at which the facet appears in a dual polytope

• The number of faces

• The number of edges

• The number of flips of a seed triangulation of the 2-skeleton. Two triangulations

differ by a flip if one can be obtained from the other by removing one edge and

inserting another.

• Several quantities obtained from a single fine, regular triangulation of the facet:

– The total numbers of 1-, 2-, and 3-simplices in the triangulation

– The numbers of 1- and 2-simplices in the triangulation, without accounting for

redundancy between higher-dimensional simplices

– The numbers of 1- and 2-simplices shared between N 2- and 3-simplices, respec-

tively, for N up to 5

As as example we consider the facet F with normal form is given by

{{0, 0, 0, 0}, {1, 0, 0, 0}, {1, 2, 0, 0}, {0, 0, 1, 0}, {0, 1, 1, 0},
{0, 0, 0, 1}, {3, 3,−1,−1}, {3, 2,−2, 0}, {0, 1, 0, 1}} . (4.2)

This facet has 11 lattice points, of which 10 lie on the boundary (leaving 1 in the interior).

Of these 10 boundary points, 8 are vertices. The 1- and 2-skeletons of this facet contain

9 and 10 points, respectively. It first appears in a dual polytope with h1,1 = 8, and has

10 faces and 16 edges. Its flip graph has 13 nodes. Obtaining one FRT for this facet from

TOPCOM, we find that it contains 72 1-simplices, 48 2-simplices, and 12 3-simplices. Of the

1-simplices, there were 29 unique ones, while there were 32 unique 2-simplices. There were

13 1-simplices shared between two 2-simplices, 6 shared between three, 3 shared between

4, and 1 shared between 5. There were 16 2-simplices shared between two 3-simplices, with

none shared between more than two. Hence the input vector describing this facet was

(1, 10, 8, 9, 10, 8, 10, 16, 13, 72, 48, 12, 29, 32, 13, 6, 3, 1, 16, 0, 0, 0) . (4.3)

Adding this additional data to our original inputs improved results, but not to the

point of satisfaction. As an example of the struggles faced by a traditional neural network,

we show here the results from one such model. This neural network has two hidden layers,
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h1,1 MAPE Mean value Predicted mean

12 5.904 10.882 10.324

13 6.550 11.755 10.753

14 10.915 12.638 11.094

Table 3. Prediction results for ln(NFRT), using the traditional neural network, for h1,1 values

outside of its training region.

−40 −20 0 20 40

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Percent error

F
re

q
u
e
n
c
y

h
1,1

=12

−40 −20 0 20 40

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0

Percent error

F
re

q
u
e
n
c
y

h
1,1

=13

−40 −20 0 20 40

0
1

0
0

2
0

0
3

0
0

4
0

0

Percent error

F
re

q
u
e
n
c
y

h
1,1

=14

Figure 5. Histograms of the percent error of the feed-forward neural network’s predictions in the

extrapolation region. Compare to extrapolations in the EQL network in figure 7.

each with 30 nodes. The first layer has a sigmoid activation function, while the second has

a tanh activation function. The final layer is a rectified linear unit (ReLU), meaning that

its activation function fact is equal to the positive part of its argument:

fact(x) = max(0, x) . (4.4)

A ReLU unit was chosen for the final layer as we want ln(NFRT) to be positive.

The model was trained on a data set consisting of an equal number of randomly chosen

points from 6 ≤ h1,1 ≤ 11 to avoid biasing the model towards higher h1,1 values. The

model performed well on the test set of values from the same h1,1, with a MAPE of 6.304.

However, when we evaluated the model’s progress on higher h1,1 values, our results were as

shown in table 3. This model performs much better than the ExtraTreesRegressor outside

of the training region, with a MAPE of 10.915 at h1,1 = 14. However, the MAPE values

are increasing with h1,1, and the mean predicted values are falling behind the true mean

values, leading one to believe that the model is underpredicting at higher h1,1. This belief

is confirmed by examining the histograms of the percent error values in the extrapolation

range, shown in figure 5. As h1,1 increases, the percent error distribution skews to the left,

indicating that the model is not keeping up with the increasing values. Hence this model

is not suitable for extrapolation to the higher h1,1 values which make up the bulk of our

data set.

4.4 The EQL architecture

In this section we will instead utilize an equation learner (EQL) architecture, which was

first introduced in [31], and will find that it has significantly better extrapolation ability.
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f1

f2

x

Figure 6. A representation of a simple EQL layer with nm = 4 and no = 3 sandwiched between

two fully-connected layers. The first two elements of the intermediate representation are each acted

on by activation functions fi, while the remaining two elements are multiplied together.

Each layer in an EQL network consists of two stages: a standard linear stage followed

by a non-linear stage. The non-linear stage essentially replaces the activation function

in a standard neural network layer, but differs significantly in that it changes the shape

of the linear stage’s output tensor. Like any feed-forward neural network layer, an EQL

layer accepts some number of input values ni, and outputs some number no of output val-

ues. The linear stage maps the ni-dimensional input x to an intermediate nm-dimensional

representation z via an affine transformation. That is,

z = Wx+ b (4.5)

for some weight matrix W ∈ Rnm×ni and some bias vector b ∈ Rnm .

The second stage takes this intermediate representation z to the final no-dimensional

output y via a non-linear transformation. For this transformation, the elements of z are

divided into two parts which are acted upon differently. To u of the elements, an activation

function is applied. These nodes are called unary units. In principle, a different activation

function can be applied to each unary unit. The other v elements are pairwise multiplied,

giving v
2 output values. These nodes are called binary units. This pairwise multiplication

step is the key aspect of the layer, as it allows for nonlinear interactions between the

nodes of the network. More generally, nonlinear interactions between the nodes other than

pairwise multiplication could also be utilized. A diagrammatic representation of an EQL

layer is shown in figure 6.

4.5 Model selection

Our final neural network model is simple, with only one hidden EQL layer between the

input and output layers. The input layer consists of 22 nodes as previously described. The

linear stage of the EQL layer contains 45 nodes. Of these, 15 are unary units, with the

other 30 being the binary units. The output from this layer thus consists of 15 + 30
2 = 30
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Extrapolation MAPE

h1,1min h1,1max Test MAPE h1,1 = 12 h1,1 = 13 h1,1 = 14

6 10 7.297 6.647 6.699 6.598

7 10 6.001 7.512 7.626 7.469

8 10 7.184 5.048 5.172 5.834

6 11 5.643 4.393 4.490 4.416

7 11 6.967 7.512 7.626 7.469

8 11 5.551 4.444 4.463 4.934

Table 4. Results of training our model on various h1,1 ranges. The model with h1,1min = 6, h1,1max = 11

performs well on the test set and the best on extrapolation to higher h1,1 values.

nodes. The unary activation which was found to be the most successful was to square

each of the unary units. The output stage consisted of one node, whose value represents

the natural logarithm of the number of FRTs. This final output had a ReLU activation

function to ensure that the output was nonnegative.

The Adam optimizer was used, with hyperparameters β1 = 0.9, β2 = 0.99, and

ε = 1× 10−8. At each layer, an L1 regularizer with λ = 0.001 was used on all weights

in order to select for the most important features. In addition, a dropout rate of 0.1 was

used for the EQL hidden layer to help select the most optimal neuron configuration.

To select a model, we trained across multiple ranges h1,1min ≤ h1,1 ≤ h
1,1
max and examined

the results. As the facets at h1,1 ≤ 5 have few triangulations and constitute relatively few

data points, we chose h1,1min ≥ 6 in each case. In order to have an adequate range on which

to test our model’s extrapolation, we also chose h1,1max ≤ 11.

The training data sets consisted of an equal number of randomly chosen data points

from each h1,1 value. This was done rather than taking a percentage of the data to avoid

biasing the model towards fitting to the higher h1,1 values; there are, for example, over 37

times as many facets at h1,1 = 11 as at h1,1 = 6. We then tested each model on the full set

of values across its training range to see how it performed. Our metric of choice was the

mean absolute percentage error (MAPE), as this gives a size-independent measurement of

how well the model is performing. The results of our training are shown in table 4.

As the table shows, the model trained on the largest range of h1,1 values, from 6 to 11,

performed the best on both the test set and when extrapolating to higher values. This is

the model that we used to generate predictions for the rest of the data set. We note that the

extrapolation range contains a large number of points: there are 92162, 108494, and 124700

triangulated facets at h1,1 = 12, 13, and 14, respectively. We also note that, regardless of

the training range, the models have stable MAPE values in the extrapolation region.

One might worry that, despite the promising MAPE values, this model is persistently

underpredicting like the previous model. However, examining the mean predicted values

(table 5) and the distributions of percent errors (figure 7), we can see that this is not the

case. The mean predicted values stay close to the true means, and the percent errors stay

centered around zero as h1,1 increases.
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h1,1 Mean value Predicted mean

12 10.733 10.722

13 11.755 11.591

14 12.638 12.492

Table 5. The true mean values and the mean predicted by our model in the extrapolation region.
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Figure 7. Histograms of the percent error of our chosen model’s predictions in the extrapolation

region. Compare to extrapolations in the EQL network in figure 5.

On the other hand, the extrapolation here is only to three h1,1 values that are not in the

training set, which provides some cause for concern since we will be interested in the poly-

tope with maximal h1,1, which has h1,1 = 491. For this reason we will perform an analogous

analysis of 3d polytopes in section 5, and will demonstrate that in that case the EQL accu-

rately predicts the number of FRTs for h1,1 values significantly beyond that in the training

set; e.g., training up to h1,1 = 11, we will accurately predict numbers of FRTs for all avail-

able facets, which go up to h1,1 = 25. This suggests that the EQL may also make accurate

predictions in the 4d polytope case at values of h1,1 significantly beyond the training set.

For completeness, we present in figure 8 the formula learned by our EQL model. The

variables xi are in the same order as in the example in section 4.3. This formula does not

seem to lend itself to any intuitive interpretation. Its interpretability is also hindered by

the fact that its variables will generally be of different scales. To attempt to adjust for this,

we normalized each variable so that it has an expectation value of 1. This was done using

the mean value of each variable in the training data. We then calculated log10(|c|) for each

coefficient c in the normalized expression to determine their relative importance on the

value. The results of this are shown in figure 9. We can see that there are two brightest

squares, which correspond to the interactions of the number of unique 1-simplices in the

seed triangulation with both the number of 3-simplices, and the number of 1-simplices

without accounting for redundancy. However, while these terms have the highest values,

there are many others at a similar order of magnitude. Thus, while we can say that some

terms are more important than others, the complicated form of the function, along with

a lack of knowledge of how these variables will change at larger h1,1, makes any stronger

statements difficult.
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ln(NFRT) = −0.425x2
0+0.29447x0x1−0.2304x2

1+0.02462x0x2−0.17529x1x2−0.3368x2
2+0.72012x0x3+0.0707x1x3+

0.00583x2x3 − 0.40825x2
3 − 0.01146x0x4 − 0.00008x1x4 − 0.0789x2x4 + 0.00599x3x4 − 0.02246x2

4 + 0.35742x0x5 +

0.00696x1x5 + 0.39255x2x5 − 0.35135x3x5 + 0.09x4x5 − 0.2482x2
5 − 0.19063x0x6 − 0.02357x1x6 − 0.08904x2x6 +

0.20651x3x6 − 0.04321x4x6 + 0.21098x5x6 − 0.0609x2
6 + 0.20861x0x7 + 0.05763x1x7 + 0.5381x2x7 − 0.19461x3x7 +

0.00197x4x7 − 0.41043x5x7 +0.12497x6x7 − 0.15195x2
7 +0.02359x0x8 +0.0095x1x8 +0.05497x2x8 − 0.03016x3x8 +

0.00692x4x8 − 0.10282x5x8 +0.06078x6x8 +0.00153x7x8 +0.00301x2
8 − 0.29528x0x9 − 0.00072x1x9 − 0.20046x2x9 +

0.2274x3x9 − 0.01136x4x9 +0.25023x5x9 − 0.13467x6x9 +0.23766x7x9 +0.08246x8x9 − 0.11071x2
9 +0.02683x0x10 −

0.00254x1x10 + 0.02553x2x10 + 0.01278x3x10 + 0.00554x4x10 − 0.04584x5x10 + 0.03714x6x10 + 0.01352x7x10 +

0.00105x8x10 + 0.20665x9x10 − 0.00099x2
10 − 0.34428x0x11 + 0.05335x1x11 − 0.00715x2x11 + 0.33024x3x11 −

0.01736x4x11 + 0.16713x5x11 − 0.08848x6x11 + 0.08456x7x11 + 0.03144x8x11 − 0.11092x9x11 − 0.00151x10x11 −

0.07556x2
11 + 0.02349x0x12 + 0.0031x1x12 − 0.01155x2x12 − 0.03125x3x12 − 0.00223x4x12 + 0.01197x5x12 −

0.00373x6x12 − 0.0372x7x12 + 0.02864x8x12 − 0.07238x9x12 + 0.01227x10x12 + 0.0125x11x12 − 0.00375x2
12 −

0.00624x0x13 + 0.00116x1x13 + 0.02883x2x13 − 0.00045x3x13 − 0.00025x4x13 − 0.02332x5x13 + 0.00198x6x13 −

0.0065x7x13 − 0.07052x8x13 + 0.04967x9x13 − 0.04768x10x13 − 0.00442x11x13 + 0.01206x12x13 + 0.00333x2
13 −

0.0373x0x14 − 0.01724x1x14 + 0.00677x2x14 + 0.08978x3x14 + 0.02568x4x14 + 0.03319x5x14 − 0.01481x6x14 +

0.00051x7x14 − 0.00392x8x14 − 0.06852x9x14 − 0.05699x10x14 − 0.0266x11x14 + 0.02735x12x14 − 0.00365x13x14 +

0.00757x2
14 − 0.07426x0x15 − 0.07933x1x15 − 0.00701x2x15 + 0.11551x3x15 + 0.01621x4x15 + 0.0459x5x15 −

0.03323x6x15 + 0.01862x7x15 + 0.00938x8x15 − 0.03075x9x15 − 0.00161x10x15 − 0.03737x11x15 + 0.00556x12x15 −

0.00167x13x15 − 0.01574x14x15 − 0.01246x2
15 − 0.07638x0x16 + 0.02935x1x16 + 0.08977x2x16 + 0.01429x3x16 +

0.02235x4x16 − 0.06464x5x16 + 0.03652x6x16 + 0.03147x7x16 + 0.00244x8x16 + 0.00924x9x16 − 0.01379x10x16 −

0.00638x11x16 + 0.02373x12x16 − 0.03973x13x16 − 0.00033x14x16 + 0.00165x15x16 − 0.0025x2
16 + 0.16209x0x17 +

0.00283x1x17 + 0.00744x2x17 − 0.18455x3x17 + 0.00375x4x17 − 0.08754x5x17 + 0.05244x6x17 − 0.04801x7x17 −

0.02091x8x17 +0.10988x9x17 − 0.00019x10x17 +0.05868x11x17 − 0.00919x12x17 +0.00468x13x17 − 0.00073x14x17 +

0.02233x15x17 − 0.01548x16x17 − 0.02151x2
17 + 0.21655x0x18 + 0.00257x1x18 − 0.00186x2x18 − 0.16816x3x18 −

0.0052x4x18 − 0.06696x5x18 + 0.05542x6x18 − 0.07719x7x18 − 0.01278x8x18 + 0.04658x9x18 − 0.11095x10x18 +

0.07151x11x18 + 0.02977x12x18 + 0.0495x14x18 + 0.02117x15x18 + 0.0208x16x18 − 0.07068x17x18 − 0.01711x2
18 −

0.04685x0x19 + 0.12461x1x19 − 0.00152x2x19 + 0.00549x3x19 − 0.0037x4x19 + 0.02334x5x19 − 0.00204x6x19 +

0.01064x7x19 − 0.00468x8x19 − 0.01531x9x19 − 0.00025x10x19 − 0.02014x11x19 + 0.00253x12x19 + 0.00039x13x19 +

0.01247x14x19 + 0.00623x15x19 − 0.01978x16x19 + 0.01116x17x19 + 0.00997x18x19 − 0.00125x2
19 − 0.24571x0x20 +

0.01527x1x20 + 0.01513x2x20 + 0.21444x3x20 − 0.00042x4x20 + 0.01284x5x20 + 0.01556x6x20 + 0.10175x7x20 +

0.01378x8x20 + 0.01132x9x20 − 0.00014x10x20 − 0.08197x11x20 + 0.05976x12x20 − 0.09782x13x20 − 0.0311x14x20 −

0.02498x15x20 − 0.01261x16x20 + 0.04463x17x20 + 0.03959x18x20 − 0.01115x19x20 − 0.02539x2
20 − 0.00024x0x21 +

0.01386x1x21 + 0.02516x2x21 + 0.00222x3x21 + 0.00004x4x21 − 0.06183x5x21 + 0.04606x6x21 + 0.01789x7x21 −

0.01325x8x21 +0.02409x9x21 +0.00023x10x21 +0.00006x11x21 − 0.00317x12x21 +0.00541x13x21 − 0.00012x14x21 +

0.00012x15x21 − 0.00592x16x21 + 0.02185x17x21 − 0.00001x18x21 − 0.00003x20x21 + 0.0257x2
21 − 1.548990x0 +

3.819380x1+4.156280x2−1.006350x3+1.110140x4−2.591030x5+1.540610x6−2.829660x7−1.5943x8+1.383880x9−

2.551x10+0.18922x11+0.72398x12+0.04856x13+0.48053x14+0.6916x15−1.253460x16−0.70274x17+0.44341x18−

1.167680x19 − 1.8572x20 − 1.170990x21 − 23.70712

Figure 8. The formula learned by our model for the number of FRTs of a facet. The meanings of

the xi are described in section 4.3.
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Figure 9. A heatmap showing log10(|c|) for each coefficient c in the formula, after rescaling each

variable to have expectation value 1. The top row corresponds to the constant term (top left square)

and the linear terms.

4.6 Estimate for the total upper bound

Having obtained a satisfactory model, we generated the necessary input data for all of the

facets. We then fed the data into the neural network to obtain the estimated number of

FRTs for each facet.

Naively, for a given reflexive polytope, its FRSTs would be given by the set of all

possible combinations of its facets’ FRTs. But in reality, the number of FRSTs is reduced

by two considerations. The first is that given two 3d facets F1 and F2, the triangulation of

each induces a triangulation on the intersection F1
⋂
F2, and these induced triangulations

may not overlap. The second consideration is that even if the induced triangulations do

overlap, the aggregated triangulation of the reflexive polytope may fail to be regular even

though the individual facet FRTs are regular. Thus, using the estimated number of FRTs

for each facet, we are only able to estimate an upper bound for each 4d reflexive polytope.

So, for a given reflexive polytope ∆ with facets Fi, we know that

NFRST(∆) ≤
∏
i

NFRT(Fi) , (4.6)

where NFRST and NFRT are the number of FRSTs and FRTs of the 2-skeleton of a given

reflexive polytope and facet, respectively. Via this inequality, the upper bound is given by

the product of the facet FRTs. One can then calculate the estimate for each 4d polytope

and sum the results. Determining the degree to which the product of FRTs overestimates

the number of FRSTs is left to a future work.

In practice, since our neural network predicted the natural logarithm of the number of

FRSTs, we calculated the estimate for each polytope as

NFRST(∆) = exp

(∑
i

ln(NFRT(Fi)
))
. (4.7)
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In these calculations, we used the actual value for ln(NFRT(Fi)) whenever it was known,

and the neural network prediction otherwise. As noted in section 3.3, the triangulated

facets account for over 88% of all facets.

Performing this calculation for each polytope, it was found that the single polytope

whose dual has h1,1 = 491 (the greatest h1,1 value) dominated the count. Our estimation

method predicts that it has 1.465×1010,505 FRSTs. This is more than any other polytope by

over 1300 orders of magnitude, and so this value effectively serves as the total triangulation

number for the entire set. Considering that this polytope has 680 integral points, 40 more

than any other, it is unsurprising that our method has identified this polytope as possessing

the most triangulations.

4.7 The h1,1 = 491 polytope

The polytope whose FRST count dominates the database is the polytope dual to the single

h1,1 = 491 polytope, which we will call ∆◦
491. This polytope has 680 integral points and

five facets, of which only four are unique. The polytope and its four facets Fi are given by

the convex hulls

∆◦
491 = conv({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {21, 28, 36, 42}, {−63,−56,−48,−42}})
F1 = conv({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {21, 28, 36, 42}})
F2 = conv({{1, 0, 0, 0}, {0, 1, 0, 0}, {3, 4, 6, 0}, {3, 4, 6, 84}}) (4.8)

F3 = conv({{1, 0, 0, 0}, {0, 1, 0, 0}, {7, 8, 14, 0}, {7, 8, 14, 84}})
F4 = conv({{1, 0, 0, 0}, {0, 1, 0, 0}, {7, 15, 21, 0}, {7, 15, 21, 84}}) .

The facet F1 first appears as a dual facet at h1,1 = 23, and appears twice in ∆◦
491. The

facets F2, F3 and F4 each appear once in ∆◦
491 and nowhere else in the database.

Our model predicts that F1 will have e29.32 = 5.41×1012 FRTs. As it appears twice, it

will contribute e2×29.32 = 2.93× 1025 to the triangulation number for this polytope, which

is a subdominant contribution. F2 has a larger contribution, as our model predicts that it

will have e2391.5 = 4 × 101038 FRTs. However, the triangulation number for the polytope

is dominated by F3 and F4, which our model predicts to have e10,753.0 = 1 × 104670 and

e10,985.9 = 1.25 × 104771 FRTs, respectively. Combining these, we get the estimate of the

number of FRSTs for this polytope:

NFRST(∆◦
491) = (2.93× 1025)(4× 101038)(1× 104670)(1.25× 104771) = 1.5× 1010,505 . (4.9)

Finally, we note that according to our model, the facets F4 and F3 have the most and

second-most FRTs among all facets.

To estimate a range of uncertainty for this value, we can use the extrapolated MAPE

values from our model in table 4. For h1,1 = 12, 13, 14, our model had MAPE values of

4.393, 4.490, and 4.416. Using the average of these values, 4.433, as the percent error for
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each ln(NFRT) estimate in ∆◦
491, we have

F1 : ln(NFRT) = 29.32± 1.30,

F2 : ln(NFRT) = 2391.5± 106.0,

F3 : ln(NFRT) = 10753.0± 476.7,

F4 : ln(NFRT) = 10985.9± 487.0.

Propagating these errors, we find that for ∆◦
491 we have log10(NFRT) = 10, 505.2 ± 292.6.

This gives a range for our estimate of 1010,505.2±292.6 = [1010,212.6, 1010,797.8].

5 Comparison to 3d polytopes

The biggest point of uncertainty involving our analysis of the 4d reflexive polytopes is the

inability to test our model on facets that first appear beyond h1,1 = 15. As all evidence

suggests that these facets — and in particular those that first appear at high h1,1 values —

will be responsible for the dominant contribution to the total number of FRSTs, it would

be preferable to have some confidence in our model’s accuracy in this region.

Though obtaining the true number of FRTs for these largest facets is currently infeasi-

ble, we hope to gain confidence in our model by showing that we can achieve the same goal

for the 2d facets of the 3d reflexive polytopes. As these facets are smaller, the number of

FRTs for the majority of the facets can be triangulated. Therefore a model’s extrapolation

ability can be more thoroughly tested. Specifically, we will demonstrate that EQLs trained

to predict ln(NFRT) predictions on data with relatively low h1,1 nevertheless accurately

extrapolate to much higher h1,1 values, lending some credence to our above assumption

the 4d case.

5.1 Classification of the 2d facets

As in section 2, we began by classifying the 2d facets of the 3d reflexive polytopes to avoid

redundancy in our calculations. The same classification method as in section 2 — for each

facet, we obtained a 3d polytope by attaching the origin, calculated the normal form, and

removed the origin afterwards.

In section 2 we organized the facets by the first h1,1 value at which they appeared. As

h1,1, as obtained by Batyrev’s formula, is equal to 20 for every 3d reflexive polytope, we

instead organized the facets by the number of integral points |∆| in the smallest polytope

∆ in which they appeared. We note that this quantity is equal to h1,1(B) + 4, where B is

the smooth weak Fano toric threefold associated to ∆. For the remainder of this section,

by h1,1 we will mean h1,1(B) = |∆| − 4.

As in section 2, the calculations were performed using our C++ lattice polytope im-

plementation. Due to the small size of the 3d reflexive dataset, the classification was

completed in just over 20 seconds.

Performing our classification, we found that the 4, 319 3d reflexive polytope contain

344 unique 2d facets. The numbers of facets and polytopes that first appear at each h1,1

value are shown in figure 10.
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Figure 10. (Left) The number of new facets at each h1,1 value. (Right) The number of reflexive

polytopes at each h1,1 value.

5.2 Training data

Having classified the 344 unique facets, we set out to triangulate as many as possible in

order to test our model. We again used TOPCOM to obtain the FRT count for each facet.

We were able to successfully obtain the number of FRTs for 322 of the 344 facets, with all

facets that appear up to h1,1 = 25 being completed.

Additionally, for 6 of the remaining 12 facets, as well as all of the other 322, we were

able to obtain the number of fine triangulations (FTs). For the 322 facets for which the

number of FRTs was found, there is very close agreement between the numbers of FRTs and

FTs. More specifically, the number of FTs was at most 1.026 times the number of FRTs.

Thus, we used the number of FTs as an approximation for the number of FRTs for the six

additional facets. This gave us values for all facets that appear up through h1,1 = 30.

5.3 Machine learning and extrapolation

Having triangulated as many facets as possible, we trained models with an EQL hidden

layer. Our input data was simpler than for the 3d facets, and consisted of

• The number of integral points

• The number of boundary points

• The number of interior points

• The number of vertices

• The length of the longest side

• The length of the shortest side

• The average side length
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h1,1 Facets MAPE MSE

6 5 7.865 0.032

7 13 16.583 0.061

8 15 8.805 0.055

9 12 5.851 0.075

10 19 5.808 0.087

11 19 10.678 0.213

12 15 8.754 0.334

13 18 9.128 0.330

14 21 10.200 0.722

15 22 8.756 0.538

16 14 9.103 0.755

17 22 9.071 0.610

18 13 7.850 0.619

19 21 10.491 1.314

20 13 10.962 2.050

21 7 9.259 1.158

22 23 9.167 0.798

23 14 14.333 6.504

24 7 7.894 1.075

25 3 2.649 0.373

26 6 12.112 2.228

27 5 3.985 0.644

28 3 6.900 0.380

29 1 5.258 0.295

30 1 2.074 0.146

Table 6. Performance of our model across h1,1 of the 3d reflexive polytopes.

As before, we had the neural network train on ln(NFRT). As the goal of this exercise

was to mimic the 4d case, where we only have data for the smallest facets, we restricted our

training data to facets that first appear at 4 ≤ h1,1 ≤ 11. There are 243 facets that first

appear at h1,1 ≥ 12, meaning that our extrapolation region contains 70.6% of the facets.

Our trained model contains a single EQL layer, which used a combination of linear and

quadratic unary activation functions. The performance of the model is shown in table 6.

Recall that h1,1 = 25 is the highest value for which all of the FRT values are known; for

26 ≤ h1,1 ≤ 30 we approximate the number of FRT by the number of FTs for some facets.

As we can see, the model performs well through the extrapolation region of

17 ≤ h1,1 ≤ 25. With our trained model, we predicted the number of FRTs for all 344

facets, and then estimated the number of FRSTs for any given polytope as the product

of the predictions for each facet. We also computed these estimates using the real FRT

numbers for polytopes where all facets have been triangulated. Taking the mean value at

each value of h1,1, we obtain the graph shown in figure 11. From this graph we see that
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Figure 11. The mean value of log10(NFRST) at h1,1, using predicted facet FRT values (blue) and

known facet FRT and FT values (red).

ln(NFRT) = 0.01418x20−0.03435x0x1−0.02165x21+0.11134x0x2+0.00201x1x2+0.00206x22−
0.03566x0x3 − 0.02813x1x3 + 0.00993x2x3 + 0.05023x23 − 0.03399x0x4 − 0.00929x1x4 −
0.01405x2x4 + 0.11072x3x4 + 0.0694x24 + 0.04551x0x5 − 0.04939x1x5 + 0.04087x2x5 −
0.00532x3x5 + 0.00719x4x5 − 0.00774x25 − 0.07105x0x6 + 0.04438x1x6 − 0.11917x2x6 −
0.07082x3x6−0.14734x4x6−0.007x5x6 + 0.14731x26−0.28707x0 + 0.46716x1−0.59766x2−
0.4975x3 − 0.35609x4 − 0.49381x5 + 1.354040x6 + 5.530190

Figure 12. The formula learned by our model for the number of FRTs of a facet. The meanings

of the xi are described earlier in this section.

the estimates from the model predictions are in good agreement with the estimate made

from known values well outside of the training region of 4 ≤ h1,1 ≤ 11. In particular, we

note that at the highest h1,1 value available to us, h1,1 = 30, our model is in nearly perfect

agreement with the true result.

We give below in figure 12 the formula learned by our model, with the xi in the order

of the list at the beginning of this section. As in the 4d case, we also rescaled the variables

to have expectation value 1, with the results being show in figure 13. Again, we see many

warm spots, making further interpretation of the formula difficult.

6 Conclusion

In this paper we have provided the first concrete estimate of the number of fine, regular,

star triangulations of 4d reflexive polytopes,

nFRST ' 1010,505.2±292.6. (6.1)
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Figure 13. A heatmap showing log10(|c|) for each coefficient c in the formula, after rescaling each

variable to have expectation value 1. The top row corresponds to the constant term (top left square)

and the linear terms.

This provides an upper bound on the number of topologically distinct Calabi-Yau threefold

hypersurfaces in toric varieties.

We attempted a variety of supervised learning techniques for predicting nFRST and

found that a neural network with the equation learning (EQL) architecture performed

best. The estimation was computed by taking products of numbers of FRTs of facets,

where the EQL was trained on 4d polytopes up to h1,1 = 11 and made accurate predictions

up to h1,1 = 14, which was the highest h1,1 at which we were able to compute FRTs

of facets for the sake of validating the trained EQL. While encouraging that the EQL

extrapolated to higher h1,1, it is so much smaller than the maximum h1,1 = 491 that it

is hard to trust such a high extrapolation without further evidence. For that reason, we

performed an analogous analysis in the case of 3d polytopes and found that the EQL was

able to extrapolate accurately to h1,1 = 30, where the maximum possible value is h1,1 = 35,

despite the fact that it was only trained up through h1,1 = 11. This provides some evidence

that the corresponding extrapolation in the 4d case may be trustworthy, despite needing

to extrapolate far beyond the training region. Indeed, such extrapolations were part of the

motivation for the EQL architecture [31] in the first place.

After training successful models, we extracted the equations that they learned. The

variables were rescaled to have an expectation value of 1 in an attempt to interpret these

equations. We found that some variables and terms were more important than others,

but the majority of variables made significant contributions, making interpretation of the

equation difficult. This may be due to the functional form utilized in our EQLs.

In the process of making the prediction, we have demonstrated the overall utility of

deep neural networks in this context, in particular their ability to extrapolate to regions of

higher topological complexity. This provides motivation for further studies of triangulations

and Calabi-Yau manifolds using techniques from data science.
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Though this result is a modest prediction of a single number, it is a necessary step in

understanding the ensemble of Calabi-Yau threefold hypersurfaces as a whole. We wish to

turn to refined structures in the ensemble in the future, and in particular their implica-

tions for cosmology. For instance, studying axion-like particles (ALPs) in this context is

particularly well-motivated since the ensemble is strongly dominated by the polytope that

gives rise to the large number of ALPs.
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