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1 Introduction

Infrared dualities have been playing a central role over the last twenty years in the study

of the dynamics of field theories in various dimensions, especially in the case of supersym-

metric gauge theories. In this paper we will be concerned with infrared dualities for gauge

theories in three dimensions with (at least) N = 2 supersymmetry. Many examples of

infrared dualities for this type of theories are known and in this paper we will be mainly

concerned with mirror symmetry for N = 4 theories and its generalization to models with

N = 2 supersymmetry [1–11].

These theories exhibit many remarkable properties which make them particularly in-

teresting. First of all, they include a holomorphic sector protected against quantum cor-

rections which provides a useful handle for the study of the theory. Another important

property is that in 3d all gauge theories are asymptotically free (contrary to the 4d case)

and therefore exhibit interesting dynamics, regardless of the choice of gauge group and

matter content. Another interesting fact is the existence of monopole operators (for the
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definition see [7] and also [12, 13] for an extensive discussion). These are local gauge invari-

ant operators and therefore can be added to the lagrangian, although the resulting theory

is not easy to interpret since these operators are not polynomial in the elementary fields.

Models with monopole interactions frequently arise when one tries to compactify on

S1 a four dimensional theory and takes the 3d limit [14]. On the other hand, sometimes it

turns out that by turning on a monopole superpotential one flows to anther “conventional”

lagrangian theory [15–17] and in this case the monopole superpotential can be used as a tool

to generate new infrared dualities (for other recent studies about monopole superpotentials

see e.g. [18–22]).

This is precisely the approach we follow in the present work to study N = 2 theories

with unitary gauge group and adjoint and fundamental matter fields (adjoint SQCD):

starting from a carefully chosen N = 4 gauge theory and turning on a suitable monopole

superpotential one can flow, using the mechanism described in [23], to adjoint SQCD in the

infrared. Knowing the mirror dual of the parent N = 4 theory and implementing the same

deformation in the dual theory we can derive a new duality, in the same spirit of [7, 10].

This duality also admits a brane interpretation in Type IIB which is discussed in [24].1

An interesting feature of our approach (based on the deformation of N = 4 mirror

theories) is that it can be used to systematically provide dual descriptions for models with

an arbitrary number of adjoints and fundamentals, which is instead hard to achieve using

the compactification method of [24, 25] due to the constraints imposed on the matter

content by asymptotic freedom in 4d. The price we have to pay, which constitutes the

main focus of this note, is that the candidate dual theory is often plagued by emergent

symmetries in the infrared (typically most of the symmetries which are not present in the

parent N = 4 theory).

As we will see in section 2, in the dual description of adjoint SQCD (with 3 or more

flavors) the infrared R-symmetry is invisible in the UV. This obstructs the computation of

the scaling dimension of chiral operators and makes it hard to understand in detail their

mapping. As a result, this complicates the analysis of several relevant deformations in the

dual theory.

In section 3 we will show that, at least in the case of SU(2) (or U(2)) adjoint SQCD, the

infrared R-symmetry can be recovered with a certain field redefinition (actually a duality

for the underlying N = 4 theories). After this modification, the mapping of chiral operators

becomes easier: our dual of adjoint SQCD can be deformed to the known mirror duals of

both N = 4 and N = 2 SQCD (hence can be considered the mirror dual of adjoint SQCD)

and allows to understand the infrared properties of the so-called bad N = 4 theories (in

the language of [26]) with simple field-theoretic manipulations (our results are in perfect

agreement with the findings of [27–30]).

As a further test of our construction, in section 4 we use our proposal to recover the

“duality appetizer” of [31]. In the process we will discover an abelian dual description for

adjoint SU(2) SQCD with one flavor and no superpotential. In the appendix A we analyze

in detail the relevant deformations to N = 4 and N = 2 SQCD.

1See [24, 25] for a different duality of these models obtained via compactification of 4d dualities.
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1 2 . . . N − 1 N

Figure 1. The T (SU(N)) theory. As is customary, a number n inside a circle denotes a U(n)

gauge group and a line connecting two nodes a bifundamental hypermultiplet. The number inside

a square denotes the number of hypermultiplets in the fundamental of the gauge group. We will

use this notation throughout the paper. Unless otherwise specified, it should always be assumed

(also when we discuss N = 2 theories) that the spectrum includes a chiral multiplet in the adjoint

representation for every gauge group.

2 Mirrors of N = 2 theories

In this section we review the method developped in [10] to identify the mirror dual of

N = 2 SQCD and then generalize the construction to theories with adjoint matter.

2.1 Mirror dual of SQCD

The starting point in [10] is the following duality between U(N) SQCD with N + 1 flavors

deformed by a monopole superpotential term and a WZ model found in [16]:

U(Nc) with Nf = Nc + 1 ←→ N2
f singlets M and a singlet γ

with W = M+ with W = γ det(M)
(2.1)

where γ is dual to the monopole M− in SQCD and M is the counterpart of the meson

Q̃iQ
j . For Nc = 1 (2.1) can also be extracted from mirror symmetry (see [15]). This result

is then used to prove that, by turning on a suitable monopole superpotential and repeatedly

using (2.1), the linear N = 4 quiver usually called T (SU(N)) (see figure 1) can be converted

into a single chiral multiplet in the adjoint of SU(N). The precise statement is as follows:

we start from T (SU(N)) then we deform the theory by adding singlets X1, . . . ,XN−1 and

turning on the following superpotential

δW = (M+00···0 + M0+0···0 + M00+···0 + . . .+ M000···+)

+ X1[M
−00···0 + M0−0···0 + M00−···0 + . . . (terms with one minus)]

+ X2[M
−−0···0 + M0−−···0 + . . . (terms with two minuses)] + . . .

+ XN−1M−−−···− ,

(2.2)

where Mj1j2j3···jN−1 are the monopole operators carrying flux (j1, (j2, 0), . . . , (jN−1, . . . , 0))

under U(1), U(2), · · · , U(N − 1) gauge groups. In the infrared all the gauge nodes confine

and the SU(N) moment map turns into a free chiral multiplet in the adjoint of SU(N). In

the following we will refer to this procedure as “sequential confinement” (see [23] where

this construction was introduced).

This observation is then used as follows: we start from N = 4 SU(N) SQCD coupled

to T (SU(N)) and its mirror dual (see figure 2). The topological symmetry carried by the

T (SU(N)) tail is mapped to the SU(N) symmetry rotating the N flavors in the mirror

quiver. If we now turn on the monopole deformation (2.2) for the T (SU(N)) theory on the

left, it reduces at low energy to a chiral in the adjoint of SU(N) (now gauged) which is
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T (SU(N)) SU(N) N + k N N . . . N T (SU(N))

1

Figure 2. The N = 4 mirror pair used in [10] to extract the dual description of N = 2 SQCD.

The number of U(N) gauge groups in the mirror quiver on the right is k.

coupled to the adjoint sitting in the SU(N) vector multiplet. As a result, both adjoints can

be integrated out leaving just N = 2 SQCD without adjoint matter and no superpotential.

Because of the N = 4 mirror map, the deformation (2.2) is mapped in the mirror theory to

a Xi-dependent mass matrix for the N flavors and all of them except one become massive,

leaving just one fundamental at low energy. More explicitly, the mass matrix reads

M =



0 1 0 . . . 0

X1 0 1 0

X2 X1
. . .

. . .
...

. . .
. . . 0 1

XN−1 . . . X2 X1 0


. (2.3)

We therefore conclude that the mirror dual of SU(N) SQCD with N + k flavors is

1 N . . . N 12. . .N − 1

1

The superpotential is the same one would write down for a N = 4 theory, except for terms

involving the fundamental of U(N) on the left (which we denote as q̃, q) which read (see [32]

for the derivation)

W = q̃φNq +

N−1∑
i=1

XN−iq̃φi−1q + . . . (2.4)

where φ indeed denotes the adjoint of the leftmost U(N) gauge group. The global symmetry

of N = 2 SU(N) SQCD with N + k flavors has rank 2N + 2k + 1 (including the U(1)R
symmetry), whereas in the mirror quiver the manifest global symmetry has rank N+k+2.

The emergence of a further U(1) can be seen by applying the chiral ring stability criterion

of [33], which implies that the first term in (2.4) can be dropped. This allows for a U(1)

symmetry which acts on q̃, q but not on φ. This is identified with one of the Cartan

generators of the axial SU(N +k) symmetry. This fact is to be contrasted with the abelian

case discussed in [7], in which the global symmetry groups of the dual theories manifestly

have the same rank. In any case, the most important point for the present work is that

the infrared R-symmetry of the theory is manifestly visible in the mirror quiver. As we

will see later, this is not the case for adjoint SQCD.
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1 2 . . . N

k

12. . .

(A)

NN. . .NN

(B)

Figure 3. The mirror pair we will use to derive the dual of adjoint U(N) SQCD. There are

k − 1 U(N) gauge groups in the linear quiver on the right. The construction involves applying the

sequential confinement procedure to the two T (SU(N)) tails on the left.

2.2 Theory with adjoint matter

As we have seen, we can give mass and remove the adjoint chiral by coupling to the theory

a T (SU(N)) tail and applying the sequential confinement procedure (i.e. turning on the

monopole deformation (2.2)). Indeed, if we couple to the theory n copies of T (SU(N))

and apply sequential confinement to all of them, we end up with n + 1 adjoint chirals.

Two of them become massive and at low energy we are left with n − 1 adjoints and zero

superpotential. From now on we will focus on the case n = 2.

If we start from N = 4 U(N) SQCD with k flavors and couple two T (SU(N)) tails,

we find a theory whose mirror dual can be extracted using the brane construction of [2].

The resulting mirror pair is as in figure 3.

The quiver (A) on the left has SU(N)2 ×U(1) topological symmetry. The two SU(N)

factors are carried by the T (SU(N)) tail and correspond in the dual theory to the SU(N)

symmetries rotating the fundamentals at the ends of the quiver. As usual, the correspond-

ing moment maps are related by the duality, in particular the monopole operators charged

under the topological symmetry carried by each T (SU(N)) tail are mapped in the mirror

theory to the “off-diagonal” components of the mesons.

When we turn on the monopole deformation (2.2) for the two tails, both of them

reduce to adjoint chirals and at low energy we are left with adjoint U(N) SQCD with k

flavors (and a singlet we will discuss momentarily). As in the previous section, in the dual

theory the monopole deformation is mapped to an off-diagonal mass term and, as a result,

N − 1 out of the N flavors at each end become massive. We are therefore left with the

candidate duality:

Φ
Q̃i, Qi

N k 1N. . .N
q̃, q p̃, p

1

Figure 4. Adjoint U(N) SQCD (here we indicate explicitly the adjoint with a loop) and its

mirror dual.

The superpotential is as in (2.4):

W = q̃φN1 q +

N−1∑
i=1

XN−iq̃φi−11 q + · · ·+ p̃φNk−1p+

N−1∑
i=1

YN−ip̃φi−1k−1p, (2.5)
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where φ1 and φk−1 denote the adjoint chirals of the leftmost and rightmost gauge groups

in the figure respectively. We have suppressed all other superpotential terms, which are

simply those of the parent N = 4 theory.

Since we are interested in U(N) adjoint SQCD with zero superpotential, we need to

manipulate the theory at hand a bit further: after the sequential confinement only the

traceless part of the adjoint chiral in the U(N) vectormultiplet acquires a mass. We there-

fore end up with adjoint SQCD plus one singlet (the trace part TrΦ of the U(N) adjoint)

and superpotential W = TrΦQ̃iQi. Removing this term is easy: we introduce (as in [7])

by hand a new chiral multiplet S and we “flip” TrΦ, meaning the new superpotential is

W = TrΦQ̃iQi + STrΦ.

Now both S and TrΦ become massive and can be integrated out. This procedure leaves at

low energy U(N) adjoint SQCD (with a traceless adjoint) with zero superpotential. This

manipulation should of course be carried out in the dual quiver as well, therefore we couple

S to the dual counterpart of TrΦ. We can implement this by replacing (2.5) with

W = q̃φN1 q + Sq̃φN−11 q +

N−1∑
i=1

XN−iq̃φi−11 q + · · ·+ p̃φNk−1p+

N−1∑
i=1

YN−ip̃φi−1k−1p. (2.6)

Analogously to the model discussed in the previous section, the global symmetry of the

theory (whose rank is 2k+ 2) is not entirely visible in the mirror quiver: including the two

U(1) factors we get (for k > 1) by applying chiral ring stability [33] (i.e. we drop from (2.6)

the terms q̃φN1 q and p̃φNk−1p), the rank of the manifest global symmetry in the dual theory

is k+4: the topological symmetry has rank k−1, there is an axial U(1) symmetry acting on

mesons and on adjoint chirals with opposite charge, there is also a U(1) baryonic symmetry

acting on fundamentals and antifundamentals with opposite charge and of course we have

the UV U(1)R symmetry. However, contrary to the case of SQCD with fundamentals only,

the infrared R-symmetry of adjoint SQCD is an hidden symmetry in the mirror theory,

at least for k ≥ 3. This can be seen by considering monopole operators in the dual

quiver, which are mapped to off-diagonal meson components in SQCD:2 by requiring all

the monopole operators to have the same R-charge we find for k ≥ 3 the constraint

2R(q) +NR(φ1) = 2R(p) +NR(φk−1) = 2. (2.7)

In order to understand how this constraint arises (and its implications), it suffices to

consider the case k = 3. As we have explained, the dual theory is

1NN
q̃, q p̃, pb̃, b

1

If we denote by r′ the R-charge of the bifundamental b, then R(φ1) = R(φ2) = 2− 2r′.

If we apply chiral ring stability to (2.6), the R-charge of q and p is in principle unralated

to that of b and we denote it by r. We can now straightforwardly compute the R-charge of

2This correspondence between monopole and mesons is simply inherited from the parent N = 4 duality.
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monopole operators M+0, M0+ and M++, which are mapped to meson components and

therefore should have the same R-charge. We find

R(M+0) = R(M0+) = (r′ − 1)(N − 2) + 1− r; R(M++) = (2N − 2)(r′ − 1) + 2− 2r

and imposing their degeneracy we recover (2.7), meaning that the extra U(1) symmetries

we gain from chiral ring stability do not mix with R-symmetry and are rather identified

with two Cartan generators of the axial SU(k) global symmetry. We therefore conclude

that the R-symmetry is fixed up to a single unknown (say the R-charge of q) and is

simply a combination of the UV R-symmetry and the axial U(1) symmetry mentioned

above. The trial R-symmetry in adjoint SQCD instead contains two unknowns: the charge

of the fundamental flavors and the charge of the adjoint, which are not related by any

symmetry argument.

The conclusion is that in the mirror quiver we have automatically a constraint on R-

charge assignments which is inherited from the parent N = 4 theory. The interpretation

is as follows: in the dual theory there are emergent symmetries in the infrared and the

R-symmetry mixes with them. More precisely, the trial R-symmetry visible in the quiver

corresponds, in adjoint SQCD, to a trial R-symmetry satisfying the constraint R(Q̃Q) =

R(Φ). This can be inferred by counting operators with the same trial R-charge in the

quiver and comparing with the chiral ring of adjoint SQCD. For example, in the quiver

we have the singlets X1, Y1 and the quadratic Casimir of the adjoints Tr φ2i which are all

degenerate and uncharged under the topological symmetry. These can be matched with

Tr Φ2 and the diagonal components of the dressed meson Q̃iΦQ
j . As we will see shortly,

it is also possible to show that S3
b partition functions of the two theories agree provided

we set by hand R(Q̃Q) = R(Φ) in adjoint SQCD. Since this constraint is not valid at the

IR fixed point, we conclude that the U(1) symmetry which assigns opposite charge to the

mesons and to the adjoint chiral is not visible in the dual quiver. The purpose of the next

section is to show that this problem can be circumvented in the case N = 2 with a field

redefinition which makes the infrared R-symmetry manifestly visible. As we will see, our

proposal passes several consistency checks.

2.3 Sphere partition functions

The equivalence of S3
b partition functions (as defined in [34, 35]) is proved using the same

technique as in [10], therefore we will be brief and refer the reader to that paper for notation

and details. The derivation in [10] builds on the equivalence of partition functions for the

parent N = 4 mirror theories. Actually, it is important to turn on the fugacity for the axial

symmetry H − C (the cartan generators of SU(2)C × SU(2)H) which makes it impossible

to explicitly compute the two partition functions and match them. The strategy is then to

notice that the N = 4 mirror theories of interest can be obtained by deforming T (SU(n))

theory with a suitable nilpotent vev for the HB (or CB for the mirror) moment map. The

result then follows from the self-mirror property of T (SU(n)), which has been proven at

the level of partition functions (with the fugacity for H − C turned on) in [36].

In the case at hand we can use the same approach: we start from T (SU(Nk)), then we

turn on for the CB moment map a nilpotent vev labelled by the partition ((k−1)N , 1N ) of

– 7 –
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Nk (our convention is that the trivial vev is associated with the partition (1Nk)) and for

the HB moment map a vev labelled by (Nk). In this way the theory reduces to the quiver

(A) on the left of figure 3. By exchanging the roles of the two moment maps we get instead

theory (B) in figure 3. The rest of the argument is essentially as in [10]. In particular, when

we monopole deform the two T (SU(N)) tails, their contribution in the partition function

reduces to that of two SU(N) adjoint chirals with the same R-charge as the meson. One

of them cancels against the contribution from the adjoint in the N = 4 vector multiplet

and we are left with adjoint SQCD with k flavors. The constraint R(Q̃Q) = R(Φ) is then

automatically satisfied.

The Sb3 partition function of theory (A) in figure 3 is

ZA =

∫ ∏N
i=1 dui
N !

e2πi(ξ
′+iβQ

2
)(
∑

i ui)ZT (SU(N))(ui, ξi)ZT (SU(N))(ui, zi)× (2.8)∏
i,j sb

(
ui − uj +mA − iQ2 α

)∏N
i=1

∏k
j=1 sb

(
iQ4 (1 + α)± ui ∓mj − mA

2

)
∏N
i<j sb

(
iQ2 ± (ui − uj)

)
where ξ′ is the FI parameter for the U(N) gauge group and β accounts for the mixing of the

corresponding topological symmetry with the infrared R-symmetry. We have also intro-

duced the real mass mA for H−C and α denotes the corresponding mixing coefficient with

the R-symmetry.3 ZT (SU(N)) denotes the contributions to the S3
b partition function from

the T (SU(N)) tails and the parameters ξi, zi are the FI parameters of the corresponding

topological symmetry.

It is now convenient to trade the FI parameters ξi, ξ
′ and zi for 2N auxiliary parameters

defined as follows:

ξi = ei − ei+1 (i = 1 . . . N); ξ′ = eN − f1; zi = fi − fi+1 (i = 1 . . . N), (2.9)

N∑
i=1

ei + (k − 1)
N∑
i=1

fi = 0. (2.10)

Equation (2.10) arises due to the nilpotent vev we are turning on for the CB moment map

of T (SU(Nk)) (see the analogous discussion in [10] and especially [38] where this constraint

is derived).

In order to flow to adjoint SQCD we should now turn on the monopole superpotential

described in section 2.1. The effect of this deformation is to break the topological symmetry

of the T (SU(N)) tails and H−C to the diagonal subgroup. In particular, we should identify

all the parameters ξi, zi and mA:

ξi = zi = mA ≡ ξ + i
Q

2
α. (2.11)

3α and β can be determined via Z-extremization [37].
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The imaginary part accounts for the mixing with the IR R-symmetry. As a result, the

parameters ei and fi defined before become

ei =
k − 1

k

(
ξ′ + i

Q

2
β

)
+

(
ξ + i

Q

2
α

)(
N + 1− 2i

2
+

(k − 1)(N − 1)

k

)
; (2.12)

fi = −1

k

(
ξ′ + i

Q

2
β

)
+

(
ξ + i

Q

2
α

)(
N + 1− 2i

2
− N − 1

k

)
. (2.13)

Another result we need is the identity proven in [10]:

ZTM (SU(N)) = e(N−1)πi(ξ+i
Q
2
(1−α))(

∑
i ui)sN−1b

(
i
Q

2
α− ξ

)∏
i 6=j

sb

(
ui − uj − ξ + i

Q

2
α

)
.

(2.14)

This states that after the monopole deformation T (SU(N)) reduces to a chiral multiplet

in the adjoint of SU(N). Plugging now (2.14) in (2.8) we can easily see that, thanks

to the identity sb(x)sb(−x) = 1, the partition function of theory (A) reduces to that of

U(N) SQCD with an adjoint (traceless) chiral whose R-charge is twice the R-charge of the

fundamental matter and a singlet (as we have explained in section 2.2). We therefore see

that the meson and the adjoint chiral have the same R-charge.

The presence of the extra singlet we called TrΦ in section 2.2 can be seen as follows: the

partition function of monopole deformed T (SU(N)) (2.14) does not cancel exactly against

the contribution from the adjoint U(N) chiral in (2.8), leaving the term sb

(
ξ − iQ2 α

)
.

We can remedy this by adding the flipping field S, which means multiplying (2.8) by

sb

(
iQ2 α− ξ

)
. Indeed, we should modify in the same way the partition function of theory

(B) as well.

The Sb3 partition function of theory (B) in figure 3 is instead

ZB =
∫ ∏N

i=1 dui
N ! e2πi(m1−m2)(

∑
j uj)

∏
j

∏N
i=1 sb(i

Q
4
±uj∓ei+

mA
2 )∏N

i<j sb(i
Q
2
±(ui−uj))

×

· · ·
∫ ∏N

i=1 dvi
N ! e2πi(mk−1−mk)(

∑
j vj)

∏
j

∏N
i=1 sb(i

Q
4
±vj∓fi+

mA
2 )∏N

i<j sb(i
Q
2
±(vi−vj))

(2.15)

We have written explicitly only the contribution from the fundamentals at the left and

right ends of the quiver (B) and the Haar measure of the leftmost and rightmost U(N)

gauge groups. The dots denote all other terms.

Since T (SU(Nk)) is self-mirror, we conclude that

ZA(mA; ei, fi;mj) = ZB(−mA;mj ; ei, fi),

where the parameters ei and fi are interpreted in theory (B) as real masses for the fun-

damentals at the ends of the quiver and the parameters mj encode the FI parameters for

the k− 1 U(N) gauge groups in the linear quiver. To conclude the argument, it suffices to

notice that when we plug (2.12) and (2.13) in (2.15), the contribution of N − 1 fundamen-

tals at each end of the quiver cancel out (physically they become massive) thanks to the

identity sb(x)sb(−x) = 1. The duality therefore reduces to that of figure 4.
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3 U(2) and SU(2) adjoint SQCD

As we have argued before, the infrared R-symmetry of adjoint SQCD is a hidden symmetry

in the dual theory (the quiver on the right in figure 4). The goal of the present section is

to show that, in the case N = 2, we can bypass this issue with a field redefinition.

In order to explain how this works, let us start from the mirror pair discussed in [26]:

1 SU(2) k + 1

1

1

2 . . . 2 2 2

Figure 5. On the left we have a special case of a N = 4 unitary quiver ending with a symplectic

gauge group. The theory on the right is the corresponding mirror dual depicted in figure 61 of [26].

The number of U(2) gauge groups on the right is k − 1.

The manifest SO(2k+2) global symmetry acting on the k+1 SU(2) doublets on the left

arises in the dual theory due to the presence of monopole operators of dimension one. The

SU(2) topological symmetry associated with the U(1) gauge node on the left corresponds

instead to the symmetry rotating the two U(2) doublets in the dual quiver. From this

mirror pair we can obtain the following duality:

1 SU(2)

k

1

1

1

2 . . . 2 SU(2) 2

Figure 6. New N = 4 mirror pair obtained from the duality depicted in figure 5 by gauging the

U(1) symmetry acting on one of the k+ 1 fundamentals. The number of U(2) gauge groups on the

right is k − 2.

The only difference with respect to the previous case is that the U(1) symmetry acting

on one of the k+ 1 doublets has been gauged. As a result, we now have a SU(2)2 ' SO(4)

topological symmetry and a manifest SO(2k) global symmetry. We therefore expect the

mirror theory to have a SO(2k) topological symmetry and a SO(4) global symmetry on

the Higgs Branch. These are precisely the properties of the quiver on the right, which is

obtained by “ungauging”4 the central U(1) factor of the rightmost U(2) gauge group in the

quiver depicted in figure 5. The SO(4) global symmetry acts on the two SU(2) doublets.

We therefore claim the quiver on the right of figure 6 is the corresponding mirror dual.

Finally, with a further gauging, we can derive from the duality depicted in figure 6 the

following mirror pair:

1

1

2 . . . 2 SU(2) 2
1 2

k

1

4This is accomplished by gauging the U(1) topological symmetry associated with the U(2) gauge group,

as explained in [39].
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Combining this with the mirror pair discussed in the previous section (see figure 3),

we end up with the duality:

1

1

2 . . . 2 SU(2) 222. . .22

Figure 7. The N = 4 duality we use to construct the mirror dual of U(2) adjoint SQCD. There

are k − 1 U(2) gauge groups on the left and k − 2 on the right.

Notice that this is not a mirror pair: both theories have (SU(2)×SU(2) ' SO(4))×U(1)

global symmetry acting on the Higgs Branch and SU(k) topological symmetry. As a simple

consistency check of the duality, notice that for k = 2 we recover a duality discussed in [17]:

the theory on the left becomes U(2) SQCD with 4 flavors and the global symmetry enhances

from SU(2)2 × U(1) to SU(4). This enhancement is visible also on the right, since in this

case the SU(2) gauge group has three flavors and therefore SO(6) ' SU(4) global symmetry.

As is clear from the figure, we are basically redefining the U(1) factors in the gauge

group in such a way that the SU(2)2 global symmetry acts on the two flavors on the right.

As we will now see, this is convenient because turning on the nilpotent mass deformation

in this duality frame allows to see explicitly an extra U(1) factor, which is precisely the

one we need to explicitly see the infrared R-symmetry.

3.1 Sequential confinement and its mirror

We find it more convenient to think of the two hypermultiplets in the fundamental of SU(2)

on the right of figure 7 as a trifundamental half-hypermultiplet which we denote as Qαβγ .

SU(2) indices are contracted with the ε tensor and our convention will be that the first

index denotes the gauged SU(2). The other two are the SU(2)2 flavor symmetry indices.

The superpotential deformation we need to turn on in order to flow to the mirror

dual of U(2) adjoint SQCD (the mirror version of the monopole deformation describing

sequential confinement) can be written as follows:

δW = εαβεδγ [Qα1δQβ1γ +Qαδ1Qβγ1 +XQα2δQβ2γ + Y Qαδ2Qβγ2], (3.1)

where X and Y are chiral singlets. We clearly see from (3.1) that out of the four SU(2)

doublets two become massive and can be integrated out. The remaining massless fields are

qα ≡ Qα12 −Qα21; q̃α ≡ Qα22. (3.2)

In terms of q and q̃ the superpotential can be written as follows:

W = X ′q̃q + εαβqα(φq)β + Y ′εαβ(q̃φ)αq̃β + . . . (X ′ ≡ Y −X; Y ′ ≡ X + Y ) (3.3)

where φ of course denotes the SU(2) adjoint. We have suppressed superpotential terms not

involving q and q̃. We have also dropped terms involving higher powers of φ since they are

not compatible with the chiral ring stability criterion of [33].
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In summary, the duality we are proposing is depicted in figure 8,

Φ
Q̃i, QiU(2) k

(A) (B)

1 p̃1, p1

1 p̃2, p2

2 . . . 2
b̃1, b1 SU(2)

q̃, q
1

Figure 8. U(2) adjoint SQCD (Theory A) with zero superpotential and its mirror dual (Theory B).

where the dots stand for a linear quiver of U(2) gauge groups with bifundamental hyper-

multiplets between them. In total there are k− 2 U(2) gauge groups and the same number

of bifundamental hypers b̃i, bi. In the figure we included explicitly only the SU(2) × U(2)

bifundamental b̃1, b1. The superpotential indeed includes the terms in (3.3). All other fields

enter the superpotential via the standard N = 4 couplings except p̃1 and p1, which are

also coupled to an extra singlet which we call S. The addition of this singlet is required to

remove the trace part of the U(2) adjoint chiral inherited from the parent N = 4 theory.

The full superpotential is therefore

W = X ′q̃q + εαβqα(φq)β + Y ′εαβ(q̃φ)αq̃β + Sp̃1p1 +WN=4. (3.4)

Notice that the adjoint multiplet Φ in figure 8 is traceless: we can neglect the trace part

since it is a gauge singlet and decouples from the theory unless we turn on a superpoten-

tial interaction.

We can now understand why the field redefinition described above is useful: in the

duality depicted in figure 4 the singlets X1 and Y1 appearing in (2.6) are on the same

footing and therefore are expected to have the same R-charge. None of the symmetries

(manifest in the lagrangian description) which assign different charge to X1 and Y1 mix

with the R-symmetry. This is to be contrasted with the corresponding fields X ′ and Y ′

appearing in (3.4), which do not need to have the same R-charge. We therefore see that

the field redefinition described above allows to detect a U(1) symmetry which is hidden

in (2.6) and this turns out to be precisely what we need to identify the correct infrared

R-symmetry. We will give evidence for this claim below.

3.2 Duality for SU(2) SQCD and study of the chiral ring

The dual description of SU(2) adjoint SQCD with zero superpotential can be directly

derived from the duality depicted in figure 6 upon turning on the relevant deformation

described in section 3.1:

Φ
Q̃i, QiSU(2) k

(A) (B)

1 p̃1, p1

1 p̃2, p2

2 . . . 2
b̃1, b1 SU(2)

q̃, q
1

Figure 9. SU(2) adjoint SQCD and its mirror dual.
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The superpotential is exactly as in (3.4) (the term Sp̃1p1 can be included in WN=4 since

the U(1) node is now gauged).

3.2.1 Mapping chiral operators

As is customary in mirror symmetry, the meson components of SU(2) SQCD are mapped

to monopole operators (those with minimal magnetic charge under the U(1) and/or U(2)

gauge groups only) in the dual theory and to the (trace part of) chirals in the adjoint

representation of the U(1), U(2) gauge groups in the dual theory. The monopoles of SQCD

are instead mapped to chains of bifundamentals in the mirror quiver. More precisely, we

propose the following map between chiral operators (see figure 9):

Theory A Theory B

TrΦ2 Y ′

Q̃iΦQ
i X ′

M (p1 . . . b1q̃)(q̃b̃1 . . . p̃1)

{MΦ} (p1 . . . b1q)(q̃b̃1 . . . p̃1)

(3.5)

where {MΦ} denotes the dressed monopole operator [40]. The chains of bifundamentals

inside each bracket are charged under the U(1) gauge symmetry acting on p̃1, p1. Indeed,

we could have considered the analogous operators with insertions of p̃2, p2, but exploiting

F-terms one can check these are just equivalent in the chiral ring to the ones we have chosen.

Analogously, the operator with two insertions of q (the operator (p1 . . . b1q)(qb̃1 . . . p̃1)) is

not an independent generator: the F-term for φ (see (3.4)) implies this is equivalent in the

chiral ring to −Y ′(p1 . . . b1q̃)(q̃b̃1 . . . p̃1). All other chains of bifundamentals are trivial in

the chiral ring or related to the ones discussed above.

Our identification of Q̃iΦQ
i with X ′ can be tested as follows: if we add this operator

to the superpotential the theory becomes SU(2) N = 4 SQCD and therefore we expect the

mirror theory to reduce to the known mirror dual discussed in [2]. This is precisely what

happens if we deform the superpotential (3.4) by adding a term linear in X ′, as we show

in detail in appendix A. Analogously, if we add a mass term for the adjoint chiral we flow

in the IR to N = 2 SU(2) SQCD and therefore we can test our identification of TrΦ2 with

Y ′ by checking that deforming (3.4) with a term linear in Y ′ we recover the mirror dual

proposed in [10] (see appendix A for the details).

Let us now discuss the R-charge of the theory. If we assign R-charge r to the funda-

mentals Q̃i, Qi and r′ to the adjoint Φ of SU(2) SQCD,5 we should assign charge 1 − r to

the bifundamentals b̃i, bi if we want the monopole operators to have R-charge 2r as the

mesons of SU(2) SQCD. We should also assign charge 2r′ to Y ′ since it maps to TrΦ2.

From the superpotential (3.4) we then conclude that q has charge 1 − r and q̃ has charge

1 − r − r′. The charge of X ′ is then 2r + r′, which of course agrees with the R-charge of

Q̃iΦQ
i. The R-charge of the monopole and dressed monopole operators of SQCD are then

fixed to be 2k(1− r)− 2r′ and 2k(1− r)− r′ respectively, in perfect agreement with those

of the corresponding bifundamental chains appearing in (3.5).

5The actual values of r and r′ can be determined using Z-extremization.
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The last aspect we need to discuss is the mapping of “dressed mesons” Q̃iΦQ
j , whose

R-charge is 2r+ r′. Let’s consider the case of U(2) SQCD which is simpler and will suffice

to illustrate this point. As we have seen, the trace part is mapped to the singlet X ′ in the

mirror theory, so we need to discuss the remaining k2 − 1 independent components. First

of all, we can notice that the monopole operator with minimal magnetic charge under the

SU(2) gauge group in the mirror quiver has precisely R-charge 2r + r′, suggesting that it

might correspond to one of the components of the dressed meson. The problem is then

reduced to the counting of monopole operators with charge 2r + r′.

To do this, we can notice that the mirror dual of U(2) SQCD depicted in figure 8

is essentially a N = 4 unitary linear quiver ending with a symplectic gauge group6 and

therefore we can exploit the analysis performed in section 5.3 of [26]. The result is that all

the monopole operators with R-charge 2r+ r′ have minimal magnetic charge under SU(2).

They can also have nontrivial magnetic charge of the form (up to permutation) (1, 0),

(0,−1) or (1,−1) under the unitary groups. The rule is that the subquiver formed by the

nodes at which the magnetic charge is (1,m) (with m either 0 or −1) has to be connected.

Analogously, nodes with magnetic charge (m,−1) (with m either 1 or 0) should form a

connected subquiver. We stress that both subquivers contain the SU(2) node. Notice that

our mirror quiver terminates with a U(1) node and the corresponding magnetic charge can

only be ±1 or 0. We find a total of k2 − 1 monopole operators with R-charge 2r + r′ as

desired and they transform in the adjoint representation of the SU(k) topological symmetry

supported by the unitary linear quiver as expected.

3.2.2 A chiral ring relation for SU(2) adjoint SQCD

From our duality we can infer the following chiral ring relation for SU(2) adjoint SQCD:

{MΦ}2 = −TrΦ2M2. (3.6)

In order to simplify the equations let’s define (see (3.5))

Pα ≡ (p1 . . . b1)α; P̃β ≡ (̃b1 . . . p̃1)β ,

where α and β denote SU(2) indices. Using now the identity εαβεγδ = εαγεβδ − εαδεβγ , we

find the relation

{MΦ} ' (Pq)(q̃P̃) = Pαqβ q̃γP̃δεαβεγδ = Pαqβ q̃γP̃δεαγεβδ = (P q̃)(qP̃),

where we used the fact that qβ q̃γε
βγ is set to zero by the F-term for X ′ in (3.4). From this

identity we therefore find

{MΦ}2 ' (Pq)(q̃P̃)(Pq)(q̃P̃) = (Pq)(qP̃)(P q̃)(q̃P̃) = −Y ′(P q̃)(q̃P̃)(P q̃)(q̃P̃),

and from (3.5) we see that the r.h.s. is identified with −TrΦ2M2 in adjoint SQCD.

Here we have exploited the chiral ring relation discussed before (p1 . . . b1q)(qb̃1 . . . p̃1) =

−Y ′(p1 . . . b1q̃)(q̃b̃1 . . . p̃1).
6The presence of the singlet S in (3.4), which spoils N = 4 supersymmetry, is irrelevant for the purpose

of computing the R-charge of monopole operators.
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3.2.3 The chiral ring map for U(2) adjoint SQCD

The above analysis can be repeated straightforwardly for U(2) SQCD. The main difference

is that now we have monopole operators with positive and negative topological charge.

Chiral operators are mapped as follows:

Theory A Theory B

TrΦ2 Y ′

Q̃iΦQ
i X ′

Q̃iQ
i S

M+ p1 . . . b1q̃

M− q̃b̃1 . . . p̃1
{MΦ}+ p1 . . . b1q

{MΦ}− qb̃1 . . . p̃1

(3.7)

Notice that now the product of bifundamentals p1 . . . b1q̃ (and all the other analogous prod-

ucts appearing in (3.7)) is gauge invariant since the U(1) symmetry acting on p1 is no longer

gauged. Exploiting again the equation (p1 . . . b1q)(qb̃1 . . . p̃1) = −Y ′(p1 . . . b1q̃)(q̃b̃1 . . . p̃1)
we find the U(2) counterpart of (3.6):

{MΦ}+{MΦ}− = −TrΦ2M+M−. (3.8)

4 Adjoint SQCD with one flavor and the duality appetizer

In this section we will use our duality to study adjoint SQCD with one and zero fundamen-

tals. We will see that the theory with Nf = 1 and zero CS level is equivalent to an abelian

theory. This will allow us to recover in a simple way the “duality appetizer” of [31]: the

SU(2) theory with an adjoint chiral and CS level one is equivalent to a free chiral plus a

topological sector. We will also recover a duality recently proposed in [41] for the same

theory with zero CS level.

4.1 The abelian dual of adjoint SQCD with one flavor

In order to derive the dual description of SU(2) adjoint SQCD with one flavor, we start

from the duality for the theory with Nf = 2:

Φ
Q̃i, QiSU(2) 2

1 p̃1, p1

1 p̃2, p2

SU(2)
q̃, q

1

Figure 10. SU(2) adjoint SQCD with two flavors and its mirror dual.

and turn on a complex mass term for one of the flavors (δW = mQ̃1Q1). In the mirror

theory this is mapped to a “complex FI term” at the two abelian tails (δW = mφ1−mφ2).
This induces an expectation value for the bifundamentals pi, p̃i which in turn higgses the
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gauge group down to U(1). Only the fields q and q̃ remain massless and become two

flavors (which we denote as p and q) of the unbroken U(1) gauge group. There are also

three massless singlets and the superpotential of the resulting abelian theory is

W = X ′(p̃q + q̃p) + ϕ(Y ′p̃p− q̃q), (4.1)

where ϕ is the linear combination of φ1, φ2 and the Cartan component of the SU(2) adjoint

chiral which remains massless.

The map between chiral operators is as follows:

SU(2) SQCD SQED with 2 flavors Trial R-charge

Q̃Q ϕ 2r

TrΦ2 Y ′ 2r′

Q̃ΦQ X ′ 2r + r′

εabQa(ΦQ)b M+ 2r + r′

εab(Q̃Φ)aQ̃b M− 2r + r′

M p̃p 2− 2r − 2r′

{MΦ} p̃q 2− 2r − r′

(4.2)

The chiral ring relation (3.6)

{MΦ}2 = −TrΦ2M2

follows simply from F-terms in the dual abelian theory:

p̃qp̃q = −p̃qq̃p = −p̃pq̃q = −Y ′(p̃p)2.

In the first equality we have exploited the F-term for X ′ and in the third the F-term for ϕ.

As a simple consistency check, we can make contact with the duality discussed in [23].

To this end we have to turn on in the SU(2) theory the superpotential

W = αQ̃Q+ βTrΦ2, (4.3)

where α and β are chiral singlets. In [23] this model was argued to be dual to N = 4 SQED

with two flavors. Our duality is indeed perfectly consistent with this claim: mapping the

two superpotential terms in the abelian theory we find

W = X ′(p̃q + q̃p) + ϕ(Y ′p̃p− q̃q) + αϕ+ βY ′,

and integrating out massive fields we are left at low energy with the superpotential

W = X ′(p̃q + q̃p).

Modulo a field redefinition this is precisely the lagrangian of the N = 4 theory.

Actually, we can use our duality to clarify one aspect of the duality discussed in [23]

(see also [42]): in that paper it was argued that the chiral operator β appearing in (4.3) is

zero in the chiral ring due to a quantum chiral ring relation. We are now in the position
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to identify precisely this relation: if instead of (4.3) we turn on the second superpotential

term (W = βTrΦ2) only, in the abelian theory we find

W = X ′(p̃q + q̃p) + ϕ(Y ′p̃p− q̃q) + βY ′.

We see that β becomes massive and the F-term for Y ′ imposes the chiral ring relation

β = ϕ′p̃p, which in the original SU(2) theory reads

β = MQ̃Q. (4.4)

Now it is clear that turning on the other term αQ̃Q sets to zero in the chiral ring the meson

Q̃Q and therefore the above relation reduces to β = 0.

It is not harder to analyze the theory with gauge group U(2): we should gauge the

baryon number, which in the abelian dual is mapped to the topological symmetry as is

clearly displayed in (4.2). The net effect is therefore to ungauge the U(1) and therefore the

dual theory is simply a WZ model with 7 chirals and superpotential (4.1). If we further

turn on the superpotential term β Tr Φ2 in the U(2) theory (and therefore make Y ′ massive)

we get a dual theory involving 6 singlets and superpotential

W = X ′(p̃q + q̃p) + ϕq̃q. (4.5)

The map between chiral operators can be easily derived from (4.2). This is in perfect

agreement with the result recently found in [24].

Another consistency check is obtained by giving mass to the adjoint, thus flowing

in the IR to U(2) SQCD with one flavor. On the dual side we should turn on a linear

superpotential term for Y ′, which induces a vev for ϕp̃p. From (4.1) it is easy to see that

X ′, Y ′, q and q̃ become massive and we recover the known result (see [7]) that at low

energy the U(2) theory with Nf = 1 is described by three chirals (the meson M and the

two monopoles M±), satisfying the constraint

M+M−M = 1.

4.2 The theory without fundamentals and the duality appetizer

In order to flow to the SU(2) theory without fundamental fields we can simply give mass

to the flavor, either real or complex.

4.2.1 Real mass deformation and the duality appetizer

Let’s start by considering the first option: in the model with one flavor there is indeed an

axial U(1) symmetry under which both Q and Q̃ have charge +1. If we turn on a real

mass for this symmetry, at low energy we are left with SU(2) SYM with CS level 1 (see [7])

and an adjoint chiral multiplet. In the dual abelian theory both flavors have charge −1

under this symmetry and the singlets X ′ and ϕ have charge +2, whereas the singlet Y ′

is uncharged. Therefore, in the dual theory the effect of this deformation is to make all

the fields massive except Y ′, which decouples in the IR being uncharged under the gauge

group. Moreover, when we integrate out the two flavors we generate a CS level −2. The
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low energy theory thus reduces to a free chiral multiplet (which corresponds to TrΦ2 in the

non abelian theory) plus a topological sector: a U(1) theory without matter fields and CS

level −2. This is precisely the duality appetizer of [31]. Notice that7 the topological U(1)

theories with CS level ±2 are equivalent and therefore, despite the nontrivial CS level, the

model we are discussing is actually parity invariant.

4.2.2 Complex mass deformation and SU(2) N = 4 SYM

Let’s now come to the analysis of the complex mass: in this case we do not generate a

CS term and the low-energy theory is simply SU(2) SYM with an adjoint chiral and zero

superpotential. This model actually has enhanced supersymmetry (it is N = 4 SU(2)

SYM) and was recently discussed in [41], with the conclusion that the theory is equivalent

at low-energy to a free hypermultiplet. We can recover this conclusion by analysing the

effect of the complex mass term in the dual abelian theory, whose superpotential becomes

W = X ′(p̃q + q̃p) + ϕ(Y ′p̃p− q̃q) +mϕ. (4.6)

Now the F-term for ϕ forces the flavors to acquire a nontrivial expectation value. This

spontaneously breaks the gauge symmetry and one combination of the matter fields re-

combines with the vectormultiplet into a long multiplet. By expanding the superpotential

around the vev, we find that four out of the six surviving chirals become massive and we

are left with two free chirals at low energy. These correspond to the monopole operator

and TrΦ2 in the SU(2) theory, in agreement with the analysis in section 10 of [41].

It is not harder to study SU(2) or U(2) N = 4 SQCD with one flavor, starting

from (4.1). We find that the low energy theory is free and is described by a single hy-

permultiplet for SU(2) and two hypermultiplets for U(2). This agrees with the analysis

of [30].

5 Concluding remarks

In this note we have studied adjoint SQCD and derived a dual description using sequential

confinement. The method is systematic and in principle can be used to propose dualities

for models with an arbitrary number of adjoint multiplets. As we have seen, a potential

technical problem of this approach is the presence of accidental symmetries.

However, with suitable field redefinitions we can identify a duality frame in which this

issue is not severe (at least for gauge group U(2) or SU(2)): the infrared R-symmetry is

explicitly visible in the UV and the duality is suited as a starting point for studying the

infrared dynamics of badN = 4 theories, for which standard techniques are harder to apply.

We can also rederive with simple field-theoretic manipulations various known dualities, for

theories with or without adjoint matter (see especially the discussion in appendix A).

One natural direction for future investigations is the study of theories with higher rank

gauge groups. In this case we did not find a simple field redefinition analogous to that of

figure 7 and maybe one has to look at duality frames involving non lagrangian building

7This follows e.g. from the level-rank duality for N = 2 CS theories [43, 44].
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blocks: in figure 7 the SU(2) vectormultiplet is coupled to two fundamentals and we can

think of those as (the dimensional reduction of) T2 (see [45] for a review of TN theory),

suggesting that in the general case a dual description involving TN might be the most

convenient starting point. It would be interesting to understand emergent symmetries for

this class of theories.
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A Superpotential deformation and comparison with known dualities

In this appendix we show in detail that the proposed mirror of N = 2 adjoint SQCD can

be deformed to the known mirrors of SQCD with eight and four supercharges respectively.

A.1 Deformation to the N = 4 theory

We start from the mirror dual of SU(2) adjoint SQCD with k > 3 flavors:

1 p̃1, p1

1 p̃2, p2

2 . . . 2
b̃1, b1 SU(2)

q̃, q
1

According to our chiral ring map, in order to flow to the mirror of N = 4 SQCD we should

add a superpotential term linear in the singlet X ′, therefore the superpotential becomes

(see (3.3))

W = X ′q̃q −X ′ + εabqa(φq)b + Y ′εab(q̃φ)aq̃b + Tr(Ψb1b̃1)− Tr(φb̃1b1) + . . . (A.1)

where Ψ denotes the adjoint of the rightmost U(2) gauge group in the figure. The other

superpotential terms will not be relevant for our analysis.

The new superpotential term induces a nonzero vev for q̃q and, modulo a gauge trans-

formation, we can solve D-terms by setting

q̃ = ( 1 0 ); q =

(
1

0

)
(A.2)

this breaks the SU(2) gauge group completely and when we expand (A.1) around this vev

we get

W = Tr(Ψb1b̃1)− Tr(φb̃1b1) +X ′(q̃〈q〉+ 〈q̃〉q) + φ21 + Y ′φ12 + . . . (A.3)
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where φij indeed denotes the component (i, j) of the SU(2) adjoint. We conclude that

X ′, Y ′ and φ12 (together with one component of q, q̃) become massive. As we clearly see

the expansion around the vev produces another linear superpotential term which in turn

induces a vev for (b̃1b1)12. The D-terms associated with the U(2) gauge group are solved

by setting8

b̃1 =

(
1 0

0 0

)
; b1 =

(
0 1

0 0

)
(A.4)

and this vev breaks the U(2) gauge group to the following U(1) subgroup:(
1 0

0 eiα

)
(A.5)

Expanding the superpotential around this vev we find that all the components of φ, b1 and

b̃1 disappear from the low energy spectrum: either they recombine with the vectormultiplets

into long multiplets or become massive. Also all the components of Ψ except Ψ22 become

massive and are set to zero in the chiral ring. As a result the bifundamental b2, b̃2 (charged

under the two rightmost U(2) gauge groups) reduces to two doublets of the unbroken U(2)

and only one of them is charged under the U(1) gauge group (A.5). This doublet is also

coupled to Ψ22 which now plays the role of the chiral singlet sitting in the U(1) N = 4

vector multiplet.

All in all, the low energy effective theory we are left with is described by the quiver

1
p̃1, p1

1
p̃2, p2

2 . . . 2

1

q̃1, q1

q̃2, q2

1

where we have relabelled b2, b̃2 as qi, q̃i. In total we have k gauge groups in the quiver

and the superpotential reduces precisely to that of the N = 4 theory, therefore making the

enhancement of supersymmetry manifest. This is indeed the known mirror dual of SU(2)

SQCD [1]. The case of U(2) SQCD can be treated in the same way.

The case k = 3 deserves some further comments since in this case there is only one

U(2) gauge group in the mirror quiver. After the deformation U(2) is broken spontaneously

to U(1) as before and we are left with the following dual theory

1

1

2 SU(2) 1

1

1 1

1

= 1 1 1 1 1

8Our convention is that b1 is a fundamental of U(2) and b̃1 an antifundamental.
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and on the right we recognize the mirror dual of N = 4 SQED with 4 flavors. We thus

reach the conclusion that SU(2) SQCD with 3 flavors and SQED with four flavors are

equivalent in the infrared. Indeed, the global symmetry is SU(4) × U(1) in both cases:

in the non-abelian theory the U(1) factor arises because the monopole operator has R-

charge 1 whereas in the abelian theory it corresponds to the topological symmetry. The

monopoles of SQED (whose R-charge is two) are mapped to the dressed monopole and the

quadratic Casimir of the adjoint in the SU(2) theory. The meson matrices are mapped to

one another. This is in perfect agreement with the brane analysis of [46].

Finally, we would like to discuss the case k = 2, therefore we start from the mirror

dual depicted on the right of figure 10 and turn on a superpotential term linear in X ′.

Apart from the fact that now Ψ in (A.1) is a diagonal matrix, the analysis is identical to

the previous case, at least until (A.4), since we have b̃1b1 = p̃1p1 + p̃2p2. As a result, we

now have the following solution

p̃1p1 =

(
0 1− b
0 0

)
; p̃2p2 =

(
0 b

0 0

)
, (A.6)

where b is a generic complex parameter. This indeed is not allowed when p̃i, pi transform

as doublets of U(2). For a generic value of b, the effective low energy theory is described

by a free hyper. However, for b = 0, 1 we find an interacting theory: N = 4 SQED with

two flavors. This agrees with the finding of [29, 30]: there are two singular points on the

CB at which the low energy effective action is T (SU(2)). At all other points the effective

theory is a twisted hypermultiplet.

The case of U(2) SQCD with two flavors is analogous: the mirror dual is the quiver

1 p̃1, p1

1 p̃2, p2

SU(2)
q̃, q

1

with superpotential (3.4) (now without the singlet S, since we are interested in making

contact with the N = 4 theory)

W = X ′q̃q + εαβqα(φq)β + Y ′εαβ(q̃φ)αq̃β + Tr(φp̃ip
i) + ϕp2p̃2.

Once we have turned on the linear term in X ′, we have again the solution (A.6) and for

generic values of b the low energy theory is described by two free hypermultiplets. For

b = 0 we find a singular point with effective theory T (SU(2)) plus a free hyper. For b = 1

instead the effective theory is just given by two free hypermultiplets. Our findings are in

perfect agreement with those of [28].

A.2 Deformation to pure N = 2 SQCD

In order to flow to N = 2 SQCD we should turn on a mass term for the adjoint chiral.

In the mirror theory this is mapped to a superpotential term linear in Y ′. The resulting
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superpotential is9

W = Y ′εab(q̃φ)aq̃b + 2Y ′ +X ′q̃q + εabqa(φq)b + Tr(Ψb1b̃1)− Tr(φb̃1b1) + . . . (A.7)

and the F-term for Y ′ tells us that εab(q̃φ)aq̃b acquires an expectation value. The D and F

terms are satisfied by

q = 0; q̃ = (
√

2 0 ); φ =

(
0 1

0 0

)
(A.8)

Notice that here it is crucial that the rightmost gauge group is SU(2) and not U(2), oth-

erwise the above solution would not satisfy the D-term equation.

The difference with respect to the previous case is that the vev does not “propagate” to

the bifundamental b̃1, b1 and therefore all the U(2) gauge groups remain unbroken. When

we expand (A.7) around the vev we find the terms

W = X ′〈q̃〉q + εabqa(〈φ〉q)b + . . .

which give mass to X ′ and all the components of q. Also Y ′ becomes massive and can be

integrated out. As for φ, the Cartan component and φ12 recombine with the SU(2) vector

multiplets due to the Higgs mechanism. Taking this into account we conclude that in the

effective theory φ (vev plus fluctuations around it) is of the form

φ =

(
0 1

ϕ 0

)
. (A.9)

In conclusion, the doublets q̃, q and the singlets X ′, Y ′ disappear from the low energy

spectrum and the effective theory is described by the quiver

1 p̃1, p1

1 p̃2, p2

2 . . . 2
b̃1, b1

2 φ

where φ is as in (A.9) and is coupled to b̃1, b1 (which are now identified with two doublets of

U(2)) through the superpotential term Tr(φb̃1b1) (see (A.7)). Notice that this is precisely

the theory we end up with if we start from the N = 4 quiver

1

1

2 . . . 2 2

9The coefficient 2 in the linear superpotential term is chosen in order to simplify numerical factors in

the following equations.
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and then we deform the theory by introducing a chiral multiplet in the adjoint of the SU(2)

symmetry (rotating the two flavors on the right) coupled to the corresponding moment

map via a superpotential term and turn on a nilpotent vev for it. This is precisely the

prescription proposed in [10] to construct the mirror dual of N = 2 SU(2) SQCD.

The case of SQCD with two flavors deserves some further comments. We start from

the quiver discussed in section 4 (see figure 10) and turn on a superpotential term linear

in Y ′. As a result of this deformation, the SU(2) gauge group is higgsed and we are left

with two copies of SQED with two flavors, coupled together via a superpotential term. If

we denote by pi and qi respectively the hypers charged under the two U(1) gauge groups,

we have the superpotential

W = αp̃ip
i + βq̃iq

i + p̃1p
2 + q̃1q

2 + ϕ(p̃2p
1 + q̃2q

1), (A.10)

where we have used (A.9). After integrating out massive fields, we are left with two copies

of SQED with one flavor coupled together. The superpotential is

W = α2p̃p+ β2q̃q + ϕ(p̃p+ q̃q) (A.11)

and, by using the duality between SQED with one flavor and XY Z [7], we find a WZ

model with 9 chirals (some of them are massive) and superpotential

W = xyz + x′y′z′ + ϕ(x+ x′) + α2x+ β2x′ −→ x(yz − y′z′ + α2 − β2), (A.12)

where we have integrated out massive fields. If we now identify x with the monopole

operator of SQCD (as is implied by the chiral ring map discussed in section 4) and we

identify the 4× 4 antisymmetric meson matrix Mij of SQCD with
0 α+ β z′ y

−α− β 0 z y′

−z′ −z 0 α− β
−y −y′ β − α 0


then (A.12) is equivalent to

W = MPf(M),

which is known to be the effective low-energy superpotential of SU(2) SQCD with two

flavors [7]. This provides another test of our duality.

The theory with gauge group U(2) and two flavors can be analyzed in the same way:

we have again (A.11) but now the theory has just U(1) gauge symmetry instead of U(1)2

(under which, say, only p̃ and p are charged whereas q̃ and q are neutral and play the role

of singlets). Using again the duality with XY Z we find a WZ model with superpotential

W = xyz + α2x+ β2q̃q + ϕ(x+ q̃q). (A.13)

When we integrate out ϕ and x we are left with

W = q̃q(β2 − yz − α2), (A.14)
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which agrees with the effective superpotential W = M+M− det(M) describing the moduli

space of the theory (see e.g. [47]), if we identify q̃ and q with the monopole operators of

U(2) SQCD and the meson matrix M with

M ≡

(
β + α y

z β − α

)
.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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