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1 Introduction

Noncommutativity of coordinates has come into focus of physics about hundred years ago

when the problem with infinite value of physical quantities occurred. The solution was

proposed by Heisenberg in the form of noncommutative coordinates. But after developing

of renormalization procedure coordinate noncommutativity was forgotten as a tool for

cancelling of infinities.

Commuting of coordinates means that there is no minimal possible length in Nature

i.e. that we can measure the position of particle with infinite precision. The return of

noncommutativity into physics starts with the article of Hartland Snyder [1]. Usually we

treat space-time as continuum but Snyder showed that there is Lorentz invariant discrete

space-time. Consequently, this means that commutator of coordinates is nonzero, and

noncommutativity parameter dictates the scale at which noncommutativity exists.

In the paper [2] existence of noncommutative manifold was shown using propagators

in open bosonic string theory with constant metric and constant Kalb-Ramond field. This

result is proven in many articles [3–12] after that but using different mathematical meth-

ods. Obtained noncommutativity with constant noncommutativity parameter is known
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in literature as canonical noncommutativity. Consequently, canonical noncommutativity

implies that theory is still associative one.

One of the first application of canonical noncommutativity was in Yang-Mills (YM)

theories [13–16]. Noncommutative YM theories are constructed and their renormalisability

properties are analyzed. It turned out that some processes forbidden in commutative YM

are allowed in noncommutative YM theories. Consequently, cross sections for those decays

and processes are calculated [17, 18]. Such predictions offer the possibility of indirect check

of idea of noncommutativity.

The next type of noncommuatativity which is considered in literature is Lie-algebraic

one, which means that commutator of two coordinates is proportional to the coordinate.

The κ-Minkowski space-time is an example of this kind of noncommutativity and it is

considered in various contexts [19–24]. The κ-Minkowski space is noncommutative but

it is easy to check that is associative one. But, in general, if the commutator of the

coordinates is proportional to the some linear combination of coordinates, then the space

is nonassociative because jacobiator and associator are nonzero. For example, such spaces

are closely related to the L∞ algebra [25].

The mathematical framework for T-dualization is standard Buscher procedure [26, 27].

It consists of the localization of the shift symmetry and adding a term with Lagrange

multiplier in order to make gauge fields unphysical degrees of freedom. Also there is an

improvement of standard Buscher procedure developed and applied in refs. [28–31], gener-

alized Buscher procedure. In the application of the generalized procedure of T-dualization

there is one additional step with respect to the standard one. We introduce invariant

coordinate in order to localize shift symmetry in the coordinate dependent backgrounds.

The first articles addressing the subject of coordinate dependent backgrounds appear

in the last ten years [32–43]. A 3-torus with constant metric and Kalb-Ramond field

with just one nonzero component, Bxy = Hz, was considered within standard Buscher

procedure [33]. Authors made two successive T-dualzation along isometry directions x and

y, and, using nontrivial winding conditions, obtained noncommutativity with parameter

proportional to field strength H and winding number N3.

Using generalized T-duality procedure [30, 44] we obtained coordinate dependent non-

commutativity and, consequently, nonassociativity. Also it is shown that final theory is

nonlocal. In ref. [30] the bosonic string is considered in the weakly curved background —

constant metric and linearly coordinate dependent Kalb-Ramond field with infinitesimal

field strength, while in [44] we consider the same model as in [33], but T-dualizing along

all three directions and imposing trivial winding conditions. Obtained nonlocality comes

from the coordinate dependent background, or more precisely, from invariant coordinates.

At the end of T-dualization procedure background fields depend on ∆V , defined as line

integral. Nonlocality has been become very important issue in the quantum mechanical

considerations [45].

In this article we will deal with closed bosonic string propagating in the constant

metric and linear dependent Kalb-Ramond field with Bxy = Hz, the same background as

in [33, 44]. But our goal here is to examine the influence of order of T-dualizations. In

ref. [44] we T-dualize first along isometry directions, first along x and then along y, and at
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the end, along direction z. The first T-dualization produces configuration known as twisted

torus which is commutative, and it is globally and locally well defined. After second T-

dualization we obtained nongeometric theory with Q flux which is still locally well defined

and it is commutative. The final T-dualization along z direction produces nonlocal theory

which is noncommutative and nonassociative one. This line of T-dualizations we will call

xyz one.

But what it will happen, if we change the order of T-dualizations, regrading (non)lo-

cality issue as well as (non)commutativity and (non)associativity? It is quite obvious that

nothing will be changed if we T-dualize along line yxz, because the first two directions,

which are T-dualized, are isometry ones. Some nontrivial issues could be expected if

we T-dualize first along z direction. In this article we will present T-dualization of the

model from [33, 44] along the T-dualization line zyx. After every step of T-dualization

we will rewrite the T-dual transformation law in canonical form using the expressions for

canonical momenta of the initial theory. Also we will check whether the obtained theory

is commutative or not and, consequently, we will see whether it is associative or not.

The fact which is quite sure is that all three theories which we will obtain from the

T-dualization line zyx are nonlocal. The explanation comes from the fact that background

field Bµν is z dependent and according to the generalized T-dualization procedure, after T-

dualization along z, we obtain quantity ∆V which is defined as line integral. Consequently,

the theory is nonlocal. But because y and x T-dualizations do not affect ∆V , all three

theories obtained in zyx T-dualization line are nonlocal. That is a difference with respect

to the xyz T-dualization line considered in [44].

The interesting thing is that transformation laws can be obtained from the corre-

sponding ones in [44] by replacing H → −H, but because in this article we T-dualize in

the opposite direction, that produces theories of the different commutative and associative

features with respect to [44]. After first T-dualization we get commutative and associative

theory which is the same as in xyz case from [44]. But the second T-dualization here

produces noncommutative and associative theory of κ-Minkowski type. That is different

with respect to the xyz case, where second theory in the line is both commutative and

associative. At the end we obtain the same theory as in [44] which is nonassociative and

noncommutative. The noncommutativity and nonassociativity parameters have one addi-

tional “−” sign comparing with the corresponding ones in [44]. In this article as well as

in [44], we impose trivial winding conditions which means xµ(σ + 2π) = xµ(σ) + 2πNµ,

where Nµ is a winding number.

At the end we comment some quantum aspects of the problem and add two appendices.

The first one contains conventions regarding light-cone coordinates, while the second one is

related to the mathematical details concerning derivation of two kinds of Poisson brackets

appearing in the article.

2 Bosonic string action and choice of background fields

In this section we will introduce the action for bosonic string propagating in 3D space with

constant metric and Kalb-Ramond field which single component is different from zero,
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Bxy = Hz. This model is well known in literature as torus with H-flux. Since we are

working with the same model as in [33, 44], for completeness we will repeat most of the

steps from introductory part in the [44].

The closed bosonic string which propagates in the presence of the space-time metric

Gµν(x), Kalb-Ramond field Bµν(x), and dilaton field Φ(x) is described by action [46–48]

S = κ

∫
Σ
d2ξ
√
−g
{[

1

2
gαβGµν(x) +

εαβ√
−g

Bµν(x)

]
∂αx

µ∂βx
ν + Φ(x)R(2)

}
, (2.1)

where world-sheet surface Σ is parameterized by ξα = (τ , σ) [(α = 0 , 1), σ ∈ (0 , π)],

while xµ (µ = 0, 1, 2, . . . , D− 1) are space-time coordinates. Intrinsic world sheet metric is

denoted by gαβ , and the corresponding scalar curvature with R(2).

Conformal symmetry on the quantum level is not preserved for any choice of back-

ground fields. If we want to keep conformal symmetry on the quantum level, background

fields must obey the space-time field equations [49]

βGµν ≡ Rµν −
1

4
BµρσBν

ρσ + 2Dµaν = 0 , (2.2)

βBµν ≡ DρB
ρ
µν − 2aρB

ρ
µν = 0 , (2.3)

βΦ ≡ 2πκ
D − 26

6
−R− 1

24
BµρσB

µρσ −Dµa
µ + 4a2 = c , (2.4)

where c is an arbitrary constant. From

DνβGνµ + ∂µβ
Φ = 0 , (2.5)

it follows that third beta function, βΦ, is equal to an arbitrary constant. Here Rµν and Dµ

are Ricci tensor and covariant derivative with respect to the space-time metric Gµν . Field

strength for Kalb-Ramond field Bµν and dilaton gradient are defined as

Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν , aµ = ∂µΦ . (2.6)

One of the solutions of these equations which is important for us here is the solution

where some background fields are coordinate dependent. Let us choose Kalb-Ramond field

to be linearly coordinate dependent and dilaton field to be constant. The equation (2.2)

turns into

Rµν −
1

4
BµρσBν

ρσ = 0 . (2.7)

If we assume that field strength is infinitesimal, then we take Gµν to be constant in ap-

proximation linear in Bµνρ. Consequently, the third equation (2.4) is of the form

2πκ
D − 26

6
= c . (2.8)

The constant c is arbitrary, and fixing its value at c = −23πκ
3 , we obtain D = 3, dimension

of the space in which we will work further.

– 4 –



J
H
E
P
0
3
(
2
0
1
9
)
1
3
6

The choice of background fields in the case we will consider is

Gµν =

R2
1 0 0

0 R2
2 0

0 0 R2
3

 , Bµν =

 0 Hz 0

−Hz 0 0

0 0 0

 , (2.9)

where Rµ(µ = 1, 2, 3) are radii of the compact dimensions. In terms of radii, the imposed

condition that H is infinitesimal, can be rewritten as(
H

R1R2R3

)2

= 0 . (2.10)

Physically, infinitesimality of H means that we work with sufficiently large torus (diluted

flux approximation). If we rescale the coordinates

xµ 7−→ x′µ = Rµx
µ , (2.11)

where indices on the right hand-side of equation are not summed, the form of the met-

ric simplifies

Gµν =

 1 0 0

0 1 0

0 0 1

 . (2.12)

Taking all assumption into consideration, the action is of the form

S = κ

∫
Σ
d2ξ∂+x

µΠ+µν∂−x
ν (2.13)

= κ

∫
Σ
d2ξ

[
1

2
(∂+x∂−x+ ∂+y∂−y + ∂+z∂−z) + ∂+xHz∂−y − ∂+yHz∂−x

]
,

where ∂± = ∂τ ± ∂σ is world-sheet derivative with respect to the light-cone coordinates

ξ± = 1
2(τ ± σ), Π±µν = Bµν ± 1

2Gµν and

xµ =

 x

y

z

 . (2.14)

T-dualization of dilaton is done within quantum formalism and here it will not be presented.

3 Family of three R flux non-local theories

In this section we will perform T-dualization of closed bosonic string equipped by H-

flux torus background fields, one direction at time. T-dualization procedure will go along

zyx line. We will show that all three theories are nonlocal with R-flux. Also we will

find expressions connecting initial and T-dual variables, so called T-dual transformation

laws. Using transformation laws in canonical form, we will check after every step whether

obtained theory is (non)commutative and/or (non)associative.
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3.1 T-dualization along z direction — shortcut to R-flux

Unlike the cases considered in [33, 44], where T-dualization drives along xyz line, let us

do that in opposite direction and perform generalized T-dualization [28] of action (2.13)

along z direction.

3.1.1 T-dualization procedure

It looks like that this direction is not isometry one. But we can show that it can be treated

like isometry direction. Let us consider the global transformation

δxµ = λµ , (3.1)

and vary the action with respect to this transformation

δS =
κ

3
Bµνρλ

ρ

∫
Σ
d2ξ∂+x

µ∂−x
ν =

2k

3
Bµνρλ

ρεαβ
∫

Σ
d2ξ[∂α(xµ∂βx

ν)− xµ(∂α∂βx
ν)] . (3.2)

The second term vanishes as a consequence of contraction of antisymmetric (εαβ) and

symmetric (∂α∂β) tensors, while the first one, surface term, survives, and it is, in general,

different from zero. But, the expression δS is an topological invariant, so it vanishes if the

map from the world-sheet to D-dimensional space-time is topologically trivial. Essentially,

infinitesimal field strength H does not affect the vanishing of the surface term.

There is one more explanation of vanishing of this surface term. It is more technical

and adjusted to the approximation we used in this article which essence is the explanation

in paragraph above. Because we work in the approximation up to the linear terms in H, xµ

satisfies equation of motion for constant Gµν and Bµν , ∂+∂−x
µ = 0, which solution is well

known in literature. If the winding number is equal to zero, it holds xµ(2π + σ) = xµ(σ),

and since the configuration in the initial τi and final moment τf is fixed, the surface term

vanishes.

So, in the weakly curved background case (H-flux torus background is such like that),

z direction is an isometry one. Localization of the shift symmetry of the action (2.13) along

z starts with introducing the covariant derivative

∂±z −→ D±z = ∂±z + v± , (3.3)

where v± is a gauge field. In order to make gauge fields unphysical ones, we introduce term

with Lagrange multiplier

Sadd =
κ

2

∫
Σ
d2ξy3(∂+v− − ∂−v+) . (3.4)

These two steps are the part of the standard Buscher procedure. Because of coordinate

dependent background field Bµν , generalized T-dualization procedure has an additional

step, introducing of an invariant coordinate

zinv =

∫
P
dξαDαz =

∫
P
dξ+D+z +

∫
P
dξ−D−z = z(ξ)− z(ξ0) + ∆V , (3.5)
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where

∆V =

∫
P
dξαvα =

∫
P

(dξ+v+ + dξ−v−) . (3.6)

The form of the action is now

S̄ = κ

∫
Σ
d2ξ

[
Hzinv(∂+x∂−y − ∂+y∂−x) +

1

2
(∂+x∂−x+ ∂+y∂−y +D+zD−z)

+
1

2
y3(∂+v− − ∂−v+)

]
. (3.7)

Fixing the gauge, z(ξ) = z(ξ0), we get gauged fixed action in the form

Sfix = κ

∫
Σ
d2ξ

[
H∆V (∂+x∂−y − ∂+y∂−x) +

1

2
(∂+x∂−x+ ∂+y∂−y + v+v−)

+
1

2
y3(∂+v− − ∂−v+)

]
. (3.8)

The equation of motion for Lagrange multiplier y3 obtained from above action (3.8)

produces

∂+v− − ∂−v+ = 0 =⇒ v± = ∂±z , (3.9)

which drives us back to the initial action (2.13). On the other side, if we found equations

of motion for gauge fields v±, we get

v± = ±∂±y3 − 2β∓ , (3.10)

where β± functions are defined as

β± = ∓1

2
H(x∂∓y − y∂∓x) . (3.11)

The β± functions stem from the variation of the term containing ∆V . The derivation of

beta functions β± is based on the relation ∂±∆V = v±. In the derivation of the beta

functions there is one nontrivial technical point and that is vanishing of the surface term

after one partial integration. That surface term is of the same form as in eq. (3.2), so

the same reasons for surface term vanishing hold here. Mathematical details regarding

derivation of β± functions can be found in refs. [28–31, 44].

Inserting the relations (3.10) into the gauge fixed action, keeping linear terms in H,

we obtain the T-dual action

zS = κ

∫
Σ
d2ξ∂+zX

µ
zΠ+µν∂−zX

ν , (3.12)

where

zX
µ =

 x

y

y3

 , zΠ+µν = zBµν +
1

2
zGµν , (3.13)

zBµν =

 0 H∆V 0

−H∆V 0 0

0 0 0

 , zGµν =

 1 0 0

0 1 0

0 0 1

 . (3.14)

Let us note that presence of ∆V , defined as line integral, represents the source of

nonlocality of the T-dual theory.
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3.1.2 T-dual transformation law

Combining the equations of motion for Lagrange multiplier (3.9) and for gauge fields (3.10),

we obtain T-dual transformation laws

∂±z ∼= ±∂±y3 ∓H(x∂±y − y∂±x) , (3.15)

where ∼= is used here to mark T-dual relation. Momentum of the initial theory (2.13)

canonically conjugated to the coordinate z is of the form

πz =
∂L
∂ż

= κż , (3.16)

where L is a Lagrangian density defined as S =
∫

Σ d
2ξL. Calculating ż using T-dual

transformation law (3.15), we get the T-dual transformation law in canonical form

y′3
∼=

1

κ
πz +H(xy′ − yx′) , (3.17)

which is of the same form as in the xyz case.

In all further expressions we will keep the symbol ∆V , but we must have in mind

that we used equations of motion for Lagrange multipliers (3.9) at the end of T-dulization

procedure along z coordinate, so, having in mind (3.6) and (3.15), we get

∆V = ∆z ∼=
∫
dξ+∂+y3 −

∫
dξ−∂−y3 ≡ ỹ3 . (3.18)

The variable ∆V is multiplied by infinitesimal field strength H, so, in the above expression

we used ∂±z ∼= ±∂±y3, as a consequence of diluted flux approximation.

3.1.3 (Non)commutativity and (non)associativity

The initial theory is geometric one and its variables satisfy the standard Poisson algebra

{xµ(σ), xν(σ̄)} = {πµ(σ), πν(σ̄)} = 0 , {xµ, πν(σ̄)} = δµνδ(σ − σ̄) , (3.19)

where xµ are the coordinates of the initial theory, while πµ are their canonically conju-

gated momenta. Using expression (3.17) and standard Poisson algebra (3.19), we obtain

that coordinates of the theory obtained after one T-dualization, zX
µ, are commutative.

Consequently, Jacobiator is equal to zero, which means that theory is associative.

Summarizing this first step of T-dualization, obtained theory is commutative and as-

sociative nonlocal R-flux theory. Comparing with the results of the ref. [44] after first

T-dualization, qualitatively we obtain the same result, but with the essential difference

that here obtained theory is nonlocal R-flux theory unlike that in [44] which is geometrical

one, locally and globally well defined.

3.2 Step 2 — T-dualization along y direction

Our starting point is the action given in eq. (3.12). The background fields are independent

of y, so, we apply standard Buscher procedure. This means that, unlike the previous

case, we perform just first two steps in T-dualization procedure and skip the third one —

introducing of invariant coordinate. The T-dualization procedure is already presented, so,

we will skip explaining procedure steps further.
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3.2.1 T-dualization procedure

The gauge fixed action is of the form

Sfix = κ

∫
Σ
d2ξ

[
1

2
(∂+x∂−x+ v+v− + ∂+y3∂−y3) +H∆V (v−∂+x− v+∂−x)

]
+
κ

2

∫
Σ
d2ξy2(∂+v− − ∂−v+) . (3.20)

Varying with respect to the Lagrange multiplier y2 we get

v± = ∂±y , (3.21)

while the equations of motion for gauge fields are

v± = ±∂±y2 ∓ 2H∆V ∂±x . (3.22)

Inserting the expression for gauge fields (3.22) into gauge fixed action (3.20), we obtain the

T-dual action

zyS = κ

∫
Σ
d2ξ ∂+ zyX

µ
zyΠ+µν ∂− zyX

ν , (3.23)

where

zyX
µ =

 x

y2

y3

 , zyΠ+µν = zyBµν +
1

2
zyGµν , (3.24)

zyBµν = 0 , zyGµν =

 1 −2H∆V 0

−2H∆V 1 0

0 0 1

 . (3.25)

Let us note that after two T-dualizations in the xyz case in [44] we also obtained that

T-dual Kalb-Ramond field is zero.

3.2.2 T-dual transformation law

Combining equations of motion (3.21) and (3.22) we get the corresponding transforma-

tion law

∂±y ∼= ±∂±y2 ∓ 2H∆V ∂±x . (3.26)

Let us now prescribe the transformation law in canonical form. The momentum canonically

conjugated to the initial coordinate y is obtained by variation of the initial action (2.13)

with respect to the ẏ and it is of the form

πy = κ(ẏ + 2Hzx′) , (3.27)

while from transformation law (3.26) we have

ẏ ∼= y′2 − 2H∆V x′ . (3.28)

Combining last two equations and using the fact that, in the approximation linear in H,

∆V and z are T-dual to each other, we get

y′2
∼=

1

κ
πy . (3.29)

As we see the transformation law is the same as in the xyz case.
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3.2.3 (Non)commutativity and (non)associativity

In this paragraph we will calculate Poisson brackets of the coordinates zyX
µ using trans-

formation laws in canonical form given by eqs. (3.17) and (3.29).

With the help of the standard Poisson algebra (3.19) and instructions from appendix

B, it is easy to see that

{x(σ), x(σ̄)} = {y2(σ), y2(σ̄)} = {y3(σ), y3(σ̄)} = {x(σ), y2(σ̄)} = {x(σ), y3(σ̄)} = 0 .

(3.30)

The only non-zero Poisson bracket is

{y′2(σ), y′3(σ̄)} ∼=
H

κ

[
2x′(σ)δ(σ − σ̄) + x(σ)δ′(σ − σ̄)

]
, (3.31)

where δ′ ≡ ∂σδ(σ − σ̄). This result is obtained by straightforward calculation using T-

dual transformation laws, (3.17) and (3.29), and standard Poisson algebra (3.19). The

relation (3.31) is of the form (B.1), where A′(σ) = y′2(σ), B′(σ̄) = y′3(σ̄), U ′(σ) = H
κ 2x′(σ)

and V (σ) = H
κ x(σ). With these substitutions in mind, we have that final expression is of

the form (B.8)

{y2(σ), y3(σ̄)} ∼= −
H

κ
[2x(σ)− x(σ̄)] θ(σ − σ̄) . (3.32)

For σ → σ + 2π and σ̄ → σ we have

{y2(σ + 2π), y3(σ)} ∼= −
H

κ
[x(σ) + 4πNx] , (3.33)

because θ(2π) = 1 (B.6), while Nx is winding number for x coordinate

x(σ + 2π)− x(σ) = 2πNx . (3.34)

As we can see the noncommutativity relation (3.32) is of κ-Minkowski type. It is straight-

forward to see that

{x(σ1), {y2(σ2), y3(σ3)}}+ {y2(σ2), {y3(σ3), x(σ1)}}+ {y3(σ3), {x(σ1), y2(σ2)}} ∼= 0 .

(3.35)

Because the Jacobiator is zero, we conclude that this R-flux theory is noncommutative

and associative one.

3.3 Step 3 — T-dualization along x direction

In this subsection we will finish T-dualization procedure not repeating the mathematical

details, but giving just the important equations and results.

The gauge fixed action is given by the following equation

Sfix = κ

∫
Σ
d2ξ

[
1

2
(v+v− + ∂+y2∂−y2 + ∂+y3∂−y3)−H∆V (v+∂−y2 + ∂+y2 v−)

]
+
κ

2

∫
Σ
d2ξy1(∂+v− − ∂−v+) . (3.36)
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The equations of motion for Lagrange multiplier produces

v± = ∂±x , (3.37)

while the equations of motion for gauge fields v± give

v± = ±∂±y1 + 2H∆V ∂±y2 . (3.38)

Inserting expressions for v± into gauge fixed action we get the T-dual action

zyxS = κ

∫
Σ
d2ξ∂+ zyxX

µ
zyxΠ+µν zyx X

ν , (3.39)

where

zyxX
µ =

 y1

y2

y3

 , zyxΠ+µν = zyxBµν +
1

2
zyxGµν (3.40)

zyxBµν =

 0 −H∆V 0

H∆V 0 0

0 0 0

 , zyxGµν =

 1 0 0

0 1 0

0 0 1

 . (3.41)

Combining the equations of motion (3.37) and (3.38) we obtain the T-dual transfor-

mation law

∂±x ∼= ±∂±y1 + 2H∆V ∂±y2 . (3.42)

It directly follows that

ẋ ∼= y′1 + 2H∆V ẏ2 . (3.43)

From the initial action (2.13) it is obvious that momentum canonically conjugated to x is

of the form

πx = κẋ− 2κHzy′ . (3.44)

The T-dual transformation law for y (3.26), in the approximation linear in H, produces

that y′ ∼= ẏ2. Taking into account the relation (3.43), we get the canonical form of the

T-dual transformation law

y′1
∼=

1

κ
πx . (3.45)

As we see the full set of T-dual transformation laws, (3.17), (3.29) and (3.45), are the same

as in the case where T-dualization was along xyz line [44] up to H → −H. The full T-

dualized theory is of the same form as in [44] with the expressions for noncommutativity

{y1(σ), y3(σ̄)} ∼=
H

κ
[2y(σ)− y(σ̄)] θ(σ − σ̄) , (3.46)

{y2(σ), y3(σ̄)} ∼= −
H

κ
[2x(σ)− x(σ̄)] θ(σ − σ̄) , (3.47)

and nonassociativity

{y1(σ1), y2(σ2), y3(σ3)} ≡
{y1(σ1), {y2(σ2), y3(σ3)}}+ {y2(σ2), {y3(σ3), y1(σ1)}}+ {y3(σ3), {y1(σ1), y2(σ2)}} ∼=
2H

κ2
[θ(σ1 − σ2)θ(σ2 − σ3) + θ(σ2 − σ1)θ(σ1 − σ3) + θ(σ1 − σ3)θ(σ3 − σ2)] , (3.48)

which can be obtained from the corresponding ones in xyz case [44] by replacing H → −H.
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4 Quantum aspects of T-dualization in the weakly curved background

In proving isometry and computing the β± functions we assumed the trivial topology and

the surface term occurring there vanishes. Now we want to discuss some quantum as-

pects of the considered problems in nontrivial topologies. We will consider the action for

bosonic string in the weakly curved background — constant metric and Kalb-Ramond field

depending on all coordinates and with infinitesimal field strength. Torus with infinitesimal

H-flux is special case of this model.

On th classical level there are a few problems in the theory. In order to perform the

generalized T-dualization procedure the invariant coordinate xµinv is introduced. But it

is multivalued and the proof of equivalence of gauged and initial theories needs the part

considering global characteristics. Moreover, in the quantum theory at higher genus, the

holonomies of the world-sheet gauge fields complicate the situation a little bit. Fortunately,

these problems can be resolved in Abelian case in the quantum theory [50–52].

First, we make Wick rotation τ → −iτ , which makes the term which contains metric

tensor Gµν gets multiplier i, while the terms which contain Kalb-Ramond field Bµν and

Lagrange multiplier yµ stay unchanged. Then the partition function is of the form

Z =
∞∑
g=0

∫
DyDv e−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v+ iκ

2

∫
Σ vdy . (4.1)

We use differential forms and omit the space-time indices to simplify writing of equations.

The Hodge duality operator is denoted by star. The index g denotes the genus of manifold.

The first step in the calculation process is separation the one form dy into the exact

part dye (ye is single valued) and the harmonic part yh (dyh = 0 = d†yh)

dy = dye + yh. (4.2)

For the closed forms the co-exact term d†yco in the Hodge decomposition is missing.

The path integral (4.1) goes over all degrees of freedom including local degrees of

freedom as well as the sum over different topologies. Consequently, according to the (4.2),

we substitute Dy with the path integral over ye and the sum over all possible topologically

nontrivial states contained in yh (marked by Hy)

Dy → Dye
∑
Hy

. (4.3)

The integration over ye induces vanishing of the field strength

Z =

∫
Dv δ(dv) e−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v

∑
Hy

e
iκ
2

∫
Σ vyh . (4.4)

The 1-form v can be expressed as sum of exact, co-exact and the harmonic parts

v = dx+ d†vce + vh, (4.5)
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which means that

Dv → DxDd†vce dHv. (4.6)

The functional integration over harmonic part vh drives to the ordinary integration over

topologically nontrivial periods (marked by symbol Hv). After integration over d†vce we get

Z =

∫
DxdHv e

−κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v

∑
Hy

e
iκ
2

∫
Σ vyh . (4.7)

The last term in the exponent is responsible for nontrivial holonomies. Eliminating

vce part, the 1-form v becomes closed and the Riemann bilinear relation becomes usable∫
Σ
vyh =

g∑
i=1

[ ∮
ai

v

∮
bi

yh −
∮
ai

yh

∮
bi

v
]
. (4.8)

The symbols ai, bi (i = 1, 2, . . . , g) represent the canonical homology basis for the world-

sheet. Because of the periodicity of the Lagrange multiplier y, its periods are just the

winding numbers around cycles ai and bi

Nai =

∮
ai

yh, Nbi =

∮
bi

yh . (4.9)

Denoting the periods with

Ai =

∮
ai

v, Bi =

∮
bi

v , (4.10)

we get ∫
Σ
vyh =

g∑
i=1

(NbiAi −NaiBi). (4.11)

Now the partition function (4.7) gets the form

Z =

∫
Dx dAidBie−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v

∑
Nai ,Nbi∈Z

e
iκ
2

∑g
i=1(NbiAi−NaiBi). (4.12)

The periodic delta function is defined as δ(x) = 1
2π

∑
n∈Z e

inx, which produces

Z =

∫
Dx dAidBiδ

(κ
2
Ai

)
δ
(κ

2
Bi

)
e−

κ
2

∫
Σ v G

?v+iκ
∫
Σ vB[V ]v . (4.13)

It is useful to examine the path dependence of the variable V µ, which form is now

V µ(ξ) = xµ(ξ)− xµ(ξ0) +

∫
P
vµh . (4.14)

Let us consider two paths, P1 and P2, with the same initial ξα0 and the final points ξα.

Now we will subtract from the value of V µ along P1 the value along path P2 and obtain

the integral over closed curve P1P
−1
2 of the harmonic form

V µ[P1]− V µ[P2] =

∮
P1P

−1
2

vµh . (4.15)
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Establishing the homology between the closed curve P1P
−1
2 and curve

∑
i

[
niai + mibi

]
,

(ni,mi ∈ Z) we get finally

V µ[P1] = V µ[P2] +
∑
i

(niA
µ
i +miB

µ
i ). (4.16)

The variable V µ(ξ) in classical theory is path dependent if holonomies are nontrivial.

Integrating eq. (4.13) over Ai and Bi implies that periods Ai and Bi are zero. Conse-

quently

v = dx. (4.17)

The variable V µ becomes single valued, and the initial theory is restored

Z =

∫
Dxe−

κ
2

∫
Σ dxG

?dx+iκ
∫
Σ dxB[x]dx =

∫
Dxe−κ

∫
Σ d

2ξ∂xΠ+[x]∂̄x . (4.18)

Consequently, starting with partition function of the gauged fixed action of bosonic

string in the weakly curved background, within path integral formalism and in the presence

of nontrivial topologies, we came to the partition function of the initial theory. That means

that introducing coordinate dependent Kalb-Ramond field is consistent with path integral

quantization process.

5 Conclusion

In this article we studied the 3D closed bosonic string propagating in the geometry known

as torus with H-flux — constant metric and Kalb-Ramond field with just one nonzero

component, Bxy = −Byx = Hz. The choice of background fields is consistent with the

consistency conditions if we work in the diluted flux approximation which assumes that

in all calculations we keep just the constant terms and those linear in the infinitesimal

field strength H. Our goal was to study the T-dualization line which goes in the oppo-

site direction from the standard one. First, we T-dualize z direction, then y and at the

end along x direction — so-called zyx T-dualization line. We analyzed in every step the

(non)commutativity and (non)associativity of the obtained theory and made comparisons

with the case of xyz T-dualization line considered in [33, 44].

The common fact for all three theories obtained in the process of T-dualization step by

step is that all three ones are nonlocal R-flux theories. The nonlocality comes as a result

of the first step in T-dualization procedure, T-dualization along z direction. Generalized

T-dualization procedure has one additional step with respect to the standard Buscher

procedure and that is introduction of invariant coordinate. In the process of T-dualization

invariant coordinate turns into variable ∆V which is defined as line integral. Consequently,

this means that obtained theory is nonlocal. Further T-dualizations does not affect ∆V

and, all three theories are nonlocal ones. As we know, in the case of xyz T-dualization

line [44], we obtained three different theories in geometrical sense — twisted torus, Q-flux

theory (which is local) and nonlocal R-flux theory.

The dualization along z direction produces nonlocal R-flux theory unlike the xyz

case [33, 44] where the theory obtained after first T-dualization is locally and globally

well defined. Because initial theory is geometrical one, its variables satisfy standard Pois-
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son algebra (3.19). Using (3.19) and T-dual transformation law written in the canonical

form (3.17), we showed that theory obtained after T-dualization along z coordinate (using

generalized T-dualization procedure) is commutative and, consequently, associative one

as in [44].

The second step in T-dualization is T-dualization along y direction. Using standard

Buscher procedure, we obtained the form of the T-dual theory and the corresponding T-

dual transformation law, which is rewritten in the canonical form (3.29) in terms of the

coordinates and momenta of the initial theory. Using standard Poisson algebra (3.19) and

T-dual transformation laws in canonical form, (3.17) and (3.29), we easily proved that

theory after two T-dualizations is noncommutative, but it is still associative one. In this

article we used trivial winding condition (3.34) and showed that T-dual coordinates y2(σ)

and y3(σ̄) are commutative for equal arguments, σ = σ̄, but they are noncommutative

if σ − σ̄ = 2π. The result is qualitatively similar to the result of [33], where after two

T-dualizations the obtained theory is noncommutative one. But, the difference is in the

winding condition which is nontrivial in [33], mixing different coordinates. The different

winding condition induces the noncommutativity for σ = σ̄ (for more details see [33]).

On the other hand in the analysis presented in [44] (xyz T-dualization line) the theory

obtained after two T-dualizations is commutative under trivial winding condition.

The final step in T-dualization procedure is T-dualization along x direction. The

theory after full T-dualization is the same as in xyz case [44] with the noncommutativity

and nonassociativity parameters which can be obtained from those in xyz case [44] adding

“−” sign. This is a consequence of the fact that the full set of T-dual transformation

laws is the same as in [44] up to the replacing H → −H. This difference up to the “−”

sign stems from the initial actions. In this article we start from (2.13), while in [44] the

starting action for z T-dualization is Q-flux action, formally the same as (2.13) up to the

replacing H → −H.

Finishing the discussion of the results obtained in this paper it is interesting to make

comparison with some similar efforts. We studied the abelian isometries using both stan-

dard and generalized T-duality procedure, while in the paper [53] nonabelian isometries

using standard Buscher procedure are considered. The authors of [53] showed that spaces

with isometry maps to the nonisometry spaces, while in this paper there is isometry in

every T- dualization step. One of their conclusions that T-dual transformations are more

than continuous isometry can be added to the concluding remarks of this paper. In the

ref. [43] generalized T-duality and nongeometric background are considered, but using low

energy effective action, unlike here, where we used sigma model action. The paper [54]

deals with T-dualizations along nonisometry directions like in [31], using extension of gauge

symmetry, while the authors of [31] use the generalized T-dualization procedure introduc-

ing invariant coordinates (in [54] they call them “covariant” coordinates). In this paper we

use this generalized T-dualization procedure but all directions considered here are isome-

try ones. It is useful to mention that in the paper [55] bosonic string in the presence of

the weakly curved backgrounds is considered using double space formalism as well as the

influence of the order of T-dualizations. The double space formalism gives the result which

is in accordance with the result of the current paper.
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Consequently, we conclude that in the case of the full T-dualization the form of the

T-dual theory do not depend on the order of T-dualization, while parameters of noncom-

mutativity and nonassociativity change sign.

A Light-cone coordinates

In the paper we often use light-cone coordinates defined as

ξ± =
1

2
(τ ± σ) . (A.1)

The corresponding partial derivatives are

∂± ≡
∂

∂ξ±
= ∂τ ± ∂σ . (A.2)

Two dimensional Levi-Civita εαβ is chosen in (τ, σ) basis as ετσ = −1. Consequently,

in the light-cone basis the form of tensor is

εαβlc =

(
0 1

2

−1
2 0

)
. (A.3)

The flat world-sheet metric is of the form in (τ, σ) and light-cone basis, respectively

ηαβ =

(
1 0

0 −1

)
, ηlcαβ =

(
1
2 0

0 1
2

)
. (A.4)

Let us stress that in whole article we use standard notation for τ and σ derivatives —

Ȧ ≡ ∂τA and A′ ≡ ∂σA, where A is an arbitrary variable.

B Two types of Poisson brackets used in the paper

In this paper, we have seen that T-dual transformation laws connect derivatives of T-dual

coordinates with coordinates and momenta of initial theory. While initial theory satisfies

standard Poisson brackets, in order to find Poisson brackets for T-dual theory, we first need

to find Poisson brackets between σ derivatives of T-dual coordinates. This type of Poisson

bracket will, in general case, be some function of initial coordinates, Dirac delta functions

and their derivatives with respect to σ. Having this in mind, general case for our Poisson

brackets will have following form

{A′(σ), B′(σ̄)} = U ′(σ)δ(σ − σ̄) + V (σ)δ′(σ − σ̄) , (B.1)

where δ′(σ− σ̄) ≡ ∂σδ(σ− σ̄). For terms A′(σ), U ′(σ) and B′(σ̄), symbol ′ stands for partial

derivative with respect to σ and σ̄, respectively. If we want to calculate the Poisson bracket

{A(σ), B(σ̄)} ,

first we have to calculate the following one

{∆A(σ, σ0),∆B(σ̄, σ̄0)} , (B.2)
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where

∆A(σ, σ0) =

∫ σ

σ0

dxA′(x) = A(σ)−A(σ0) , ∆B(σ̄, σ̄0) =

∫ σ̄

σ̄0

dxB′(x) = B(σ̄)−B(σ̄0) .

(B.3)

Substituting the expressions (B.3) into (B.2), we have

{∆A(σ, σ0),∆B(σ̄, σ̄0)} =

∫ σ

σ0

dx

∫ σ̄

σ̄0

dy
[
U ′(x)δ(x− y) + V (x)δ′(x− y)

]
. (B.4)

After integration over y we get

{∆A(σ, σ0),∆B(σ̄, σ̄0)} =

=

∫ σ

σ0

dx{U ′(x) [θ(x− σ̄0)− θ(x− σ̄)] + V (x) [δ(x− σ̄0)− δ(x− σ̄)]}, (B.5)

where θ(x) is defined as

θ(x) =

∫ x

0
dηδ(η) =

1

2π

x+ 2
∑
n≥1

1

n
sin(nx)

 =


0 if x = 0

1/2 if 0 < x < 2π ,

1 if x = 2π

(B.6)

where δ(x) = 1
2π

∑
n∈Z e

inx. Finally, integrating over x, we obtain

{∆A(σ,σ0),∆B(σ̄, σ̄0)}=U(σ)[θ(σ−σ̄0)−θ(σ−σ̄)]−U(σ0)[θ(σ0−σ̄0)−θ(σ0−σ̄)]

−U(σ̄0)[θ(σ−σ̄0)−θ(σ0−σ̄0)]+U(σ̄)[θ(σ−σ̄)−θ(σ0−σ̄)]

+V (σ̄0)[θ(σ−σ̄0)−θ(σ0−σ̄0]−V (σ̄)[θ(σ−σ̄)−θ(σ0−σ̄)]. (B.7)

From the last expression, using (B.3), we extract the searched Poisson bracket

{A(σ), B(σ̄)} = −[U(σ)− U(σ̄) + V (σ̄)]θ(σ − σ̄) . (B.8)

In order to calculate Jacobiator we have to find Poisson brackets of type {y(σ), x(σ̄)},
where y(σ) is coordinate T-dual to initial one x(σ). Having this in mind, we start with the

following Poisson bracket

{∆y(σ, σ0), x(σ̄)} =

{∫ σ

σ0

dηy′(η), x(σ̄)

}
, (B.9)

and using T-dual transformation law in canonical form

π ∼= κy′ , (B.10)

we get

{∆y(σ, σ0), x(σ̄)} ∼=
1

κ

{∫ σ

σ0

dηπ(η), x(σ̄)

}
, (B.11)

where π(σ) is momentum canonically conjugated to the coordinate x(σ). Initial theory is

geometric one which variables satisfy standard Poisson algebra, so, the final result is of

the form

{∆y(σ, σ0), x(σ̄)} ∼= −
1

κ
[θ(σ − σ̄)− θ(σ0 − σ̄)] =⇒ {y(σ), x(σ̄)} ∼= −

1

κ
θ(σ − σ̄) .

(B.12)
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gauge theories from L∞ algebras, JHEP 05 (2018) 097 [arXiv:1803.00732] [INSPIRE].

[26] T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194

(1987) 59 [INSPIRE].

[27] T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys.

Lett. B 201 (1988) 466 [INSPIRE].
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[34] D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for

non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].

[35] D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in
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