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1 Introduction

Scalar field theories in (1+1) dimensions with double-vacuum potentials are known to sup-

port topological solitons, called kinks or antikinks, depending on the value of the topological

charge. Here the topological charge is proportional to the difference of the asymptotic val-

ues of the scalar field at plus and minus infinity. Further, static solitons are zero-pressure

configurations and satisfy the so-called Bogomolny equation [1] which, in contrast to the

full Euler-Lagrange (EL) equation, is a first order equation. This guarantees that the

pertinent energy bound is saturated, leading to the topological stability of the solitons.

A model which possesses these properties is usually referred to as a Bogomol’nyi-Prasad-

Sommerfield (BPS) theory.
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In fact, it has been shown recently that all scalar soliton models in (1+1) dimensions

with at least two vacua enjoy the BPS property. This comprises both the inclusion of an

arbitrary number of scalar fields and any dependence of the energy density on the first spa-

tial derivative [2] as well as on higher derivatives [3–6]. In other words, the BPS property in

(1+1) dimensions is a completely generic feature which does not imply any specific require-

ments on translationally invariant models. This differs completely from higher-dimensional

generalizations, where only very particular models enjoy the BPS property — for example

the O(3) σ-model and the Abelian Higgs model in (2+1) dimensions, the t’Hooft-Polyakov

monopole (see [7] for a review) and the BPS Skyrme model in (3+1) dimensions [8], as well

as the self-dual sector of the SU(2) Yang-Mills theory in (4+0) dimensions. In some sense,

this drastic difference limits the application of (1+1) dimensional theories for the mod-

eling of dynamical processes of higher dimensional solitons. In addition, the BPS sector

in (1+1) dimensions contains only one-particle states, i.e., a kink or antikink separately.

For models supporting compactons, i.e., solitons which differ from the vacuum only on a

finite segment, one may easily construct a multi-particle state by a simple collection of

non-overlapping compactons. However, by construction, all constituents do not interact

with each other and can in fact be treated independently. In higher dimensions, the BPS

sector is significantly more complicated and usually allows for multi-soliton configurations.

One way to destroy the BPS property is to break the translational invariance by

adding an impurity located in space [3, 9, 10]. However, quite interestingly, among the

infinitely many couplings to defects (see for example [9, 10]), there is a specific way of

introducing an impurity where one-half of the BPS-ness is preserved [3]. This means that

only one topological sector is a BPS sector saturating the corresponding topological bound.

Hence, we have a rather unique chance to investigate, within the same model, both BPS

and non-BPS solitons, which can allow us to analyze the impact of the BPS property on

the dynamics of solitons. Such a BPS preserving coupling of defects exists for any 1+1

dimensional scalar soliton model without any restriction on the potential. Also the specific

spatial distribution of the impurity is arbitrary, except for the finiteness of the L2 norm,

which physically means that the impurity is sufficiently well localized. This large freedom

may give the chance for an experimental realization of this class of models, especially if

one extends the impurity to a periodical lattice of BPS preserving impurities. This can

be compared with the integrability preserving defect [11, 12]. It is not surprising that

the integrability puts much more constraints on the defect, as there are infinitely many

currents which must be conserved. Therefore, it strongly restricts its form.

To study properties of solitons in a model with the BPS preserving defect, we choose

the φ4 theory, which together with the sine-Gordon model, is perhaps one of the most

studied examples of solitonic field theories in (1+1) dimensions. It is a prototypical field

theory with solitons (kinks), which found applications in various physical systems from

condensed matter [13] and biophysics to cosmology. It has been widely studied, especially

in the context of time dependent solutions describing a collision of kinks, annihilation

and creation processes as well as an interaction with radiation. Unlike the sine-Gordon

model, where the collisions between defects are perfectly elastic, the φ4 model reveals

a very interesting resonant structure. The presence of this structure is related to the
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existence of the internal mode of the kink which can store the energy and give it back to

the translational degrees of freedom in a resonant way [14–16]. Later, the effect with some

improvement was discussed in [17, 18] where a typographic error was corrected and the

role of the shape mode was questioned. Similar structures were later observed in many

other models, including the nonlinear Schrödinger equation [19, 20], double sine-Gordone

model [21], multicomponent models [22–26] or collisions with a dynamical boundary [27] or

impurity [28]. A different mechanism was found in the case of non-symmetric kinks when

the bound modes were formed between the kinks [29]. Recently, it was shown that also

quasi-normal modes can be responsible for the creation of such a structure [30].

The main aim of the present paper is to better understand the role of the BPS property

in the dynamics of solitonic models. Specifically, we begin with a systematic description of

the static spectrum of the model in the topologically trivial sector (lump) as well as in the

topologically nontrivial sectors (Q = ±1) where kink and antikink exist. As only one of the

solitons is a BPS state, we carefully examine their asymmetry as a function of a parameter

which measures the strength of the impurity. Next, we analyze spectral properties of the

static solutions which means the linear perturbation theory. Finally, we consider scattering

processes between these objects.

However, as one may choose the form of the impurity arbitrarily, we also want to

investigate which properties are generic, i.e., independent on a particular choice of the

defect. Here, the main finding is that a moduli space for the topologically nontrivial BPS

soliton exists. As a consequence, there is a generalized translation symmetry which is

reflected by the existence of a zero mode. Furthermore, we want to disentangle dynamical

features which are inherited from the original pure φ4 model from those which are due to

the (specific) BPS preserving impurity.

The last motivation comes from the fact that, in many aspects, our model is very

similar to the Abelian Higgs model with the (one-half) BPS preserving defect introduced

in [31]. In fact, the coupling to the impurity is given by exactly the same two terms. In

the first one, the impurity couples to a topological quantity (the topological charge density

and the magnetic field, respectively) while in the second one it multiplies the square root

of the potential. As numerical studies in (1+1) dimensions are much simpler, our paper

may also be viewed as a guideline for numerics for this vortex model [32, 33]. In addition,

we prove the existence of the zero mode (moduli space), which has not yet been completely

achieved for the vortex model.

2 The BPS φ4 impurity model

2.1 The BPS soliton-impurity models

Here we briefly summarize some recent findings [3] on BPS soliton-impurity models. Let

us begin with a general Lagrange density

L =
1

2
φ2
t −

1

2
φ2
x − U − 2σ

√
U −

√
2σφx − σ2 (2.1)

where φ(t, x) is a real scalar field in one spatial dimension, σ(x) is a space-located impurity

and U(φ) is a potential with at least two isolated global minima φv+ > φv−. For static
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configurations the energy reads

E =

∫ ∞
−∞

dx

[
1

2
φ2
x + U(φ) + 2σ

√
U +

√
2σφx

]
+

∫ ∞
−∞

dxσ2 (2.2)

where the last term, obviously, does not contribute to the field equations but sets the zero

of the energy scale. It leads to the following Euler-Lagrange equation

φxx − Uφ − σ
Uφ√
U

+
√

2σx = 0 (2.3)

where Uφ denotes the derivative w.r.t. the target space variable. Now, using the standard

completing of the square trick, we can compute a lower bound on the energy

E =

∫ ∞
−∞

dx

(
1√
2
φx + (σ +

√
U)

)2

−
√

2

∫ ∞
−∞

dxφx
√
U ≥ −

√
2

∫ φ(+∞)

φ(−∞)
dφ
√
U (2.4)

= −Q
√

2

∫ φv+

φv−

dφ
√
U (2.5)

which is saturated by solutions of the following first order equation (the so-called Bogo-

molny equation)
1√
2
φx + σ +

√
U = 0. (2.6)

This is equivalent to the zero pressure condition T 11 = 0. Here the topological charge

Q =
φ(+∞)− φ(−∞)

φv+ − φv−
(2.7)

is +1 for the kink and −1 for the antikink. Obviously, the topological charge is

just a spatial integral of the temporal component of the topological current which is

jµ = (φv+ − φv−)−1εµν∂νφ. Note that, contrary to the usual solitonic models, there is a

fixed sign in front of the potential term in the Bogomolny equation. Therefore, only the

antikink (or the kink if we change some signs in the model) is a BPS solution in such an

impurity extended system, while the kink is a genuine non-BPS solution which generally

does not saturate the bound. Furthermore, the energy bound suggests an asymmetry in the

energies of kink and antikink. We also remark that, although the energy can be negative,

it is bounded from below in each topological sector. Hence, the model is well defined and

has a true vacuum.

Let us remark that in the case of the BPS preserving impurity model a natural object is

the prepotential W (also called superpotential), where U = W 2(φ). The energy then reads

E =

∫ ∞
−∞

dx

[
1

2
φ2
x +W 2(φ) + 2σW +

√
2σφx

]
+

∫ ∞
−∞

dxσ2. (2.8)

Although the BPS soliton-impurity model seems to contain quite nontrivial couplings

between the scalar field and the impurity via a potential as well as a derivative term, it

may be written in a sort of effective potential way. Indeed, the term which is linear in φx
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can be replaced, up to a total derivative, by a new potential-like term. Then we get an

equivalent formulation of the model

E =

∫ ∞
−∞

dx

[
1

2
φ2
x + U(φ) + 2σ

√
U −

√
2σxφ

]
+

∫ ∞
−∞

dxσ2 (2.9)

or simply

E =

∫ ∞
−∞

dx

[
1

2
φ2
x + Ueff(φ, σ)

]
(2.10)

where the effective potential is

Ueff(φ, σ) = U(φ) + 2σ
√
U −

√
2σxφ+ σ2. (2.11)

Observe that, since the effective potential explicitly depends on the spatial coordinates,

we cannot apply the former trick to derive the pertinent Bogomolny equation. We believe

that this formulation might open a way for an experimental realization of this soliton-

impurity model.

2.2 Kink-form preserving impurity

It is an important consequence of our construction that the particular space distribution of

the impurity is completely arbitrary provided it is L2 integrable. Hence, a specific form can

be dictated by a physical system we would like to model. However, there exists a special

class of impurities which are selected by a mathematical property of the model, i.e., the

original kink (or antikink) profile remains unchanged. This means that besides the nice and

useful BPS property of the antikink, which allows for a reduction of the second order field

equation to the first order Bogomolny equation, we get an exact solution of the non-BPS

kink, which, in general, would require to solve the full static EL equation. Suppose that

the scalar field in the model without impurity solves the equation

φxx = Uφ ⇒ φx = ±
√

2U . (2.12)

The solution remains unchanged in the BPS soliton-impurity model if the impurity satisfies

the following equation

− σUφ +
√

2Uσx = 0 , (2.13)

which, using the original no-impurity equation (2.12), can be rewritten as

− σφxx ± φxσx = 0 . (2.14)

In the first case with a minus sign it reduces to

− (σφx)′ = 0 ⇒ σ =
α

φx
. (2.15)

In the second case we can divide the equation by σ2 and obtain

− σφxx − φxσx
σ2

= −
(
φx
σ

)′
= 0 ⇒ σ = αφx . (2.16)

As we will see later, the parameter α controls the qualitative type of kink-impurity inter-

action (repulsive or attractive) in the non-BPS sector as well as its strength.
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2.3 An exact example

Let us now consider the soliton-impurity model in the case of the φ4 potential

U =
1

2
(1− φ2)2 (2.17)

where we suppressed the coupling constant. If the impurity is neglected we find the usual

kink K0 and antikink K̄0 solutions

φ = ± tanhx (2.18)

which saturate the energy bound E = 4/3 and have Q = 1 and Q = −1 topological charge,

respectively. There are also two vacuum solutions φ = φv± = ±1 saturating the energy

bound in the trivial sector.

Now we add the impurity in the way described above. In our example the prepoten-

tial is chosen to be W (φ) = (1 − φ2)/
√

2. Hence, it is not a positive definite function.

Nonetheless, it reproduces the φ4 potential and therefore it is perfectly fine for our pur-

poses. Observe that a different choice, for example W (φ) = |1 − φ2|/
√

2, can modify our

findings. From now on, the energy reads

E =

∫ ∞
−∞

dx

[
1

2
φ2
t +

1

2
φ2
x +

1

2
(1− φ2)2 +

√
2σ(1− φ2) +

√
2σφx

]
+

∫ ∞
−∞

dxσ2. (2.19)

Then, the EL equation is

− φtt + φxx + 2φ(1− φ2) + 2
√

2σφ+
√

2σx = 0. (2.20)

The corresponding Bogomolny equation is

1√
2
φx + σ +

1√
2

(1− φ2) = 0. (2.21)

Again, this equation implies the full static Euler-Lagrange equation. Thus, its solutions

are solutions of the full variational problem. The energy bound is

E ≥ −4

3
Q (2.22)

and is saturated for the BPS solution.

To specify a concrete example, we choose the impurity in the kink-preserving form

which guarantees that the non-BPS kink solution is given in an exact way

σ =
α

cosh2 x
. (2.23)

Observe that this impurity is localized exponentially and centered at x = 0. Further, α is

a real parameter. Finally, the Euler-Lagrange equation is

− φtt + φxx + 2φ(1− φ2)

(
1 +

α
√

2

cosh2 x(1− φ2)

)
− 2
√

2α
tanhx

cosh2 x
= 0. (2.24)
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3 Static solutions

We shall find that we will be able to identify certain simple structures within general static

solutions, so here we want to introduce some notation for these substructures. A kink

and antikink are denoted by K and K̄, respectively, and a kink bound to the impurity is

denoted by K0. Further, topologically trivial lumps with asymptotic values ±1 are denoted

by Σ±.

3.1 The BPS sector — the antikink-impurity state

We start with the BPS sector defined by the Bogomolny equation

1√
2
φx = − 1√

2
(1− φ2)− α

cosh2 x
. (3.1)

The equation is invariant under the antisymmetric transformation φ(x) → −φ(−x).

Therefore, in the simplest case, it supports odd-symmetric solutions. The results are

plotted in figure 1. For α = 0 we obviously re-obtain the usual antikink solution of the

pure φ4 theory, φ = − tanhx. As α increases, the antikink-impurity solution initially goes

beyond the ±1 values and then, in the vicinity of the location of the impurity, i.e., at x = 0,

it exhibits a steeper and steeper descent. Solutions exist for arbitrarily large values of α.

More interesting features happen for α < 0. Then, the BPS antikink is confined within

the ±1 strip. For a sufficiently small α, the originally decreasing profile starts to grow close

to the location of the impurity, which in the odd-symmetric case corresponds to φ = 0.

The critical value of the parameter α below which φx(x = 0) takes a positive value is

αcr = −1/
√

2. As α further decreases, this inner structure begins to look like a hidden pair

of kink and antikink. Hence, the full BPS charge -1 solutions look like a composite three

particle object, consisting of a left antikink, a central kink located at the impurity and a

right antikink. For α→ −
√

2, the central kink approaches the tanh x profile, while the two

antikinks get repelled to plus/minus infinity. Of course, as the impurity is exponentially

localized, they take the − tanh(x ± x0) form, where x0 → ∞. Hence, the Bogomolny

equation supports Q = −1 solutions for all α > −
√

2, with the energy E = 4/3. However,

as we approach α = −
√

2, the just described inner structure emerges. The impurity hosts a

hidden antikink-kink pair which together with the original antikink leads to a sort of three

body bound state K̄KK̄, which is further bound to the impurity. In the limit α = −
√

2

both antikinks are sent to infinity and the kink tanh x remains located at the impurity.

Indeed, in this limit the Bogomolny equation is

1√
2
φx = − 1√

2
(1− φ2) +

√
2

cosh2 x
(3.2)

and has φ(x) = tanhx as its solution. Its energy is E = −4/3. However, the two antikinks

contribute with 2×4/3, so the total energy agrees with the BPS energy in the Q=−1 sector.

To summarize, the Bogomolny equation supports Q = −1 BPS solitons for α > −
√

2,

which smoothly (as described above), tends to an isolated BPS Q = 1 kink for α = −
√

2.

Probably, we can even say that if α = −
√

2, then both Q = 1 and Q = −1 are BPS

– 7 –
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Figure 1. Solutions of the Bogomolny equation for different values of α centered at a = 0.
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Figure 2. Solutions of the Bogomolny equation for different positions of the topological zeros for

α = ±1.

solutions. Thus, the model for this particular impurity is fully BPS, not half-BPS as

occurs for all other impurities. However, remember that the Q = −1 solution contains

two pure φ4 antikinks located at plus/minus infinity. Note also that the usual energy

degeneracy of the BPS solitons is lifted. In the case α < −
√

2 there are no finite energy

BPS solutions.

It turns out that the Bogomolny equation supports also non odd-symmetric solutions.

Since they are BPS solutions, their energy is exactly the same as the energy of the odd-

symmetric BPS antikink (and of a free φ4 antikink). In the limiting case, they represent

a configuration consisting of a well separated antikink (of the pure φ4 theory) and an

impurity-induced topologically trivial lump, while all other intermediate configurations are

also possible. In other words, we can say that in the BPS sector the antikink and the

topologically trivial lump admit a nonlinear superposition which changes the shape of the

BPS solution while the energy is kept constant and all the time saturates the bound. In

figure 2 we show the solutions of the BPS equations with the condition φ(x0) = 0 for

α = ±1, where x0 can be identified with the position of the antikink. For large values of

|x0| the solutions look like an antikink centered at x0 and a lump solution attached to the

– 8 –
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Figure 3. The bottle-neck effect of the BPS solutions for α→ −
√

2.

impurity. A similar feature is presented in figure 3 where we consider α closer to −
√

2. As

all solutions have exactly the same energy, it costs no energy to transform one into the other,

which physically means to move the antikink away from the impurity. In that sense, the

binding energy between impurity and antikink is exactly zero. This is probably expected,

because we are in the BPS sector where all solutions are zero-pressure (non-interacting)

solutions. Hence, the anti-kink can be put in any location with respect to the topologically

trivial lump. Below we rigorously prove that there is in fact a symmetry transformation for

solutions of the BPS equation. This transformation represents the nonlinear superposition

antikink-impurity law. Furthermore, as we demonstrate later, there is a corresponding zero

mode in the spectrum of linear perturbations.

3.2 The generalised translational symmetry

Here we demonstrate the existence of a symmetry transformation for solutions of the BPS

equation

BPS ≡ φx + 1− φ2 + σ̄ = 0 (3.3)

(where we introduced σ̄ =
√

2σ to get rid of the factor
√

2). We will use the Lie theory

of symmetry, for details we refer to [34]. The idea is to introduce infinitesimal symmetry

transformations via vector fields which act on the independent and dependent variables (in

our case, x and φ). We shall, however, use the vector field in the simpler “evolutionary

form”, where derivatives w.r.t. the independent variable ξ(x, φ)∂x are replaced by a partic-

ular type of transformation −ξ(x, φ)φx∂φ acting on the dependent variable. We consider

a vector field v = ψ∂φ where, for the moment, ψ = ψ(x, φ, φx). We also need the first

prolongation of v (because BPS is a first-order equation),

pr(1)v = ψ∂φ + (Dxψ)∂φx (3.4)

where the total derivative Dxψ is

Dxψ = ψx + ψφφx + ψφxφxx. (3.5)

Further, we need the first prolongation (the total derivative) of BPS,

pr(1)(BPS) ≡ φxx − 2φφx + σ̄x = 0. (3.6)

– 9 –
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Now we calculate the action of pr(1)v on BPS,

pr(1)v(BPS) = Dxψ − 2φψ = 0

ψx + ψφφx + ψφxφxx − 2φψ = 0. (3.7)

Next, we make the simplifying assumption that ψ = A(x)φx + B(x, φ). Here, A(x) just

generates standard (geometric) coordinate transformations, and B generates generalised

target space transformations. Then we eliminate φx and φxx with the help of BPS and

pr(1)(BPS). This leads to some cancellations, resulting in

(φ2 − 1− σ̄)Ax +Bx + (φ2 − 1− σ̄)Bφ − σ̄xA− 2φB = 0. (3.8)

Now we assume the power series expansion B = B(0)(x) + B(1)(x)φ (up to first order is

sufficient), expand the above expression in powers of φ (concretely, φ2, φ1 and φ0) and

compare coefficients to find

φ2 : Ax = B(1), φ1 : B(1)
x = 2B(0) (3.9)

and

φ0 : −2(1 + σ̄)Ax +
1

2
Axxx − σ̄xA = 0. (3.10)

But not all solutions of this equation are acceptable. The easiest way to see it is to go back

to the case without impurity, σ̄ = 0. Then the general solution of eq. (3.10) is

A = A0 +Ac cosh(2x) +As sinh(2x) (3.11)

where A0, Ac and As are integration constants. Here the only acceptable solution is the

constant solution A = A0 (corresponding to the translational symmetry), because solutions

with nonzero Ac or As produce nontrivial transformations on φ (a nonzero B) which change

the asymptotic values φ± = limx→±∞ φ. The corresponding formal “BPS solutions” have,

therefore, infinite energy. In other words, the solutions generated from a kink solution by

the action of the symmetry transformation with a nonzero Ac or As exist only locally but

not globally.

Even for a nonzero but localised impurity (i.e., an impurity which vanishes sufficiently

fast in the limit of large |x|), an acceptable solution of eq. (3.10) must approach the constant

solution in the limit x → ±∞, for the same reason. Unfortunately, it is not possible to

integrate eq. (3.10) analytically. For the impurity used in this paper,

σ̄ =

√
2α

cosh2 x
, (3.12)

numerical solutions for a few values of α are presented in figure 4. It turns out that

for symmetric impurities σ(x) = σ(−x), it is sufficient to consider symmetric functions

A(x) = A(−x), so it is enough to perform the numerical integration from x = 0 to x =∞.

Finally, we want to remark that there is no one-parameter family of lump solutions

generated by these generalised translations, despite the fact that the lumps, too, are solu-

tions of the BPS equation. Correspondingly, there is no zero mode in the linear spectrum

– 10 –
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Figure 4. The function A for several values of the impurity strength coupling α.

of the lump. This implies that the lump (which represents the vacuum solution in the BPS

sector) is invariant under the generalised translations, exactly like the vacuum solution of

the model without impurity (the constant field φ = φv± = ±1) is invariant under normal

translations. The kink, on the other hand, does not belong to the BPS sector and, there-

fore, does not share this symmetry, which is a symmetry of the BPS equation but not of

the energy functional.

3.3 Analytical description of the antikink-impurity state

3.3.1 Weak/strong impurity expansion

As we already know, for our choice of the impurity, the model possesses two distinguished

values of the impurity strength. For α = 0 it reduces to the pure φ4 theory while for

α = −
√

2 the BPS Q = −1 solution is just a collection of infinitely separated solitons of

the pure φ4 model. This leads to two possible expansions.

In the limit for α → 0, in the zeroth approximation the BPS solution is simply an

antikink of the pure φ4 model. It is possible, however, to find the first α dependent

term using the linearization technique. We expand the BPS equation around the antikink

solution φ(x) = φK̄(x) +
√

2αη(x) keeping only linear terms in α. In O(α) the equation

takes the form

ηx − 2φK̄η +
1

cosh2 x
= 0 , (3.13)

which is solved by

η(x) = − x

cosh2 x
+

C

cosh2 x
, (3.14)

where C is an arbitrary constant. The part proportional to C has the form of a transla-

tional mode of the antikink. Therefore, for the antikink fixed at the origin, we have the

approximate solution

φ(x) ≈ − tanhx−
√

2αx

cosh2 x
+O(α2) . (3.15)
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The above approximation is in perfect agreement with the full numerical solution of the

nonlinear BPS equation for |α| < 0.2. Note that from (3.20) and (3.24) we obtain in the

limit α→ 0

φ(x) ≈ − tanhx− 3
√

2α tanhx

2 cosh2 x
+O(α2) (3.16)

which gives even slightly different asymptotic. This is not too surprising as the composite

soliton picture is less applicable for α→ 0.

For α→ −
√

2 we can make yet another expansion

α = −
√

2 + ε , φ = tanhx+ εη +O(ε2). (3.17)

This expansion gives the following linearized BPS equation

ηx − 2η tanhx+

√
2

cosh2 x
= 0 . (3.18)

The solution to the above equation can be found analytically and the approximated solution

up to first order in ε can be written as

φ(x) = tanhx−
√

2ε

3

[
(2 cosh2 x+ tanhx) tanhx+ 2C cosh2 x

]
, (3.19)

where C is an integration constant. The above solution is always divergent at least in one

of the cases x→ ±∞, but is a valid solution as long as |η| � 1 or, in other words, as long

as the solutions is close to tanhx. When C = 0, the solution is odd and in the vicinity of

x = 0 it gives just some addition to the hyperbolic tangent. However, as |x| becomes large,

the solution diverges exponentially from tanh x and the above approximation is no longer

valid. However, the solution gives quite a good approximation of the zeros of the solution,

that is, the positions of the two antikinks. When C = ±1, the homogeneous part cancels

one of the cosh2 x from the inhomogeneous part of the solution, and the solution approaches

the vacuum on one side. Such a solution approximates a Q = 0 lump (see below).

3.3.2 The composite impurity picture

One can ask what happens with the observed hidden antikink-kink-antikink structure of

the Q = −1 BPS solutions, so well visible at α → −
√

2, when we consider bigger values

of α. Here we present some arguments that, although the constituent solitons are close

to each other and finally lose their identity, the BPS solutions can always be described,

with some approximation, as three-soliton states. To test this hypothesis, we consider the

following exact expression representing a symmetric antikink-kink-antikink system, where

the constituents are the solitons of the pure φ4 theory

φK̄0K0K̄0
Q=−1 (x) = − tanh(x+ s) + tanh(x)− tanh(x− s). (3.20)

Here, s is a distance between the constituent solitons, which should be computed applying

a minimization scheme. We insert this trial function into the energy expression, which up
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Figure 5. Composite interpretation of the BPS solutions (antikink K̄, lump Σ+). Upper plot:

discrepancy between separations obtained using the minimization of the energy (BPS2) functional

and the zero of the BPS integral. Lower plot: energy excess of the solutions obtained from the

approximations assuming trial functions, as compared to the real values (EΣ = 0, EK̄ = 4/3).

to the boundary term is just the BPS equation squared. Then, we minimize it with respect

to the separation variable s. This gives the following relation between the distance and α

α =
√

2
3s
(

4 cosh(2s) + 1
cosh2 s

)
− 7 sinh(2s)− sinh(4s) + 3 tanh s

−4s− 8s cosh(2s) + 4 sinh(2s) + sinh(4s)
. (3.21)

One may verify that infinite separation s → ∞ occurs for α → −
√

2. On the other hand,

for α = 0 we recover the usual antikink solution φ = − tanhx, which corresponds to the

s = 0 limit.

In figure 5 (lower panel, solid red curve) we plot the difference between the energy of the

Q = −1 BPS solution and its antikink-kink-antikink approximation as a function of α. The

discrepancy is never bigger than 1.5% (remember that the mass of the Q = −1 solution is

always 4/3). It should be underlined that the three-soliton structure as well as the mutual

distance between the constituents in the odd-symmetric solution is an interpretation of

the numerical data for α bigger that a region close to −
√

2. However, the three-soliton

configuration (3.20) reproduces the true numerical solution quite well even for α→ 0 which

makes the three-soliton picture plausible.

Surprisingly, a quite good approximation to the optimal separation distance (and there-

fore to the true solution and its energy) may be obtained if, instead of minimizing the energy

functional, we use the BPS equation itself. This means that we insert the trial function

into the BPS equation and integrate it over the whole space∫ ∞
−∞

φxdx =

∫ ∞
−∞

(φ2 − 1)dx−
√

2α

∫ ∞
−∞

dx

cosh2 x
. (3.22)
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Figure 6. The distance s between the antikinks and the central kink in the Q = −1 BPS solution,

as a function of the impurity parameter α. Blue line — the energy minimization. Red line — the

integration of the BPS equation.

Obviously, the left hand side is just twice the topological charge of the assumed configura-

tion. Also the integral over the impurity may be easily computed. Hence,

− 2 + 2α
√

2 =

∫ ∞
−∞

(φ2 − 1)dx (3.23)

Plugging in the approximate solution, we find the extremely simply formula

α = −
√

2

(
1− 2s

sinh 2s

)
(3.24)

This reproduces the asymptotic behavior correctly. In the figure 6 we plot the position of

the constituent antikink computed in both ways — by the energy minimisation smin (blue

curve) and by the integration of the BPS equation s0 (red curve). We see quite a good

agreement. To better visualise it, we plot smin − s0, see figure 5, upper panel, red curve.

The observed singularity for α→ −
√

2 is related to a discrepancy in subleading terms for

smin and s0, which still tend to infinity in this limit. In the same plot we also show the

discrepancy between the energy of the solution and the energy arising from the integration

of the BPS equation (dashed red curve). Now, this approximation is slightly worse than

the energy minimisation but is always smaller than 2.7%.

Note that the integration of the BPS equation bears some similarity with the derivation

of the Bradlow law for the vortices in the Abelian Higgs model.

Now, let us discuss why the minimisation of the integral of the BPS equation can at

all give a reasonable result. It is a combination of two arguments. First of all, we have

the inequality
∫

(BPS)2 ≥ (
∫
BPS)2 where BPS stands for the BPS equation, BPS =

φx+
√

2σ+1−φ2. Secondly, we have to assume that the trial function is sufficiently “good”,

that is, it gives an energy close to the Bogomolny bound for the optimal parameter values.

This is equivalent to saying that
∫

(BPS)2 is a small number, which implies that (
∫
BPS)2

is even smaller and may be approximated by zero. The better the trial function (i.e., the

smaller the energy for the optimal values of the parameters), the smaller will be (
∫
BPS)2

and the better it is approximated by (
∫
BPS)2 = 0.
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Figure 7. Topologically trivial lumps Σ+ and Σ− for different values of α.

Interestingly, the well pronounced three soliton hidden structure of the Q = −1 BPS

solution occurs in the strong coupling regime, i.e., where α takes the smallest possible value.

In other words, when the impurity is strong then the Q = −1 solution reveals a structure

of three weakly coupled constituents. On the other hand, when the impurity is weak, i.e.,

for α → 0 (which for example allows for a perturbative treatment of the impurity), then

the hidden solitons are in some sense strongly coupled and lose their identity. All this

suggests a sort of weak-strong correspondence between the strength of the impurity and

the strength of the interaction between the hidden solitons.

3.4 Topologically trivial lumps

It is a straightforward consequence of the nonlinear superposition of antikink and topolog-

ically trivial lump in the BPS sector that, after sending the antikink to infinity, we remain

with the pure lump solution located on the impurity. As the infinitely separated antikink

has the form − tanh(x−x0) (with x0 →∞), its energy is E = 4/3. Thus, the energy of the

lump localised on the impurity is exactly 0. This means that the topologically trivial lump

also saturates the energy bound and, in the above sense, is a BPS solution. In figure 7

we plot the topologically trivial lumps Σ+ and Σ− for different values of α. Note that the

lump is not symmetric under the x → −x transformation. The symmetry center of the

lump is shifted from x = 0 where the impurity is located.

First of all, let us observe that in the limit when α → −
√

2, the topologically trivial

lump, similarly as it happens for the solution in the Q = −1 BPS sector, clearly exhibits

a hidden structure. In this limiting case, it consists of a kink located at the origin and an

antikink sent to spatial infinity. Again, this picture, to some extent, is visible also for bigger

values of α. To verify this conjecture, we assume the following decomposition of the lump

φK0K̄0
lump = −1 + tanh(x− xk)− tanh(x− xa) (3.25)

where xk and xa are the positions of the pure φ4 kink and the antikink, respectively. This

trial function clearly takes into account the non-symmetric shape of the lump. We deter-

mine the optimal values of the fit parameters xk and xa by minimizing
∫

(φnum − φK0K̄0
lump )2,
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i.e., by a “least square” fitting procedure. In figure 8 (left) we plot smin = xa−xk. In figure 5

(lower panel, solid blue curve) we also plot the energy of the two soliton approximation. As

the energy of the BPS lump is always 0, the energy scale to which our approximation should

be compared is the mass of the antikink. Hence, we get an accuracy better than 3.75%. It

is clearly seen that the kink-antikink interpretation of the lump works extremely well for

α→ −
√

2. When α grows, then the kink and antikink quickly approach each other and lose

their identity. However, our simple two particle approximation reproduces the qualitative

features of the true solution reasonably well, even for bigger α, which supports our identi-

fication of the lump as a mixed state of kink and antikink. Of course, for higher α, the dis-

crepancy is always visible. This means that the true lump solution is not a simple superposi-

tion of these solitons but that a mutual, nonlinear interaction modifies the state. Therefore,

for α outside a certain region close to −
√

2, the lump as a superposition of a kink and an

antikink as well as their position inside the lump is again an interpretation which, however,

works quite well. In particular, we may appreciate in figure 8 that the distance between

kink and antikink is zero for α = 0 and approaches infinity for α→ −
√

2, as it must be.

In order to get an analytic insight into the separation distance between the hidden

kink and antikink in the lump solution we apply a very simplified trial function where the

position of the kink is always fixed at the origin

φ = −1 + tanhx− tanh(x− s) (3.26)

From the numerics we know that is it a good approximation only when α → −
√

2. Once

α grows to 0 the kink also moves. But we may consider the above trial function as a crude

approximation to the distance — not to the actual positions of the constituent solitons or

the shapes of the solutions, especially as the position of the hidden kink xk is bounded

from above and varies much less than its antikink counterpart. Then, again we may apply

the standard energy minimization which gives

α = −2
√

2es
−12s cosh s+ 9 sinh s+ sinh(3s)

−5− 4s− 4(−1 + 2s)e2s + e4s
(3.27)

while the integration of the BPS equation leads to

α = −
√

2(s coth s− s− 1). (3.28)

Again, both expressions reproduce the asymptotic behavior correctly. Furthermore, they

coincide quite well — see figure 8 (right panel). As the one parameter trial function does

not reproduce the proper shapes for higher α, the derived formulas could be less precise

than in the Q = −1 sector, especially when α→ 0.

In the limit α→ 0 we can linearize the BPS equation and obtain for φ = −1 +
√

2αη

ηx +
1

cosh2(x)
− 2η = 0. (3.29)

This equation has an exact solution:

η(x) = 2e2x

[
1

1 + e2x
+ 2x− log

(
1 + e2x

)]
+ Ce−2x . (3.30)
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Figure 8. Left: the distance between the hidden kink and antikink in the lump (blue line), together

with the positions of the topological zeros (red line). Right: the distance s between the antikinks

and the central kink in the Q = 0 BPS solution in the fixed kink approximation, as a function of

the impurity parameter α. Blue line — the energy minimization. Red line — the integration of the

BPS equation.

This time, the part coming from the homogeneous part has to vanish (C = 0), otherwise

the solution would not be normalized. This is due to the fact that the lump is bound to

the impurity and there is no translational freedom, as it happened in the case of the BPS

antikink. This approximation works perfectly where it should, that is |α| < 0.2. Clearly,

the profile of the lump is not symmetric, and is not centered around x = 0. Obviously,

these features are not captured by the symmetric KK̄ approximation in the limit of α→ 0

φ(x) ≈ −1−
√

2

2

α

cosh2 x
+O(α2) . (3.31)

3.5 Non BPS kink-impurity state

By construction, i.e., by the assumed form of the impurity, there is an exact non-BPS

kink-impurity solution K of the full second order static equation

φK = tanhx (3.32)

for any value of α. Although the profile of the kink is α independent, its energy varies

and reads

EK =
4

3

(
1 + 2

√
2α+ α2

)
. (3.33)

Moreover, as we already remarked, for one isolated value of the parameter, α = −
√

2,

this kink-impurity configuration is also a proper BPS solution, i.e., it saturates the bound

and solves the Bogomolny equation. The energy of this BPS kink is E(α = −
√

2) = −4/3

and obviously saturates the topological bound for Q = +1.

The non-BPS kink-impurity solution φK appears to be stable for α ∈ [−
√

2, 0] while it

develops an instability for α > 0. This means that there is a repulsive interaction between

the kink and the impurity which expels the soliton to infinity. This can be easily proven

if we compare the energy of the kink-impurity bound state (3.33) and the energy of the

infinitely separated topologically trivial lump with E = 0 and free kink E = 4/3

EK −
(

0 +
4

3

)
=

4α

3

(
2
√

2 + α
)

(3.34)
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impurity model with α = 1 (left) and α = −1 (right). The dotted purple line corresponds to a

static singular solution.

which is positive for α > 0. Hence, for the bound state it is energetically favorable to decay

into its infinitely separated constituents.

As an example, in figure 9 we show the kink, antikink and lump solutions for α = 1

and α = −1. The antikink (red curve) is a stable, BPS solution in both cases. For α = −1

a nontrivial inner structure (which grows to a kink-antikink pair as α → −
√

2) is already

visible. The kink solution, φK = tanhx is stable for α = −1 and unstable for α = 1 where

it decays into the vacuum impurity solution and an infinitely separated kink of the pure

φ4 theory. To visualize this fact, we included a snapshot of the decay (kink running to the

left) which was generated by introducing a small perturbation to the unstable kink solution

(we remark that in figure 9 the lump Σ+ which remains close to x = 0 as a result of this

decay cannot be distinguished from the pure lump solution Σ+).

Note that the second order equation has even more static solutions satisfying the

appropriate boundary conditions (for Q = ±1) but developing a singularity at some point.

For α=0 these singular solutions K are given analytically in the form φK(x)=± coth(x−x0).

When considered on a full line, such solutions have infinite energy, but they can play an

important role in models with restricted domains [27]. In figure 9, the numerically found

singular solutions are shown with dotted purple lines.

Let us summarize the spectrum of static solutions in the BPS φ4-impurity model as

a function of the strength of the impurity (the parameter α). In figure 10 we show the

energies of the kink φK = tanhx and the BPS antikink as a function of the parameter α.

The BPS antikink-impurity solution always saturates the energy bound E = 4/3,

which obviously enforces the topological stability of the solution. Strictly speaking, there

are infinitely many solutions representing the antikink at an arbitrary distance from the

lump (always located on the impurity). Hence, we dynamically recover the translational

invariance of the solitons in the pure φ4 model. Here, the change of the position of the

antikink modifies the shape of the solution but leaves the energy unchanged. As we will

see below, this corresponds to the existence of a zero mode.
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tions as functions of α.

The stable kink-impurity solution exists for α ∈ [−
√

2, 0] and has energy smaller than

the BPS antikink-impurity state. Its energy is, on the other hand, bigger than the bound,

except for the very special case, α = −
√

2, when it becomes a BPS solution with energy

E = −4/3. Note that in this limit the energies of the kink and antikink exactly cancel.

As a consequence, such a pair has the energy of the topologically trivial lump. In other

words, the energy needed for the creation of a kink-antikink pair drops to 0 as we approach

α = −
√

2. This obviously coincides with our finding that for α = −
√

2 the lump is a

composition of the kink and antikink. Moreover, since the constituents are exponentially

localized and their distance grows, the separation energy also quickly drops to 0.

Surprisingly, for α = −
√

2 + 1 the kink-impurity bound state and the topologically

trivial lumps have exactly the same energies E = 0 which may be interpreted as an en-

hancement of the degeneracy of the vacuum, which contains not only topologically trivial

lumps but also the kink-impurity solution. For α < −
√

2+1 the kink-impurity is the lowest

energy state, and we have a unique and topologically nontrivial vacuum. Nonetheless, we

will find that these facts do not have any impact on the dynamics of solitons in our model.

4 Spectral structure

In order to investigate the spectral structure of the model, we have to perturb the solutions

in each topologically distinct sector. We introduce a small perturbation around the static

kink-impurity, antikink-impurity and topologically trivial lump, φ = φstatic + Aeiωtη(x) +

c.c., where the perturbation obeys

− η′′ + (6φ2
static − 2− 2

√
2σ)η = ω2η (4.1)

It is a well documented fact that the spectral structure of the static solutions plays an im-

portant and sometimes even crucial role not only in the analysis of stability and relaxation,

but also in processes of kink-antikink and kink-impurity scatterings [14, 29, 30].
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Figure 11. Spectral structure of the antikink (left), the lump (right) and the kink (bottom).

4.1 BPS antikink-impurity solution

We start with the BPS antikink-impurity solution. Unfortunately, we do not know the

analytic form of the profiles of these solutions. However, because they are of the BPS

type and obey first order equations, they are very easy to find numerically. We have

found the eigen-frequencies of the bound vibrational modes of the BPS solution centered

at x = 0 using the linearized equation (4.1) substituting φ with the numerically found

antikink-impurity solution φK̄ . The results are gathered in figure 11 (top left).

Obviously, for α = 0 the defect has exactly the same spectral structure as the pure

φ4 kink: a single mode with ω2 = 3 and a translational zero mode ω = 0. The first main

result is that this zero mode exists for any acceptable value of the parameter α. Hence,

even if the impurity is coupled, the model recovers a sort of translational symmetry. This

we have already understood as a nonlinear superposition of the antikink and the trivial

lump which leaves the energy unchanged.

Next, for α = −
√

2 we know the exact BPS solution which now represents the kink.

It has a single even mode with a frequency ω =
√

3. Surprisingly, although the frequency

of the mode coincides with the frequency of the pure φ4 kink, the potential generated by

the kink trapped by the impurity is a Pöschl-Teller potential with the same depth as in

the sine-Gordon model.

When α has a slightly larger value α = −
√

2 + ε the BPS antikink-impurity solution

looks like a widely separated K̄KK̄ configuration. Both antikinks have the same structure

as the free defects in the pure φ4 model. Namely, one translational mode ω = 0 and one

oscillating bound mode ω =
√

3. The whole configuration in the limit of α→ −
√

2 has two

modes — ω = 0 (twice degenerated) and ω =
√

3 (three times degenerated). However, for
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nonzero ε the mutual interaction lifts the degeneracy and the modes split, which is clearly

visible in figure 11. The modes with the frequency ω =
√

3 split into three modes, one

even (with the lowest frequency) and two odd modes. The mode with ω = 0 splits into

two modes. The odd mode has a frequency which increases as α increases and becomes the

single vibrational mode. It exists for α < 0.39 where it reaches the mass threshold. The

second mode still has zero frequency and reflects the BPS-ness property of the solution. The

excitation of this mode does not cost any energy, therefore the defect can be moved away

from the impurity. The existence of this zero mode indicates the existence of a symmetry

transformation generalising the translational symmetry of the model without impurity. We

demonstrated the existence of this generalised translational symmetry in section 3.2.

4.2 The topologically trivial lump

The spectral structure of the trivial lump possesses at least one oscillating mode for

α ∈ [−
√

2, 0). It reaches the mass threshold for α = 0, that is, in the limit of the pure φ4

theory, while it tends to a zero mode for α = −
√

2. For the same value α = −
√

2, two

other oscillating modes merge to a single mode of φ4 theory with ω3 = 3. This is related to

the fact that in this limit the topologically trivial lump can be viewed as a kink-antikink

bound state where each of its constituents looks like a soliton of the pure φ4 model. Hence

again, the number of degeneracies reflects the number of hidden constituents while their

mutual interaction (for α > −
√

2) leads to a splitting of the frequencies.

It is interesting to note that the hidden structure of the lump, which first clearly

appears at α = −1/
√

2 and gets more visible as we approach α = −
√

2, amounts to an

appearance of a oscillating kink-antikink bound state in the spectrum of perturbations of

the lump. As we clearly showed in a previous section, the lump can be described with very

good accuracy as a pair of two solitons with a separation distance governed by the impurity.

This picture results in the identification of ω0 as an oscillation frequency of the kink-

ankikink pair. Precisely speaking, the kink is relatively strongly trapped by the impurity

while the antikink performs oscillations whose period grows as we tend to the limiting α.

The mechanism of this behavior is simple. The negative impurity always attracts the kink

while, at least in the BPS sector, it does not interact with the antikink. Hence, the kink

is more and more frozen on the impurity, as we approach α = −
√

2, while the antikink

oscillates via an interaction with the kink. In the linear approximation, such a state exists

for sufficiently negative α→ −
√

2. However, since in this limit the separation energy of the

pair also vanishes, in realistic processes there will always be a critical α > −
√

2 for which

the antikink will be released from the oscillating pair while the kink remains confined to

the impurity. Such a behavior will be visible in many scattering processes.

We remark that the vanishing of ω0 as α tends to −
√

2 leads to a very high stability of

the oscillating topologically trivial lump (wobbling kink-antikink pair). The wobbling state

can radiate but only by higher harmonics, which strongly suppresses its decay [29, 35, 36].

Note also that this oscillation mode approaches the mass threshold for α = 0. More-

over, for α ≥ 0 there are no oscillating modes at all.

One should underline that we found a smooth transition between an oscillating ex-

citation of the lump and an oscillating kink-antikink pair trapped on the impurity as we
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Figure 12. Spectral structure of the BPS solution for different values of α, as a function of the

topological zero of the antikink.

decrease α. In other words, the KK̄ oscillating state originates in the first oscillating mode.

One may even say that the exited lump is just the oscillating kink-antikink pair, especially

in the limit when α → −
√

2. Therefore, it can be interpreted as a linear effect. However,

one should remember that the ground state above which the perturbation is performed,

i.e., the lump, is a highly nonlinear solution.

Since the interaction energy between the lump and the antikink is exactly zero, the

position of the static antikink can be arbitrary. As the position changes so does the spectral

structure. When the antikink is very far from the impurity, i.e., |x0| � 1, then the influence

of the impurity is almost negligible. The spectrum consists of separated modes of the free

φ4 soliton (ω =
√

3 and ω = 0) and the modes of the α-dependent lump. As the defect

approaches the lump, the modes starts to interact and for x0 = 0 the structure becomes the

one described in the previous subsection. The frequencies of the normalizable eigenmodes

are shown in figure 12 for four different values of α. For large distances, the number of

modes is the sum of all the modes of the antikink and the lump. For example in figure 12

a) for α = −1 there are five modes for x0 = −10, two of them are from the antikink and

three from the lump (see figure 11b)). As the distance becomes smaller one of the modes

enters the continuous spectrum, and for x0 = 0 there are only four modes (see figure 11

a)). For α = 1 figure 12 d) there are two modes: one oscillational mode of the antikink and

one translational mode. For x0 < 2 the oscillational mode becomes a narrow quasi-normal

mode (QNM) and for x0 = 0 its frequency becomes ω = 2.478 + 0.096i. Such a QNM can

also play an important role in the dynamics of the system [30]. Note that for α < 0.38

the mode always stays below the threshold as in the figure 11 c). Note, that in [37] it

was conjectured that a similar disappearance of the shape modes of a colliding kink and

antikink is responsible for the failure of the collective coordinate method applied to such a
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collision. On the other hand, this distance-dependence of the spectral structure is crucial

for the existence of the resonance bounce structure in the φ6 model [29].

4.3 The kink-impurity solution

Due to the very special form of the kink solution, we can analytically study its spectral

structure

− η′′ +

(
4− 6 + 2

√
2α

cosh2 x

)
η = ω2η . (4.2)

This is a Pöschl-Teller potential with a depth equal to V0 = 6 + 2
√

2α. The bound modes

of the potential are known

ω2
n = 4− (λ− n)2 , 0 ≤ n ≤ λ , λ(λ+ 1) = 6 + 2

√
2α . (4.3)

Obviously, for α = 0 we recover the spectral structure of the kink in the usual φ4 theory.

For example, the first bound mode has the frequency ω2
0 = 0. This mode is the translational

zero mode of the kink, reflecting the translational symmetry of the model.

The behavior of this mode in the impurity extended model strongly depends on the

value of the parameter α. For negative α, the mode transforms into an oscillating mode

with frequency growing to ω2 = 3 at α = −
√

2. This means that the pure φ4 kink is trapped

by the impurity, forming a true kink-impurity bound state. Small perturbations oscillate

around the static solution with frequency ω0. For positive α, the zero mode transforms into

a negative frequency mode, ω2 < 0, which means that the static kink solution centered at

x = 0 is not a stable solution. Any small perturbation violating the symmetry results in the

ejection of the kink by the impurity. As we see, the spectral structure or, more precisely,

the sign of ω2
0, fully confirms the previously found structure of solitonic solutions.

In the pure φ4 theory, the static kink solution has a second (shape) mode which is

responsible for oscillations with ω1 =
√

3. This mode exists in the impurity model, as

well. As the depth of the potential changes, so does the frequency of the mode and for

the special value of α = −
√

2 (or λ = 1) this mode disappears at the mass threshold.

Interestingly enough, for this value of α the spectral structure is identical to the spectral

structure of the kink in the sine-Gordon (sG) model, but because of the mass threshold

differences (mφ4 = 2 and msG = 1) the mode corresponding to the translational mode of

the sG kink (ω = 0) in our model oscillates with the frequency of the vibrational mode of

the φ4 kink ω =
√

3. We remind that in this limit the kink becomes a BPS solution and

the model is fully BPS.

5 Scattering processes

Having identified the structure of static solutions (asymptotic states structure) as well as

their spectral properties, we can investigate scattering processes. As the first case, we

consider the scattering of an incoming antikink (which at t → −∞ is just the antikink

solution of the pure φ4 model) with the topologically trivial lump Σ− located on the

impurity. As we know, such an antikink-impurity bound state lives in the BPS sector.
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5.1 Moduli space approximation

We start with a theoretical description of the scattering of a slow-moving antikink on the

impurity within the framework of the moduli space approximation, using the generalised

translation symmetry of section 3.2 as a collective coordinate. The existence of this sym-

metry implies that there exists a one-parameter family of antikink BPS solutions. Let us

denote this family as φ(x; a) where a is a parameter which uniquely defines the BPS solu-

tion. In our further examples we will assume that a is the position of the topological zero

x0, which is a proper parameter for α > −1/
√

2 (see section 3.1). However, in principle, a

can be any other parameter which uniquely identifies a solution, like, for example, a field

value at a certain point. Let us add a perturbation ψ to the static BPS solution φ(x; a) in

such a way that

φ(x; ã) = φ(x; a) + (ã− a)ψ(x) (5.1)

is still a solution to the BPS equation for a different parameter ã. Assuming that, for a

small change of the parameter ã = a+ da, the perturbation function ψda is also small, we

can linearize the BPS equation and obtain an equation for ψ

ψx = 2φψ. (5.2)

This linearised BPS equation implies that ψ is a zero mode, i.e., it obeys the mode equa-

tion (4.1) for ω = 0, as may be checked easily. The above equation can be formally solved

ψ = Ce2
∫
φ dx , (5.3)

where C is an arbitrary constant. If we use the definition (5.1) for ψ, however, then this

constant has a definite value for each particular choice of the parameter a. For example,

when a is the position of a topological zero x0, the transformation x0 → x̃0 = x0 + dx0

is the translation of the topological zero by a small value dx0. Note that the field value

does not change (the transformation changes zero to zero, φ(x̃0; x̃0) = φ(x0;x0) = 0) so

the total derivative vanishes

dφ(x0;x0) = φx(x0;x0)dx+ φx0(x0;x0)dx0 = 0, (5.4)

from which it follows that ψ(x0) = φx0(x0;x0) = −φx(x0;x0) since dx0 = dx. Because

φ(x0;x0) = 0 from the definition of x0, we get from the BPS equation

C = ψ(x0) = φx0(x0;x0) = −φx(x0;x0) = 1 +
√

2σ(x0) (5.5)

and finally

ψ(x) =
[
1 +
√

2σ(x0)
]

exp

(
2

∫ x

x0

φ(x′) dx′
)

(5.6)

For σ ≡ 0, φ(x) = − tanh(x−x0),
∫
φ = − log cosh(x−x0) and eventually ψ = cosh−2(x−

x0), which is exactly the translational mode of the antikink.

Next, we want to study the antikink-impurity scattering in the moduli space approxi-

mation, where the only modulus (collective coordinate) is given by the parameter a. That

is to say, we limit ourselves to a slow evolution of the nearly BPS state,

φ ≈ φK̄(x; a(t)) (5.7)
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where a(t) is a time-dependent parameter describing the static BPS solution. Let us

consider slow (adiabatic) evolution 0 < |ȧ| � 1. We assume that the change is slow

enough so that no Lorenz contraction nor deformation of the solution is visible. In other

words, the configuration φK̄(x, a(t)) always maintains the shape of the corresponding static

solution. The parameter a can, for instance, be the position of the topological zero, which

for α > −1/
√

2 can be any real number uniquely defining the BPS solution. The Lagrangian

can then be written as

L =

∫ ∞
−∞

dx
1

2
φ2
t −

1

2
φ2
x − U − 2σ

√
U −

√
2σφx − σ2 (5.8)

or, when the BPS property is used

L =

∫ ∞
−∞

dx
1

2
φ2
t =

1

2
M(a)ȧ2 , M(a) =

∫ ∞
−∞

ψ2 dx . (5.9)

If a is indeed the position of the topological zero, M(a → ±∞) = M0 = 4/3, which is

the mass of the kink/antikink in the free φ4 model. In the above, M(a) plays the role of

an effective, kinetic mass (or inertia) of the BPS solution. The equation of motion can be

written as

äM = −1

2
ȧ2Ma (5.10)

which can be integrated to a first order equation

ȧ = ȧ0

√
M0

M(a)
, (5.11)

where ȧ0 is an arbitrary constant. For a being the position of the antikink x0, ẋ0 is simply

its initial and final velocity. Note that the velocity of the antikink after the collision will be

the same as before the collision. For α > 0, the effective mass M(x0) > M0 (figure 13) has

a maximum at x0 = 0 which means that the minimal velocity of the topological zero should

be observed as it crosses x = 0. On the other hand, for −1/
√

2 < α < 0 the effective mass

has a minimum at x0 = 0 which reveals the maximal velocity of the topological zero at

x = 0. If we identify the position of the topological zero with the position of the antikink,

this implies that the impurity repels the moving antikink for α > 0 and attracts it for α < 0.

In our numerical procedure of calculating M(x0) for fixed x0, we have integrated twice

(from x = x0 to L = 20 and from x = x0 to −L) the system of three ODEs: the BPS

equation with an initial condition φ(x0) = 0, equation (5.2) with an initial condition (5.5)

and µx = ψ2, and calculated the difference M(x0) = µ(L)− µ(−L).

5.2 Antikink-impurity scattering — numerical results

For various choices of the parameter α and the initial velocity of the antikink we have sim-

ulated the collision of the antikink and the impurity by numerically solving equation (2.20)

with the following initial conditions:

φ(x, t ≈ 0) = 1− tanh(γ(x− x0 + vt)) + φΣ−(x) , γ = (1− v2)−1/2. (5.12)
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-20

-10

0

10

20
a) v = 0.200, α = 1.00000

φ(0, T )

b) v = 0.200, α = −1.00000

φ(0, T )

-20

-10

0

10

20

0 50 100 150

c) v = 0.200, α = −1.30000

0 50 100 150

d) v = 0.200, α = −1.35000

x

−1 −0.5 0 0.5 1−1 −0.5 0 0.5 1

x

time t time t

Figure 14. Different scenarios of antikink-impurity (K̄+ Σ−) collisions for initial velocity v = 0.2.

The parameter values in the different plots are a) α = 1, b) α = −1, c) α = −1.3 and d) α = −1.35.

Note that due to the Lorenz contraction the antikink loses its BPS property, therefore we

expect that the collisions will become less and less elastic as the initial velocity increases.

In figure 14 we present the four main qualitatively different types of scattering for not

too high velocity. Here the initial velocity of the incoming antikink is v = 0.2.

For a positive α, we found an almost elastic collision, figure 14a). The final state is

formed by the antikink traveling to infinity and the lump Σ+. The velocity of the outgoing

free antikink is conserved, and the only effect of the scattering is the phase shift in the

trajectory. As we know from the spectral analysis, there is no oscillating mode which could

be excited during such a collision, which explains the observed elasticity.

For not too small negative α, the outgoing state is delayed since the impurity can now

host an oscillation, which easily may transfer some part of the kinetic energy of the incoming

antikink. See figure 14b) with α = −1 where the oscillating frequency is ω ≈ 0.9219.
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Figure 15. Power spectrum for the exited lump (interpreted as an oscillating kink-antikink pair)

for α = −1.2. The shown values ω0, etc. correspond to the linear analysis and, therefore, do not

exactly coincide with the peaks of the full (numerical) nonlinear power spectrum.

However, the velocity of the antikink is again almost unchanged as the amplitude of the

oscillations is still quite small.

For even smaller values of α, the inner structure of the lump begins to play a crucial

role in the scattering process, as the hidden kink-antikink pair is more and more visible. In

figure 14c) we see an example with α = −1.30. The interaction still occurs via an excitation

of the oscillating mode. However, now this mode has the previously found interpretation as

a wobbling of the kink-antikink pair. The oscillating mode seems to be largely excited, but

because the frequency is small ω = 0.3103, the energy stored in that mode is rather small,

and the velocity of the outgoing antikink is only slightly reduced. Moreover, the collision

looks more like the capture of the antikink by the impurity forming an antikink-kink bound

state and ejecting an antikink from the right hand side of the topologically trivial lump.

In addition, the kink from the hidden KK̄ pair seems to be relatively strongly confined

by the impurity. The BPS antikink bounces around the almost motionless kink. This

picture coincides with the previously announced mechanism of the formation of a wobbling

kink-antikink pair. Here the oscillating antikink-kink pair is again trapped on the impurity

due to the attractive force between the impurity and the constituent kink. Note also that

the first oscillating mode corresponds with good accuracy to the frequency of the antikink

oscillating around the kink.

It should be underlined that the wobbling kink-antikink pair forms a very stable, long

living object. This can be explained by studying the power spectra for a long time evolution,

see figure 15. Here α = −1.2 and the field is measured at x = −2 with t ∈ [200, 1600]. The

frequencies of the antikink oscillation (which is the frequency of the first mode) together

with two higher harmonics as well as two higher modes lie below the mass threshold ω = 2.

Hence, the first propagating harmonics is the fourth one, which amounts to a rather high

stability of the oscillating pair [27, 35, 36]. In addition, we see that this pair can be fully

understood as an excited lump state.
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Finally, for α < −1.31 the BPS antikink is bounced back from the vacuum. The col-

lision knocks out another antikink moving towards +∞ leaving a bound kink at x = 0.

This is plotted in figure 14d) where α = −1.35. This can also be explained easily. The

separation energy of the kink and antikink in the oscillating lump tends to zero as the sep-

aration length between the solitons grows with decreasing α. Hence, any surplus of energy

is enough to release the antikink from the oscillating pair and send it back to minus infinity.

To summarize, the antikink-lump scattering process can be very well understood taking

into account the hidden kink-antikink structure of the topologically trivial lump, and with

the help of the knowledge of the corresponding spectral structure (an equivalence between

the wobbling of the kink-antikink pair and the excited lump). The fact that the scattering

looks to a large extent like an elastic process is probably related to the existence of the

moduli space (zero mode) which, on the other hand, is a direct consequence of the BPS

nature of the antikink-impurity solution. One may perhaps conclude that the antikink-

impurity scattering occurs close to the BPS limit.

This simple picture gets more complicated as the initial velocity grows and higher

nonlinear effects begin to be more important — see figure 16. Then, a fractal structure

emerges on the border between the one-particle and the three-particle final states. This

is a manifestation of the typical chaotic behaviour of the pure φ4 model. In figure 17 we

demonstrate such a chaotic regime for the initial velocity of the incoming antikink v = 0.74.

On the other hand, the qualitative description of the final state transition can be easily

given. As α → −
√

2, the energy of the kink-antikink pair tends to 0 and therefore even a

very slow initial antikink can create such a pair. Moreover, in this limit the pair is very well

pronounced within the topologically trivial lump located on the impurity. All this leads

to a three particle final state with an almost unchanged velocity of the incoming antikink.

When α grows, it costs more energy to create the pair. Hence, the incoming particle must

have higher kinetic energy or equivalently higher velocity. Furthermore, the hidden pair is

less visible in the lump. As a consequence, the incoming antikink may simply go through

the impurity without the creation of a kink-antikink pair.

The transition line, which separates the three body from the one body final state, can

be found by assuming that the full kinetic energy of the incoming antikink will be used for

the production of the (static) antikink and kink-on-impurity final state

4

3

(
1√

1− v2
− 1

)
=

4

3

(
2 + 2

√
2α+ α2

)
(5.13)

We plot this line in figure 16. The apparent discrepancy might find an explanation by the

formation of some very long-living oscillating kink-antikink pairs (excited lumps), which is

in fact relevant for the yellow regime above the border line.

Observe that the in principle possible (strongly inelastic) case, where the antikink is

captured by the impurity, never occurs. This is due to the BPS nature of the antikink-

impurity state with the moduli space described by a zero mode, being just the distance

between the antikink and the lump located on the impurity. Instead, only for a very narrow

strip near α→ −
√

2 and high velocities, the antikink can bounce back from the impurity.
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In fact, the antikink-impurity process, at least for small velocities, is very close to

the static BPS regime and, as we have shown in the previous subsection, it gives a quite

precise description within the collective coordinates approximation. A similar description

is often used in the case of vortices in the Abelian Higgs model in (2+1) dimensions at

critical coupling.

Last but not least, we observe very little radiation in the scattering process at low

and medium velocities. This, together with the appearance of a breather, is typically

understood as a manifestation of integrability in the system. Here the role of the breather

may be played by the excited lump, which is just a very stable wobbling kink-antikink pair.

Therefore, we may say that the antikink-impurity scattering reveals some properties of an

integrable sector of the full theory.

It might be surprising that the space of possible outcomes of the collisions is rather

poor in the scattering of the antikink with the lump. Having in mind the richness of

phenomena in the pure φ4 model [14, 16, 38] and the even more complex spectral structure

of antikinks and lumps, one could have anticipated a repetition of the fractal structure of

multibounce collisions also in this model. In fact, we have seen some remnants of such a

structure, but for a very narrow range of parameters at high velocity and near the critical

value α = −
√

2. On the other hand, this is the type of behaviour we expect for BPS

solutions with the translational symmetry. Even though there is a rich spectral structure,

the antikink passes through the impurity in a relatively smooth (adiabatic) manner. The

excitation of the internal and radiation modes is almost negligible. The main mechanism

standing behind the resonance structure is that the modes get excited during the collision

and store enough energy to bind defects for some time. In the scattering of BPS antikinks,

this is not the case. However, when the modes are excited prior to the collision, the picture

changes. We have performed a set of simulations of the antikink with excited internal

modes colliding with a lump, given by initial conditions

φ(x, t) = 1− tanh x′ +A
tanhx′

coshx′
cos(ωt′) + φΣ−(x) (5.14)

where

x′ = γ(x− a− vt) , t′ = γ(t− v(x− a)) , γ =
1√

1− v2
(5.15)

are Lorenz transformed coordinates of the moving antikink. We have found that for α > 0.4

the defect can bounce from the impurity. As the antikink approaches the impurity, the

frequency of the excited internal mode increases. For α > 0.38 the mode enters the con-

tinuous part of the spectrum, becoming a quasinormal mode. The impurity acts like a

barrier and the only direction the mode can radiate is backwards. However, this radiation

is bounded with the defect and tries to pull the defect back. This scenario is shown in the

left panel of figure 18.

For an attractive impurity α < 0 we could not find a similar process. However, the

lump can have its own modes excited. We excited the lump increasing its height by a

factor A. In such a case, the anktikink can also bounce back figure (18f)), but can also be

captured (18e)). However, the excitation of the lump has to be very large, and for A = 5 it
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Figure 18. Different scenarios of perturbed antikink-impurity (K̄∗ + Σ, left panel) and antikink-

perturbed impurity (K̄ + Σ∗, right panel) collisions. The parameter values are a) A = 0.2, α = 1,

b) A = 0.4, α = 1, c) A = 0.7, α = 1, d) A = 2, α = −0.3, e) A = 4.8, α = −0.3 and f) A = 6,

α = −0.3.

is more appropriate to consider it as some oscillon-type state bound to the impurity. The

capturing-bouncing process seems to be also chaotic.

Looking from a wider perspective, a plausible explanation of the richer structure of

the antikink-lump scattering with one object being excited is that the initial state is not a

solution of the BPS sector.

To summarize all the possible results of the collisions, it is helpful to study the final

state at a specific point, say x = 0 at certain time. We choose T = 100 + v/|x0|. This

gives some information about the final state of the whole system, figure 19. However, the

information can also be misleading, especially near α→ 0 when all final states have similar

values φf ≡ φ(0, T ) ≈ 0 or when a few different results can have the same value at the

center of the collision. One hint that can help in identifying those regions is looking at

dislocations of constant phase lines. In many cases, the final state continuously depend on

parameters until the structure of results suddenly changes. This can be seen for example

in the figure 19 near α ≈ −1.4 and v ≈ 0.8. Below we summarize the possible results of the

antikink-impurity collisions. The last column is the color we use to mark the final state in

the phase diagram (for short we use R-red, O-orange, G-gray, B-blue, I-indigo):

K̄ + Σ− −→


Σ+ + K̄ smooth passage φf ≈ 1 RO

K̄ +K0 + K̄ lump decay φf ≈ 0 G

K̄ + Σ− bounce φf ≈ 0 G α→ −
√

2

(5.16)
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Figure 19. Different scenarios of antikink-impurity (K̄ + Σ−) collisions. The left plot shows the

field value at center at time T after the collision. The right plot shows the products of the collisions.

Line filled regions correspond to chaotic behaviour.

Note that the last possibility happens when α is very close to the critical value −
√

2. For

this value the field admits similar values φ(0, T ) ≈ 0 for all possibilities. Only a more careful

analysis of the whole scattering process gives the appropriate identification. Those regions

were marked on the right panel of figure 19 with different colors. There is yet another

region, between smooth passage and lump decay, where the system behaves chaotically

(the boundary has some fractal properties). Such regions we mark with line patterns.

5.3 Kink-impurity scattering

As the next process, we consider the scattering of an incoming kink (from the right) on the

topologically trivial lump Σ− located on the impurity. The main possibilities occurring at

v = 0.2 are presented in figure 20 and, for some other velocities and small α, in figure 21.

For positive α, the impurity always repels the kink as there is no kink-impurity bound

state. Thus, the incoming kink is elastically reflected back — see figure 20a) with α = 1.

Of course, for sufficiently large initial velocities the kink should have enough energy to

go through the impurity. In the limiting case, we expect that the field should go through

a static configuration representing the kink at x = 0. On the one hand, this is the lowest

energy state satisfying the condition that φ(0) = 0 in the Q = 1 topological sector but,

on the other hand, for positive values of α, the lowest energetic state is when the kink is

far away from the impurity. Therefore the static kink configuration is a saddle point. The

kink with energy below the energy of the static unstable kink is unable to penetrate the

potential barrier generated by the impurity. Therefore the limiting case gives an estimate

for the critical velocity when the kink can go through to the other side. Using the energetic

argument we find that
4

3

1√
1− v2

cr

=
4

3

(
1 + 2

√
2α+ α2

)
. (5.17)

Once α becomes negative, the kink can go through it. For small negative α, such a

transition does not significantly change the velocity of the incoming kink as is visible in

figure 20b) where α = −0.1. If we make α smaller, then the attractive force of the impurity
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Figure 20. Different scenarios of kink-impurity (Σ− + K) collisions for v = 0.2. The parameter

values are a) α = 1, b) α = −0.1, c) α = −0.2 and d) α = −1.41.
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Figure 21. Chaotic behaviour of the oscillon after the kink-impurity (Σ− + K) collisions for

α = −1.4. The velocity values are a) v = 0.27, b) v = 0.36, c) v = 0.37, d) v = 0.71, e) v = 0.72

and f) v = 0.76.

overcomes the kinetic energy of the kink, which is now trapped by the impurity forming

an excited bound state, as presented in figure 20c) (α = −0.2). It oscillates and, slowly

radiating energy, decays into the static kink-impurity solution. When α→ −
√

2, the inner

structure of the lump starts to play a role. Then, the capture process is a bit more involved.
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Figure 22. Velocities of free defects propagating after impurity-defect type collisions.

The incoming kink annihilates with the antikink from the hidden kink-antikink pair of the

lump. In the shown example they form an oscillon which goes towards the impurity. This

subprocess is inherited from the pure φ4 model, as both solitons are quite far away from

the impurity (remember it is exponentially localized). The remaining kink behaves as a

spectator and is initially unaffected but later is perturbed (excitation of the oscillating

mode) by the remains of the annihilation process. Note that in contrast to the previous

case, we find a lot of radiation emitted during the kink-impurity scattering. This is, of

course, related to the fact that the static kink-impurity solution is not a BPS configuration.

To summarize the defect-impurity collisions, we measured the final velocity of defects

after the collision for initial velocity vi = 0.3 as a function of α. The red curve in plot 22

shows the final velocity of the antikink in the antikink-lump collision. For a large range

of values α > −0.7, the final velocity is almost constant and almost equal to the initial

velocity. This means that the energy exchanged between the defect and the impurity

is negligible. This proves that the collisions of the BPS solutions with the generalised

translational symmetry are almost elastic. In the range −1.25 < α < −0.7 the scattering

is less elastic and more energy is transferred to the lump. Below α < −1.25 the lump is

destroyed in the collision and a second antikink is ejected from the impurity, leaving a kink

tightly bound to the impurity. This also proves that in some sense, for values of α close

to −
√

2 the lump has a structure of a kink-antikink pair stabilized by the impurity. The

second observation is that in the case of kink-impurity scattering the kink which is reflected

from the impurity also loses very little of its initial kinetic energy. However, just after the

transition is possible (marked by dotted line and αcr in the figure 22) the kink indeed can

go through the impurity but loses more and more energy as the strength of the impurity

increases. For α < −0.17 the kink is captured by the impurity. The energy is then radiated

out from the internal modes of the configuration described in the previous section.
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value at center at time T after the collision. The right plot shows the products of the collisions.

Line filled regions correspond to chaotic behaviour.

In figure 23 we have shown the final states of φ(0, T ) (left) and the identification of

the final state (right)

Σ− +K −→


Σ− +K bounce φf ≈ −1 I

K + Σ+ passage φf ≈ 1 RO

K0 capture φf ≈ 0 G

(5.18)

The last reaction, during which the kink is captured by the impurity, can produce a lot of

radiation in order to get rid of the excess of energy. Sometimes this radiation takes the

form of an oscillon. The oscillon can be recaptured by the impurity and adopted eventually

as one of the internal modes of the kink, or it can pass through the impurity or can be

torn apart into a kink-antikink pair. All of these processes lead to similar final values at

the center of collisions, φ(0, T ) ≈ 0. However, the excitation of the captured kink, or the

kink with a recaptured oscillon, lead to different excitation amplitudes, which can be seen

as discontinuities of the constant phase lines in the lower left corner of the left plot in

figure 23 or near the boundary with the passage region.

5.4 Antikink-(kink-on-impurity) scattering

Now we analyze the scattering of the incoming antikink with the kink-impurity bound state.

We remind that such a bound state is stable only for negative values of α. In figure 24

we present the main qualitatively different scenarios of the scattering at the velocity of the

incoming antikink v = 0.2.

For positive α, the kink-impurity is an unstable configuration. The kink can be ejected

both towards positive 24a) and negative x-values 24b). The incoming antikink can then

either go through the impurity as in the previous case or can capture the kink from the

impurity — see figure 24b) with α = 0.3. The mechanism is straightforward. The antikink

attracts the kink which is simultaneously repelled by the impurity. However, the energy

stored in the unstable state is high enough to avoid the annihilation. Both the incoming

antikink as well as the released kink are scattered to minus infinity.
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Figure 24. Different scenarios of antikink-(kink-on-impurity) (K̄ + K0) collisions, mostly for

velocity v = 0.2. The other velocity values are a) v = 0.25, h) v = 0.63 and i) v = 0.89. Further,

the parameter values are a) α = 0.2, b) α = 0.3, c) α = −0.1, d) α = −1.0, e) α = −1.05, f)

α = −1.07, g) α = −1.3, h) α = 0.3 and i) α = −0.3.

For negative α, the incoming antikink is attracted by the kink and both get annihilated

by forming an oscillon, as shown in figure 24c) with α = −0.1. As the impurity is weak, the

behavior is similar to the pure φ4 theory. However, the oscillon is trapped by the impurity

and performs a sort of coherent wobbling around the impurity. In figure 25 we analyse

this particular case in detail. Figure 25a) shows the power spectrum of the field measured

at x = −2 for the time range t ∈ [1000, 2000]. There are certain peaks in the spectrum.

The highest peak corresponding to the basic frequency ω ≈ 1.6 is very different from the

frequency obtained in the linear theory ω0 = 1.96 corresponding to the only eigen-mode of

the lump. The power spectrum resembles the typical power spectra of oscillons created via

defect collisions in the pure φ4 model (figure 25b)). Therefore we can identify this object as

a trapped oscillon. Oscillons are famous for their long and slow decay. To increase the rate

of the decay we added an additional damping term γφt to the equation for times in the range

200 < t < 1000. After that time we calculated again the power spectrum. As the damping

term increases, the spectrum becomes more and more similar to the spectrum predicted

by the linear approximation. After a small damping one can see that a single frequency
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Figure 25. (a) Power spectrum of the field after the collision K̄ + K0 for α = −0.1, v = 0.2

measured at x = x0 = −2 compared with (b) the power spectrum of the oscillon α = 0 and (c-e) in

the damped evolution with increasing damping term.

is even more dominant than in the undamped case. But the frequency is still much below

the eigenfrequency due to the nonlinearities. As the solution is damped even more, the

frequency becomes closer to the eigenfrequency of the lump. Therefore we can expect that

the trapped oscillon would be absorbed by the lump and assimilated as the mode of the

lump. A similar behaviour was analyzed in more detail in [35]. Note that although the

oscillon is a long living oscillating object, its decay is a more violent phenomenon than in

the case of the wobbling kink-antikink pair in the antikink-lump scattering. For example,

the amount of radiation emitted in such a process is bigger. In any case, the intermediate

topologically trivial state observed here, i.e., the oscillon, behaves differently if compared

to the excitation of the lump (which is just the wobbling kink-antkikink pair for α < 0).

This may further support our interpretation of the antikink-impurity scattering as a quasi-

integrable process. Here, as there is no static BPS antikink-kink-on-impurity solution, the

observed scattering does not exhibit any integrable-like properties and is to a high extent

governed by the properties of the scattering in the pure φ4 model.

For smaller negative α, we observe the appearance of the wobbling state, see figure 24d)

and figure 24e) with α = −1.0 and α = −1.05 respectively. However, it is much less stable

than in the antikink-impurity collision. It radiates a significant amount of energy and

decays quite quickly into the topologically trivial lump. Although the perturbation seems

to be quite large, all the oscillations can be easily connected with the eigenfrequencies of

the trapped kink and their multiplicities (see figure 26). Again, as α decreases, one of

the constituents, that is, the kink, behaves as a spectator only, with almost no oscillations

around its initial position.

There is a critical α at which the scattering process reveals another final state. Namely,

the initially created topologically trivial state breaks into a kink trapped to the impurity
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Figure 26. Power spectrum of the field after the collision K̄+K0 for α = −1.05, v = 0.2 measured

at x = x0 = −2. Eigenfrequencies of the kink ωi and multiplicities of the basic frequency nω̃0 are

also marked.

and a free antikink reflected to minus infinity — see figure 24f). Here this happens at

α = −1.07. After that, the scattering tends to an elastic one once we approach α = −
√

2.

A high velocity antikink can also push the kink from the impurity 24h) and 24i). The

antikink can be ejected from the impurity leaving the lump at the center of the collision 24i)

or replace the kink 24h) at the impurity. Note that we previously described similar processes

for the excited antikink and lump collisions, which are shown in figure 18.

The picture gets much more complicated once we vary the initial velocity of the in-

coming antikink. Again, a chaotic structure emerges, which seems to be inherited from the

pure φ4 theory. In figure 27 we plot some particular cases for a fixed impurity α = −0.1

while we change the velocity of the incoming antikink. It is clearly seen that there are an-

nihilation, bouncing and simple scattering windows both at smaller and higher velocities.

However, the velocity (energy of the incoming antikink) determines whether the remain-

ders of the scattering (as, for example, an oscillon) are bounded to the impurity, reflected

or transmitted.

It is also visible that the oscillon may be trapped by the impurity figure 27a) or behave

as a free object figure 27g), h) and j). Furthermore, it can also be confined to the impurity

for a short time, making several oscillation as a whole object around the impurity, and

then escape to plus or minus infinity — see figure 27b) and figure 27f), respectively.

Because this process is quite complex, and in some cases can be regarded as a three-

body collision, also the space of final states is quite complex.

K̄ +K0 −→



Σ+ annihilation φf ≈ 1 RO

K̄ +K0 bounce φf ≈ 0 G

K̄ + Σ− +K bounce/knock φf ≈ −1 I

Σ− + K̄ +K passage/knock φf ≈ 1 RO

{K̄,Σ±,K} ejection φf ≈ 1 RO two stage

K̄0 +K BPS capture φf ≈ 0 G

(5.19)
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Figure 27. Different scenarios of antikink-(kink-on-impurity) (K̄ + K0) collisions with fixed im-

purity α = −0.1 and different initial velocities of the incoming antikink. The velocity values are a)

v = 0.41613, b) v = 0.5474, c) v = 0.57419, d) v = 0.59677, e) v = 0.605, f) v = 0.61, g) v = 0.63,

h) v = 0.67, i) v = 0.695, j) v = 0.705, k) v = 0.715 and l) v = 0.75.

In the right (α > 0) lower (small v) corner of the phase diagram 28 for this process

the dominant color is red, indicating that φ(T, 0) ≈ 1. However, in this region the initial

state, a kink on top of the impurity, is unstable. The incoming antikink provides a small

disturbance resulting in the early ejection of the kink. The defects then collide outside the

impurity, which is similar to the collisions known from the pure φ4 model. The products

(defects or oscillons) can hit the impurity again after the first stage of collision. This two

stage process is very chaotic.
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Figure 28. Different scenarios of antikink-(kink-on-impurity) (K̄ + K0) collisions. The left plot

shows the field value at center at time T after the collision. The right plot shows the products of

the collisions. Line filled regions correspond to chaotic behaviour.

For high velocities and a weakly attractive impurity, the kink can be kicked from

the impurity and be replaced by the antikink. Capturing of the antikink is an unusual

situation and must be connected with the excitation of the internal mode of the antikink.

Such excitations also lead to a large sensitivity to the change of parameters of collisions.

Another chaotic behaviour can be seen between annihiliation Σ+ and bounce processes

(K̄ +K0).

The dashed green-black line on the left plot in figure 28 corresponds to the critical

velocity below which the antikink has not enough kinetic energy to free the kink bound to

the impurity. Below that velocity, the antikink can only bounce back or annihilate with

the kink.

5.5 Kink-(antikink-on-impurity) scattering

Finally, we consider the incoming kink scattering on the antikink-impurity state. As there

are infinitely many energetically equivalent antikink-impurity configurations, the main in-

gredients of the process are the kink-impurity interaction (repulsion for α > 0 and attrac-

tion for α < 0) as well as the kink-antikink attraction. In figure 29 we plot several scenarios

which can occur during this scattering. Here v = 0.2.

First of all, for positive α the incoming kink gets reflected by the impurity. However,

it interacts with the antikink and attracts it. As a consequence, the antikink follows the

kink. If α is big (α = 1 then the impurity strongly repels the kink, which leads to a weak

kink-antikink interaction. As a result we get an almost elastic reflection of the kink and

a slowly moving antikink — see figure 29a). For smaller but positive α, the kink-antikink

interaction grows (the repulsive force decreases) and the antikink can eventually hit the

kink which leads to an annihilation process where an oscillon is formed — figure 29b). Once

α becomes negative, the impurity attracts the kink, and the solitons annihilate on the other

side of the impurity — figure 29c). However, if we further decrease α, i.e., increase the

kink-impurity attraction, then the kink gets trapped by the impurity, while the antikink

is repelled to minus infinity, as demonstrated in figure 29d) with α = −0.3. For even
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Figure 29. Different scenarios of kink-(antikink-on-impurity) (K + K̄0) collisions for the velocity

v = 0.2. The parameter values are a) α = 1, b) α = 0.5, c) α = −0.1, d) α = −0.3, e) α = −1, f)

α = −1.24, g) α = −1.25, h) α = −1.4 and i) α = −1.41.

smaller α, the inner structure of the antikink located on the impurity starts to look like

a three-particle state i.e., antikink-kink-antikink. Then the scattering process in a first

approximation can be understood as a sequence of two-body interactions. In figure 29e)

(α = −1.0), the incoming kink annihilates with the first antikink again, by forming a sort

of oscillon. The remainder of the annihilation excites the kink located on the impurity,

which basically does not move from that point. The last antikink, on the other hand,

gets expelled to minus infinity. This pictures is repeated in figure 29f)–figure 29i) where

α = −1.24,−1.25,−1.40 and −1.41. Notably, the details of the annihilation process as well

as the properties of the expelled antikink reveal some chaotic features.

In this scenario, the possible results of the collisions are (see figure 30)

K̄0 +K −→


K̄ +K0 replacement φf ≈ 0 G

K̄ + Σ− +K bounce φf ≈ −1 B

Σ+ annihilation φf ≈ 1 OR

{{K̄,K},Σ+} passage φf ≈ 1 OR

(5.20)

Here in the last reaction as a result a lump around φ = 1 remains and a pair of defects is

ejected in one of the directions. The pair could also annihilate forming an oscillon. It is

difficult to analyze all these chaotic processes from just the values of φ(0, T ).
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shows the field value at center at time T after the collision. The right plot shows the products of

the collisions. Line filled regions correspond to chaotic behaviour.

6 Summary

In the present work, we carefully investigated the properties of a φ4 model coupled with

a BPS preserving defect, where its particular spatial distribution was fixed by a purely

computational convenience. Namely, it preserved the form of the non-BPS kink solution,

which for any value of the impurity coupling constant, was given by the same, simple

analytical formula. Moreover, in our example, the BPS-ness was preserved in the Q = −1

and Q = 0 sectors. The main findings are like follows.

First of all, we identified in the BPS sector a generalized translational symmetry which

transforms a charge Q = −1 solution into an another one without changing its energy.

This corresponds to the observation that there exists an infinite family of energetically

equivalent BPS solutions which represent Q = −1 solitons with an arbitrary separation

from the impurity. This is also reflected in the appearance of a zero mode in the linear

perturbation spectrum. Such a transformation exists for any value of the impurity strength

α and, obviously, for α = 0 it reduces to the usual translational symmetry of the antikink.

The generalized translation acts also on the topologically trivial solutions called lumps,

which solve the Bogomolny equation in the charge zero sector. However, in this case it

maps the lump into itself and no zero mode shows up. These properties are not related

to a specific potential and form of the impurity. Instead, we expect to find them in any

model with a BPS preserving defect.

Secondly, the BPS solutions, that is, the antikink and the lump, possess a hidden multi-

soliton structure where its constituents are, in a first approximation, just the pure φ4 theory

kink and antikink. This structure is clearly visible in the limit when α → −
√

2 (which

represents the maximally negative impurity) while, after some interpretation, can also be

identified for other values of the impurity strength. In addition, the distance between the

constituent components can be found not only by the standard minimisation of the energy

functional with respect to the trial function parameters, but also via the integration of the

Bogomolny equation over the full space with the trial function inserted. This observation
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goes beyond the model considered here and may find some applications to theories with a

non trivial (multi-particle) BPS sector.

Thirdly, as expected, we observed a profound kink-antikink asymmetry. In contrast

to the antikink, the kink, i.e., a soliton with topological charge Q = 1, is not a BPS solu-

tion. That is, it obeys the second order EL equation instead of the first order Bogomolny

equation. Furthermore, it does not saturate the pertinent topological energy bound. Since

the kink is not a BPS solution, there is no generalised translation symmetry, and no zero

mode exists. Hence, the kink has a fixed position with respect to the impurity. For positive

α, the impurity repels the kink and no bound state exist, while for negative α the kink

is attracted by the defect and forms a stable bound configuration. Its energy is always

smaller than the energy of the antikink. The kink becomes even the lowest energy state,

that is lighter than the topologically trivial lump, for sufficiently negative strength of the

impurity. Finally, when α tends to the smallest negative value −
√

2, the energy goes to the

topological bound and even the kink is a BPS configuration. At this value of the impurity

coupling constant, the model, in some sense, becomes a fully BPS theory.

The kink-antikink asymmetry is clearly visible in scattering processes. Interestingly,

there is a scattering process which occurs in a sort of close-to-BPS regime, where we scatter

the incoming antikink with the lump located on the impurity. In the static case, as it is a

BPS solution, the antikink can be located at an arbitrary distance from the lump without

changing its energy. Here, the initial state is, of course, a non-BPS state due to the non-

static nature of the incoming antikink. As a result, we observed a very smooth process

which, at least for not too high velocity of the antikink, can be explained, with a very

good precision, within linear perturbation theory, i.e., the underlying spectral structure.

The soliton behaves as an elastic particle which can transmit a part of its energy into

oscillations of the lump, which again is a kink-antikink state. Notably, there is extremely

little radiation produced during the scattering. It is plausible that this behavior is a generic

feature of the scattering of the particles in the BPS sector and should be observed for other

potentials and BPS preserving defects.

There are many directions in which the present work can be continued. First of all,

owing to its similarity to the Abelian Higgs model with the partially BPS-preserving im-

purity [31], it can be used as a guidance for a systematic investigation of the scattering

of vortices in the presence of such an impurity. Of course, the higher dimensionality will

result in new phenomena (as for example the 90◦ scattering [33]). However, one may expect

a profound asymmetry in the vortex-impurity and antivortex-impurity interaction, where

only one scattering process is a close-to BPS phenomenon. One may also try to apply the

Bradlow law to get an analytical insight into the static vortex-impurity BPS state (in the

spirit of section 3.3.2).

Furthermore, as the impurity can be viewed as a sort of frozen soliton [31] (here, a

kink or antikink), our results may be also applied for the analysis of interactions of solitons

in multi-field scalar theories in (1+1) dimensions (see for example [39, 40]). Then, the

half-BPS impurity model provides a first approximation to a scattering process with the

assumption that the kink in one field is a dynamical object while the other kink in the

second field is unaffected by the interaction. However, a rigorous derivation of such a frozen

soliton limit is still required.
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Last but not least, one may ask about possible experimental realizations of such a

partially BPS-preserving impurity. As the form of the impurity is arbitrary, it is conceivable

that the deformation of the φ4 theory investigated in this paper can indeed be realised in

a condensed matter system.
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