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1 Introduction

Supersymmetric localization is a powerful tool that allows an exact calculation of many

observables in supersymmetric QFTs. In the context of holography, those exact results

can be viewed as robust predictions for the physics in the bulk. This interplay between

localization and holography has turned out particularly fruitful in the study of three- and

four-dimensional CFTs for which many explicit examples of holographic duals are known.

In particular, appropriate deformations of those CFTs have led to many new tests of

the gauge/gravity duality away from conformality, see [1–11] for a non-exhaustive list of

references. Our focus in this paper is a specific realization of this general idea to study

certain deformations of the ABJM SCFT.

The ABJM SCFT [12], or simply ABJM for short, describes the low-energy dynamics

on the world volume of N M2-branes. It is an N = 6, U(N)k×U(N)−k Chern-Simons mat-

ter theory, which is conformal and for k = 1, 2 enjoys an enhanced N = 8 supersymmetry.

Our goal is to study this N = 8 SCFT theory on S3 in the presence of scalar deformations

that break the conformal symmetry, but still preserve N = 2 supersymmetry. There are

two distinct types of such deformations. One is the so-called real mass deformation, which

can be thought of as turning on a vacuum expectation value for the scalar in a background

N = 2 vector multiplet that couples to a global flavor symmetry of the theory. The other

type is a more standard mass deformation of the superpotential.

In the presence of both types of deformations, it is possible to compute the free energy

of the theory on S3, defined as the logarithm of the partition function, as a function of

the real and superpotential masses. The crucial observation here is that the path integral

of the theory on S3 localizes to a matrix integral [13], which in the large N limit can be

evaluated explicitly using a saddle point approximation [14].

The real masses can also be thought of as a general assignment of R-charges for the

chiral superfields in the ABJM theory. To determine the values of these charges at the

superconformal point, one can employ F -maximization [15–17]. For the extremal values of

the R-charges and for the vanishing superpotential mass, ABJM is in its conformal vacuum.

The S3 free energy for general real and superpotential masses scales as N3/2, which

suggests that it should be possible to compute it via holography in string or M-theory.

Indeed, a number of pertinent results are already available in the literature as we now

summarize.

In the absence of any deformation, the holographic dual of ABJM is given by the

well-known AdS4 × S7 solution of eleven-dimensional supergravity. More precisely, one

should analytically continue AdS4 to the hyperbolic space, H4, with an S3 boundary.

Adding a superpotential mass for one of the chiral superfields of ABJM results in an

RG flow to an interacting CFT in the IR with N = 2 supersymmetry and SU(3) flavor

symmetry. This SCFT, henceforth referred to as mABJM, was studied in [14, 18, 19] from

the QFT perspective and in [20–25] holographically. Both for ABJM and mABJM, the

large N calculation of the S3 free energy agrees with the regularized on-shell action of the

corresponding bulk AdS4 (or H4) solution [14, 26]. For vanishing superpotential masses,

the ABJM SCFT on S3 deformed by real mass terms, that is with an arbitrary R-charge
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assignment, has its supersymmetry broken to N = 2. These deformations induce RG flows,

which are holographically dual to smooth Euclidean supergravity solutions constructed

in [1]. The smooth cap off in the bulk of the supergravity solutions in [1] is a manifestation

of the IR cutoff provided by the finite radius of S3.

In this paper we find gravitational solutions that correspond to the deformation of

the ABJM theory with both non-trivial superpotential and real masses turned on. The

superpotential and real mass deformations of interest here are associated with operators in

the N = 8 energy momentum multiplet of the ABJM SCFT. These operators are dual to

the scalar fields in the four-dimensional N = 8 SO(8) gauged supergravity [27], which in

turn is a consistent truncation of eleven-dimensional supergravity on S7 [28, 29]. For that

reason we will construct our solutions within the four-dimensional theory.

The supergravity calculation involves several steps. We start by identifying a suitable

consistent truncation of the four-dimensional N = 8 SO(8) gauged supergravity. As we

discuss in some detail below, this truncation turns out to be precisely the one obtained

in [25] to study certain supersymmetric AdS4 black holes. Since the deformations we

are turning on are scalar operators in ABJM on S3, we are looking for solutions that

preserve the isometry of S3 in the bulk and have an S3 boundary. To this end, we study

in detail the supersymmetry variations in the truncation of the four-dimensional N = 8

theory, analytically continue them to the Euclidean signature, and then derive a set of

first order ordinary differential equations (the Euclidean BPS equations compatible with

the second order equations of motion) for the metric and scalar fields that depend on the

radial holographic coordinate only. Our BPS equations admit regular solutions, analogous

to the ones in [1], for which the S3 collapses smoothly in the bulk. We construct these

solutions explicitly through analytic and numerical techniques.

The non-trivial gravitational backgrounds that we find are dual to the RG flows in

the ABJM theory triggered by the presence of the non-trivial real masses as well as the

superpotential mass parameter. In addition to these holographic RG flows, our supergravity

truncation contains also two supersymmetric AdS4 vacua. In one of them all scalars vanish

and the full SO(8) gauge symmetry of the supergravity theory is preserved. This is the

dual of the conformal vacuum of the ABJM theory. The other vacuum has non-vanishing

constant scalar fields that preserve an SU(3) × U(1) subgroup of SO(8). This background

is dual to the N = 2 mABJM SCFT discussed in [14, 18, 19, 25].

To calculate the partition function for this class of supergravity solutions, we must

carefully apply the holographic renormalization formalism [30]. A subtlety here is that in

order to preserve supersymmetry we have to add a particular finite counterterm to the usual

divergent counterterms that render the bulk on-shell action finite. An additional subtlety is

the well-known fact that the proper treatment of the ABJM theory in a holographic setup

requires the alternative quantization of the scalars and the standard quantization of the

pseudoscalars in the four-dimensional N = 8 supergravity [31, 32]. Both of these subtleties

have arisen also in previous studies of the holographic description of the ABJM theory [1,

33].1 At the end, we show that the on-shell action evaluated on our supergravity solutions

1The presence of finite counterterms in holographic renormalization is also encountered in the five-

dimensional Euclidean supergravity solutions discussed in [2, 8].
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precisely agrees with the ABJM partition function on S3 obtained using supersymmetric

localization.

We continue in the next section with a short summary of the ABJM theory and its

deformations, and the known results for the large N limit of the corresponding partition

functions on S3. In section 3, we discuss the consistent truncation that captures the defor-

mations of the ABJM theory of interest and the corresponding Euclidean BPS equations.

In section 4 we obtain the required solutions by a mixture of analytic and numerical meth-

ods. We carefully carry out the holographic renormalization of the on-shell action and

implement the proper quantization of the scalar fields by a Legendre transform in sec-

tion 5. The result shows the perfect agreement between the partition functions of the

holographic duals. We conclude in section 6 with a summary and some comments. The

three appendices are devoted to important technical details. In appendices A and B, we

derive the supersymmetry variations and the BPS equations in the Euclidean regime and

then, in appendix C, the Euclidean equations of motion.

2 Field theory

In this section, following [1] and [25], we present a short summary of the ABJM theory,

its relevant deformations and the results from supersymmetric localization of interest here.

The ABJM SCFT [12] is an U(N)k × U(N)−k Chern-Simons matter theory with N = 6

supersymmetry. The theory can be formulated in N = 2 superspace in terms of two vector

multiplets, four chiral multiplets, Aa, Bc with a, c = 1, 2 and superpotential

W ∼ Tr
(
εabεcdAaBcAbBd

)
. (2.1)

For k = 1, 2 there is an enhancement of supersymmetry to N = 8 and the R-symmetry

is SO(8). From now on we focus on the case k = 1. Imposing that the R-charge of the

superpotential in (2.1) is equal to two, leads to the following constraint on the R-charges

of the chiral superfields

∆A1 + ∆A2 + ∆B1 + ∆B2 = 2 . (2.2)

The SO(8) R-symmetry of the conformal theory then leads to

∆A1 = ∆A2 = ∆B1 = ∆B2 =
1

2
. (2.3)

Another way to find these values for the R-charges is to use F-maximization [15]. To this

end one needs to compute the free energy of the theory on S3 for arbitrary values of the

R-charges and maximize the resulting function. This can be done using supersymmetric

localization [13] and in the large N limit the result reads [14]

FS3 =
4
√

2π

3
N3/2

√
∆A1∆A2∆B1∆B2 . (2.4)

Indeed, taking into account the constraint (2.2), we find that (2.4) is maximized at the

values of the R-charges in (2.3). For values of the R-charges different from the ones in (2.3),

but still obeying the constraint (2.2), the theory has N = 2 supersymmetry but is no
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longer conformal. As explained in detail in [1], this can also be understood as a result

of deforming ABJM by coupling it to background vector multiplets. To understand this

better, parametrize the solutions to the constraint (2.2) as

∆A1 =
1

2
+ δ1 + δ2 + δ3 , ∆A2 =

1

2
+ δ1 − δ2 − δ3 ,

∆B1 =
1

2
− δ1 + δ2 − δ3 , ∆B2 =

1

2
− δ1 − δ2 + δ3 .

(2.5)

The parameters δ1,2,3 can then be thought of as the values of the complex scalars, which

reside in the background N = 2 abelian vector multiplets that couple to the maximal torus

of the SU(4) flavor symmetry of the ABJM theory. These parameters are often referred to

as real masses.

In addition, the ABJM theory admits a more standard mass term given by deforming

the superpotential in (2.1) by

∆W = mTr(T (1)A1)2 . (2.6)

Here T (1) is a monopole operator which has vanishing R-charge, see [1, 14]. This super-

potential deformation breaks the flavor symmetry of the model from SU(4) to SU(3) and

triggers an RG flow to an interacting N = 2 SCFT in the IR. This theory was studied

in [14, 18, 19] and was referred to as mABJM in [25]. Given that the superpotential in (2.6)

has R-charge two, we immediately find that

∆A1 = 1 , ∆A2 + ∆B1 + ∆B2 = 1 . (2.7)

The large N limit of the S3 free energy of this deformation of the ABJM theory was

computed in [14] and reads

FS3 =
4
√

2π

3
N3/2

√
∆A2∆B1∆B2 . (2.8)

This result amounts to simply implementing (2.7) in (2.4) and agrees with the intuition

that the chiral superfield A1 is integrated out from the dynamics at low energies. Applying

F-maximization to the expression in (2.8), subject to (2.7), we find that the superconformal

R-charges of the mABJM SCFT are

∆A2 = ∆B1 = ∆B2 =
1

3
. (2.9)

The same result follows from the SU(3) symmetry.

The free energy in (2.8) makes sense for general values of the R-charges, which can

again be interpreted as real masses. Taking into account the constraint in (2.7), combined

with (2.5), leads to

δ1 + δ2 + δ3 =
1

2
, (2.10)

or, alternatively,

∆A2 = 2δ1 , ∆B1 = 2δ2 , ∆B2 = 2δ3 . (2.11)
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Therefore, we have two independent real mass parameters in addition to the superpotential

mass m. This is compatible with the fact that the SU(4) flavor symmetry of the ABJM

theory is broken by the superpotential in (2.6) to SU(3), which has a two-dimensional

maximal torus. The main goal of the following sections is to derive the free energy in (2.8)

using holography by explicitly constructing supergravity solutions, which encode the su-

perpotential and real mass deformations, and evaluating their on-shell action.

Before we embark on this task, let us emphasize that the free energy in (2.8) is inde-

pendent of the dimensionless parameter, mRS3 , where m is the superpotential mass and

RS3 is the radius of the sphere.2 This is due to the fact that in the supersymmetric lo-

calization calculations the path integrals of the ABJM and mABJM theories depend only

the real masses δi. Thus, while the dependence of the free energy on the parameters δi
is continuous, the role of the parameter m is simply to impose the constraint (2.7), or

equivalently (2.10). Therefore the superpotential mass m in this setup can be viewed as a

discrete parameter, which changes the free energy from (2.4) for m = 0 to (2.8) for m 6= 0.

A somewhat singular limit is obtained by taking mRS3 →∞. Then the theory is effectively

in flat space and the IR cutoff provided by the finite radius of S3 is removed. The RG

flow can then reach the strongly interacting mABJM SCFT and the R-charges are fixed

to their superconformal values in (2.9). This simple picture of the RG flows triggered by

the real and superpotential mass deformations is confirmed by the supergravity solutions

studied below.

3 The supergravity model

The deformation of the ABJM theory by real and superpotential masses discussed above

preserves a U(1)3 subgroup of the SO(8) R-symmetry and is triggered by operators in the

energy momentum tensor multiplet of the theory. To construct supergravity solutions dual

to this deformation, one thus needs to consider a U(1)3-invariant truncation of the max-

imal SO(8) gauged supergravity [27] and construct asymptotically AdS4 supersymmetric

Euclidean solutions of this model. Precisely such a truncation has been constructed re-

cently in [25]. To obtain it, one first considers the fields of the gauged supergravity theory

invariant under the U(1)2 maximal torus of the SU(3) flavor symmetry of the mABJM the-

ory. As discussed in detail in [25], this leads to a N = 2 gauged supergravity theory with

three Abelian vector multiplets and one hypermultiplet. The bosonic fields of this model

consist of the metric, four vector fields and five complex scalars. Imposing an additional

U(1) symmetry, dual to the supeconformal R-symmetry of the mABJM SCFT, leads to

a further consistent truncation containing all four vector fields, the three complex scalar

fields, zi, in the vector multiplets, but only a single hyperscalar, z, which is a complex scalar

field from the hypermultiplet. Here we are interested in solutions of this supergravity model

that preserve the isometries of S3 and have the four Abelian gauge fields consistently set

to zero.3 Note that setting the hyperscalar, z, to zero yields the well-known STU model of

four-dimensional gauged supergravity used in the construction of [1]. We continue with the

2We set RS3 = 1 throughout this paper.
3See the comment below (A.16).
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salient features of the action and BPS equations for the resulting model with four complex

scalar fields. Further details are discussed in appendix A and [25].

3.1 The Euclidean action

The Euclidean bulk action

Sbulk =

∫
d4x
√

det gµν Lbulk , (3.1)

is obtained by performing the Wick rotation on the bosonic Lagrangian (A.3) of the trun-

cated theory. The resulting bulk Lagrangian is4

Lbulk = −1

2
R+

3∑
i=1

gµν∂µzi∂ν z̃i
(1− ziz̃i)2

+
gµν∂µz∂ν z̃

(1− zz̃)2
+

1

2L2
P , (3.2)

where the Euclidean metric, gµν , is real and positive definite. As usual, in the Euclidean

regime the complex scalar fields and their complex conjugates should be treated as in-

dependent fields. Following [1], we denote the latter by z̃i and z̃ rather than z̄i and z̄,

respectively. Since the Wick rotation does not act on the manifold parametrized by the

scalars, all eight scalars, zi, z̃i, z and z̃, still take values in the Poincaré disk and hence are

complex with modulus less than one.

The Euclidean scalar potential, P, obtained from (A.5) is complex in general and can

be written in the following form,

P =
1

2

(
3∑
i=1

FiF̃i +
4zz̃

(1− zz̃)2
GG̃− 3WW̃

)
, (3.3)

where, cf. (A.11) and (A.13),

W = eKV /2
1

1− zz̃
[2 (z1z2z3 − 1) + zz̃ (1− z1)(1− z2)(1− z3)] ,

Fi = eKV /2
1

1− zz̃

[
2

(
z̃i −

z1z2z3

zi

)
+ zz̃

1− z̃i
1− zi

(1− z1)(1− z2)(1− z3)

]
,

G = eKV /2
[

2(z1z2z3 − 1) + (1− z1)(1− z2)(1− z3)
]
,

(3.4)

with the tilded functions obtained by the exchange zi ↔ z̃i and z ↔ z̃. The Kähler

potential in (3.4), cf. (A.2), is

eKV /2 =
1

(1− z1z̃1)1/2(1− z2z̃2)1/2(1− z3z̃3)1/2
. (3.5)

The functions defined in (3.4) satisfy

Fi = −(1− ziz̃i)
[
∂

∂zi
W +

1

2

(
∂

∂zi
KV

)
W

]
, G = (1− zz̃)2 ∂

∂(zz̃)
W , (3.6)

with similar relations for F̃i and G̃.

4The length scale, L, is related to the gauge coupling constant, g, by L = 1/
√

2g. We have also fixed

the four-dimensional Newton constant by setting 8πG(4) = 1.
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3.2 The BPS equations

Following the general procedure for the holographic calculation of the partition function,

FS3 , proposed in [1] and summarized in section 5, we are interested in supersymmetric

solutions to the equations of motion for the action (3.1) in which the metric has the S3-

sliced form,

ds2 = L2e2Ads2
S3 + e2Bdr2 , (3.7)

and the metric functions, A and B, as well as the scalar fields, zi, z̃i, z, and z̃, depend

only on the radial coordinate, r. Such solutions are obtained by solving the Euclidean BPS

equations that follow from the vanishing of the Wick rotated supersymmetry variations of

the fermion fields in the Lorentzian N = 2 supergravity.

In appendix B we show that those BPS equations can be reduced to the following

“flow” equations for the scalars and the metric function:5

z′j = −e
B

2L
(1− zj z̃j)

G1/2

G̃1/2
F̃j , z̃′j = −e

B

2L
(1− zj z̃j)

G̃1/2

G1/2
Fj , (3.8)

z′

z
=
eB

L
G1/2 G̃1/2 ,

z̃′

z̃
=
eB

L
G1/2 G̃1/2 , (3.9)

and

A′ =
eB

L

[
±e−A − 1

2

G̃1/2

G1/2
W

]
=
eB

L

[
∓e−A − 1

2

G1/2

G̃1/2
W̃

]
, (3.10)

where prime denotes the derivative with respect to the radial coordinate, r.

The two signs in (3.10) correspond to two branches, I and II, of solutions related by

the exchange of tilded and untilded fields. By combining the two equations in (3.10) one

arrives at the perhaps more familiar looking flow equation,

(A′)2 =
1

L2

[
e−2(A−B) +

1

4
e2BWW̃

]
, (3.11)

which is the same for both branches. One can also solve (3.10) to obtain the metric function

in terms of the scalars,

eA = ∓4
G1/2 G̃1/2

GW̃− G̃W
. (3.12)

Then (3.11) follows from (3.12) using the BPS equations (3.8) and (3.9) for the scalars. Sim-

ilarly, the BPS equations (3.8)–(3.10) imply the equations of motion given in appendix C.

The BPS equations (3.8)–(3.10) have been derived assuming that the scalar fields are

not constant. For constant scalars, one is simply left with the single flow equation (3.11)

and the algebraic constraints (B.31)–(B.32), which fix the scalars to their critical values.

In simplifying our BPS equations we have also assumed nontrivial hyperscalars, z and z̃.

This means that in the limit when the hyperscalars are turned off, (3.8) and (3.10) become

equivalent to the BPS equations in [1], but with an additional subtlety, see section 4.3 and

appendix B. Our parametrization of the scalars, zi and z̃i, is related to the one in [1] by

zhere
i = −z̃FP

i , z̃here
i = −zFP

i , (3.13)

and is the same as in [25].

5We set ξ = −1 in (B.27)–(B.30).
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Note that the metric function B remains undetermined, neither by the BPS equa-

tions (3.8)–(3.10) nor the equations of motion (C.4), but it can be removed by a suitable

reparametrization of the radial coordinate. However, keeping it explicit allows for a quick

transition between different gauges. The two gauges that we will be using in the following

are: the conformal gauge,

e2B =
L2

r2
e2A =⇒ ds2 =

L2

r2
e2A

(
dr2 + r2ds2

S3

)
, (3.14)

and the Fefferman-Graham (FG) gauge,

e2B = L2 =⇒ ds2 = L2
(
dρ2 + e2Ads2

S3

)
, (3.15)

where the radial coordinate will be denoted by ρ to distinguish it from the radial coordinate,

r, in the conformal gauge.

4 Solutions to the BPS equations

4.1 Two AdS solutions

As a warm-up exercise let us consider two H4 (i.e. Euclidean AdS4) solutions corresponding

to two supersymmetric critical points of the potential (3.3):

SO(8): zi = z̃i = 0 , z = z̃ = 0 , P∗ = −6 , (4.1)

W: zi = z̃i =
√

3− 2 , zz̃ =
1

3
, P∗ = −9

√
3

2
. (4.2)

Here P∗ is the value of the potential at the critical point. Note that the W-point exists for

any choice of z and z̃ obeying (4.2) so in fact we have a one-parameter family of critical

points.6

For both points, we only need to solve the BPS equation (3.11) for the metric, which

now reduces to

(A′)2 =
e2B

L2

(
e−2A − 1

6
P∗
)
. (4.3)

Its solution in the conformal gauge (3.14) yields the metric,

ds2 =
4L2

(1− r2/r2
UV)2

(dr2 + r2 ds2
S3) , r2

UV = − 6

P∗
, (4.4)

with the constant curvature radius L∗ = rUVL.

We have chosen to normalize the radial coordinate, r, in (4.4) in a somewhat nonstan-

dard way, which will turn out to be convenient when solving the general BPS equations

below. In this parametrization, the S3 boundary in the “UV region” is at r → rUV. The

metric then caps off smoothly in the “IR region” at r → rIR = 0, where

e2A = 4r2 +O(r4) , (4.5)

universally for both solutions and the metric approaches that of flat space.

6In [25] the Lorentzian signature W-point is at z = −z̄ = ± i√
3
.
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The SO(8) point in (4.1) is dual to the N = 8 conformal vacuum of the ABJM theory.

The W-point preserves SU(3) × U(1) of the SO(8) gauge symmetry and was first found

in [20]. It is the gravitational dual to the conformal vacuum of the N = 2 mABJM SCFT.

4.2 The asymptotic analysis

To get a general picture of the space of solutions to the BPS equations (3.8)–(3.10), we

first perform the standard near-boundary UV expansion and then derive conditions that a

regular solution must satisfy in the bulk in the IR limit.

4.2.1 The UV asymptotics

We are interested in solutions that asymptote to an H4 solution with vanishing scalar fields

in the UV. Using the conformal gauge (3.14) for the metric, the asymptotic expansions of

the scalar fields obtained by solving the equations of motion are given by:

zi(r) = αi(r − rUV) + βi(r − rUV)2 + . . . ,

z̃i(r) = α̃i(r − rUV) + β̃i(r − rUV)2 + . . . ,

z(r) = α (r − rUV) + β(r − rUV)2 + . . . ,

z̃(r) = α̃ (r − rUV) + β̃(r − rUV)2 + . . . .

(4.6)

Note that by rescaling the radial coordinate we could set the UV radius rUV = 1. However,

it is more convenient to keep it here explicitly as to allow for a universal normalization of

the radial coordinate in the IR region as in (4.5).

Substituting the expansions (4.6) into the BPS equations (3.8) and (3.9), we find the

following constraint on the leading order parameters,

α1 + α2 + α3 − α̃1 − α̃2 − α̃3 = − 2

rUV
. (4.7)

The next order expansion determines the subleading coefficients that are given by

βi =
αα̃

2
− 3

2

αi
rUV
− α̃1α̃2α̃3

αi
, β̃i =

αα̃

2
+

1

2

α̃i
rUV
− α1α2α3

αi
, (4.8)

β = α

(
α1 + α2 + α3 +

1

2rUV

)
, β̃ = α̃

(
α̃1 + α̃2 + α̃3 −

3

2rUV

)
, (4.9)

and similarly the higher order terms in the expansions (4.6) are determined by the leading

coefficients. The resulting expansion of the metric function can be found from (3.12),

e2A =
r2

UV

(r − rUV)2
+

rUV

r − rUV
−
[

1

4
+

1

3
r2

UV(α1α̃1 + α2α̃2 + α3α̃3)

]
+ r2

UV

[
(α1α2α3 + α̃1α̃2α̃3)− αα̃

2
(α1 + α2 + α3 + α̃1 + α̃2 + α̃3)

]
(r − rUV) + . . . .

(4.10)
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One can also perform the asymptotic analysis above in the FG-gauge (3.15), which is

perhaps more familiar in the context of holographic renormalization, see [30] for a review.

The asymptotic coefficients in this gauge are more directly related to the field theory

quantities that we are interested in and a comparison with some results in [1] that we

would like to use is more straightforward.

In the UV region, the standard FG radial coordinate, ρ, is given by

r

rUV
= 1− 2 e−ρ + 2 e−2ρ + . . . . (4.11)

In the UV limit (ρ→∞), the scalar fields, including both hyperscalars, z and z̃, have the

following expansions:

zi(ρ) = aie
−ρ + bie

−2ρ + . . . , z̃i(ρ) = ãie
−ρ + b̃ie

−2ρ + . . . ,

z(ρ) = ae−ρ + be−2ρ + . . . , z̃(ρ) = ãe−ρ + b̃e−2ρ + . . . ,
(4.12)

where the expansion coefficients in (4.12) are related to those in (4.6) by

ai = −2rUVαi , ãi = −2rUVα̃i , (4.13)

bi = 4r2
UVβi + 2rUVαi , b̃i = 4r2

UVβ̃i + 2rUVα̃i , (4.14)

and

a = −2rUVα , ã = −2rUVα̃ , (4.15)

b = 4r2
UVβ + 2rUVα , b̃ = 4r2

UVβ̃ + 2rUVα̃ . (4.16)

For later use, let us also write the identities corresponding to (4.7) and (4.8),

a1 + a2 + a3 − ã1 − ã2 − ã3 = 4 , (4.17)

and

bi =
1

2

[
aã+ ai(a1 + a2 + a3 − ã1 − ã2 − ã3)− 2

ã1ã2ã3

ãi

]
,

b̃i =
1

2

[
aã− ãi(a1 + a2 + a3 − ã1 − ã2 − ã3)− 2

a1a2a3

ai

]
,

(4.18)

b =
a

2
(a1 + a2 + a3 + ã1 + ã2 + ã3) ,

b̃ =
ã

2
(a1 + a2 + a3 + ã1 + ã2 + ã3) ,

(4.19)

respectively.

Finally, let us define

∆i =
1

4
(ai − ãi) , (4.20)

in terms of which (4.17) becomes

∆1 + ∆2 + ∆3 = 1 . (4.21)

The relation (4.21) is the supergravity analog of the constraint between the real masses in

the mABJM field theory (2.7). Note that in the absence of the hyperscalars we would not

have the relation in (4.17).
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4.2.2 The IR asymptotics

It is clear from the form of the metric (3.14) in the conformal gauge that regular solutions

must cap off at r = 0 where the sphere, S3, shrinks to zero. This means that the metric

becomes flat, see (4.5),

A(r) = A0 + log r +O(r2) , (4.22)

and the scalars have finite values,

zi(0) = ci , z̃i(0) = c̃i , z(0) = c , z̃(0) = c̃ , (4.23)

and finite (vanishing) derivatives. Then (3.8) and (3.9) imply that G F̃i, G̃ Fi and GG̃ must

vanish at r = 0. Substituting (4.22) in (3.10) and expanding to the leading order, we note

that the 1/r pole cancels in only one equation in each pair. The cancellation of the 1/r pole

in the other equation requires that G̃(r) = O(r2) for the branch I and G(r) = O(r2) for

the branch II. This yields the following boundary conditions for regular solutions at r = 0:

I. F̃i(0) = 0 , G̃(0) = 0 ; II. Fi(0) = 0 , G(0) = 0 . (4.24)

Since the two branches are related by the exchange of tilded and untilded fields, in the

following we will consider only the first branch. Solving the equations in (4.24) we find

that the constants ci are determined by c̃i and x0 ≡ cc̃,

ci =
2 c̃j c̃k − x0(1− c̃j)(1− c̃k)

2− x0(1− c̃j)(1− c̃k)
, (ijk)-cyclic , (4.25)

where c̃i satisfy a cubic constraint that follows from G̃(0) = 0, cf. (3.4),

2(c̃1c̃2c̃3 − 1) + (1− c̃1)(1− c̃2)(1− c̃3) = 0 . (4.26)

In the next section we show that these conditions completely specify regular solutions

modulo the rescaling of the radial coordinate, which is fixed universally for all solutions by

imposing (4.5).

It is worth stressing that the cubic constraint (4.26) is a consequence of the coupling

to the hypermultiplet scalars. Indeed, the corresponding derivation of the IR asymptotics

with only vector scalars in [1] yields as expected (4.25) with x0 = 0, but unconstrained

constants c̃i.

4.2.3 Summary

The UV asymptotic analysis yields the parameters, αi, α̃i and α, α̃ or, equivalently, ai, ãi
and a, ã subject to the constraint (4.7) and (4.17), respectively. Hence in the UV region

we have a 7-parameter family of asymptotic solutions to the BPS equations. The question

is which of those extend to regular solutions in the bulk, where the asymptotic expansion

in the IR region yields only a 4-parameter family of solutions parametrized by ci, c̃i, c and

c̃ that must satisfy (4.25) and (4.26). Our task now is to determine how these two families

of asymptotic solutions are related. It appears that the only way to answer this question is

to solve the BPS equations explicitly. Unfortunately, apart from a couple of special cases,

this can be done only numerically.
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4.3 Analytic solutions in the limit of vanishing hyperscalars

In the limit of vanishing hyperscalars, z and z̃, the BPS equations (3.8)–(3.10), modulo

the cubic constraint (4.26) in the IR, are equivalent to the BPS equations in [1], which can

be solved in closed analytic form. Using the field redefinition (3.13), we obtain an explicit

family of solutions to our equations given by

zi(r) = ci f(r) , z̃i(r) = c̃i f(r) , (4.27)

where7

f(r) =
1− r2/r2

UV

1− c̃1c̃2c̃3 r2/r2
UV

, r2
UV = 1− c̃1c̃2c̃3 . (4.28)

From (4.25) with x0 = 0 we have

ci =
c̃1c̃2c̃3

c̃i
, (4.29)

where c̃i are constrained by (4.26). Substituting the solution (4.27) in (3.12) and then

using (4.26) repeatedly to simplify the expression, we obtain

e2A = 4r2 (1− c̃1c̃2c̃3 r
4/r4

UV)

(1− r2/r2
UV)2(1− c̃1c̃2c̃3 r2/r2

UV)2
, (4.30)

which agrees with [1]. We emphasize here that for x0 = 0 the hyperscalars z and z̃ do

not flow and strictly speaking we are not forced to impose the cubic constraint in (4.26).

Nevertheless we do so because we are ultimately interested in the space of solutions to the

BPS equations for which z and z̃ are non-trivial.

From the explicit solution (4.27)–(4.28), we can read off the UV asymptotics. After

using (4.6) and (4.13) in (4.27), we find:

ai ≡ −2 rUV z
′
i(rUV) =

4 ci
1− c̃1c̃2c̃3

, ãi ≡ −2 rUV z̃
′
i(rUV) =

4 c̃i
1− c̃1c̃2c̃3

. (4.31)

Substituting (4.31) in (4.20), we obtain the following map:

∆1 =
(1 + c̃2)(1 + c̃3)

(1− c̃2)(1− c̃3)
, ∆2 =

(1 + c̃3)(1 + c̃1)

(1− c̃3)(1− c̃1)
, ∆3 =

(1 + c̃1)(1 + c̃2)

(1− c̃1)(1− c̃2)
, (4.32)

between the IR and the UV data for this class of solutions. In fact, in the analysis in [1], the

analogous map was crucial for establishing the equality of partition functions on both sides

of the correspondence. Hence, our task here is to understand whether and if so how (4.31)

and (4.32) are modified when x0 6= 0 and the hypermultiplet scalar has a non-trivial profile.

It was observed previously in [25] that the map (4.32) provides a “linearization” of the

cubic constraint in the sense that (4.21) holds if and only if (4.26) is satisfied. Before we

proceed, let us discuss briefly the ranges of the parameters on both sides of this map.

For real c̃i, with |c̃i| < 1, satisfying (4.26), the corresponding ∆i lie in the interval

0 < ∆i < 1 and satisfy (4.21). The map is in fact one-to-one, which can be verified by

solving (4.32) for the c̃i’s. The solutions are double-valued, but only one branch lies within

7Note that the radial coordinate in [1] is rescaled such that rFP
UV = 1.
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the unit disks. For complex c̃i, we should impose an additional constraint that a solution

has a good asymptotically H4 UV region. Given rUV in (4.28), we must set 0 ≤ c̃1c̃2c̃3 < 1.

We have checked numerically, that for such complex c̃i we have 0 ≤ Re ∆i ≤ 1, but have

not found a simple characterization of the allowed region for the imaginary parts of ∆i’s. It

appears that the restriction of the real parts of ∆i’s to the [0, 1] interval depends crucially

on the reality of the product c̃1c̃2c̃3.

4.4 Numerical solutions of the BPS equations

In this section we present a numerical evidence for the existence of regular solutions with

nontrivial hypermultiplet scalars and then study the resulting mapping between the IR

and the UV data. To this end let us first simplify further the set of equations that we need

to solve.

The equality between the right hand sides of the two flow equations for the hyper-

scalars, z and z̃, in (3.9) implies that the ratio z/z̃ must be constant. The two hyperscalars

enter the BPS equation (3.8) and (3.10) only through the product zz̃ in Fi, F̃i, W and W̃,

while G and G̃ do not depend on them. Furthermore, in the solution (3.12) the terms with

zz̃ cancel out. This means that all equations are invariant under the constant rescaling

(z, z̃) → (λz, λ−1z) and we can set the ratio z/z̃ to any constant value. This is reflected

also by the fact that we can consistently rewrite the BPS equations and the equations of

motion in terms of the composite field,8

X = zz̃ . (4.33)

This field in general can be complex with |X| < 1.

It will be convenient to work in the conformal gauge, where we can use (3.12) to

eliminate the metric functions from the other BPS equations, which leaves us with the

following set of flow equations that involve only scalar fields:

r
dzi
dr

= 2 (1− ziz̃i)
G

GW̃− G̃W
F̃i , r

dz̃i
dr

= 2 (1− ziz̃i)
G̃

G W̃− G̃W
Fi , (4.34)

r
dX

dr
= −8X

GG̃

GW̃− G̃W
. (4.35)

Note that all square-roots in (3.8) and (3.9) have cancelled out and the right hand sides

in the equations above are rational functions of the scalars. With the boundary conditions

in section 4.2.2, the IR point r = 0 is then a regular singular point of the first order

system (4.34)–(4.35) whose solution can be expanded into a power series that converges as

long as the right hand sides of the equations remain analytic (see, e.g. [34]).

It is instructive to see how this works for the explicit solution in section 4.3. The power

series for the function f(r) in (4.28) around r = 0 converges for

r2 < R2 where R2 =
r2

UV

c̃1c̃2c̃3
> r2

UV , (4.36)

8One may recover all the equations with z and z̃ using (4.33) and setting z = λ
√
X, z̃ = λ−1

√
X where

λ is a constant.
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and hence, quite remarkably, the solution for the scalar fields is analytic in the entire region

between the IR and the UV, and in fact well beyond it. It is only the metric function (4.30)

that diverges at r = rUV.

Turning on the hypermultiplet scalars modifies the IR boundary conditions in (4.25)

through x0 = X(0) and adds the flow equation (4.35) for X(r). However, it does not

modify in any way the analytic properties of the equations. It is thus reasonable to expect

that, at least for x0 small enough, the power series solution that exists in the vicinity of

r = 0 should converge all the way through r = rUV. To see how this expectation bears out

in practice, we turn to numerical explorations.

4.4.1 Solutions in the symmetric sector

The flow equations (4.34) and (4.35) can be consistently restricted to the subsector in which

z1 = z2 = z3 ≡ ζ , z̃1 = z̃2 = z̃3 ≡ ζ̃, (4.37)

with ζ, ζ̃ and X then satisfying,

r
dζ

dr
= −1

3
(1 + 4ζ + ζ2)

2(ζ − ζ̃2) +X(1− ζ)(1− ζ̃)2

(1−X)(ζ − ζ̃)(1− ζ̃)
,

r
dζ̃

dr
=

1

3
(1 + 4ζ̃ + ζ̃2)

2(ζ2 − ζ̃)−X(1− ζ)2(1− ζ̃)

(1−X)(ζ − ζ̃)(1− ζ̃)
,

r
dX

dr
= −4

3
X

(1 + 4ζ + ζ2) (1 + 4ζ̃ + ζ̃2)

(ζ − ζ̃)(1− ζζ̃)
.

(4.38)

Imposing the IR boundary conditions (4.25) and (4.26), we find

ζ0 ≡ ζ(0) =
3x0 (3x0 − 4) + 1(
3x0 −

√
3− 2

)
2
, ζ̃0 ≡ ζ̃(0) = −2 +

√
3 , x0 ≡ X(0) , (4.39)

that is we are left with one free parameter, x0. These conditions lead to a consistent

recurrence for the series expansion provided we fix the scaling symmetry of the radial

coordinate. This is done by requiring that the metric function given by (3.12) has the

leading term in the series expansion normalized as in (4.5).

As expected, by comparing the series expansion of a solution to a very high order,

such as O(r250), with the corresponding solution obtained by a numerical integration, we

conclude that the radius of convergence, R, of the series solution for all scalars is greater

than the UV radius, rUV, for x0 between −1/3 and 1/3. A typical solution in this range is

shown in figure 1.

For x0 > 1/3, both the series expansion and/or the numerical integration yield solu-

tions that diverge and do not reach the UV region.

In figure 2 we have plotted solutions for the scalars at different values of x0. Those plots

suggest that the solution separating the convergent and divergent solutions at x0 = 1/3 is

the AdS-solution corresponding to the W-point in section 4.1. In particular, we see from

figure 3 that the values of rUV as a function of x0 converge to the AdS value at x0 = 1/3.
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Figure 1. Solution for x0 = −0.125 with rUV = 1.041.
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Figure 2. A family of solutions of (4.38) for different values of x0.

The numerics becomes unstable close to x0 = 1/3 due to the nearly vanishing factor (ζ− ζ̄)

in (4.38). The data points in the plot on the right were obtained by a series expansion to

order O(r300).

The value x0 = −1/3 is special as it yields another analytic solution, which we describe

in section 4.4.2 below.

Finally, for x0 < −1/3 we find regular solutions similar to those in figure 1, for which

R < rUV and hence one must resort to a numerical integration.

From the explicit solution we can read-off the relation between the IR parameter, x0,

and the UV data given by

a1 = a2 = a3 ≡ as , ã1 = ã2 = ã3 ≡ ãs , a , ã . (4.40)
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Figure 3. Function rUV(x0) obtained by interpolation from numerical solutions. The blue dots on

the right are the data points close to x0 = 1/3. The red dot denotes rUV(1/3).
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Figure 4. Function f(x0).

As expected, see (4.17), we do find that

as − ãs =
4

3
=⇒ ∆1 = ∆2 = ∆3 =

1

3
. (4.41)

However, as and ãs depend on x0,

as =
2

3
− 2

3
√

3
+ f(x0) , ãs = −2

3
− 2

3
√

3
+ f(x0) , f(0) = 0 , (4.42)

by the same shift, f(x0), from their x0 = 0 values. The function f(x0) is plotted in figure 4.

It diverges at x0 = 1/3.

4.4.2 An analytic solution at x0 = −1/3

This solution is obtained by setting ζ = −ζ̃. The consistency of the first two equations

in (4.38) sets

X = − 4ζ2

(1− ζ2)2
, X(0) = −1

3
. (4.43)

Then all three equations in (4.38) become identical and can be solved by an elementary

integration. Using the normalization (4.5), the solution is given by one of the roots of the

following 3rd order polynomial,

ζ3 + 3
r2 − r2

UV

r2 + r2
UV

ζ2 − 3 ζ −
r2 − r2

UV

r2 + r2
UV

= 0 , r2
UV =

32

27
. (4.44)
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Figure 5. Solutions for x0 = 0 (left) and x0 = −0.125 (right) and c̃1 = −0.5181, c̃2 = −0.0625,

c̃3 = −0.25.

It can be written explicitly as

ζ = R− 2
√

1 +R2 cosα , α =
1

3
[Arg(R+ i) + π] , R =

r2
UV − r2

r2
UV + r2

. (4.45)

In the UV we find

as =
2

3
, ãs = −2

3
, (4.46)

which shows that

f

(
−1

3

)
=

2

3
√

3
. (4.47)

This solution appears to be very special and we were not able to generalize it.

4.4.3 General numerical solutions

For generic boundary conditions in the IR, the construction of a series solution proceeds

the same way as in the symmetric sector above. We find that starting with random c̃i’s

and keeping |x0| small enough, the power series solution converges as expected. A typical

solution is shown in figure 5. By combining the power series expansion and numerical

routines we were able to explore the relation between the IR and the UV data to establish,

based on random sampling, the following results for regular solutions:9

(i) The UV parameters, ∆i, defined in (4.20) do not depend on x0 and thus are given

by their x0 = 0 values in (4.32).

(ii) The parameters ai and ãi are shifted from their x0 = 0 values given in (4.31) by the

same function f(c̃i, x0).

Clearly, the result in (i) follows from (ii). Since there are only two independent ∆i

and three independent IR parameters, two c̃i and x0, it is not surprising to find a direction

in the IR parameter space along which the ∆i are constant. However, a priori there is no

reason why it should correspond precisely to the IR value, x0, of the hyperscalar. This fact

does not appear to be a simple consequence of the symmetry of equations under a cyclic

permutation of the vector scalars as one might have expected.

9We have restricted our calculations to real c̃i and real x0.
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Let us denote by a
(0)
i (c̃) and ã

(0)
i (c̃) the values of the UV parameters at x0 = 0 given

in (4.31). Then

ai(c̃, x0) = a
(0)
i (c̃) + f(c̃, x0) , ãi(c̃, x0) = ã

(0)
i (c̃) + f(c̃, x0) , (4.48)

and we find that the function f(c̃, x0) depends nontrivially on both c̃i and x0.

5 The holographic S3 free energy

The supergravity solutions constructed above provide the gravitational description of the

ABJM theory deformed by real masses, δi, in (2.5) and the superpotential mass, m, in (2.6).

To test this, in this section we compute the free energy on the supergravity side and compare

with the field theory result (2.8). The calculation is somewhat subtle because some of the

scalar fields are dual to dimension one operators in ABJM. This means that the usual

holographic dictionary, by which the free energy, defined as the logarithm of the partition

function on S3, is equal to the on-shell supergravity action, is modified. Indeed, the correct

relation is that the field theory free energy should be equal to a Legendre transform of the

on-shell supergravity action [1, 32] (see, also [33]).

5.1 Holographic renormalization and the on-shell action

The action in (3.1) when evaluated on-shell, in particular on the solutions obtained in sec-

tion 4, is divergent due to the contributions from the integration over the radial variable,

r,10 close to the asymptotically H4 region. To cancel those divergences one has to add

appropriate boundary terms, or counterterms, following the standard procedure of holo-

graphic renormalization [30]. The radial integral in the action (3.1) should then be taken

from the IR region at r = rIR up to a UV cutoff, r = r0. The boundary terms should

similarly be evaluated at r = r0 and only after adding all of these contributions one should

remove the cutoff by taking the limit r0 → rUV.

Implementing this procedure leads to the following regularized action,

Sreg = Sbulk + SGH + SR + SSUSY , (5.1)

where Sbulk is the action (3.1) and

SGH ≡ −
∫
S3

dΩ3

√
hK = −

∫
S3

dΩ3

[
3L3e3A−BA′

]
r=r0

,

SR ≡
L

2

∫
S3

dΩ3

√
hR =

∫
S3

dΩ3

[
3L2eA

]
r=r0

,

SSUSY ≡
1

L

∫
S3

dΩ3

√
h
(
WW̃

)1/2
=

∫
S3

dΩ3

[
L2e3A

(
WW̃

)1/2 ]
r=r0

,

(5.2)

are the boundary terms evaluated at the cutoff r0. As usual, the prime denotes the deriva-

tive with respect to the radial coordinate r.

10Throughout most of this section, r is a generic radial coordinate and we do not assume any particular

gauge for the metric (3.7).
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The first two terms in (5.2) are the standard Gibbons-Hawking boundary term, SGH,

and the divergent counterterm, SR, arising from the curvature of the boundary S3-manifold,

both evaluated using the boundary metric, hab, induced by the bulk metric (3.7).11 The last

term, SSUSY, deserves some comments. It depends on the metric and the scalar fields and

contains both divergent terms, quadratic in the scalar fields, as well as finite terms, cubic

in the scalar fields, near the S3 boundary. While the divergent terms can be obtained by

the standard holographic renormalization techniques, the finite terms come with a specific

coefficient determined by a supersymmetric renormalization scheme in the holographic

setup. The need for such finite counterterms in the four-dimensional maximal gauged

supergravity and its truncations was emphasized in [1] and [33]. The SSUSY counterterm

in (5.2) is an obvious generalization of the corresponding counterterm in the STU-model

in [1]. It also follows from the general result in appendix C of [33] applied to the present

truncation.

By converting the boundary terms to a total derivative with respect to r and integrating

over the sphere, we can rewrite the regularized action (5.1) as

Sreg =

∫ r0

rIR

dr

∫
S3

dΩ3 Lreg

= volS3L3

∫ r0

rIR

dr

[
e3A−B

(
− 3(A′)2 − 3

L2
e2(B−A)

+
3∑
i=1

z′iz̃
′
i

(1− ziz̃i)2
+

z′z̃′

(1− zz̃)2
+
e2B

2L2
P

)

+
1

L

(
3eA + e3A

(
WW̃

)1/2
)′]

,

(5.3)

where volS3 = 2π2 is the volume of the unit three-sphere and we have introduced the

regularized Lagrangian Lreg. For regular solutions in section 4 that are of interest here, the

metric function eA vanishes at r = rIR,12 while the scalar fields are finite. This ensures that

by recasting the counterterms (5.2) into bulk integrals we do not introduce any additional

terms in the IR.

Since we are interested in evaluating the regularized action (5.3) on-shell, we can now

employ the BPS equations and the equations of motion to further simplify its form. To this

end, we note that the BPS equation (3.11) and the equation of motion for A in (C.4) can

be used to rewrite WW̃ and the kinetic terms for the scalar fields in terms of the metric

functions A and B. Furthermore, the BPS equations imply the identity

z′iz̃
′
i

(1− ziz̃i)2
+

z′z̃′

(1− zz̃)2
=
e2B

2L2

(
P +

3

2
WW̃

)
, (5.4)

which allows us to rewrite also the potential in terms of the metric functions. Finally,

collecting the resulting terms into a total derivative and then rewriting the latter as a new

11Recall that K is the trace of the extrinsic curvature and R the Ricci scalar of the boundary metric. In

the FG-gauge, K = 1
L
∂ρ ln

√
h.

12See, e.g., (4.22) with rIR = 0.
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boundary term, we are left with the following result for the on-shell action,

Son-shell ≡ lim
r0→rUV

Sreg

= volS3L2 lim
r0→rUV

[∫ r0

rIR

dr

[
− 2

L
eA+B

]

+

[
3eA − 2Le3A−BA′ + 2e3A

√
L2e−2B(A′)2 − e−2A

]
r=r0

]
,

(5.5)

which involves the metric functions only. Note that (5.5) is manifestly invariant under

reparametrizations of the radial coordinate and is thus valid in any gauge.

Although the boundary contribution in the last line in (5.5) may seem somewhat in-

volved, one has to remember that only the singular and the finite terms as r0 → rUV

contribute to the on-shell action. In turn, those terms are determined by the UV asymp-

totics of a solution leading to a rather simple result. To illustrate this, consider (5.5) in

the conformal gauge (3.14). Using (4.10), the UV expansion of the boundary term is

3eA − 2re2AA′ + 2e2A
√
r2(A′)2 − 1 = − 2rUV

r − rUV
− 1 +O(r − rUV) . (5.6)

It is rather remarkable that while the individual terms on the left hand side depend on the

regular terms in the expansion (4.10), the contribution from those regular terms cancels

out so that only the singular part of the UV expansion (4.10) is needed to obtain (5.6).

Then the on-shell action (5.5) in the conformal gauge is simply given by

Son-shell = −2 volS3L2

[∫ rUV

0
dr

(
e2A

r
− rUV

(r − rUV)2

)
− 1

2

]
, (5.7)

where the integral is now convergent.

It is now straightforward to compute the on-shell action for the solutions found in

section 4. In particular, for the analytic solution in the limit of the vanishing hyper-

scalars (4.27)–(4.30) we find

Son-shell(c̃i, x0 = 0) = 2 volS3L2 1 + c̃1c̃2c̃3

1− c̃1c̃2c̃3
, (5.8)

which agrees with [1]. For generic solutions that are parametrized by the constants c̃i and

x0 = c c̃, the on-shell action can be evaluated only numerically and we find that it depends

nontrivially on all parameters, in particular on x0.

5.2 Canonical conjugates and the Legendre transform

The scalar fields of the N = 8 gauged supergravity in four dimensions are 35 scalars and

35 pseudoscalars that are respectively dual to scalar bilinear operators of conformal dimen-

sion one and to fermionic bilinear operators of dimension two in the ABJM theory. As was

first emphasized in [32], following the earlier work on quantization in AdS backgrounds [31],
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this leads to different holographic dictionaries for the coefficients in the UV expansions for

the scalars and the pseudoscalars. For the pseudoscalars, the leading term in (4.12) is as

usual the “source” and the subleading term is the “vev” for the dual operator, but the

roles are “altered” when the dual operator has dimension one. More precisely, one must

Legendre transform the on-shell action with respect to the scalars upon which the lead-

ing term of the conjugate field becomes the “source” and the subleading term the “vev”.

Clearly, the same rules apply to any truncation of the maximal theory.

Tracing back the N = 8 supergravity origin of the fields in our consistent truncation,

one finds that the linear combinations zi − z̃i as well as both z and z̃ are pseudoscalars,

while the linear combinations zi + z̃i correspond to scalars.13 This means that, similarly

as in [1], we must perform the Legendre transform with respect to the combination zi + z̃i
of the scalar fields.

To implement the Legendre transform, we start by computing the canonical conjugates

for the scalar fields. For a more direct comparison with similar calculations in [1, 33], we

work in the Fefferman-Graham gauge (3.15) for which the UV expansion of the scalar fields

is given in (4.12). The canonical conjugate of the leading term, ai, is then defined as

ai ≡ − lim
ρ0→∞

δSreg[ai, ãi, a, ã]

δai
= − lim

ρ0→∞
e−ρ0Πzi(ρ0) . (5.9)

Here ρ0 is the UV cut-off and

Πzi(ρ) =
∂Lreg

∂(∂ρzi)
, (5.10)

where Lreg is defined in (5.3). The canonical conjugates of ãi, a and ã are defined in a

similar way. A direct calculation gives the following result14

ai =
L2

8

(
b̃i +

a1a2a3

ai
− aã

2

)
,

ãi =
L2

8

(
bi +

ã1ã2ã3

ãi
− aã

2

)
,

(5.11)

and

a =
L2

8

(
b̃− ã

2
(a1 + a2 + a3 + ã1 + ã2 + ã3)

)
,

ã =
L2

8

(
b− a

2
(a1 + a2 + a3 + ã1 + ã2 + ã3)

)
.

(5.12)

As expected, modulo the quadratic terms on the right hand sides in (5.11)–(5.12), the

canonical conjugate of the leading term in (4.11) is the subleading term in (4.11), which

is an explicit realization of the exchange between a “source” and a “vev”. However, see

13See, appendix B in [25], in particular equations (B.6)–(B.8) with ζ1 = 0 and ζ2 = z. One can also

deduce the parity of the scalar fields by rewriting the supersymmetry variations (A.14), (A.17) and (A.18)

in terms of Majorana spinors.
14There is a relative minus sign between our results and those of [1]. We expect that a minus sign is

missing in (6.12) of [1], as it is also necessary to obtain (6.21) from (6.19) and (6.20) in [1].
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also [33], the exchange is not exact; there are corrections due to the quadratic terms

that arise from the counterterm, SSUSY. In this sense, the precise form of the canonical

conjugates in (5.11)–(5.12) is determined by supersymmetry.

The Legendre transformed on-shell action is now given by

Jon-shell = Son-shell +
1

2

∫
S3

dΩ3

3∑
i=1

(ai + ãi)(ai + ãi) , (5.13)

and we need to evaluate it explicitly on regular solutions of the BPS equations (3.8)–(3.11).

The UV analysis of the BPS equations in section 4.2.1 established explicit relations be-

tween the leading and subleading terms in (4.11), which we can now use to simplify (5.11)–

(5.13). Indeed, using (4.17)–(4.19) in (5.11), we find that

ai = −L
2

4
ãi , ãi =

L2

4
ai . (5.14)

In particular,

ai ± ãi =
L2

4
(ai ∓ ãi) , (5.15)

which reflects the fact that supersymmetry fixes the relative coefficients between the sources

of dimension one and dimension two operators in the deformation of the ABJM Lagrangian.

Using (4.17)–(4.19) in (5.12), one finds that

a = ã = 0 . (5.16)

This suggestive result has an interpretation in the dual field theory. The scalar fields z and

z̃ are dual to the fermionic bilinear operators sourced by the superpotential deformation

in (2.6). Thus their “sources” in the UV expansion (4.12) are proportional to the super-

potential mass parameter, m. From the results discussed in section 2, it is clear that the

free energy as well as other supersymmetric observables, which can be computed by super-

symmetric localization of the path integral, do not depend continuously on the parameter,

m. This can be understood as a Ward identity for correlation functions and the vanishing

of the canonical conjugates in (5.16) can be viewed as the supergravity counterpart of this

Ward identity.

5.3 Free energy

The Legendre transformed on-shell action, Jon-shell, is a function of ai + ãi, ai − ãi, a and

ã. Using (5.15), we can rewrite (5.13) as

Jon-shell = Son-shell + volS3

L2

8

3∑
i=1

(a2
i − ã2

i ) , (5.17)

so that it becomes a function of the UV parameters, a priori, ai, ãi, a and ã. The problem

that we now face is to evaluate (5.17) on the space of regular solutions to the BPS equations.

Those correspond to a subspace of allowed UV parameters which we explored numerically

in section 4.4.3 with the main results summarized in (i) and (ii).
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Since, unlike in [1], we do not know solutions to our BPS equations in a closed form,

we cannot evaluate (5.17) directly. It is then natural to first try to determine how Jon-shell

varies within the space of solutions. This is a much easier problem because the variation

of the on-shell action is effectively a boundary calculation.

Indeed, by repeating the same steps as in appendix C.3 in [2] and using (5.9) and (5.10)

along the way, we obtain the following general result for the variation of the regularized

action,

dSreg

dµ
= −

∫
S3

dΩ3

[
3∑
i=1

(
ai
∂ai
∂µ

+ ãi
∂ãi
∂µ

)
+ a

∂a

∂µ
+ ã

∂ã

∂µ

]
, (5.18)

where µ parametrizes any variation of the UV data. In particular, we can apply (5.18)

to variations of the on-shell action along a family of regular solutions parametrized by µ.

Including the Legendre transform and using (5.14), we then find

dJon-shell

dµ
=
L2

4

∫
S3

dΩ3

3∑
i=1

[(
ãi
∂ai
∂µ
− ai

∂ãi
∂µ

)
+

1

2

∂

∂µ
[(ai + ãi)(ai − ãi)]

]

= volS3

L2

4

3∑
i=1

(ai + ãi)
∂

∂µ
(ai − ãi) .

(5.19)

Next, recall that ai− ãi are proportional to ∆i defined in (4.20) and that, by our numerical

analysis in section 4.4.3, the latter do not depend on x0 = c c̃, where c and c̃ are the values

of the hyperscalars in the IR. This means that, in fact,

dJon-shell

dx0
= 0 , (5.20)

and hence Jon-shell is determined, at least locally, by its x0 = 0 value, for which it can be

calculated exactly given (5.8) and (4.31). The result is

Jon-shell = 2 volS3L2 (1− c̃2
1)(1− c̃2

2)(1− c̃2
3)

(1− c̃1c̃2c̃3)2
, (5.21)

which is the same as (6.21) in [1] except that the parameters c̃i are now subject to the

cubic constraint (4.26). Using (4.32), we can rewrite (5.21) as

Jon-shell = 2 volS3L2
√

∆1∆2∆3 , (5.22)

which is the main result of our supergravity calculation.

We have also confirmed (5.22) by extensive numerical checks in which we evaluated

Jon-shell given by (5.17) directly on numerical solutions. In particular, we find that a

nontrivial dependence of the on-shell action on the hyperscalar parameter, x0, is always

cancelled by the corresponding contribution from the additional terms in (5.17) due to the

Legendre transform. Combined with the observations in section 4.4.3, this implies that the

dependence of Son-shell on x0 is given by the function f(c̃i, x0) in (4.48).
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The comparison with the field theory partition function is now straightforward. In field

theory, the real mass parameters, δi, in (2.5) are couplings to dimension two operators [1]

which, on the supergravity side, are sourced by ai − ãi. We thus expect the relation

ai − ãi = nδi for some constant n. Since the supergravity constraint (4.17) becomes

identical to the field theory constraint (2.10) only if we set n = 8, this leads to the map

ai − ãi = 8 δi , (5.23)

or, equivalently, after we use (2.11) and (4.20), to

∆1 = ∆A2 , ∆2 = ∆B1 , ∆3 = ∆B2 . (5.24)

This also makes the relation between the field theory constraint in (2.7) and the con-

straint (4.21) in supergravity manifest.

To complete the comparison between the field theory and supergravity results, we need

the relation between the AdS scale, L, and rank of the gauge group N ,15

volS3L2 =
π

3
√

2
N3/2 . (5.25)

Then the holographic free energy (5.22) can be written as

Jon-shell =
4
√

2π

3
N3/2

√
∆1∆2∆3 , (5.26)

and, given (5.24), is manifestly equal to the field theory free energy (2.8) obtained via

supersymmetric localization.

6 Conclusions

In this paper we presented a non-trivial precision test of the gauge/gravity duality by suc-

cessfully comparing the large N result for the free energy of the ABJM theory deformed

by real and superpotential masses with the corresponding calculation in supergravity. Our

supergravity construction extends and generalizes the results of [1]. We turn on two ad-

ditional scalar fields in the bulk that are dual to the superpotential mass and find novel

holographic RG flow solutions in Euclidean signature. After carefully applying holographic

renormalization and alternative quantization, the on-shell action of these supergravity solu-

tions agrees with the results for the free energy of the theory computed by supersymmetric

localization. There are several interesting avenues for extending these results.

The deformation of ABJM theory with a single superpotential mass term, (2.6), can

be generalized by turning on superpotential masses for all four chiral superfields. This

general superpotential deformation preserves N = 2 supersymmetry and can be combined

with a deformation by non-vanishing real mass terms. The free energy of such theory on

S3 can be computed by supersymmetric localization and the result is analogous to the one

in (2.7) and (2.8); the real mass parameter for a chiral superfield with a superpotential

15See, e.g., [25] for a discussion of this relation in the conventions of this paper.
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mass term is fixed as in (2.7) and the free energy as a function of the remaining undeter-

mined real masses is obtained from (2.4). Although it should be possible to reproduce this

simple QFT result from supergravity by following the approach presented in this paper,

the details will most likely be technically challenging. The reason is that for each new

superpotential mass term in the ABJM theory, one has to enlarge the supergravity trunca-

tion of the four-dimensional N = 8 supergravity to include appropriate scalar fields in the

bulk. Then one has to construct Euclidean supergravity solutions within the larger trun-

cation, perform holographic renormalization, and compute the on-shell action. It would

be quite interesting to understand whether one could somehow circumvent this brute force

supergravity calculation to arrive at the final simple QFT result in a more direct manner.

We have been somewhat conservative in choosing the range of parameters for our

supergravity solutions by insisting that the metric be real and the scalar fields lie inside

the unit disk. Perhaps there are more general complex saddle points of the Euclidean

supergravity action that have a physical interpretation. In the dual QFT this amounts to

a careful analysis of the range of the parameters δi in (2.5) on the complex plane for which

there is a saddle point of the localization matrix model such that the free energy scales as

N3/2. It would be interesting to understand this better both in supergravity and in field

theory.

One can view our results, as well as those in [1], as a first step to harness the power

of localization in the context of non-conformal holography for the ABJM theory on S3. A

more ambitious goal is to extend this construction beyond the leading order in the large

N approximation. This is challenging both on the field theory and on the gravity side.

In [35], the partition function of the ABJM theory with two non-vanishing real masses

was computed to all orders in the 1/N expansion, but a general result for arbitrary real

and superpotential masses is not currently available. On the gravity side the problem can

perhaps be addressed by first uplifting the four-dimensional solutions constructed above, as

well as the ones in [1], to eleven dimensions and then understanding modifications by higher

curvature corrections. While the uplift to eleven dimensions is in principle algorithmic,16

taking into account higher curvature corrections is presumably a tall order. Perhaps a

more accessible problem is to perform a one-loop analysis of the eleven-dimensional bulk

solution, along the lines of [37], and in this way compute the logarithmic term in the 1/N

expansion from supergravity and then compare to the supersymmetric localization result.

Finally, we would like to note that a supergravity truncation with the same scalar fields

content, but a different gauging from the one studied here, arises from a compactification

of the massive IIA supergravity on S6 [38]. This truncation was studied further in [39]

with the goal of constructing Euclidean S3 solutions of the type discussed above. Such

solutions should have an analogous interpretation to the ones presented here as well as in [1].

Namely, they should be holographically dual to deformations of the three-dimensional

N = 2 SCFT studied in [40] by real and superpotential mass terms. It should be possible

to construct these supergravity solutions explicitly and compare their on-shell action to

16See [36] for the explicit uplift to type IIB supergravity of a similar five-dimensional solution with an S4

boundary found in [2].
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the localization result for the free energy as a function of the real masses presented in [40],

see also appendix A of [41].
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A The U(1)2-invariant truncation

In this appendix we summarize the results in [25] for the action and supersymmetry vari-

ations for the U(1)2-invariant truncation of the N = 8, d = 4 gauged supergravity [27].

A more detailed discussion of that truncation can be found in section 3 and appendix B

in [25] and the references therein.

A.1 The action

As shown in [25], the U(1)2-invariant truncation of the maximal gauged supergravity in

four dimensions is the N = 2 gauged supergravity coupled to the three Abelian vector

multiplets of the STU-model [42–44] and the universal hypermultiplet (see, e.g., [45] and

the references therein). One can also impose an additional U(1)-symmetry on the bosonic

fields, which projects out one of the scalars in the hypermultiplet. Finally, the four vector

fields of the U(1)4 gauge symmetry can be consistently set to zero.17 Then the remaining

fields in the bosonic sector are the graviton, gµν , and four complex scalar fields: three

vector scalars, zj , j = 1, 2, 3, and a hypermultiplet scalar, z. They parametrize the cosets,

MV and MH , respectively, where

MV ×MH ≡

[
SU(1, 1)

U(1)

]2

× SU(1, 1)

U(1)
, (A.1)

are 3 + 1 copies of the Poincaré disk, with the corresponding Kähler potentials:

KV = − log
[
(1− |z1|2)(1− |z2|2)(1− |z3|2)

]
, KH = − log(1− |z|2) . (A.2)

The bosonic Lagrangian in the U(1)3-invariant sector is

e−1Lbosonic =
1

2
R−

3∑
i=1

∂µzi∂
µz̄i

(1− ziz̄i)2
− ∂µz∂

µz̄

(1− zz̄)2
− g2P , (A.3)

17See, the comment after (A.16) below.
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where e =
√
− det gµν . The scalar potential, P, is given in terms of the “holomorphic”

superpotential [25]

V =
|z|2

1− |z|2
(1− z1)(1− z2)(1− z3) +

2

1− |z|2
(z1z2z3 − 1) , (A.4)

by

P =
1

2
eKV

[
3∑
i=1

∇ziV∇z̄iV
(1− |zi|2)2

+ 4
∂zV∂z̄V

(1− |z|2)2
− 3VV

]
, (A.5)

where

∇ziV = ∂ziV + (∂ziKV )V . (A.6)

A.2 Supersymmetry variations

The supersymmetry variations of the gravitini, ψµ
i, and the spin-1/2 fields, χijk, of the

N = 8 d = 4 supergravity are given by [27]

δψµ
i = 2Dµε

i +
√

2gA1
ijγµεj , (A.7)

δχijk = −Aµijklγµεl − 2gA2l
ijkεl , (A.8)

together with the complex conjugate transformations for the fields ψµi and χijk.
18

The U(1)2 ⊂ SU(3) ⊂ SO(6) ⊂ SO(8) symmetry acts nontrivially on the SO(8) indices

i, j, k = 1, . . . , 6. The invariant fermion fields are then the chiral gravitini, ψµ
7,8 and ψµ 7,8,

and the chiral spin-1/2 fields

χ127 , χ128 , χ347 , χ348 , χ567 , χ568 , (A.9)

χ135 = −χ146 = −χ236 = −χ245 , χ246 = −χ136 = −χ145 = −χ235 , (A.10)

and their complex conjugates. The supersymmetry parameters in the resulting N = 2

supergravity are the chiral spinors ε7,8 and ε7,8, which we relabel henceforth as ε1,2 and

ε1,2, respectively.

By evaluating the scalar tensors Aµijkl, A1
ij and A2 i

jkl on the scalar fields above, the

variations (A.7) and (A.8) for the U(1)2-invariant fermion fields can be written down ex-

plicitly. To simplify the resulting formulae, it is convenient to define the following auxiliary

functions:

W ≡ eKV /2 V , Fi ≡ −(1− |zi|2)DziW , i = 1, 2, 3 , (A.11)

where

Dzi = ∂zi +
1

2
∂ziKV , (A.12)

is the N = 2 covariant derivative, and

G ≡ eKV /2
[

2(z1z2z3 − 1) + (1− z1)(1− z2)(1− z3)
]
. (A.13)

18We recall that in the symmetric gauge for the scalar fields, the conventions of [27] imply that the

complex conjugation amounts to raising/lowering of the SO(8) indices i, j, k, . . . = 1, . . . , 8. It also changes

the chirality of the fermion fields.
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Then the spin-3/2 variations (A.7) are given by

δψµ
7 = 2∇µε1 + Bµε

1 − iCµε2 −
g√
2
W γµε1 ,

δψµ
8 = 2∇µε2 + Bµε

2 + iCµε
1 − g√

2
W γµε2 ,

(A.14)

where

∇µ = ∂µ +
1

4
ωµmnγ

mn , (A.15)

is the gravitational covariant derivative and

Bµ =
1

2

∑
j

zj∂µz̄j − z̄j∂µzj
1− |zj |2

, Cµ =
1

2

z∂µz̄ − z̄∂µz
1− |z|2

, (A.16)

are the composite Kähler gauge fields.

Comment. Note that Cµ is also the current for the minimal coupling of the hypermul-

tiplet scalar, z, to a combination of the U(1)4 gauge fields. Hence, the consistency of our

truncation requires that we set Cµ = 0, which implies that the phase of the hypermultiplet

scalar, z, must be constant.

The spin-1/2 variations for the fields in the vector supermultiplets are given by

δχ127 = −
√

2
∂µz̄1

1− |z1|2
γµε2 + g F1 ε

2 , δχ128 =
√

2
∂µz̄1

1− |z1|2
γµε1 − g F1 ε

1 ,

δχ347 = −
√

2
∂µz̄2

1− |z2|2
γµε2 + g F2 ε

2 , δχ348 =
√

2
∂µz̄2

1− |z2|2
γµε1 − g F2 ε

1 ,

δχ567 = −
√

2
∂µz̄3

1− |z3|2
γµε2 + g F3 ε

2 , δχ568 =
√

2
∂µz̄3

1− |z3|2
γµε1 − g F3 ε

1 ,

(A.17)

while for those in the hypermultiplet by

δχ135 = −δχ146 = −δχ236 = −δχ245

=
1

2
√

2

[
∂µ(z̄ − z)

1− |z|2
γµε1 + i

∂µ(z̄ + z)

1− |z|2
γµε2

]
+
g

2

G

1− |z|2
[
(z̄ − z)ε1 + i (z̄ + z)ε2

]
,

δχ246 = −δχ136 = −δχ145 = −δχ235

=
1

2
√

2

[
i
∂µ(z̄ + z)

1− |z|2
γµε1 −

∂µ(z̄ − z)

1− |z|2
γµε2

]
+
g

2

G

1− |z|2
[
i (z̄ + z)ε1 − (z̄ − z)ε2

]
,

(A.18)

with the complex conjugate transformations for the fields of the opposite chirality.

B Euclidean BPS equations

The Wick rotation of the supersymmetry variations (A.14), (A.17) and (A.18) can be done

in the same way as for the STU-model in [1]. Our goal here is to derive in a somewhat
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more direct way the BPS equations that result from setting the supersymmetry variations

to zero.

Following [1], we take the Euclidean metric of the form (cf. (3.7))

ds2 = L2 e2A(r)ds2
S3 + e2B(r)dr2 , ds2

S3 =
1

4
(σ2

1 + σ2
2 + σ2

3) , (B.1)

where ds2
S3 is the metric on the unit radius S3 with the Maurer-Cartan forms σi, i = 1, 2, 3,

satisfying dσ1 = σ2 ∧ σ3, etc. A natural set of frames for the metric (B.1) is then

e1 =
L

2
eAσ1 , e2 =

L

2
eAσ2 , e3 =

L

2
eAσ3 , e4 = eBdr . (B.2)

As usual, L = 1/
√

2g.

Upon Wick rotation, see section 3, the scalar fields zi and z and their complex conju-

gates z̄i and z̄ become independent complex fields. To emphasize this we denote the latter

as z̃j and z̃, respectively. Replacing z̄i and z̄ by z̃i and z̃ in (A.11) and (A.13), we obtain

the functions W, Fj , and G in the Euclidean regime. Correspondingly W̃, F̃j and G̃ denote

their “conjugate” counterparts. They are simply related to the untilded functions by the

exchange, zi ↔ z̃i and z ↔ z̃. For convenience, we have listed these functions explicitly

in (3.4).

Following [1], the Wick rotation of the Dirac matrices amounts to setting

γ0 −→ −i γ4 , γ1,2,3 −→ γ1,2,3 , (B.3)

which implies that

γ5 = i γ0γ1γ2γ3 −→ γ5
E = −γ1γ2γ3γ4 . (B.4)

At the same time, the chirality of the now independent left- and right-handed complex

spinors remains unchanged by the rotation. In particular, the supersymmetry parameters

now satisfy

γ5
Eε

α = εα , γ5
Eεα = −εα , α = 1, 2 . (B.5)

Together with (B.4), this implies

γiγ4εα = γjγkεα , γiγ4εα = −γjγkεα , α = 1, 2 , (B.6)

where (ijk) is a cyclic permutation of (123).

Let us start with the spin-1/2 variations. Assuming that the scalar fields depend only

on the radial coordinate, r, the variations in (A.17) read (there is no summation over the

repeated index below)

√
2

z′j
1− zj z̃j

e−B γ4εα − g F̃j εα = 0 ,

√
2

z̃′j
1− zj z̃j

e−B γ4εα − g Fj εα = 0 , α = 1, 2 , j = 1, 2, 3 .

(B.7)

We are interested in maximally supersymmetric configurations with non-vanishing Killing

spinors εα and εα. Thus, if any of the zj or z̃j is constant, that is z′j = 0 or z̃′j = 0, the
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corresponding function F̃j or Fj , respectively, must vanish. For now, let us assume that

the scalars have nontrivial profiles. We will return to the special cases afterwards.

By considering pairs of equations in (B.7), we obtain consistency conditions

(1− ziz̃i) F̃i z′j − (1− zj z̃j) F̃j z′i = 0 ,

(1− ziz̃i) F̃i z′j − (1− zj z̃j) F̃j z′i = 0 ,
(B.8)

and

z′iz̃
′
j −

1

2
g2e2B(1− ziz̃i)(1− zj z̃j)FiF̃j = 0 , (B.9)

which must hold for all i, j = 1, 2, 3. The conditions (B.8) imply that

M ≡ 1

2
g eB(1− ziz̃i)

F̃i
z′i
, M̃ ≡ 1

2
g eB(1− ziz̃i)

Fi
z̃′i
, (B.10)

are the same for all i and, using (B.9), satisfy

MM̃ = 1 . (B.11)

This reduces the variations (B.7) for generic scalar fields to two projections

γ4εα = Mεα , γ4εα = M̃εα , (B.12)

on the Killing spinors. Finally, using (B.11) we can rewrite (B.10) as the first set of BPS

equations

z′j =
g√
2

(1− zj z̃j) eB M̃ F̃j , z̃′j =
g√
2

(1− zj z̃j) eBM Fj . (B.13)

The remaining spin-1/2 variations (A.18) yield the following four equations

(z′ − z̃′)γ4ε1 − i (z′ + z̃′)γ4ε2 +
√

2 g eB G̃ (z − z̃)ε1 − i
√

2 g eB G̃ (z + z̃)ε2 = 0 ,

i (z′ + z̃′)γ4ε1 + (z′ − z̃′)γ4ε2 + i
√

2 g eB G̃ (z + z̃)ε1 +
√

2 g eB G̃ (z − z̃)ε2 = 0 ,

(z′ − z̃′)γ4ε1 − i (z′ + z̃′)γ4ε2 +
√

2 gG (z − z̃)ε1 − i
√

2 gG (z + z̃)ε2 = 0 ,

i (z′ + z̃′)γ4ε1 + (z′ − z̃′)γ4ε2 + i
√

2 gG (z + z̃)ε1 +
√

2 gG (z − z̃)ε2 = 0 ,

(B.14)

which are obviously absent if the hyperscalar vanishes. Requiring that there are no further

algebraic constraints on the Killing spinors, εα and εα, other than the projections (B.6)

and (B.12), we find that the following equations must hold:

M z′ = −
√

2 g eB G̃ z , M̃ z′ = −
√

2 g eB G z ,

M z̃′ = −
√

2 g eB G̃ z̃ , M̃ z̃′ = −
√

2 g , eB G z̃ .
(B.15)

Using (B.11), consistency of these equations implies that

M G = M̃ G̃ , (B.16)
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and we are left with the second set of BPS equations

z′ = −g
√

2 z eB M̃ G̃ , z̃′ = −g
√

2 z̃ eBM G . (B.17)

Using the projections (B.6) and (B.12) in the spin-3/2 variations (A.14) along S3

we find

∂σj ε
α = Φ γjεα , ∂σj εα = Φ̃ γjεα , j = 1, 2, 3, (B.18)

where

Φ = −1

4

[
LeA−BM A′ − 1

2
eA W̃ +M

]
, Φ̃ = −1

4

[
LeA−BM̃ A′ − 1

2
eAW− M̃

]
.

(B.19)

The derivatives ∂σj are along the Killing vector fields dual to the Maurer-Cartan forms σj .

Evaluating the commutators

[∂σi , ∂σj ] = −∂σk , (B.20)

where (ijk) is a cyclic permutation of (123), on the Killing spinors using (B.18), we obtain

[∂σi , ∂σj ]ε
α + ∂σkε

α = (−2 Φ Φ̃M + Φ) γkεα ,

[∂σi , ∂σj ]εα + ∂σkεα = (2 Φ Φ̃ M̃ + Φ̃) γkεα ,
(B.21)

which imply

Φ (2 Φ̃M − 1) = 0 , (2 Φ M̃ + 1) Φ̃ = 0 . (B.22)

There are two solutions to these equations that are consistent with (B.11), the first one

obtained by setting

Φ = 0 , Φ̃ = 0 , (B.23)

and the second one by setting

2 Φ +M = 0 , 2 Φ̃− M̃ = 0 . (B.24)

Unpacking (B.23) and (B.24) using (B.19), we obtain two sets of BPS equations:

I. A′ = g
√

2

[
−e−A+B +

eB

2
M̃ W̃

]
, A′ = g

√
2

[
e−A+B +

eB

2
MW

]
, (B.25)

II. A′ = g
√

2

[
−e−A+B +

eB

2
MW

]
, A′ = g

√
2

[
e−A+B +

eB

2
M̃ W̃

]
, (B.26)

that are simply related by the exchange of the tilded and untilded fields.

The remaining spin-3/2 variation along the r direction yields the radial dependence of

the Killing spinor and does not give rise to additional BPS equations. The reader may note

that we did not assume any specific dependence of the Killing spinors on the coordinates

along S3 and only used the integrability conditions (B.20), which guarantee the existence

of a solution.
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To summarize, we have shown that for generic profiles of the scalar fields, the vanish-

ing supersymmetry variations in the Euclidean regime yield first order differential equa-

tions (B.13), (B.17) and (B.25) or (B.26) for the scalar fields and the metric function

together with the algebraic constraints (B.11) and (B.16).

One can further simplify this system of BPS equations by first solving the two algebraic

constraints for M and M̃ ,

M = ξ
G̃1/2

G1/2
, M̃ = ξ

G1/2

G̃1/2
, ξ = ±1 . (B.27)

Secondly, we have

eA = ±4 ξ
G1/2 G̃1/2

GW̃− G̃W
, A′ =

eB

4L
ξ
GW̃ + G̃W

G1/2 G̃1/2
, (B.28)

that follow by solving (B.25) (top sign) or (B.26) (bottom sign). One is then left with the

“flow” equations for the scalars that read

z′j =
eB

2L
ξ (1− zj z̃j)

G1/2

G̃1/2
F̃j , z̃′j =

eB

2L
ξ (1− zj z̃j)

G̃1/2

G1/2
Fj , (B.29)

and
z′

z
= −e

B

L
ξG1/2 G̃1/2 ,

z̃′

z̃
= −e

B

L
ξG1/2 G̃1/2 . (B.30)

The second equation in (B.28) follows then from the first one after using (B.29) and (B.30).

The flow equations (B.30) imply that z and z̃ are proportional, which implies that the

Euclidean continuation of the current Cµ in (A.16) vanishes. This is consistent with having

the U(1)4 gauge fields set to zero.

When the hyperscalars z and z̃ vanish, (B.28) and (B.29) are equivalent to the BPS

equations derived in [1] for the Euclidean STU model.

Finally, let us consider the special configurations with constant scalars that were ex-

cluded above.19 The variations (B.7) yield

Fi = F̃i = 0 , (B.31)

with no further projection (B.12). From (B.14) we get

G = G̃ = 0 or z = z̃ = 0 , (B.32)

while the spin-3/2 variations imply

(A′)2 =
1

L2

[
e−2(A−B) +

1

4
e2BWW̃

]
. (B.33)

Note that (B.33) also holds for general scalar profiles. It simply follows from (B.25)

or (B.26) by eliminating M and M̃ using (B.11).

19We omit all possible intermediate solutions with a subset of scalars being constant as well as solutions

with reduced supersymmetry.
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C Euclidean equations of motion

The equations of motion for the metric functions in (3.7) and scalars with radial depen-

dence only can be obtained most efficiently from a Lagrangian for a corresponding one-

dimensional system. To do that one combines the bulk action (3.1) with the GH-boundary

term SGH defined in (5.2). After integration by parts of the A′′ terms from the Ricci scalar

for the metric (3.7) and then integration over the sphere, one is left with a one-dimensional

action along the radial coordinate,

S1D = volS3

∫
drL1D , (C.1)

where volS3 is the volume of the sphere and the effective one-dimensional Lagrangian is

L1D = L3e3A−B

[
−3(A′)2 − 3

L2
e2(B−A) +

3∑
i=1

z′iz̃
′
i

(1− ziz̃i)2
+

z′z̃′

(1− zz̃)2
+
e2B

2L2
P

]
. (C.2)

Varying (C.1) with respect to B gives the Hamiltonian constraint

3(A′)2 − 3L−2e−2(A−B) − z′iz̃
′
i

(1− ziz̃i)2
− z′z̃′

(1− zz̃)2
+
e2B

2L2
P = 0 , (C.3)

while varying with respect to A, zi, z̃i, z, and z̃ yields

A′′ −A′B′ + L−2e−2(A−B) +
z′iz̃
′
i

(1− ziz̃i)2
+

z′z̃′

(1− zz̃)2
= 0 ,

z̃′′i + (3A′ −B′) z̃′i +
2z1(z̃′i)

2

1− ziz̃i
− e2B

2L2
(1− ziz̃i)2 ∂P

∂zi
= 0 ,

z′′i + (3A′ −B′) z′i +
2z̃1(z′i)

2

1− ziz̃i
− e2B

2L2
(1− ziz̃i)2 ∂P

∂z̃i
= 0 ,

z̃′′ + (3A′ −B′) z̃′ + 2z(z̃′)2

1− zz̃
− e2B

2L2
(1− zz̃)2 ∂P

∂z
= 0 ,

z′′ + (3A′ −B′) z′ + 2z̃(z′)2

1− zz̃
− e2B

2L2
(1− zz̃)2 ∂P

∂z̃
= 0 ,

(C.4)

where we have used (C.3) to simplify the first equation. Different gauges for the radial

coordinate, r, simply amount to different choices for the function B(r) as discussed in

section 3.2.
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