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1 Introduction

The Bremsstrahlung function B is a physical quantity that plays an ubiquitous role when

probing quantum field theories. It is defined as the energy lost by a heavy quark slowly

moving in a gauge background [1]

∆E = 2πB

∫
dt(v̇)2, |v| � 1 (1.1)

and generalizes the well known constant B = e2/3π of electrodynamics.

In a conformal field theory, it also coincides with the lowest order coefficient in the

small angle expansion of the cusp anomalous dimension

Γ(ϕ, g) ∼
ϕ�1
−B(g)ϕ2 (1.2)

which governs the short distance behavior of a ϕ-cusped Wilson operator

〈W 〉 ∼ e−Γ(ϕ,g) log Λ
µ (1.3)

Here Λ and µ are the IR cut-off and the UV renormalization scale, respectively, whereas Γ is

a function of the geometric angle of the cusp and the coupling g of the theory. Consequently,

B in (1.2) is in general a non-trivial function of g.
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Equation (1.3) provides the standard prescription for computing the Bremsstrahlung

function at weak coupling. In fact, it is sufficient to compute the cusped Wilson operator

order by order in g, using dimensional or cut-off regularization to tame UV divergences

and introducing a suppression factor to mitigate divergences at large distances. After

removing the IR regulator by a multiplicative renormalization (〈W 〉 → 〈W̃ 〉, see eq. (6.4))

and renormalizing the short distance divergences at scale µ

〈WR〉 = Z−1
cusp〈W̃ 〉 s.t.

d log〈WR〉
d log µ

= 0 (1.4)

we finally read Γ as

Γ(ϕ, g) =
d log(Zcusp)

d log µ
. (1.5)

Its small angle expansion then leads to B at a given order in the coupling, according to

eq. (1.2). In dimensional regularization, which will be used in this paper, Γ can be read

from the coefficient of the 1/ε pole.

In order to use B for probing the theory at different scales, aimed for instance at

performing precision tests of the AdS/CFT correspondence, one needs to go beyond the

perturbative regime. A clever way to do that is to relate B to quantities that can be

computed holographically and, in superconformal theories, by the use of localization tech-

niques. The top candidates for these quantities are circular BPS Wilson loops for which

exact results can be obtained from a computable matrix model.

For N = 4 SU(N) SYM theory, in [1] it was proved that the Bremsstrahlung function

can be computed as a derivative of the vacuum expectation value (vev) of a circular 1/2

BPS Wilson loop with respect to the ’t Hooft coupling λ ≡ g2N

BN=4 =
1

2π2
λ∂λ log〈W 〉 (1.6)

where 〈W 〉 is computed exactly by a gaussian matrix model that localizes the vev on the

four sphere S4 [2–4]. Alternatively, working on an ellipsoid Sb with squashing parameter

b, the prescription for obtaining the Bremsstrahlung function takes the form

BN=4 =
1

4π2
∂b log〈Wb〉

∣∣∣∣
b=1

(1.7)

where 〈Wb〉 is the circular Wilson loop computed by the matrix model on the ellipsoid [5–7].

A similar prescription has been conjectured [8] and then proved [9–13] for the B func-

tion in three dimensional Chern-Simons-matter theories, notably the ABJ(M) model, where

B is related to the derivative of a latitude Wilson loop on S3 respect to the latitude pa-

rameter. A matrix model for computing this quantity has been recently proposed in [14].

In this letter we are interested in four dimensional N = 2 SYM theories, in particular

N = 2 SU(N) superconformal QCD (SCQCD), for which Fiol, Gerchkovitz and Komar-

godski [15], inspired by the N = 4 result, conjectured that

BN=2 =
1

4π2
∂b log〈Wb〉

∣∣∣∣
b=1

(1.8)
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where again 〈Wb〉 is the circular Wilson loop corresponding to the matrix model on

the ellipsoid.

Identity (1.8) has been explicitly checked up to three loop for gauge group SU(2) [15],

while for N > 2 only a consistency check of its positivity has been given there. One of the

main goals of this letter is to extend this proof to the general SU(N) case.1

To this end we consider a generalized Maldacena-Wilson operator [17] along a cusped

line with geometric angle ϕ and featured by an internal angle θ which rotates the couplings

to the adjoint matter when moving through the cusp. The corresponding generalized cusp

anomalous dimension turns out to be a function of both angles, Γ(ϕ, θ, g).

For generic SU(N) SCQCD we perform a genuine three-loop calculation of the cusped

operator at generic angles and finite group rank N . From the 1/ε pole of the dimensionally

regularized result we then extract the generalized cusp Γ(ϕ, θ, g) at three loops (order g6)

and the corresponding B from its small angle expansion. We find a general result that,

remarkably, coincides with the r.h.s. of eq. (1.8) once we expand the matrix model defining

〈Wb〉 up to O(g6). This confirms the validity of conjecture (1.8) for any SU(N) gauge group.

Beyond providing a three loop check of this conjecture, our results (6.6), (6.7) represent

the first complete N = 2 SCQCD corrections to Γ(ϕ, θ, g) and B(g) at three loops. In

particular, up to three loops we find that for small angles Γ(ϕ, θ, g) ∼ B(g)(θ2 − ϕ2) and

the cusp vanishes at θ = ±ϕ. We then conclude that at these points the cusped Wilson

operator becomes BPS, in analogy with the corresponding operator in N = 4 SYM theory.

In fact, it can be proved that for θ = ±ϕ the operator reduces to a Zarembo’s type one [18].

The left and the right rays of the cusp share the same superconformal charges, which are

then globally preserved.

The cusp anomalous dimension for ordinary Wilson operators with no coupling to

matter has been already computed up to three loops for QCD and supersymmetric gauge

theories with matter in the adjoint representation [19, 20].2 Our result completes this

picture by including both fundamental and adjoint matter in a supersymmetric way and

considering BPS Wilson operators with non-trivial matter couplings.

In approaching the problem we use a different computational setup from the one used

in [15], where the expression of the three-loop Bremsstrahlung function was derived by

inserting in the cusp the resummed two-loop propagators as computed in [22]. Rather we

treat each diagram contributing to the cusp, separately — no resummation involved —

and compute each of them using the Heavy Quark Effective Theory (HQET) formalism.

This approach has the great advantage that, by applying a clever chain of integration by

parts, all the integrals can be expressed in terms of a linear combination of a basis of known

three-loop HQET Master Integrals. In addition, it provides a promising framework where

we can attempt higher-loop calculations and speculate about the origin of some unexpected

terms in the higher order expansion of the B function [23], which can be shown to arise

naturally in the HQET context.

1Conjecture (1.8) came together with a related one stating that BN=2 = 3h, where h is the coefficient

of the one-point correlation function for the stress-energy tensor in the presence of the Wilson line defect.

This second conjecture was later proved in [16].
2For a summary of some partial four-loop results see [21] and references therein.
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This computational set-up could be fruitfully used also for performing higher-loop tests

of correlation functions in N = 2 SCQCD and in the defect field theory defined on the

Wilson contour, along the lines of [24–28].

The paper is organized as follows. We first fix our conventions and describe our com-

putational strategy in section 2, and recall the Matrix Model result in section 3. Then the

core of the paper follows, where we report the diagrammatic approach to the three-loop

calculation in section 4 and the HQET evaluation of the Feynman integrals in section 5.

The main results are presented in section 6 where we discuss the consistency of our findings

with the conjectural expression (1.8) for SU(N) N = 2 SCQCD at any finite N . More

generally, we give the first complete three-loop expression for the N = 2 corrections to

the generalized cusp anomalous dimension and the corresponding Bremsstrahlung func-

tion. We also provide an explicit check of the universal behavior of the cusp anomalous

dimension proposed in [19, 20], which should work up to three loops. Finally, a critical

discussion about the use of our technologies for going to higher loops is presented in sec-

tion 7. Appendix A fixes the conventions needed to follow our calculations and appendix B

collects several computational details.

2 The difference method

We will compute the cusp anomalous dimension and the associated Bremsstrahlung func-

tion of N = 2 SCQCD by comparing them with the corresponding known quantities of

N = 4 SYM. In fact, it is well-known that this trick drastically reduces the number of new

diagrams to be computed, as we briefly review here.

As a starting point, we find convenient to approach the problem within the framework

of N = 1 superspace (see appendix A for conventions). In this language the field content

of the N = 2 SCQCD theory with gauge group SU(N) is organized into one vector and

one chiral multiplets transforming in the adjoint representation of SU(N), which form the

N = 2 vector multiplet, together with Nf = 2N chiral multiplets QI ,
¯̃QI , I = 1, . . . , 2N ,

building up 2N N = 2 hypermultiplets transforming in the fundamental representation of

the gauge group.

Analogously, the N = 4 SYM theory is described by one vector multiplet plus a SU(3)

triplet of adjoint chiral multiplets. Together they build up the N = 2 vector multiplet,

combining the N = 1 vector with one of the chiral multiplets in analogy with the N = 2

SCQCD case, plus one adjoint N = 2 hypermultiplet from the two remaining adjoint

chiral multiplets.

Therefore, the two theories have the same N = 2 gauge sector, while the difference

relies only in the matter content and entails the comparison of two of the adjoint chiral

superfields in N = 4 SYM as opposed to the pair of 2N superquark fundamentals in N = 2

SCQCD [29]. This allows to drastically simplify the calculation of any observable O that

is common to N = 2 SCQCD and N = 4 SYM theories if, instead of computing 〈O〉N=2

directly, one computes the difference 〈O〉N=2 − 〈O〉N=4. In fact, in the difference all the

Feynman diagrams that are common to the two theories cancel, in particular the ones

built with fields belonging to the gauge sector. The computational strategy of taking the
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difference was first introduced in [22], albeit working with a different description of the

field content of the two theories.

We will work in the component formulation of the two models directly derived from

projecting the two N = 1 superfield actions and eliminating the auxiliary fields. The

explicit form of the actions in components together with the computational conventions

can be found in appendix A.

In this context we consider a Maldacena-Wilson operator common to N = 2 SCQCD

and N = 4 SYM theories

W =
1

N
TrP e−ig

∫
C dτL(τ) (2.1)

with Euclidean connection

L(τ) = ẋµAµ +
i√
2
|ẋ| (φ+ φ̄) (2.2)

where φ, φ̄ are the adjoint scalars entering the N = 2 vector multiplet shared by the

two theories.

Even if our computation is entirely done in the component formalism, it is worth to

mention that in N = 1 superspace some effective rules to evaluate diagrammatic difference

〈O〉N=2 − 〈O〉N=4 have been derived [30] and later formalized [31] in the context of the

calculation of the SU(2, 1|2) spin chain Hamiltonian of N = 2 SCQCD. In that case it

was shown that the only source of diagrams potentially contributing to the difference is

given by graphs containing chiral loops cut by an adjoint line (either vector or chiral).

This rule was found later to be valid also in the context of the computation of the adjoint

scattering amplitudes of N = 2 SCQCD [32]. In particular, topologies containing “empty”

chiral loops are constrained to produce the same result for the two models. In fact, for

such type of diagrams computing the difference is only a matter of counting the number

of possible realizations of the loop in terms of adjoint and/or fundamental superfields. As

a consequence of the condition Nf = 2N , the two models turn out to give the same result.

One might wonder whether similar rules survive when reducing the theory to compo-

nents and if they can be easily applied to the computation of the cusp anomalous dimension.

As we are going to show in the rest of the paper, this turns out to be the case for diagrams

involving only minimal gauge matter-couplings up to three loops, due to the fact that

the actions in components display the same flavour structure of their N = 1 superspace

versions. Of course, possible complications in taking too seriously the parallel with the

superfield rules may arise when considering higher order diagrams involving superpotential

vertices. In this case we expect the component diagramatics to follow different rules with

respect to the superspace version.

3 The matrix model result

In order to prove identity (1.8) we begin by recalling the evaluation of its right hand side,

where 〈Wb〉 is the 1/2 BPS circular Wilson loop of the form (2.1), (2.2) defined on the

maximal latitude or the maximal longitudinal circles of the ellipsoid [15]

x2
0 +

x2
1 + x2

2

l2
+
x2

3 + x2
4

l̃2
= 1 (3.1)
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Applying localization techniques, in N = 4 SYM theory the vev of this operator is

computed exactly by the following matrix model [2–4]

〈Wb〉 =

∫
da tr(e−2πba) e−

8π2N
λ

tr(a2)∫
da e−

8π2N
λ

tr(a2)
+O

(
(b− 1)2

)
(3.2)

and turns out to be a function of the squashing parameter b = (l/l̃)2. From this expression

the Bremsstrahlung function can be easily computed by using identity (1.7).

Similarly, in N = 2 SCQCD it is given by [4–7, 33, 34] (for a review, see [35])

〈Wb〉 =

∫
daTr e−2πba e

− 8π2

g2 Tr(a2)
Z1-loop(a, b)|Zinst(a, b)|2∫

da e
− 8π2

g2 Tr(a2)
Z1-loop(a, b)|Zinst(a, b)|2

(3.3)

According to conjecture (1.8) the only terms in the matrix model which can contribute

to B are the ones linear in (b−1). Since the classical, one-loop and instanton contributions

start deviating from their S4 counterparts only at second order in (b − 1), it follows that

〈Wb〉 in (3.3) can be computed using the one-loop determinant and instanton factors of the

round S4 matrix model [15].

Assuming prescription (1.8) to be true for any N and expanding the two matrix mod-

els (3.2), (3.3) up three loops, we obtain the general prediction for the difference of the

Bremsstrahlung function in the two theories

BN=2 −BN=4 = − 3ζ(3)

1024π6

(N2 − 1)(N2 + 1)

N
g6 +O(g8) (3.4)

For N = 2 this expression reduces to

BN=2 −BN=4 = − 45

2048π6
ζ(3) g6 +O(g8) (3.5)

which has been already checked in [15] against a three-loop perturbative calculation. In

the next section we generalize the proof of eq. (3.4) to any finite N .

4 The perturbative result

In order to check eq. (3.4) we perform a perturbative three-loop calculation of its left

hand side along the lines described in the introduction, that is by extracting the difference

of the two bremsstrahlung functions from the small angle limit of the difference of the

corresponding cusp anomalous dimensions, ΓN=2 − ΓN=4.

To this end, in Euclidean space we consider an operator of the form (2.1) where the

contour C is made by two infinite straight lines parametrized as

xµ(τ1) = vµ1 τ1 0 < τ1 <∞
xµ(τ2) = vµ2 τ2 −∞ < τ2 < 0 (4.1)

The two lines form an angle ϕ, such that cosϕ = v1 · v2 and |v1| = |v2| = 1.

– 6 –
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We also allow for two different scalar couplings on the two lines of the contour, char-

acterised by a relative internal angle θ. Precisely, on the two rays we choose

L1(τ) = vµ1Aµ +
i√
2

(
φ eiθ/2 + φ̄ e−iθ/2

)
(4.2)

L2(τ) = vµ2Aµ +
i√
2

(
φ e−iθ/2 + φ̄ eiθ/2

)
(4.3)

As a first step we have to evaluate WN=2 −WN=4. At order O(g2) the only diagrams

are the single gluon and single adjoint scalar exchanges, for which the result is the same in

both theories. At this order the difference is therefore zero. This property extends to all the

diagrams built with tree level n-point functions inserted into the Wilson line, since in this

case contributions from the hypermultiplets do not appear. The next order is O(g4), where

the only non-tree diagrams are the exchange of one-loop corrected propagators. However,

it has been shown that in the difference they still cancel since the contribution from a loop

of 2N fundamental fields is the same as the one from the loop of one adjoint field [22].

The first non-trivial contribution starts at O(g6) where the contributing diagrams

correspond to the insertion of two-loop corrected gauge/scalar propagators and one-loop

corrected cubic vertices. Here we analyze them separately, and postpone the evaluation of

the corresponding integrals to section 5.

4.1 Two-loop propagator diagrams

We begin by considering the diagrams with two-loop corrections to the vector and adjoint

scalar propagators. Taking the difference between the N = 2 and N = 4 propagators, the

diagram topologies which survive are the ones listed in figure 1. Here we neglect topologies

that would produce vanishing cusp integrals. For simplicity we are not depicting the

insertion of the diagrams into the Wilson loop contour. We use double lines to represent

fields in the adjoint representation, whereas we use simple lines to represent fields that can

be either in the adjoint or in the fundamental representation. Each topology in figure 1 then

corresponds to the collection of all possible diagrams of that kind that can be realized in

terms of both adjoint and fundamental fields of the two models. For instance, in figure 1(a)

the simple solid loop stands generically for one of the following realizations: in N = 4 SYM

it indicates any of the three adjoint scalar fields φI , I = 1, 2, 3, whereas in N = 2 SCQCD

it corresponds to either the adjoint scalar φ or one of the two fundamental sets of fields

qI , ¯̃qI with I = 1, . . . , 2N . The same happens for diagrams (b), (c), (d). For diagrams

(e), (h), (i), (k) involving a simple fermionic loop we have a parallel counting, this time in

terms of the adjoint fermion fields ψ and the fundamentals λ, λ̃.

We see that, excluding diagrams (f), (g), (j), we are only dealing with minimal gauge-

matter couplings, so that the superfield difference selection rules of [31] still hold and we

are left only with diagrams with matter loops cut by an adjoint line. Instead, diagrams

(f), (g), (j) involve interaction vertices from the potential. Consequently, the list of possi-

ble field realizations cannot exactly parallel the superfield counting anymore. For instance,

diagram (g) produces non-vanishing contributions to the difference which include the gaug-

ino field η, while diagram (j) requires a careful analysis of all possible flavour realizations

stemming from the quartic vertices.

– 7 –
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(a) (b) (c)

(e)

(d)

(g) (h)(f )

(j)(i) (k)

Figure 1. Diagram topologies that contribute to the difference of the N = 2 andN = 4 propagators

at two loops.

Figure 2. One-loop corrections to the three-point vertices that potentially contribute to the dif-

ference.

It is interesting to note that diagrams (d), (h), (k), which are generated by the 1-

loop corrected fermion and scalar propagators, do not have a correspondent in N = 1

superspace. In fact, in a N = 1 superspace setup the 1-loop corrections to the superfield

propagators are exactly vanishing for both N = 4 SYM and N = 2 SCQCD. However,

in the component formulation this is no longer the case and the one-loop corrections turn

out to be divergent. This is not in contradiction with conformal invariance and can be

interpreted as a consequence of working in the susy-breaking Wess-Zumino gauge [36].

4.2 One-loop three-point vertex diagrams

In principle, other contributions at order g6 may come from the insertion into the cusp

of the one-loop corrections to the three-point vertices [15, 22]. The diagram topologies

potentially contributing to the difference between the N = 2 and N = 4 three-point

vertices are depicted in figure 2. Again we neglect topologies that would produce vanishing

cusp integrals. In [15, 22] it has been proved that in the SU(2) case the contribution to

the difference WN=2 −WN=4 is vanishing at the conformal point, due to the fact that for

algebraic reasons the result from two adjoint scalars running into the loop is identical to the

result from 2N fundamentals. However, as argued in [22], the result cannot be immediately

generalized to SU(N), since for N > 2 extra contributions from the adjoint scalar loop may

arise, which are proportional to the symmetric structure constants dabc (see eq. (A.2)).

Here we perform a detailed analysis of these diagrams and prove that for symmetry

reasons contributions proportional to dabc can never appear. Therefore, we conclude that

diagrams in figure 2 never contribute to the difference WN=2−WN=4, for any SU(N) gauge

group, so generalizing the result of [15, 22].

– 8 –
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We illustrate how the cancelation works by focusing on an explicit example, that is

the first vertex topology in figure 2 that corresponds to the scalar loop corrections to the

three-gluon vertex.

In the N = 4 SYM case we have the three adjoint scalars φI , I = 1, 2, 3 running into

the loop. Using Feynman rules in appendix A the corresponding expression reads

VN=4 = 3N g3 Tr
(
T a[T b, T c]

) ∫
ddz1/2/3 f

µνρ(z1, z2, z3)×Aaµ(z1)Abν(z2)Acρ(z3) (4.4)

where the factor 3 stems from the sum over all possible flavour loops, the two terms building

up the color trace commutator correspond to the two possible orientations of the adjoint

loop cycles, and fµνρ is a function of the vertex points z1/2/3 that can be expressed in

momentum space as

fµνρ(z1,z2,z3) =

∫
dd(q+k2)

(2π)d

∫
dd(q−k1)

(2π)d

∫
ddq

(2π)d
eiq(z1−z2)ei(q+k2)(z2−z3)ei(q−k1)(z3−z1)

× (2q−k1)µ(2q+k2)ν(2q+k2−k1)ρ

q2(q−k1)2(q+k2)2
(4.5)

In N = 2 SCQCD the same kind of diagram topology can be constructed using either the

single adjoint scalar φ or the two fundamental sets of fields qI , ¯̃qI with I = 1, . . . , 2N . The

adjoint loop will give exactly the same result as in (4.4), without the factor 3. Instead, the

two sets of fundamental loops yield

V fund
N=2 = 2× 2N g3 Tr

(
T aT bT c

)
fµνρ(z1, z2, z3)×Aaµ(z1)Abν(z2)Acρ(z3) (4.6)

where now we have a single possible color orientation and the integral is still given in (4.5).

Taking the difference we obtain

VN=2 − VN=4 =
{

4NTr
(
T aT bT c

)
− 2NTr

(
T a[T b, T c]

)}
× g3

∫
ddz1/2/3f

µνρ(z1, z2, z3)×Aaµ(z1)Abν(z2)Acρ(z3) (4.7)

where for SU(2) the color structure inside the bracket is identically vanishing, whereas for

SU(N) it is nothing but the totally symmetric dabc tensor (see eq. (A.3)).

It is now easy to see that, independently of the gauge group, this expression always

vanishes. In fact, the string dabcA
a
µ(z1)Abν(z2)Acρ(z3) is symmetric under the exchange

of any pair of gauge fields, but it is contracted with fµνρ which is antisymmetric under

any exchange

fµνρ(z1, z2, z3) = −fνµρ(z2, z1, z3) etc. (4.8)

An alternative reasoning goes as follows. Independently of the gauge group, once we

insert the vertex correction (4.7) into the cusp contour, for symmetry reasons the two color

trace structures of the commutator term Tr
(
T a[T b, T c]

)
sum up to 2Tr

(
T aT bT c

)
, so that

the difference in (4.7) vanishes identically. This can be loosely summarized stating that

each adjoint empty loop counts as twice a fundamental loop contribution, thus producing

a vanishing counting.

– 9 –
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It is easy to realize that similar symmetry arguments hold for all the other topologies

in figure 2. We then conclude that, against previous expectations, there are no contri-

butions to WN=2 −WN=4 coming from one-loop three-point vertices, for generic SU(N)

gauge group.

5 The computation of the diagrams and HQET procedure

According to the previous discussion, the only non-trivial contributions to the difference

WN=2 −WN=4 come from the insertion of diagrams in figure 1. In this section we focus

on the evaluation of the corresponding loop integrals.

We can focus only on insertions which connect the two lines of the cusped Wilson loop

(1PI diagrams in the HQET context) since the ones where the two insertion points lie both

on the same ray can be factorized out and do not contribute to the evaluation of B [9].

The most efficient way to compute the corresponding loop integrals is the so-called

HQET method [20]. Working in momentum space, it consists in integrating first on the

contour parameters with a proper prescription for regularizing boundary divergences. This

reduces the integrals to ordinary massive momentum integrals, which can be written as

linear combinations of known Master Integrals by applying integrations by parts.

The full list of results for diagrams of figure 1 can be found in appendix B. Here we

briefly illustrate the procedure by computing for instance the integral corresponding to

diagram (e). In the N = 4 SYM case the fermionic loop, represented in our notation

with a simple dashed line, can be constructed with any of the three adjoint fermions ψI ,

with I = 1, 2, 3. In the N = 2 SCQCD case, instead, the loop can be realized either with

the adjoint fermion ψ or with one of the two sets of fundamental fermions λI , λ̃
I , with

I = 1, . . . , 2N . Taking the difference of N = 2 and N = 4 propagators and inserting it in

the Wilson line, the corresponding integral reads (we neglect a factor g6(N2−1)(N2+1)
2N )

I(e) = −
∫ ∞

0
dτ1

∫ 0

−∞
dτ2 v

µ
1 v

ν
2 tr(σµσρσξστσνσσσξσ

η)

×
∫
ddk1/2/3

(2π)3d
eik3·(x1−x2) (k1 − k3)ρ(k1)η(k2 − k3)τ (k2)σ

k2
1 k

2
2 k

4
3 (k1 − k2)2 (k1 − k3)2 (k2 − k3)2

(5.1)

where we work in d = 4− 2ε dimensions and we have defined xµ1 ≡ vµ1 τ1, xµ2 ≡ vµ2 τ2.

Now the trick consists in changing the order of contour and momentum integrals and

perform first the contour ones. This amounts to first compute∫ ∞
0

dτ1 e
ik3·v1τ1eδτ1

∫ 0

−∞
dτ2 e

−ik3·v2τ2e−δτ2 =
1

(ik3 · v1 + δ)

1

(ik3 · v2 + δ)
(5.2)

where, following the prescription of [20], a damping factor eδτ with δ < 0 has been intro-

duced for each contour integral in order to make them well defined at infinity.

Since the final result is expected to be independent of the IR regulator δ, we conve-

niently choose δ = −1/2. Absorbing the i factor in a redefinition of the velocity, v = i ṽ,

we are left with

I(e) = 4

∫
ddk1/2/3

(2π)3d

tr(σµσρσξστσνσσσξσ
η)

(1 + 2k3.ṽ1)(1 + 2k3.ṽ2)
× ṽ1µ ṽ2ν (k1 − k3)ρ(k1)η(k2 − k3)τ (k2)σ
k2

1k
2
2k

4
3(k1 − k2)2(k1 − k3)2(k2 − k3)2

(5.3)
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Now, using the σ-matrix algebra we can reduce the numerator to a linear combina-

tion of scalar products of momenta and external velocities which can be written in terms

of inverse propagators. Therefore, we end up with a sum of momentum integrals of the

form (B.1). These integrals are not all independent and, using integration by parts, per-

formed with the Mathematica package FIRE [37–39], they can be expressed in terms of a

finite set of Master Integrals [19, 20]. For our example, after the FIRE reduction we obtain

I(e) =

[(
32(3d− 7)(−480 + 964d− 796d2 + 335d3 − 71d4 + 6d5)

(d− 5)(d− 4)3(d− 3)(d− 1)

+
32(3d− 7)(−4736 + 8360d− 5494d2 + 1663d3 − 222d4 + 9d5) cosϕ

3(d− 5)(d− 4)3(d− 3)(d− 1)

+
32(3d− 7)(−2720 + 4736d− 3196d2 + 1036d3 − 159d4 + 9d5) cos2 ϕ

3(d− 5)(d− 4)3(d− 3)(d− 1)

)
× I1

−
(

16(1 + cosϕ)2(80− 54d + 9d2)(96− 140d + 81d2 − 21d3 + 2d4)

(d− 5)(d− 4)3(d− 3)(d− 1)

−16(1 + cosϕ)2(80− 54d + 9d2)(272− 392d + 202d2 − 43d3 + 3d4) cosϕ

3(d− 5)(d− 4)3(d− 3)(d− 1)

)
× I2

−12(d− 3)(10− cosϕ(d− 8)− 3d)(8− 5d + d2)

(d− 5)(d− 4)2(d− 1)
× I3

−2(1 + cosϕ)(cosϕ(d− 8)− 3(d− 4))(80− 74d + 25d2 − 3d3)

(d− 5)(d− 4)2(d− 1)
× I4

]
(5.4)

where the Master Integrals Ii are defined in appendix B.

This technique is known as “Heavy Quark Effective Theory” (HQET) due to its relation

with the theory of scattering of heavy particles. The propagator-like integrals that we

obtain with the method described above formally coincide with the integrals describing

the propagation of heavy quarks. The direction vµ of the Wilson line is the velocity of

the quark, whereas the damping factor δ corresponds to the introduction of a residual

energy for the particle. In the presence of a cusp, the Bremsstrahlung function controls

the energy radiated by the heavy particle undertaking a transition from a velocity v1 to v2

in an infinitesimal angle ϕ.

Since we are eventually interested in computing the cusp anomalous dimension that

in dimensional regularization can be read from the 1/ε pole of log〈W 〉, it is convenient to

expand the master integrals in powers of ε. Defining the new variable x = eiϕ, where ϕ is

the geometric angle of the cusp, for the I(e) we find

I(e) =
1

ε3
2
(
1−x2−2(1+x2) log[x]

)
9(x2−1)

+
2

ε2

(
4−π2−(4+π2)x2+3(1+x2) log[x]2

9(x2−1)
− 2log[x]

(
5+x(5x−3)+6(1+x2) log[1+x]

)
+12(1+x2)Li2[−x]

9(x2−1)

)
+

1

ε

(
80−7π2+12π2x−(80+33π2)x2

18(x2−1)
− log[x]

(
101−(48−101x)x+7π2(1+x2)

)
9(x2−1)

+
6log2[x]

(
5−(3−5x)x−(1+x2) log[x]

)
9(x2−1)

− 12
(
3π2(1+x2)+2(5+x(−3+5x)) log[x]−3(1+x2) log[x]2

)
log[1+x]

9(x2−1)

+
144(1+x2)(log[−x]−log[x]) log[1+x]2

18(x2−1)
− 48(5+x(−3+5x))Li2[−x]−144(1+x2)Li3[−x]−288(1+x2)Li3[1+x]

18(x2−1)

+
96
(
−2−x2+log[x]+x2 log[x]

)
ζ[3]

18(x2−1)

)
+O(ε0) (5.5)
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The expansions of the integrals corresponding to the rest of the diagrams in figure 1 are

listed in appendix B. We note that the expansions may contain higher order poles in ε, up

to 1/ε3.

6 The result

Applying the HQET procedure to every single diagram and summing the results for the

integrals as listed in appendix B, we can distinguish the contribution coming from the

insertion of diagrams (a)− (h) (insertion of a gauge propagator)

[
〈WN=2〉 − 〈WN=4〉

]∣∣∣∣(3L)

gauge

= g6 (N2 − 1)(N2 + 1)

2048π6N
ζ(3)

−1 + x2 + 2(1 + x2) log x

(x2 − 1)ε
(6.1)

from the contribution arising from diagrams (i)− (k) (insertion of an adjoint scalar prop-

agator)

[
〈WN=2〉 − 〈WN=4〉

]∣∣∣∣(3L)

scalar

= −g6 (N2 − 1)(N2 + 1)

2048π6N
ζ(3) cos θ

4x log x

(x2 − 1)ε
(6.2)

It is remarkable that, although individually the integrals corresponding to the various

topologies in figure 1 exhibit up to cubic poles in ε, in the sum they all cancel and only

a simple pole survives. This has a simple physical explanation and represents a non-

trivial consistency check of our calculation. In fact, according to equation (1.3), which in

dimensional regularization reads 〈W 〉 ∼ exp (Γ(g2)/ε), higher order ε-poles in the Wilson

loop expansion only come from the exponentiation of Γ(g2)
ε . Since the difference 〈WN=2〉−

〈WN=4〉 is identically vanishing up to two loops, at three loops we expect to find only

simple poles. Taking into account that the exponentiation works also when we turn off

the scalar coupling, both the gauge and the scalar contributions have to display the higher

order poles cancellation, independently.

Now, summing the two contributions and defining ξ =
1 + x2 − 2x cos θ

1− x2
, we obtain

〈WN=2〉 − 〈WN=4〉 = g6 ζ(3)

2048π6

(N2 − 1)(N2 + 1)

N
× (1− 2ξ log x)

1

ε
+O(g8)

(6.3)

The presence of the IR regulator eδτ inside the contour integrals breaks gauge in-

variance. As a consequence, gauge-dependent spurious divergences survive, which need

to be eliminated prior computing the cusp anomalous dimension. As explained in details

in [9, 40], this can be done by introducing a multiplicative renormalization constant Zopen,

which in practice corresponds to remove the value at ϕ = θ = 0

〈W̃ (ϕ, θ)〉 ≡ Z−1
open〈W (ϕ, θ)〉 =

〈W (ϕ, θ)〉
〈W (0, 0)〉 (6.4)

We then obtain the IR-divergence free difference, which reads

〈W̃N=2〉 − 〈W̃N=4〉 = −g6 ζ(3)

1024π6

(N2 − 1)(N2 + 1)

N
× ξ log x × 1

ε
+O(g8) (6.5)
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Recalling that in dimensional regularization with d = 4− 2ε we need to rescale g → gµ−ε

where µ is a mass scale, and using definition (1.3) we can easily read the difference of the

two cusp anomalous dimensions from the aforementioned 1/ε pole, obtaining

ΓN=2 − ΓN=4 = g6 3ζ(3)

512π6

(N2 − 1)(N2 + 1)

N
ξ log x+O(g8) (6.6)

This equation represents the most complete result for the three-loop deviation of ΓN=2

from ΓN=4. In particular, it is valid for any finite θ, ϕ and N .

Remarkably, we find that at θ = ±ϕ eq. (6.6) vanishes, suggesting that at these

points the cusped Wilson loop of N = 2 SCQCD might become 1/2 BPS as in the N = 4

SYM case.

Now, re-expressing ξ and x in terms of the original θ, ϕ variables and taking the

small angle limit, 2ξ log x ∼
ϕ,θ�1

(ϕ2 − θ2), we obtain the difference of the corresponding

Bremsstrahlung functions

BN=2 −BN=4 = −g6 3ζ(3)

1024π6

(N2 − 1)(N2 + 1)

N
+O(g8) (6.7)

This result remarkably coincides with prediction (3.4) from the matrix model. We

have then found confirmation at three loops that conjecture (1.8) proposed in [15] is valid

for any SU(N) gauge group.

If we insert the known value of BN=4 [41], in the large N limit we find

BN=2 =
g2N

16π2
− g4N2

384π2
+
g6N3

512π2

(
1

12
− 3ζ(3)

2π4

)
+O(g8) (6.8)

6.1 Light-like cusp

Given our previous results, it is interesting to study the limit of large Minkowskian angles.

To this end we substitute ϕ = iϕM , that is x = e−ϕM , and send x → 0. In this limit the

cusp anomalous dimension behaves linearly in the angle

Γcusp(g2, N, ϕ) ∼
ϕ→∞

K(g2, N)ϕM +O(ϕ0
M ) (6.9)

The function K(g2, N) is called the light-like cusp anomalous dimension.

Using the large-N exact results for the N = 4 SYM case previously found in the

literature ([19, 41]), for N = 2 SCQCD we obtain

KN=2(g2, N) =
g2N

8π2
− g4N2

384π2
+
g6N3

512π2

(
11

180
− 3ζ(3)

π4

)
+O(g8) (6.10)

The light-like cusp can be used to check an interesting universal behaviour of the cusp

anomalous dimension that was found to hold up to three loops in QCD and in Yang-Mills

theories with only adjoint matter [19, 20]. Precisely, when expressed in terms of the light-

like cusp replacing the coupling constant, the cusp anomalous dimension gives rise to an

universal function Ω(K,φ) that is independent of the number of fermion or scalar fields in

the theory.
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It is easy to prove that up to three loops the universal behaviour is also present in

N = 2 SCQCD. With respect to the N = 4 SYM case, the cusp anomalous dimension gets

the additional ζ(3) term in equation (6.6) at three loops, which produces a corresponding

term in the light-like cusp expansion (6.10). Then one can invert (6.10) to express the

coupling g2 as a perturbative expansion in K and substitute this expansion back in the

full cusp Γcusp(g2, N, ϕ) to obtain the function Ω(K,φ). The additional ζ(3) terms coming

from the genuine Γcusp(g2, N, ϕ) and from the substitution of the expansion g2(K) trivially

cancel, producing the same universal function as derived in N = 4 SYM. In [42, 43] it was

shown that at four loops the universality is in general violated.

7 Beyond three loops

The computational framework we have set up in this paper can be arguably extended

to higher loops where some very non-trivial checks can be performed, especially on the

existence of a universal behaviour shared by N = 2 SCQCD and N = 4 SYM.

Let us here summarize the present understanding of this universal behaviour. First of

all, it has been suggested in [44] and then substantiated in [31] that the closed SU(2, 1|2)

subsector of N = 2 SCQCD inherits integrability from N = 4 SYM, since its Hamiltonian

can be essentially obtained from the N = 4 SYM one by substituting the coupling constant

g2 with an effective coupling f(g2). The explicit form of f(g2) was first derived in [23] by

comparing the exact results available from localization for circular BPS Wilson loops in

N = 4 SYM and N = 2 SCQCD. In the conventions of [23] the first few orders in the

weak coupling expansion read3

f(g2) = g2−12ζ(3)g6+120ζ(5)g8+

(
−1120ζ(7)+80ζ(2)ζ(5)+288ζ(3)2

)
g10+. . . (7.1)

It is an interesting open problem to first understand the origin of this substitution

rule and at the same time to test to what extent it is universal when applied to other

observables that can be entirely built using fields from the N = 2 vector multiplet.

In [45] it was conjectured that the effective coupling f(g2) could be interpreted as the

relative finite renormalization of the gluon propagator of the two models, enforcing the

argument presented in [31]. This proposal was supported by some diagrammatic checks

of the coefficients of (7.1) up to order g8 [45]. Nevertheless, first in [45] and then in [23],

it was noticed that this interpretation can be hardly extended at higher orders, because

of the presence of terms that cannot be generated by purely massless two-point integrals.

The ζ(2)ζ(5)g10 contribution in expansion (7.1) is the first example of such kind of terms,

which ask for a clear interpretation.

Concerning the generalization of the substitution rule to other physical quantities,

in [23] a similar analysis was applied for extracting fB(g2) from the comparison of the

Bremsstrahlung functions of the two models, as computed from the Wilson loop expectation

values on the ellipsoid. In this case the effective coupling fB(g2) slightly differs from the

one in (7.1) starting at order g10. In [23] the discrepancy was explained as a consequence

3In order to compare with our results we should substitute g2 → g2N
16π2 .
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of scheme dependence in the choice of the relative infrared regulators. Once again, a term

containing ζ(2)ζ(5) appears, which cannot be explained if fB(g2) has to be interpreted as

the finite relative renormalization of gauge propagators, without resorting to coupling the

model to curved space [23]. Moreover, computing the Bremsstrahlung function from the

two-point function of the stress energy tensor and the 1/2 BPS Wilson loop, in [34] it was

argued that in general for N = 2 theories with a single gauge group the substitution rule

may be not working.

The validity of the substitution rule is made even more obscured by the results on the

direct computation of purely adjoint scattering amplitudes in N = 2 SCQCD. In fact,

it has been shown [32] that the amplitude/Wilson loop duality is broken already at two

loops, displaying a qualitatively different functional dependence on the kinematic variables

with respect to the N = 4 SYM amplitude. This arises even deeper questions about the

integrability of the SU(2, 1|2) subsector, if the amplitude/Wilson loop duality has to be

considered as direct consequence of integrability, like in N = 4 SYM.4

One way to shed some more light on the validity of the substitution rule and, in par-

ticular, on the actual origin of discrepancy terms of the form ζ(2)ζ(5) would be a direct

computation of the difference of the Bremsstrahlung functions at higher orders, along the

lines introduced in this paper. Our SU(N) computation, preceded by the ones in [15, 22],

confirms the validity of the substitution rule (7.1) up to order g6. From the diagram-

matic analysis it is also clear how to associate the ζ(3)g6 term to diagrams containing

propagator corrections.

At higher orders the situation is more intricate, but the use of the HQET techniques

seems to be promising. At first, the HQET integrals arise naturally as massive integrals,

due to the presence of the heavy quark contour propagators. Indeed using inversion trans-

formations it is easy to map massive on shell propagator type integrals to HQET integrals,

a procedure which has been used for QCD/HQET matching [46, 47]. We consider for

instance, as candidates for the production of ζ(2)ζ(3) or ζ(2)ζ(5) terms, the massive prop-

agator integrals introduced in [23]. Following for instance [48], inversion relations can be

used to map such integrals to corresponding HQET versions

= ∼ −5ζ(5) + 12ζ(2)ζ(3)

= ∼ −14ζ(7)− 12ζ(3)ζ(4) + 36ζ(2)ζ(5)

Here we indicate the massive propagators with a thick solid line and the WL contour

with a double line. In this way we are left with two examples of finite three and four loop

HQET integrals containing ζ(2)ζ(3) or ζ(2)ζ(5) terms. Now the result of the integrals in

our examples is finite, thus they cannot directly produce contributions to the cusp at three

and four loops. Nevertheless, it is easy to embed these HQET topologies in higher order

diagrams, producing poles potentially contributing to the cusp anomalous dimension. For

4See the conclusions in [23] for a discussion on possible ways out.
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example we could proceed as follows

= × 1 + 6ǫ ∼
(
− 5ζ(5) + 12ζ(2)ζ(3)

)1

ε

= × 2 + 8ǫ ∼
(
− 14ζ(7)− 12ζ(3)ζ(4) + 36ζ(2)ζ(5)

)1

ε

The integrals can be evaluated by factorization, reducing them to the product of our initial

integrals and a one loop HQET bubble with a non-trivial index on the heavy line.

Therefore, we conclude that in the HQET formalism terms such as ζ(2)ζ(3) and

ζ(2)ζ(5) can arise quite naturally in the expansion of the Bremsstrahlung function from

the standard flat space computation of the cusped Wilson loop expectation value. In par-

ticular, there is no need to introduce mass regulators, beside the usual IR cutoff δ that

eventually drops out from the final result. It is also natural to expect that some of these

terms survive once taking the difference between N = 2 SCQCD and N = 4 SYM, as

predicted by the matrix model results.

The interesting point is to understand whether these terms in the difference can be

interpreted in terms of the substitution of an effective coupling given by the finite different

renormalization of the two point functions of the models, as advocated in [31, 45]. Since

we are working in component formalism, we expect that this claim should imply that

at least some of these terms should originate from propagator type insertions into the

cusp line. At first glance, integrals such as the ones discussed above seem to originate

from topologies which could hardly be associated to propagator type diagrams. However,

without an explicit derivation we cannot draw any definite conclusion and therefore a direct

calculation of the Bremsstrahlung function at four and five loops is mandatory.

Acknowledgments

We thank Luca Griguolo, Elli Pomoni and Domenico Seminara for useful discussions. This

work has been supported in part by MIUR — Italian Ministero dell’Istruzione, Università
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A Conventions

For SU(N) gauge group we take the generators normalized as

Tr(T aT b) =
1

2
δab (A.1)

whereas the structure constants can be read from

[T a, T b] = ifabcT c (A.2)

{T a, T b} =
1

N
δab + dabcT c (A.3)
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For both N = 2 SCQCD and N = 4 SYM theories we derive the actions in components

by projecting the euclidean N = 1 superfield action presented in [49]. This is based on the

conventions of [50], which we stick to.

For N = 2 SU(N) SCQCD the superspace action reads

S =

∫
d4xd4θ

[
Tr
(
e−gV Φ̄egV Φ

)
+ Q̄IegVQI + Q̃Ie−gV ¯̃QI

]
+

1

g2

∫
d4xd2θ Tr

(
WαWα

)
(A.4)

+ ig

∫
d4xd2θ Q̃IΦQI − ig

∫
d4xd2θ̄ Q̄IΦ̄ ¯̃QI

where Wα = iD̄2(e−gVDαe
gV ) is the superfield strength of the N = 1 vector superfield V .

The definition of the superspace covariant derivative Dα can be found in [50]. The N = 1

chiral superfield Φ transforms in the adjoint representation of SU(N) and combines with

V into a N = 2 vector multiplet. The quark chiral scalar superfields QI and Q̃I with I =

1, . . . , Nf transform respectively in the fundamental and antifundamental representations

of SU(N) and together build up a N = 2 hypermultiplet. At the critical value Nf = 2N

the action becomes exactly superconformal.

We project action (A.4) down to components in the Wess-Zumino gauge and eliminate

the auxiliary fields. Defining the dynamical fields in terms of their N = 1 parents as

Φ| =
√

2φ DαΦ| =
√

2ψα (A.5)

QI | = qI DαQI | = λI α (A.6)

1

2
[D̄α̇, Dα]V | =

√
2Aαα̇ = (σµ)αα̇Aµ iD̄2DαV | =

√
2 ηα (A.7)

where spinor and vector indices are converted using Pauli σ matrices

σαα̇µ σναα̇ = 2δνµ σµαα̇σ
ββ̇
µ = 2δβαδ

β̇
α̇ (A.8)

the final action in components reads

S=

∫
d4x

{
2Tr

[
iψα(σµ) β̇α Dµψ̄β̇+iηα(σµ) β̇α Dµη̄β̇ (A.9)

− 1

4
FµνFµν+φDµDµφ̄−

g2

2
[φ, φ̄][φ, φ̄]+ig

√
2 ψ̄α̇[η̄α̇,φ]−ig

√
2[φ̄,ηα]ψα

]
+iλ̄I

β̇
(σµ) β̇α DµλαI +iλ̃αI(σµ) β̇α Dµ ¯̃

λβ̇I+q̄IDµDµqI+q̃IDµDµ ¯̃qI

+ig
√

2(λ̄α̇I η̄α̇qI−q̃I η̄α̇ ¯̃
λα̇I)−ig

√
2(q̄IηαλαI−λ̃αIηα ¯̃qI)+ig

√
2(λ̃αIψαqI−q̄I ψ̄α̇ ¯̃

λα̇I)

+ig
√

2(λ̃αIφλαI−λ̄α̇I φ̄¯̃
λα̇I)+ig

√
2(q̃IψαλαI−λ̄α̇I ψ̄α̇ ¯̃qI)

−g2
[
2 q̄I φ̄φqI+2 q̃Iφφ̄ ¯̃qI+(q̄IqJ)(q̃J ¯̃qI)

]
− g

2

4

[
(q̄IqJ)(q̄JqI)+(q̃I ¯̃qJ)(q̃J ¯̃qI)−2(q̄I ¯̃qJ)(q̃JqI)+4 q̄I [φ, φ̄]qI−4 q̃I [φ, φ̄]¯̃qI

]}
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The covariant derivatives are defined as

DµqI = ∂µqI − ig AµqI (A.10)

Dµφ = ∂µφ− ig [Aµ, φ]

For N = 4 SYM theory, the N = 1 superspace description keeps manifest only a SU(3)

subgroup of the R-symmetry. The superspace action reads [50]

S =

∫
d4xd4θTr

(
e−gV Φ̄Ie

gV ΦI
)

+
1

g2

∫
d4xd2θTr

(
WαWα

)
+
ig

3!

∫
d4xd2θ εIJKTr

(
ΦI [ΦJ ,ΦK ]

)
+ h.c. (A.11)

where I, J,K = 1, 2, 3 and all the fields transform in the adjoint representation of the gauge

group SU(N). Using field definitions similar to (A.5), it is then straightforward to project

down to component and obtain

S=

∫
d4x 2Tr

[
iψIα(σµ) β̇α Dµψ̄Iβ̇+iηα(σµ) β̇α Dµη̄β̇−

1

4
FµνFµν+φIDµDµφ̄I

+ig
√

2 ψ̄Iα̇[η̄α̇,φI ]−ig
√

2[φ̄I ,ηα]ψαI+ig

√
2

2
εIJK [φI ,ψαJ ]ψKα +ig

√
2

2
εIJK [φ̄I , ψ̄α̇J ]ψ̄Kα̇

+g2[φI ,φJ ][φ̄I , φ̄J ]− g
2

2
[φI , φ̄I ][φJ , φ̄J ]

]
(A.12)

From the previous actions the propagators in momentum space read

〈Aaµ(x)Abν(y)〉 = δab
∫

d4−2εp

(2π)4−2ε
eip·(x−y) δµν

p2
(A.13)

〈φ̄a(x)φb(y)〉 = δab
∫

d4−2εp

(2π)4−2ε
eip·(x−y) 1

p2
(A.14)

〈q̄I(x)qJ(y)〉 = 〈 ¯̃qJ(x)q̃I(y)〉 = δIJ

∫
d4−2εp

(2π)4−2ε
eip·(x−y) 1

p2
(A.15)

〈ψαa(x)ψ̄b
β̇
(y)〉 = 〈ηαa(x)η̄b

β̇
(y)〉 = δab

∫
d4−2εp

(2π)4−2ε
eip·(x−y)

(−pµ)(σµ)α
β̇

p2
(A.16)

〈λαJ (x)λ̄I
β̇
(y)〉 = 〈λ̃αI(x)

¯̃
λβ̇J(y)〉 = δIJ

∫
d4−2εp

(2π)4−2ε
eip·(x−y)

(−pµ)(σµ)α
β̇

p2
(A.17)

The vertices entering the three-loop diagrams can be read directly from actions (A.9)

and (A.12).

B Results for the diagrams

The three-loop Master Integrals introduced in section 5 are defined as follows

Ga1,... ,a12 =

∫
ddk1/2/3

(2π)3d

1

P a1
1 . . . P a12

12

(B.1)
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With

P1 = 1 + 2ṽ1 · k1 P7 = k2
1

P2 = 1 + 2ṽ2 · k1 P8 = k2
2

P3 = 1 + 2ṽ1 · k2 P9 = k2
3

P4 = 1 + 2ṽ2 · k2 P10 = (k1 − k2)2

P5 = 1 + 2ṽ1 · k3 P11 = (k2 − k3)2

P6 = 1 + 2ṽ2 · k3 P12 = (k1 − k3)2

For specialized sets of a1, . . . , a12 indices these integrals can be computed analytically

by Mathematica packages. Actually, for our porposes only the ε expansion of the result is

necessary. Omitting a common factor e−3εγE

(4π)3d/2 and stopping the expansion at the required

order, the Master Integrals that enter our calculation read

I1≡G0,0,0,0,1,0,0,1,0,1,0,1 =

=− 1

720ε
− 137

7200
− 12019+325π2

72000
ε− 874853+44525π2−71000ζ[3])

720000
ε2+O(ε3) (B.2)

I2≡G0,0,0,0,1,1,0,1,0,1,0,1 =

=
x
(
−1−8x+8x3+x4+12x2 log(x)

)
144(−1+x)(1+x)5ε

+
x
(
−7+x

(
−59+3π2x+x2(59+7x)

)
−9x2 log(x)(−6+log(x)−4log(1+x))+36x2Li2(−x)

)
72(−1+x)(1+x)5

+ε

[
x
(
(−1+x)(1+x)(499+x(4400+499x))+π2(−13+x(−104+x(216+13x(8+x))))

)
576(−1+x)(1+x)5

+
x3
(
log(x)

(
207+7π2−6(9−log(x)) log(x)

)
+3
(
π2+(6−log(x)) log(x)

)
log(1+x)−6(log(−x)−log(x)) log(1+x)2

)
48(−1+x)(1+x)5

+
3x3(3Li2(−x)−Li3(−x)−2Li3(1+x)+ζ(3))

2(−1+x)(1+x)5

]
+ε2

[
x
(
1128π4x2+10π2(−91+x(−767+x(621+13x(59+7x))))

)
2880(−1+x)(1+x)5

+
x3 log(x)

(
648+42π2−log(x)

(
207+7π2+3(−12+log(x)) log(x)

))
32(−1+x)(1+x)5

+
x3
(
54π2+log(x)

(
207+7π2+6(−9+log(x)) log(x)

))
log(1+x)

8(−1+x)(1+x)5

+
x3
(
72
(
π2−6log(−x)−(−6+log(x)) log(x)

)
log(1+x)2+96(− log(−x)+log(x)) log(1+x)3

)
32(−1+x)(1+x)5

+
x
(
−3671−33586x+33586x3+3671x4+284ζ(3)

)
576(−1+x)(1+x)5

+
x2
(
18(207+13π2)xLi2(−x)−648x((3+2log(1+x))Li3(−x)+6Li3(1+x)−Li4(−x)+4Li4(1+x)+2S2,2(−x))

)
144(−1+x)(1+x)5

+
x2 (568ζ(3)+x(1944−71x(8+x)−204log(x)+1296log(1+x))ζ(3))

144(−1+x)(1+x)5

]
+O(ε3) (B.3)
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I3≡G1,0,0,0,0,0,0,1,1,1,0,1 =

=− 1

18ε2
− 2

3ε
− 16

3
− 13π2

72
− 656+39π2−65ζ[3]

18
ε+O(ε2) (B.4)

I4≡G1,1,0,0,0,0,0,1,1,1,0,1 =

=
x
(
−1+x2+2x log(x)

)
3(−1+x)(1+x)3ε2

+
x
(
−13+x

(
π2+13x

)
+x log(x)(14−3log(x)+12log(1+x))+12xLi2(−x)

)
3(−1+x)(1+x)3ε

+

x2
(
log(x)

(
132+7π2+6(−7+log(x)) log(x)

)
+12

(
3π2+(14−3log(x)) log(x)

)
log(1+x)

+72(− log(−x)+log(x)) log(1+x)2
)

6(−1+x)(1+x)3

+
x
(
444(−1+x2)+π2(−13+x(28+13x))

)
12(−1+x)(1+x)3

+
4x2 (7Li2(−x)−3Li3(−x)−6Li3(1+x)+3ζ(3))

(−1+x)(1+x)3

+ε

[
x
(
188π4x+15940

(
−1+x2

)
+π2

(
−845+660x+845x2

))
60(−1+x)(1+x)3

+
x2 log(x)

(
1048+98π2−3log(x)

(
132+7π2+log(x)(−28+3log(x))

))
12(−1+x)(1+x)3

+
x2
(
42π2+log(x)

(
132+7π2+6(−7+log(x)) log(x)

))
log(1+x)

(−1+x)(1+x)3

+
x2
(
72
(
3π2−14log(−x)+(14−3log(x)) log(x)

)
log(1+x)2+288(− log(−x)+log(x)) log(1+x)3

)
12(−1+x)(1+x)3

+
20x2

((
396+39π2

)
Li2(−x)−36((7+6log(1+x))Li3(−x)+14Li3(1+x)−3Li4(−x)+12Li4(1+x)+6S2,2(−x))

)
60(−1+x)(1+x)3

+
x(1300ζ(3)+20x(252−65x−22log(x)+216log(1+x))ζ(3))

60(−1+x)(1+x)3

]
+O(ε2)

We can now write the contribution of every single diagram in figure 1 in terms of

these Master Integrals. Omitting a common factor g6(N2−1)(N2+1)
2N , from the insertion of

corrected gauge propagators we have

(a) =

[
4(−7+3d)

(
9d5(1+x(8+x(−2+x(8+x))))−64(35+x(241+x(25+x(241+35x))))

)
3(−5+d)(−4+d)3(−3+d)(−1+d)x2

+
4(−7+3d)

(
−3d4(47+x(388+x(−102+x(388+47x))))+2d3(425+x(3574+x(−830+x(3574+425x))))

)
3(−5+d)(−4+d)3(−3+d)(−1+d)x2

+
4(−7+3d)

(
8d(469+x(3698+x(−190+x(3698+469x))))−4d2(631+x(5264+x(−850+x(5264+631x))))

)
3(−5+d)(−4+d)3(−3+d)(−1+d)x2

]
I1

+

[
(80+9(−6+d)d)(1+x)4

(
224−308d+160d2−37d3+3d4

)
3(−5+d)(−4+d)3(−3+d)(−1+d)x3

+
(80+9(−6+d)d)(1+x)4

(
6(−4+d)(−3+d)(4+(−8+d)d)x+(−2+d)(−112+d(98+d(−31+3d)))x2

)
3(−5+d)(−4+d)3(−3+d)(−1+d)x3

]
I2

+

[
12(−3+d)

(
d
(
1+6x+x2

)
−4
(
2+5x+2x2

))
(−5+d)(−4+d)2(−1+d)x

]
I3

+

[
(1+x)2

(
3d2

(
1−6x+x2

)
+80

(
1−3x+x2

)
−2d

(
17−66x+17x2

))
(−5+d)(−4+d)2(−1+d)x2

]
I4 (B.5)

(b) =

[
8(−7+3d)

(
1
x

+x
)

(3d(1+x(6+x))−2(5+x(28+5x)))

(−4+d)(−3+d)x

]
I1

+

[
2(80+9(−6+d)d)(1+x)4

(
1
x

+x
)

(−4+d)(−3+d)x2

]
I2 (B.6)
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(c) =

[
−4(−7+3d)(9d3(1+x(8+x(−2+x(8+x))))−16(35+x(241+x(25+x(241+35x)))))

(−5+d)(−4+d)2(−3+d)x2

+
4(−7+3d)(3d2(35+x(268+x(−30+x(268+35x))))−d(418+2x(1522+x(10+x(1522+209x)))))

(−5+d)(−4+d)2(−3+d)x2

]
I1

+

[
− (80+9(−6+d)d)(1+x)4

(
3d2(1+x)2+8(7+x(9+7x))−d(25+x(42+25x))

)
(−5+d)(−4+d)2(−3+d)x3

]
I2 (B.7)

(d) =

[
−2(−7+3d)(−160

(
1+x2

)
(5+x(28+5x))+9d3(1+x(8+x(−2+x(8+x)))))

3(−5+d)(−4+d)2(−3+d)x2

−2(−7+3d)(−6d2(19+x(134+x(6+x(134+19x))))+8d(65+x(406+x(100+x(406+65x)))))

3(−5+d)(−4+d)2(−3+d)x2

]
I1

+

[
− (−10+3d)(−8+3d)(1+x)4

(
3d2(1+x)2+80

(
1+x2

)
−4d(7+x(6+7x))

)
6(−5+d)(−4+d)2(−3+d)x3

]
I2 (B.8)

(e) =

[
8(−7+3d)

(
9d5(1+x(2+x(10+x(2+x))))−3d4(53+x(148+x(390+x(148+53x))))

)
3(−5+d)(−4+d)3(−3+d)(−1+d)x2

+
8(−7+3d)(−32(85+x(296+x(350+x(296+85x))))+16d(296+x(1045+x(1315+x(1045+296x)))))

3(−5+d)(−4+d)3(−3+d)(−1+d)x2

8(−7+3d)
(
2d3(518+x(1663+x(3046+x(1663+518x))))−4d2(799+x(2747+x(3986+x(2747+799x))))

)
3(−5+d)(−4+d)3(−3+d)(−1+d)x2

]
I1

+

[
2(80+9(−6+d)d)(1+x)4

(
272−392d+202d2−43d3+3d4

)
3(−5+d)(−4+d)3(−3+d)(−1+d)x3

+
2(80+9(−6+d)d)(1+x)4

(
−6(−4+d)(−3+d)(8+d(−7+2d))x+(−2+d)(−136+d(128+d(−37+3d)))x2

)
3(−5+d)(−4+d)3(−3+d)(−1+d)x3

]
I2

+
[

6(−3+d)(8+(−5+d)d)(−4(2+x)(1+2x)+d(1+x(6+x)))

(−5+d)(−4+d)2(−1+d)x

]
I3

+

[
(−10+3d)(8+(−5+d)d)(1+x)2

(
−8+d−6(−4+d)x+(−8+d)x2

)
2(−5+d)(−4+d)2(−1+d)x2

]
I4 (B.9)

(f) =

[
4(−7+3d)

(
9d3(1+x)4−3d2(33+x(132+x(166+33x(4+x))))

)
3(−5+d)(−4+d)(−3+d)(−1+d)x2

+
4(−7+3d)(4d(83+x(316+x(370+x(316+83x))))−4(85+x(296+x(350+x(296+85x)))))

3(−5+d)(−4+d)(−3+d)(−1+d)x2

]
I1

+

[
(80+9(−6+d)d)(1+x)4

(
34−23d+3d2−6(−4+d)(−3+d)x+(−2+d)(−17+3d)x2

)
3(−5+d)(−4+d)(−3+d)(−1+d)x3

]
I2

+

[
6(−3+d)2(−4(2+x)(1+2x)+d(1+x(6+x)))

(−5+d)(−4+d)(−1+d)x

]
I3

+

[
(−3+d)(−10+3d)(1+x)2

(
−8+d−6(−4+d)x+(−8+d)x2

)
2(−5+d)(−4+d)(−1+d)x2

]
I4 (B.10)

(g) =

[
8(−7+3d)

(
9d3(1+x(8+x(−2+x(8+x))))+8(5+x(−62+x(100+x(−62+5x))))

)
3(−5+d)(−4+d)(−3+d)(−1+d)x2

+
8(−7+3d)

(
−3d2(23+x(196+x(−54+x(196+23x))))+2d(59+x(646+x(−290+x(646+59x))))

)
3(−5+d)(−4+d)(−3+d)(−1+d)x2

]
I1

+

[
2(80+9(−6+d)d)(1+x)4

(
3d2(1+x)2−4(1+(−18+x)x)−d(13+x(42+13x))

)
3(−5+d)(−4+d)(−3+d)(−1+d)x3

]
I2

+
[

24(−3+d)(−4(2+x)(1+2x)+d(1+x(6+x)))

(−5+d)(−4+d)(−1+d)x

]
I3

+

[
2(−10+3d)(1+x)2

(
−8+d−6(−4+d)x+(−8+d)x2

)
(−5+d)(−4+d)(−1+d)x2

]
I4 (B.11)
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(h) =

[
−64(−7+3d)

(
9d3(−1+x)2x−2d(1+(−12+x)x)(8+x(−17+8x))

)
3(−5+d)(−4+d)2(−3+d)x2

−64(−7+3d)
(
3d2(1+x(−25+x(52+(−25+x)x)))+4(5+x(−62+x(100+x(−62+5x))))

)
3(−5+d)(−4+d)2(−3+d)x2

]
I1

+

[
−16(80+9(−6+d)d)(1+x)4

(
−2+d+3(−4+d)(−3+d)x+(−2+d)x2

)
3(−5+d)(−4+d)2(−3+d)x3

]
I2 (B.12)

Similarly, from the insertion of corrected scalar propagators, omitting a common factor
g6(N2−1)(N2+1)

2N cos θ we have

(i) =

[
−32(−7 + 3d)(16 + d(−11 + 2d))(3d(1 + x(6 + x))− 2(5 + x(28 + 5x)))

(−4 + d)3(−3 + d)x

]
I1

−
[

8(−10 + 3d)(−8 + 3d)(16 + d(−11 + 2d))(1 + x)4

(−4 + d)3(−3 + d)x2

]
I2

−
[

96(−3 + d)2

(−4 + d)2

]
I3 −

[
8(−3 + d)(−10 + 3d)(1 + x)2

(−4 + d)2x

]
I4 (B.13)

(j) =

[
−16(−7 + 3d)(3d(1 + x(6 + x))− 2(5 + x(28 + 5x)))

(−4 + d)(−3 + d)x

]
I1

−
[

4(80 + 9(−6 + d)d)(1 + x)4

(−4 + d)(−3 + d)x2

]
I2 (B.14)

(k) =

[
−64(−2 + d)(−7 + 3d)(3d(1 + x(6 + x))− 2(5 + x(28 + 5x)))

(−4 + d)2(−3 + d)x

]
I1

−
[

16(−2 + d)(80 + 9(−6 + d)d)(1 + x)4

(−4 + d)2(−3 + d)x2

]
I2 (B.15)
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