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1 Introduction

We argue that there exist twin super conformal field theories (SCFTs) having the same

bosonic sectors but distinct supersymmetric completions. In particular, the exotic S-fold

N = 3 SCFTs [1–4] have exotic N = 1 twins based on a closely analogous construction.

In the context of supergravity, it has been long-known [5–10] that there exist twins

with identical bosonic sectors, both in terms of content and couplings, but distinct degrees

of supersymmetry Nb > Nl. We denote such pairs by {Nb,Nl}, where b and l refer to

the ‘big’ and ‘little’ twin, respectively. This is made possible by the presence of Nb spin-

3/2 gravitini in the Nb-extended gravity multiplet, some of which can be traded-in for

spin-1/2 fields living in Nl-extended matter multiplets. This observation would seem to

rule out the possibility of twin field theories with rigid supersymmetry. However, this

näıve obstruction is circumvented through S-foldings that completely remove the massless

states. As described in [11], the lowest order operator, aside from the 12 + 12 super and

superconformal charges, preserved by the S-fold projecting onto the exotic N = 3 SCFT is
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the supercurrent multiplet. It corresponds to the N = 3 super-Weyl multiplet, which was

fully constructed in [12], consisting of the massive Spin(3) × Sp(3) states,

[3, 2] = (5,1)⊕ (4,6)⊕ (3,14 + 1)⊕ (2,14′ + 6)⊕ (1,14), (1.1)

where we denote by [N , jmax] the massive N -extended long supermultiplet with top spin

jmax, as constructed in [13]. We will refer to the exotic non-perturbative SCFTs of this

type, obtained through an S-folding, as W-SCFTs.1 The S-foldings preserving N = 3

supersymmetry are by now reasonably well characterised and possess a number of intriguing

features [2–4, 16–20]. The focus on the N = 3 case is motivated, in part, by the fact that

it was previously thought that for rigid supersymmetry in D = 4 spacetime dimensions

N = 3 necessarily implies N = 4. However, the logic underlying this conclusion relies

on the existence of a perturbative limit, which fails for the intrinsically non-perturbative

S-foldings. This in itself does not rule out an enhancement to N = 4, but the S-fold

invariant operators do not fall into SU(4)R representations, excluding this possibility [3].

However, there is no reason to think S-foldings are necessarily N = 3 and in the context of

twin theories the absence of a massless sector and the presence of both spin-3/2 and spin-

1/2 states in the set of lowest dimension operators suggests the possibility that the same

bosonic content can admit different fermionic completions. Indeed, consulting table 2, a

straightforward comparison reveals that the bosonic content of (1.1) is uniquely matched by

[1, 2]⊕ 14[1, 1], (1.2)

which provides the lowest order spectrum of our candidate little Nl = 1 twin W-SCFT, as

obtained via a twin S-folding in section 3.1. Of course, this is not enough to declare them

to be twin theories as, without a Lagrangian description, we have no immediate handle on

the interactions. However, there are twin Nb = 6 and Nl = 2 supergravities in D = 5, with

identical bosonic sectors determined by the common scalar coset SU?(6)/ Sp(3), that can be

gauged with respect to the same subgroup SU(3) ×U(1) ⊂ Sp(3). The gauged Nb = 6 su-

pergravity (or more precisely, an S-duality fibration thereof) provides the bulk holographic

dual of the exotic Nb = 3 SCFT [1, 3], while its Nl = 2 twin provides the candidate bulk

holographic dual of the proposed exotic Nl = 1 twin SCFT. Note, all twin Poincaré super-

gravity theories can be obtained through the “square” or “double-copy” of conventional

super Yang-Mills theories [10], as summarised in table 1. As one might anticipate, for each

twin supergravity pair in D = 5 there is a candidate twin pair of dual D = 4 W-SCFTs,

that admit a twin S-fold construction and may also be deduced through the double-copy of

massive spin-1 multiplets following the procedure of [10], as we describe in section 3.1 and

section 3.2. Since the W-SCFTs are intrinsically non-perturbative the use of “double-copy”

here is meant rather heuristically; it is essentially an exercise in representation theory.

Remarkably, just as the double-copy of conventional super Yang-Mills theories gives

conventional supergravity theories, it has been argued that the “double-copy” of W-SCFTs

1The nomenclature reflects: (i) the role of Weyl multiplets [12, 14, 15] in characterising the W-SCFT

spectra [1, 11]; (ii) that the product of two W-SCFTs yield a W-supergravity [11], in analogy to the

double-copy of conventional super Yang-Mills theories, which yields conventional supergravity theories.
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yields exotic massive higher spin W-supergravity theories [11]. The chief example is the

N = 7 W-supergravity, which follows from the product of N = 4 super Yang-Mills with

the N = 3 W-SCFT [11] and contains a single spin-4 and 1000 spin-2 states. Note, the

existence of an N = 7 W-supergravity theory is the direct analog of the existence of an

N = 3 W-SCFT, in the sense that for locally supersymmetric theories in D = 4 with

a perturbative limit, N = 7 implies N = 8. Again, the loop-hole is the intrinsically

non-perturbative nature of the N = 7 W-supergravity, which in this case can be traced

back to its N = 3 W-SCFT factor in the double-copy. The N = 7 W-supergravity has

been proposed to be the effective field theory limit of a type II W-superstring theory [11].

From this perspective, the [N = 4] × [N = 3] product corresponds to the product of

N = 4 left-moving and N = 3 right-moving fermionic strings, which follows from a non-

perturbative string S-folding involving a T-fold and S-duality twist that acts only on the

right-movers of the conventional type II string [11]. Now, given a double-copy construction

of W-supergravities and an array of W-SCFTs with N = 1, 2, 3 one can follow [10] to

generate candidate twin W-supergravities, as done in section 4. In this case we cannot

directly appeal to AdS/CFT, so for the time-being their twinness is confined to spectra

and symmetries alone.

2 D = 4 massive multiplets with spin ≤ 4

We shall need in the following all long massive supermultiplets with spins ranging from 0

to 4. For N -extended supersymmetry, the long massive spin-
(N

2 + j
)

multiplet is obtained

by tensoring the smallest long massive spin-(N2 ) multiplet by a spin-j state [13]. This

yields the list of multiplets given table 2. The unitary R-symmetry representations may

be collected into representations of Sp(N ), the automorphism algebra of the massive N -

extended supersymmetry algebra, and the states are accordingly labelled by Spin(3) ×
Sp(N ) representations. Note the coincidences in [11] and [21], which both make use of

table 2, suggesting a possible relation to bound p-branes. Specifically, the N,L, q multiplets

of [21] are related to the N , jmax multiplets of [11] and table 2 by

[N , jmax] = [N − q, (N − q + 2L)/2]. (2.1)

3 Twin superconformal field theories

In this section we shall construct the twin W-SCFTs in D = 4. The {Nb,Nl} twin pair can

be obtained by twin S-fold operators, denoted S
{Nb,Nl}
b and S

{Nb,Nl}
l , for the big and little

twin, respectively. They each have holographic duals given by gauged twin supergravities

obtained via non-perturbative projections of type IIB on AdS5 × S5. We will also show

how they may deduced from using the gauge×gauge construction of [10], using a Cartan

involution and (−1)F . We will review the known N = 3 theories, before describing the

{3, 1} and {2, 1} twins. The N = 2, 1 W-SCFTs are new, to the best of our knowledge.
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3.1 The {3, 1} twins

Before giving the S-fold construction of the twin pair, let us summarise their spectra. Let

[N , jmax]B(F ) denote the bosonic (fermionic) sector of [N , jmax].

Consider the bosonic sector of N = 3 spin-2 multiplet,

[3, 2]B = (5,1)⊕ (3,14 + 1)⊕ (1,14), (3.1)

and the N = 1 spin-2 multiplet,

[1, 2]B = (5,1)⊕ (3,1). (3.2)

Evidently, to match the bosonic content of the N = 3 theory we must add 14 N = 1

spin-1 multiplets transforming in the 14 of Sp(3), giving

[1, 2]⊕ 14[1, 1] = (5,1,1)⊕ (4,2,1)⊕ (3,1,14 + 1)⊕ (2,2,14)⊕ (1,1,14), (3.3)

such that

([1, 2]⊕ 14[1, 1])B = [3, 2]B. (3.4)

The {3, 1} twin multiplets, [3, 2] and [1, 2] ⊕ 14[1, 1], can be obtained via complementary

truncations of [4, 2]. First, decompose [4, 2] with respect to Sp(1) × Sp(3) ⊂ Sp(4)

(5,1) → (5,1,1)

(4,8) → (4,2,1) + (4,1,6)

(3,27) → (3,1,14) + (3,2,6) + (3,1,1)

(2,48) → (2,1,14′) + (2,2,14) + (2,1,6)

(1,42) → (1,1,14) + (1,2,14′)

(3.5)

The [3, 2] multiplet is then given by truncating to the Sp(1) invariant subsector:

(5,1) → (5,1,1)

(4,8) → (4,1,6)

(3,27) → (3,1,14 + 1)

(2,48) → (2,1,14′ + 6)

(1,42) → (1,1,14)

(3.6)

Its twin [1, 2]⊕ 14[1, 1] multiplet is given by retaining the same bosonic subector, but the

complementary fermionic subsector, that is all fermions transforming as the 2 of Sp(1):

(5,1) → (5,1,1)

(4,8) → (4,2,1)

(3,27) → (3,1,1) + (3,1,14)

(2,48) → + (2,2,14)

(1,42) → + (1,1,14)

(3.7)
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D= 6

SO(5,5)
SO(5)×SO(5)

{(2,2)}
//

zz

SU?(4)
Usp(2)

{(2,1),(0,1)}

zz

��

SU?(4)
Usp(2)

{(2,1),(0,1)}
//

��

O(1,1)×Sp(1)2
U(1)2

{(1,1),(0,1)}

��

D= 5

E6(6)

Usp(4)

{8}
//

zz

SU?(6)
Usp(3)

{6,2}

zz

��

SU?(6)
Usp(3)

{6,2}
//

��

SO(1,1)×SO(5,1)
Usp(2)

{4,2}

��

D= 4

E7(7)

SU(8)

{8}
//

zz

SO?(12)
U(6)

{6,2}
//

zz

SU(5,1)
U(5)

{5,1}

zz

��

SO?(12)
U(6)

{6,2}
//

zz

SU(1,1)×SO(6,2)
U(1)×U(4)

{4,2}
//

zz

SU(3,1)
U(3)

{3,2,1}

zzSU(5,1)
U(5)

(5,1)
//

��

SU(3,1)
U(3)

{3,2,1}
//
SU(2,1)
U(2)

{2,1}

��

D= 3

E8(8)

SO(16)

{16}
//

zz

E7(−5)

SO(3)×SO(12)

{12,4}
//

zz

E6(−14)

U(1)×SO(10)

{10,2}
//

zz

F4(−20)

SO(9)

{9,1}

}}
E7(−5)

SO(3)×SO(12)

{12,4}
//

zz

SO(8,4)
SO(8)×SO(4)

{8,4}
//

zz

SU(4,2)
U(4)×SU(2)

{6,4,2}
//

zz

Usp(2,1)
Usp(2)×SU(2)

{5,1}

zzE6(−14)

U(1)×SO(10)

{10,2}
//

}}

SU(4,2)
U(4)×SU(2)

{6,4,2}
//

zz

SU(2,1)2

U(2)2

{4,2}
//

zz

SU(2,1)
U(2)

{3,1}

zzF4(−20)

SO(9)

{9,1}
//

Usp(2,1)
Usp(2)×SU(2)

{5,1}
//
SU(2,1)
U(2)

{3,1}
//
SL(2,R)
SO(2)

{2,1}

Table 1. Pyramid of twin supergravities generated by the product of left and right super Yang-

Mills theories in D = 3, 4, 5, 6. Each level is related by dimensional reduction as indicated by

the vertical arrows. The horizontal arrows indicate consistent truncations effected by truncating

the left or right Yang-Mills multiplets. All such supergravity theories have a twin except for the

maximal cases along the “exceptional spine” highlighted in red. Note, D = 3 is the exception to

the exceptions in that maximal N = 16 supergravity does have a ‘trivial’ N = 1 twin, but it is not

obtained from the double-copy procedure [10].
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j\N 8 7 6 5 4 3 2 1

4 1 1 1 1 1 1 1 1
7
2 16 14 12 10 8 6 4 2

3 119 90+1 65+1 44+1 27+1 14+1 5+1 1
5
2 544 350+14 208+12 110+10 48+8 14′+6 4 −
2 1700 910+90 429+65+1 165+44+1 42+27+1 14+1 1 −
3
2 3808 1638+350 572+208+12 132+110+10 48+8 6 − −
1 6188 2002+910 429′+429+65 165+44+1 27+1 1 − −
1
2 7072 1430+1638 572+208 110+10 8 − − −
0 4862 2002 429 44 1 − − −

d.o.f 216 2×214 3×212 4×210 5×28 6×26 7×24 8×22

7
2 1 1 1 1 1 1 1

3 14 12 10 8 6 4 2
5
2 90 65+1 44+1 27+1 14+1 5+1 1

2 350 208+12 110+10 48+8 14′+6 4 −
3
2 910 65+429 165+44+1 42+27+1 14+1 1 −
1 1638 208+572 132+110+10 48+8 6 − −
1
2 2002 429+429′ 165+44 27+1 1 − −
0 1430 572 110 8 − − −

d.o.f 214 2×212 3×210 4×28 5×26 6×24 7×22

3 1 1 1 1 1 1
5
2 12 10 8 6 4 2

2 65 44+1 27+1 14+1 5+1 1
3
2 208 110+10 48+8 14′+6 4 −
1 429 165+44 42+27+1 14+1 1 −
1
2 572 132+110 48+8 6 − −
0 429′ 165 27 1 − −

d.o.f 212 2×210 3×28 4×26 5×24 6×22

5
2 1 1 1 1 1

2 10 8 6 4 2
3
2 44 27+1 14+1 5+1 1

1 110 48+8 14′+6 4 −
1
2 165 42+27 14+1 1 −
0 132 48 6 − −

d.o.f 210 2×28 3×26 4×24 5×22

2 1 1 1 1
3
2 8 6 4 2

1 27 14+1 5+1 1
1
2 48 14′+6 4 −
0 42 14 1 −

d.o.f 28 2×26 3×24 4×22

3
2 1 1 1

1 6 4 2
1
2 14 5+1 1

0 14′ 4 −
d.o.f 26 2×24 3×22

1 1 1
1
2 4 2

0 5 1

d.o.f 24 2×22

1
2 1

0 2

d.o.f 22

Table 2. The long massive N -extended spin-(jmax) multiplets for 1/2≤ jmax≤ 4 and 1≤N ≤ 8.

The states are labelled by Spin(3)×Sp(N ) representations.
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To summarise, decomposing under N = 3,

[4, 2] = [3, 2]⊕ 2× [3, 3/2] −→ [3, 2] (3.8)

and the doublet of spin-3/2 multiplets are truncated out. On the other hand, decomposing

under N = 1

[4, 2] = [1, 2]⊕ 6× [1, 3/2]⊕ 14× [1, 1]⊕ 14′ × [1, 1/2] −→ [1, 2]⊕ 14× [1, 1] (3.9)

and the six (14) spin-3/2 (spin-1/2) multiplets are truncated out.

3.1.1 The N = 3 big twin

Let us first recall the key features of the N = 3 W-SCFTs constructed in [3]. From a field

theory point of view theN = 3 theories are obtained by an S-fold projector, S
{3,1}
b := sk◦rk,

generating a Zk subgroup of the N = 4 R-symmetry and S-duality, Spin(6) × SL(2,Z).

The R-symmetry operator, rk, is straight-forwardly embeded in the R-symmetry group

Spin(6). Consider the Zk group

Zk ⊂ Ua(1)×Ub(1)×Uc(1) ⊂ Spin(6), (3.10)

generated by a (2πa/k, 2πb/k, 2πc/k) rotation on R2×R2×R2, for a, b, c co-prime relative

to k. Geometrically, it can be regarded as a rotation on the R6 transverse to a stack of

D3-branes in R1,9. For (x, y, z) coordinates on C3 it is given by

(x, y, z) 7→ (ζax, ζby, ζcz), ζ = e
2πi
k . (3.11)

Here, rk is given by (a, b, c) = (1, 1,−1). The corresponding action on the N = 4 super-

charges is given by

rk :

QαA 7→ e−
i2π

∑
l λ
A
l

k QαA

Q̄α̇
A 7→ e−

i2π
∑
l λAl
k Q̄α̇

A

(3.12)

Here, α (α̇) and upper (lower) A are the spinor (conjugate spinor) indices of the 2 (2̄) and

the 4 (4̄) representations of Spin(1, 3) ∼= SL(2,C) and Spin(6) ∼= SU(4), respectively. The

weights of the 4 (4̄) are denoted by λA (λA). Explicitly,

rk :

Qa 7→ e−
iπ
k Qa, Q4 7→ e

i3π
k Q4

Q̄a 7→ e
iπ
k Q̄a, Q̄4 7→ e−

i3π
k Q̄4

(3.13)

where a = 1, 2, 3.

Consider now S-duality (assuming a simply-laced gauge group) acting on the coupling

constant (complex structure) τ in usual fractional linear manner,2

τ 7→ aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z). (3.14)

2It is the projective PSL(2,Z) that acts faithfully on the upper-half plane, but since we will consider

the S-duality action on the fermionic supercharges its double-cover SL(2,Z) is required.
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The corresponding action on the supercharges is given by,

QA 7→

√
cτ + d

|cτ + d|
QA, Q̄A 7→

√
|cτ + d|
cτ + d

Q̄A, (3.15)

where the central charge picks up a factor of |cτ+d|cτ+d under S-duality and the presence of

the squareroot implies that the supercharges in the double-cover. Note, S-duality is only a

symmetry (as opposed to a duality) if τ is preserved. This only happens for particular sub-

groups Γ ⊂ SL(2,Z) corresponding to certain values of τ , in which case QA 7→ exp[iπ/k]QA
for specific values of k depending on τ , as summarised here:

Γ Z2 Z3 Z4 Z2 ×Z3

Generator

(
−1 0

0 −1

) (
−1 1

−1 0

) (
0 −1

1 0

) (
1 −1

1 0

)

τ any e
iπ
3 i e

iπ
3

k 2 3 4 6

(3.16)

Corresponding to the Zk R-symmetry operator (3.13) consider a Zk ⊂ SL(2,Z) S-duality

subgroup generated by sk,

sk :

QA 7→ e
iπ
k QA

Q̄A 7→ e−
iπ
k Q̄A

(3.17)

The composite sk ◦ rk action is given by

S
{3,1}
b :

Qa 7→ Qa, Q4 7→ e
4πi
k Q4;

Q̄a 7→ Q̄a, Q̄4 7→ e−
4πi
k Q̄4.

(3.18)

For k = 2, corresponding to the usual orientifold case, we see all 16 supercharges are

preserved. On the other hand for k > 2, only the 12 supercharges Qa, Q̄
a are left invariant,

reducing the N = 4 algebra to the N = 3 algebra, while the SU(4)R R-symmetry is broken

to U(3)R. For k = 2, τ can take arbitrary values and there is a perturbative limit, as

expected for the standard orientifold. For k > 2, τ has a fixed value of order one and the

S-fold is intrinsically non-perturbative.

The entireN = 4 vector multiplet transforms non-trivially under S
{3,1}
b , as summarised

in table 3. The spectrum is truncated to the S
{3,1}
b -invariant subsector. The lowest Sk-

invariant operator, which has scaling dimension two, is the N = 3 supercurrent multiplet,

which can be written

Ja
b = tr

(
VaV

b − 1

3
δa
bVcV

c
)

(3.19)

– 8 –



J
H
E
P
0
3
(
2
0
1
9
)
1
1
2

SU(3) U(1)R S
{3,1}
l

F+ 1 0 1

λa 3 −1 1

λ4 1 3 −1

φa4 3 2 −1

φab 3̄ −2 1

Table 3. The charges carried by the component fields of the N = 4 super Yang-Mills multiplet

under the S
{3,1}
b S-fold operator (in units of 2π/k) and the invariant SU(3) × U(1)R ⊂ SU(4)

R-symmetry subgroup.

where the U(3) triplet Va is the N = 3 spin-1 on-shell superfield [22, 23]. The physical

components in terms of Spin(3) ×U(3)R representations are given by

[3, 2] = (5,1)

⊕ (4,31 + 3̄−1)

⊕ (3,10 + 3−2 + 3̄2 + 80)

⊕ (2,13 + 1−3 + 6−1 + 6̄1 + 31 + 3̄−1)

⊕ (1,3−2 + 3̄2 + 80)

= (5,1)⊕ (4,6)⊕ (3,14 + 1)⊕ (2,14′ + 6)⊕ (1,14)

(3.20)

where in the last line we have collected the U(3) representations into Sp(3) representations

corresponding to the automorphism algebra of the massive N = 3 supersymmetry algebra.

The N = 3 theories have string/M-theory embeddings that can be approached from

a number of perspectives [3]. For example, D3-branes probing singularities in F-theory on

an Abelian orbifold,

R1,3 × (C3 × T 2)/Zk, (3.21)

where the underline denotes the D3-brane world-volume directions. This corresponds to

a limit of M2-branes in M-theory on R1,2 × (C3 × T 2)/Zk. The complex structure of the

F-theory T 2 is the coupling constant of the world-volume theory of the D3-branes. For

(x, y, z, u) coordinates on C4, locally equivalent to the F-theory C3 × T 2, consider the Zk

group generated by

σ : (x, y, z, u) 7→ (ζax, ζby, ζcz, ζdu) (3.22)

where ζ is a primitive kth root of unity. The singularities are isolated if and only if the

weights (a, b, c, d) are all relatively prime to k. This action is embedded in the R-symmetry

and S-duality groups,

Zk ⊂ Ua(1)×Ub(1)×Uc(1)×Ud(1) ⊂ Spin(6)× SL(2,Z), (3.23)

through

σ 7→ diag(Ra, Rb, Rc)⊗Rd (3.24)
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where Ra is a rotation by 2πa/k on R2 ∼= C ⊂ C4. The corresponding action on the (4,2)

of Spin(6)× SL(2,Z) is given (in our conventions3) by,

diag
(
ζ
a+b+c+d

2 , ζ
a−b−c+d

2 , ζ
−a+b−c+d

2 , ζ
−a−b+c+d

2

)
, (3.25)

where the S3,1
b action given in (3.18), corresponds to (a, b, c, d) = (1, 1,−1,−1),

σ : (x, y, z, u) 7→ (ζx, ζy, ζ−1z, ζ−1u). (3.26)

The singularities are Q-factorial (being quotient) Gorenstein terminal4 and therefore do

not admit any crepent resolution. The SL(2,Z) action is an involution of the torus only

for k = 2, 3, 4, 6, hence the restriction. Since the complex structure in the F-theory limit

corresponds to the axion-dilaton, for k > 2 this is non-pertubative in D = 10.

3.1.2 The N = 1 little twin

Let us now introduce the little twin S-fold operator S
{3,1}
l := sk ◦ rk. The R-symmetry

action is again given by,

rk :

Qa 7→ e−
iπ
k Qa, Q4 7→ e

i3π
k Q4

Q̄a 7→ e
iπ
k Q̄a, Q̄4 7→ e−

i3π
k Q̄4

(3.27)

The S-duality operator, on the other hand, is now given by,

sk :

QA 7→ e−
i3π
k QA;

Q̄A 7→ e
i3π
k Q̄A.

(3.28)

Hence, the composite action is given by

S
{3,1}
l :

Qa 7→ e
−i4π
k Qa, Q4 7→ Q4;

Q̄a 7→ e
i4π
k Q̄a, Q̄4 7→ Q̄4,

(3.29)

and we observe that for k > 2 only four of the superchrages are left invariant. For k = 2 all

16 charges survive as before. The R-symmetry is broken to SU(3) × U(1)R, but for k > 2

the remnant SU(3) is now a flavour symmetry rather than an R-symmetry, since only four

supercharges are left invariant, reducing the N = 4 algebra to the N = 1 algebra. Note,

this is the unique (up to trivial automorphisms) N = 1 projection preserving an SU(3)

subgroup of the N = 4 R-symmetry.

Again, for k 6= 3 the entire N = 4 vector multiplet transforms non-trivially under

S
{3,1}
l , as summarised in table 4. To obtain the desired little twin one must set k = 4 (other

values give further truncations). Using the S
{3,1}
l charges it is straightforward to deduce the

3The weights of the 4 are given by (± 1
2
,± 1

2
,± 1

2
) with an even number of negative signs.

4A singular variety is said to be Gorenstein if its canonical bundle (which may only be a coherent sheaf)

is a line bundle. The quotients C4/Zk are Gorenstein terminal if and only if there is a generator with

weights given (up to permutations) by (1,−1, a,−a) for gcd(a, k) = 1 [24].
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SU(3) U(1)R S
{3,1}
l

F+ 1 0 −3

λa 3 −1 −1

λ4 1 3 −3

φa4 3 2 −1

φab 3̄ −2 1

Table 4. The charges carried by the component fields (in terms of on-shell field strengths) of

the N = 4 super Yang-Mills multiplet under the S
{3,1}
l S-fold operator (in units of 2π/k) and the

invariant SU(3) × U(1)R ⊂ SU(4) flavour/R-symmetry subgroup. Note, for k = 3 both F and λ4

are S
{3,1}
l -invariant and we restrict to k = 4 to obtain the little twin.

quadratic S
{3,1}
l -invariant operators and, through their SU(3) × U(1)R representations, to

collect them into massive long N = 1 supermultiplets. In term of the on-shell superfields

of [22, 23] we obtain a single spin-2 and 14 spin-1 supercurrents. This can be deduced

directly from the S
{3,1}
l -invariant truncation of the N = 4 supercurrent,

JAB,CD = VABVCD −
1

12
εABCDV̄

EFVEF , V̄ AB =
1

12
εABCDVCD. (3.30)

The explicit projection in terms of off-shell component fields is given in appendix A.

The spin-2 supercurrent corresponds to the massive N = 1 super-Weyl multiplet, see

table 2, which consists of the massive Spin(3) ×U(1)R states

[1, 2] = 50 + 41 + 4−1 + 30

= (5,1) + (4,2) + (3,1)
(3.31)

where in the last line we have collected the U(1) representations into Sp(1) representations

corresponding to the automorphism algebra of the massive N = 1 supersymmetry algebra.

The 14 spin-1 supercurrents, Ja, J
a, Ja

b transform as the 3−2, 3̄2,80 of the global U(3)

and can be put in a 14 of Sp(3),

Sp(3) ⊃ U(3)

14 −→ 3−2 + 3̄2 + 80,
(3.32)

although in this case Sp(3) is a flavour symmetry, rather than the supersymmetry algebra

automorphism group. The spin-1 supercurrents correspond to the massive long N = 1

spin-1 multiplet, see table 2, which consists of the massive Spin(3) ×U(1)R states

[1, 1] = 30 + 21 + 2−1 + 10

= (3,1) + (2,2) + (1,1)
(3.33)

where we have collected the U(1)R representations into Sp(1) representations corresponding

to the automorphism algebra of the massive N = 1 supersymmetry algebra. Including the

flavour symmetry we have

14× [1, 1] = (3,1,14) + (2,2,14) + (1,1,14) (3.34)

which, with (3.31), reproduces the truncation given in (3.7).
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Note, geometrically the S
{3,1}
l projection corresponds to (C3 × T 2)/Zk, where the Zk

action is given by

(x, y, z, u) 7→ (ζx, ζy, ζ−1z, ζ3u). (3.35)

For k = 2 all supercharges are left invariant and we return to the orientifold case. For,

k = 3, 6 the singularities are not isolated. So, for N = 1 supersymmetry and isolated

singularities we must restrict to k = 4, in which case (3.35) reduces to the N = 3 quotient

given in (3.26). However, since the supercharges transform in the double-cover of the

duality group they must be distinguished. For k = 2, 3, 6 the singularities are terminal5

(but not Gorenstein) and therefore do not admit any crepent resolution. In fact, there is

no isolated quotient singularity with N < 3 supersymmetry that is Gorenstein terminal for

any k = 2, 3, 4, 6. The actual string/F-theory embedding is rather more subtle; we shall

return to this question in future work.

3.1.3 Dual supergravity theories

Ungauged D = 5,Nb = 6 supergravity has a twin given by the Nl = 2 quaternionic magic

supergravity, which is coupled to 14 vector multiplets and is based on the Jordan algebra

of 3 × 3 quaternionic Hermitian matrices, JH3 [5, 26]. The bosonic sectors of the twins

are determined by the common scalar coset SU?(6)/ Sp(3), where SU?(6) is the reduced

structure group of JH3 . This is the D = 5 analog of the ungauged D = 4, {6, 2} twins with

common coset SO?(12)/U(6). In this case, there are twins gaugings with the same U(4)

gauge group [8, 27]. The gauged N = 6 theory corresponds to the low energy limit of type

II strings on a specific AdS4 ×CP3 geometry, but cannot viewed as spontaneously broken

phase of a gauged N = 8 supergravity [27]. The same applies to the gauged N = 2 twin.

Rather, they are consistent truncations of the SO(8) gauged N = 8 theory.

An analogous discussion applies to the D = 5, {6, 2} supergravity twins relevant

here. Indeed, one can consistently truncate from SU(4) gauged N = 8 supergravity on

an AdS5 background (geometrically obtained from type IIB supergravity on S5) to both

an U(3) ⊂ SU(4) gauged N = 6 supergravity or an U(1)R × U(3) ⊂ SU(4) gauged N = 2

supergravity coupled to eight vector multiplets and 3+3 “self-dual” tensor multiplets, trans-

forming as the 8 and 3 + 3̄ of SU(3) ⊂ SU(2, 2|1) × SU(3) ⊂ SU(2, 2|4) respectively [28].

Note, the N = 2 multiplet structure is precisely reflected by the candidate little twin

N = 1 W-SCFT dual obtained from the S-folding in section 3.1.2, cf. appendix A. More-

over, the N = 6 and N = 2 truncations correspond to ‘twin gaugings’ of the twin N = 6

and magic N = 2 Poincaré supergravity theories [26, 28], appearing in table 1, which

both have scalar coset SU?(6)/ Sp(3). As discussed in [1], the N = 6 truncation should

have a dual theory with superconformal group SU(2, 2|3): the U1(1) projector used in [1],

which is a linear combination of a U(1) R-symmetry and a (discretized) U(1) S-duality, to

effect the truncation, eliminates all states in the dual theory not corresponding to N = 3

operators. It corresponds directly to the dual big twin N = 3 W-SCFT S-fold. Note,

there is no conventional geometric symmetry that can effect this truncation and the use

5Isolated quotient singularities C4/Zk are terminal if and only if, sp > k for p = 1, 2, . . . k − 1, where

sp := 〈pa〉+ 〈pb〉+ 〈pc〉+ 〈pd〉 and 〈x〉 is the unique integer in {0, 1, 2, . . . k− 1} congruent to x mod k [25].
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of S-duality (which for k > 2 fixes the string coupling to order one) makes it intrinsically

non-perturbative [1, 3]. This provides the holographic dual of the N = 3 W-SCFT [3].

Specifically, it is given by type IIB on AdS5 × S5/Zk with a non-trivial S-duality bundle

over the internal space. The corresponding F-theory construction is given by compacti-

fiying on AdS5 × (S5 × T 2)/Zk. The analogous consistent truncation to the little N = 2

gauged supergravity should be effected by the same procedure used in [1] for N = 6, but

with the little twin S-duality U(1) rotation (i.e. it is shifted as for the little twin W-SCFT,

exp iθπ → exp−3iθπ), and should have a dual theory with superconformal group SU(2, 2|1)

that corresponds to the little N = 1 W-SCFT. Again, there is no conventional geometric

symmetry that can effect this truncation and the use of S-duality makes it intrinsically

non-perturbative. The complete (non)-geometric picture will be developed in future work.

3.1.4 The double-copy construction

Following [10] the {3, 1} twin theories may be generated by considering the product of Left

and Right N = 2, 1, 0 spin-1 theories. Assume the spin-1 theories have gauge groups G

and G̃, with Lie algebras g and g̃, and are valued in the respective adjoint representations,

A and Ã. The N = 4 parent theory is given by,

[2, 1]A ⊗ [2, 1]Ã = [4, 2]. (3.36)

Consider a subgroup G0 ⊂ G corresponding to the positive eigenspace subspace of a Cartan

involution θ : g → g. The adjoint representation decomposes as A = A0 ⊕ ρ, where ρ is

a (not necessarily irreducible) representation of G0. To obtain the N = 3 twin, first

decompose the Left factor into N = 1 multiplets,(
[1, 1]A ⊕ 2[1, 12 ]A

)
⊗ [2, 1]Ã = [4, 2], (3.37)

where the multiplicities are given as representations of Sp(1)F in Sp(1)R×Sp(1)F ⊂ Sp(2)R.

Then let σ := (−1)F ◦θ, where (−1)F [N , j] = (−1)2j [N , j], and truncate to the σ-invariant

sector of the Left factor (
[1, 1]A0 ⊕ 2[1, 12 ]ρ

)
⊗ [2, 1]Ã = [3, 2], (3.38)

where we have used the rule that adjoint and non-adjoint representations do not talk to one

another in the double-copy and the remaining total global symmetry is Sp(3)R × Sp(1)F .

To then obtain the N = 1 twin, decompose the Right factor into N = 0 multiplets

and truncate to the σ̃ := (−1)F ◦ θ̃ invariant sector(
[1, 1]A0 ⊕ 2[1, 12 ]ρ

)
⊗
(

[0, 1]Ã0 ⊕ 4[0, 12 ]ρ̃ ⊕ 5[0, 0]Ã0

)
(3.39)

where the right multiplicities are given as representations of Sp(2)F̃ ⊆ Sp(2)R̃. This yields

(1,1)[1, 2] + ((1,1) + (2,4) + (1,5))[1, 1], (3.40)

where the multiplicities are given as representations of Sp(1)F×Sp(2)F̃ and can be collected

into irreducible Sp(3)F representations

[1, 2] + 14[1, 1], (3.41)
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so that the total global symmetry is Sp(1)R × Sp(3)F . Hence, the spectra and symmetries

match those of the big N = 3 twin.

Note, the conventional Bern-Carrasco-Johansson (BCJ) double-copy [29–31] takes

gauge theories into gravitational theories, whereas here we are generating the spectra and

symmetries of non-gravitational W-SCFTs from the product of spin-1 SCFT “matter”

multiplets. This is directly analogous to the BCJ double-copy of, for example, N = 2 hy-

per multiplet amplitudes, which generate the amplitudes of N = 4 Yang-Mills. However,

for the hyper multiplets to have a local symmetry they must come coupled to an N = 2

Yang-Mills multiplet, which will generate the N = 4 gravitational sector when included in

the double-copy. So the N = 4 Yang-Mills amplitudes generated by the hypers must be

regarded as a subsector of the full double-copy theory including the gravitational degrees of

freedom. It is tempting to apply the same logic in the present W-SCFT case: the product

of the “matter” multiplets, given in (3.38) and (3.39), yields the non-gravitational twin

W-SCFTs, but if they are to have local symmetries the “matter” multiplets entering in the

Left and Right factors must themselves come coupled to W-SCFTs, which when included

in the product will yield the gravitational sector in terms of W-supergravities, as described

in [11] and section 4. So, in the end, we expect our double-copy constructed W-SCFTs to

come coupled to W-supergravities.

Of course, this remains rather heuristic since we dealing with non-Lagrangian theories

with no perturbative limit, although using the field-theoretic approach of [10, 32–34] the

spectra and local/global symmetries can be determined from the product, even in the

absence of a complete understanding of the factors. It may be possible to make further

progress by studying the possible rational superconformal invariants, but we leave this for

future work.

3.2 The {2, 1} twins

Before giving the S-fold construction of the twin pair, let us summarise their spectra.

Consider the N = 2 and N = 1 super-Weyl multipets

[2, 2] = (5,1) + (4,4) + (3,5 + 1) + (2,4) + (1,1) ; (3.42)

[1, 2] = (5,1) + (4,2) + (3,1) , (3.43)

which are covariant under Spin(3)×Sp(2) and Spin(3)×Sp(1), respectively. Consequently,

in order to equate their bosonic sectors, one must add at least five [1, 1] multiplets to the

N = 1 theory, transforming in the 5 of Sp(2), giving the Spin(3)× Sp(1)× Sp(2)-covariant

result,

[2, 2]B = (5,1,1) + (3,1,5 + 1) + (1,1,1) ; (3.44)

([1, 2]⊕ 5[1, 1])B = (5,1,1) + (3,1,5 + 1) + (1,1,5) . (3.45)

The unique, minimal matching of the bosonic sectors is then given by adding one [2, 1]

multiplet on the N = 2 side, and a further [1, 1] multiplet on the N = 1 side:

([2, 2]⊕ [2, 1])B = ([1, 2]⊕ (5 + 1) [1, 1])B

= (5,1,1) + (3,1,5 + 1 + 1) + (1,1,5 + 1) . (3.46)
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Thus, the {2, 1} twin W-SCFT pair in D = 4 is given by the N = 2 W-SCFT with

[2, 2]⊕ [2, 1] and the N = 1 W-SCFT with [1, 2]⊕ (5 + 1) [1, 1], where 5 + 1 is a reducible

representation of Sp(2).

The {2, 1} twin multiplets can be obtained via complementary truncations of [3, 2].

First, decompose [3, 2] under Sp(1)× Sp(2) ⊂ Sp(3):

(5,1) → (5,1,1)

(4,6) → (4,1,4) + (4,2,1)

(3,14 + 1) → (3,1,5) + (3,2,4) + (3,1,1) + (3,1,1)

(2,14′ + 6) → (2,1,4) + (2,2,5) + (2,1,4) + (2,2,1)

(1,14) → (1,1,5) + (1,2,4) + (1,1,1) .

(3.47)

The truncation to the Sp(1)-invariant subsector yields the N = 2 twin [2, 2]⊕ [2, 1]:

(5,1) → (5,1,1)

(4,6) → (4,1,4)

(3,14 + 1) → (3,1,5 + 1) + (3,1,1)

(2,14′ + 6) → (2,1,4) + (2,1,4)

(1,14) → (1,1,1) + (1,1,5) .

(3.48)

Its N = 1 twin [1, 2] ⊕ (5 + 1) [1, 1] is obtained by retaining the same bosonic sector,

but truncating to the complementary fermionic sector, namely retaining only the fermions

transforming as the 2 of Sp(1):

(5,1) → (5,1,1)

(4,6) → (4,2,1)

(3,14 + 1) → (3,1,1) + (3,1,5 + 1)

(2,14′ + 6) → + (2,2,5 + 1)

(1,14) → + (1,1,5 + 1) .

(3.49)

To summerise, the N = 2 twin of the {2, 1} pair is given by decomposing [3, 2] into

N = 2 multiplets

[3, 2] = [2, 2]⊕ 2 [2, 3/2]⊕ [2, 1] , (3.50)

and truncate out the Sp(2)-doublet 2 of long, massive spin-3/2 multiplets. On the other

hand, in order to get the N = 1 twin of the {2, 1} pair, one decomposes [3, 2] into N = 1

multiplets

[3, 2] = [1, 2]⊕ 4 [1, 3/2]⊕ (5 + 1) [1, 1]⊕ 4 [1, 1/2] , (3.51)

and truncates out the 4 Sp(2)-representations of long, massive spin-3/2 and spin-1/2

multiplets.

3.2.1 The N = 2 big twin

Let us now introduce the big Nl = 2 twin S-fold operator S
{2,1}
b := sk◦rk. The R-symmetry

action in this case is given by,

rk :

Qi 7→ e−
iπ
k Qi, Q3 7→ e

i2π
k Q3 Q4 7→ Q4

Q̄i 7→ e
iπ
k Q̄i, Q̄3 7→ e−

i2π
k Q̄3 Q̄4 7→ Q̄4

(3.52)
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SU(2) U(1)R U(1)F S
{2,1}
b

F+ 1 0 0 2

λi 2 1 0 2

λ3 1 −1 1 −1

λ4 1 −1 −1 1

φij 1 2 0 2

φi3 2 0 1 −1

φi4 2 0 −1 1

φ34 1 −2 0 −2

Table 5. The charges carried by the component fields of the N = 4 super Yang-Mills multiplet

under the S
{2,1}
b S-fold operator (in units of π/k) and the invariant SU(2)×U(1)R×U(1)F ⊂ SU(4)

flavour/R-symmetry subgroup.

where i = 1, 2. The S-duality operator is given, as for the {3, 1} big twin, by,

sk :

QA 7→ e
iπ
k QA;

Q̄A 7→ e−
iπ
k Q̄A.

(3.53)

Hence, the composite action is given by

S
{2,1}
b :

Qi 7→ Qi, Q3 7→ e
i3π
k Q3 Q4 7→ e

iπ
k Q4

Q̄i 7→ Q̄i, Q̄3 7→ e−
i3π
k Q̄3 Q̄4 7→ e−

iπ
k Q̄4

(3.54)

The R-symmetry is broken to SU(2) × U(1)R × U(1)F by rk, where the first two factors

make up the N = 2 R-symmetry SU(2) × U(1)R of the preserved N = 2 superalgebra.

The entire N = 4 vector multiplet transforms non-trivially under S
{2,1}
b , as summarised in

table 5. The remaining U(1)F would seem to be spurious since, from (3.48), we know that

the maximal global symmetry of the big {2, 1} twin is SU(2) × U(1)R ⊂ Sp(2). However,

the S
{2,1}
b -invariant sector is uncharged under the extra U(1) so that the non-trivial global

symmetry is indeed SU(2) ×U(1)R, as expected.

Using the S
{2,1}
b charges it is straightforward to deduce the quadratic S

{2,1}
b -invariant

operators and, through their SU(2) × U(1)R representations, to collect them into massive

long N = 2 supermultiplets. In term of the on-shell superfields of [22, 23] we obtain one

spin-2 and one spin-1 supercurrent,

J = V V̄ , Ji
j = ViV̄

j − 1

2
δi
jVkV̄

k, (3.55)

where V is the N = 2 spin-1 on-shell superfield and Vi is the N = 2 spin-1/2 on-shell

superfield [23], transforming as a doublet of the global symmetry U(2). Hence, the S
{2,1}
b

S-folding reproduces precisely the truncation (3.48) giving the big {2, 1} twin. The off-shell

component field projection is given in appendix A.
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3.2.2 The N = 1 S-fold construction

Let us now introduce the {2, 1} little twin S-fold operator S
{2,1}
l := sk ◦ rk. As for the

{3, 1} example, the R-symmetry action for the little is the same as that for the big twin,

rk :

Qi 7→ e−
iπ
k Qi, Q3 7→ e

i2π
k Q3 Q4 7→ Q4

Q̄i 7→ e
iπ
k Q̄i, Q̄3 7→ e−

i2π
k Q̄3 Q̄4 7→ Q̄4

(3.56)

where i = 1, 2. The difference again lies solely in the S-duality operator,

sk :

QA 7→ e−
2iπ
k QA;

Q̄A 7→ e
2iπ
k Q̄A.

(3.57)

Comparing with the {3, 1} case, we note that (i) the S-duality phase is exp[±iπ/k] for all

big twins while (ii) the R-symmetry operator is the same for each pair of big and little twins,

and (iii) if Nb = n the S-duality on the corresponding little twin is given by exp[∓inπ/k].

Note: (i) simply reflects the fact that the supercharges transform uniformly under S-

duality, so any change amounts to a trivial redefinition of the S-fold; (ii) follows from the

requirement that each twin pair has the same global symmetry, which is determined by

the subalgebra commuting with rk alone; (iii) is a consequence of breaking the N = 4

R-symmetry to N = Nb, which implies a single supercharge carries charge Nb and so can

always be chosen to be the Nl = 1 supercharge.

Hence, the composite action for the little {2, 1} twin is given by

S
{2,1}
l :

Qi 7→ e−
3iπ
k Qi, Q3 7→ Q3 Q4 7→ e−

2iπ
k Q4

Q̄i 7→ e
3iπ
k Q̄i, Q̄3 7→ Q̄3 Q̄4 7→ e

2iπ
k Q̄4

(3.58)

Now only four supercharges survive, leaving an N = 1 superalgebra. Excluding k = 2

the entire N = 4 vector multiplet transforms non-trivially under S
{2,1}
l , as summarised in

table 6. Specialising to k = 3 it is straightforward to deduce the quadratic S
{2,1}
l -invariant

operators and, through their U(2)F × U(1)R representations, to collect them into massive

long N = 1 supermultiplets, yielding one spin-2 and six spin-1 multiplets in the 5 + 1 of

Sp(2) as required. See appendix A.

3.2.3 Dual supergravity theories

Ungauged D = 5, Nb = 4 supergravity coupled to one vector multiplet has a twin given

by the Nl = 2 supergravity coupled to six vector multiplets, based on the semi-simple

rank-3 Jordan algebra R ⊕ Γ1,5 [8]. The bosonic sectors of such twins are determined by

the common scalar symmetric coset

SO(1, 1)× SO (1, 5)

SO(5)
, (3.59)

where SO(1, 1) × SO(1, 5) is the reduced structure group of R ⊕ Γ1,5. This is the D = 5

analog of the D = 4 {4, 2} supergravity twin pair [35], with common symmetric coset

SL(2,R)

U(1)
× SO (2, 6)

SO(2)× SO(6)
, (3.60)

which is the R-map image of (3.59).
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SU(2) U(1)R U(1)F S
{2,1}
l

F+ 1 0 0 −4

λi 2 1 0 −1

λ3 1 −1 1 −4

λ4 1 −1 −1 −2

φij 1 2 0 2

φi3 2 0 1 −1

φi4 2 0 −1 1

φ34 1 −2 0 −2

Table 6. The charges carried by the component fields of the N = 4 super Yang-Mills multiplet

under the S
{2,1}
l S-fold operator (in units of π/k) and the invariant SU(2)F×U(1)R×U(1)F ⊂ SU(4)

flavour/R-symmetry subgroup.

Following the discussion of section 3.1.3, together with the S
{2,1}
b /S

{2,1}
l S-foldings

and the observation that both the {2, 1} W-SCFT and the {4, 2} Poincaré supergravity

twins are truncations of the {3, 1} W-SCFT and the {6, 2} Poincaré supergravity twins,

respectively, we would anticipate analogous ‘twin’ truncations yielding the candidate bulk

dual {4, 2} gauged twin supergravities. The big gauged N = 4 twin corresponds to a

further consistent truncation of the special case described in [28], in which SU(4) gauged

N = 8 supergravity is truncated down to Romans’ gauged N = 4 supergravity [36] coupled

to a single vector multiplet. Note, in Romans’ gauged N = 4 supergravity the vectors of

N = 4 Poincaré supergravity sitting in the 5 of Sp(2) are replaced by three vectors and

two “self-dual” two-forms in the 30 and 12 + 1−2 of U(2) ⊂ Sp(2), as required by the

preservation of supersymmetry, which is precisely reflected by the multiplet structure of

the candidate dual N = 2 W-SCFT, cf. appendix A. Similarly, the little N = 2 twin

corresponds to a further consistent truncation of the N = 8 → N = 2 case given in [28]

(and described in section 3.1.3) down to U(1)R×U(2) gauged N = 2 supergravity coupled

to 3+1 vector multiplets and 1+1 “self-dual” tensors multiplets in the 30
0+10

0 and 10
2+10

−2,

as required by supersymmetry [37, 38], again reflecting the structure of the candidate dual

N = 1 W-SCFT. See appendix A. Note, the U(1)R gauge factor is required for an AdS

vacuum [38, 39]. As for the {6, 2} case discussed in section 3.1.3, we do not anticipate

that these truncations can be obtained using purely (conventional) geometric symmetries,

but require instead the twin S
{2,1}
b /S

{2,1}
l S-foldings implemented on SU(4) gauged N = 8

supergravity. Note, the need to invoke S-duality here implies that they are intrinsically

non-perturbative. We would also expect to be able to obtain the gauged twin supergravities

directly through twin gaugings of the {4, 2} Poincaré supergravities following [38, 40].

3.2.4 Double-copy construction

The “parent” [3, 2] multiplet is given by

[2, 1]A ⊗ [1, 1]Ã = [3, 2] . (3.61)
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To obtain the N = 2 twin of the {2, 1} pair, first decompose the Left factor into N = 1

multiplets: (
[1, 1]A ⊕ 2 [1, 1/2]A

)
⊗ [1, 1]Ã = [3, 2] , (3.62)

and then truncate the Left factor to the σ-invariant sector. By using the rule that adjoint

and non-adjoint representations do not talk to one another in the double copy, one obtains(
[1, 1]A0 ⊕ 2 [1, 1/2]ρ

)
⊗ [1, 1]Ã = [2, 2]⊕ [2, 1] . (3.63)

To obtain the N = 1 twin of the {2, 1} pair, one has then to decompose the Right factor

into N = 0 multiplets and truncate to the σ̃-invariant sector:(
[1, 1]A0 ⊕ 2 [1, 1/2]ρ

)
⊗
(

[0, 1]Ã0 + 2 [0, 1/2]ρ̃ + [0, 0]Ã0

)
= [1, 2]⊕ 6 [1, 1] , (3.64)

where 6 must be specified as 5 + 1 under Sp(2).

4 Twin W-supergravities

In [11] it was argued that W-supergravities, which possess a spin-4 field in place of the

conventional graviton, follow from the effective field theory limit of asymmertric S-foldings

of string theory. For recent developments on W-supergravities see [41, 42]. The string S-

fold is effected by a T-duality twist and an S-duality twist combined with a new G-duality

twist, which ensures that the S-fold only acts on the right movers, and a H-duality twist,

which ensures that the S-fold is Lorentz covariant. The combined S-G-H-duality is an

automorphism of the string theory, so the S-fold is a bona fide projection. The string S-

fold reproduces the field theory S-fold on the right-moving sector and so the spectrum can

be calculated using the product or “double-copy” of the corresponding W-SCFTs, where

level matching forbids products amongst the right W-SCFT and the conventional massless

states still present in the left-moving sector.

For example, the spectrum of N = 7 W-supergravity [11] follows from the product

between the N = 4 left-moving sector and the S-folded N = 3 right-moving sector of type

II strings on T 6, which at the lowest level reduces to

[4, 2]L × [3, 2]R = [7, 4]. (4.1)

By considering various degrees of supersymmetry in the factors we can construct the spectra

of the would-be W-supergravities [11], with all 0 ≤ N ≤ 7 as summarised in table 7. We

can also generate (almost) arbitrary “matter” couplings for N ≤ 6. Note, although we have

included the [8, 4] multiplet for completeness, it does not correspond to any W-supergravity

as the S-fold always breaks some supersymmetry (at least not without some further, as

yet to be determined, novel ingredients). It is also useful in that it provides a “parent”

multiplet for the first example of twin W-supergravities.

Using table 7 and table 8, together with the branchings given in table 9, it is then

straightforward to follow [10] (cf. section 3.1.4) to construct would-be twin W-supergravities,

which have identical bosonic symmetries and spectra. To go beyond this would require a
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[4, 2] ⊗ [4, 2] = [8, 4]

[4, 2] ⊗ [3, 2] = [7, 4]

[4, 2] ⊗ [2, 2] = [6, 4]

[4, 2] ⊗ [1, 2] = [5, 4]

[4, 2] ⊗ [0, 2] = [4, 4]

[3, 2] ⊗ [3, 2] = [6, 4] + [6, 3]

[3, 2] ⊗ [2, 2] = [5, 4] + [5, 3]

[3, 2] ⊗ [1, 2] = [4, 4] + [4, 3]

[3, 2] ⊗ [0, 2] = [3, 4] + [3, 3]

[2, 2] ⊗ [2, 2] = [4, 4] + [4, 3] + [4, 2]

[2, 2] ⊗ [1, 2] = [3, 4] + [3, 3] + [3, 2]

[2, 2] ⊗ [0, 2] = [2, 4] + [2, 3] + [2, 2]

[1, 2] ⊗ [1, 2] = [2, 4] + [2, 3] + [2, 2] + [2, 1]

[1, 2] ⊗ [0, 2] = [1, 4] + [1, 3] + [1, 2] + [1, 1]

[0, 2] ⊗ [0, 2] = [0, 4] + [0, 3] + [0, 2] + [0, 1] + [0, 0]

Table 7. Products of massive spin-2 multiplets.

better understanding of the S-folded vertex operators, which we leave for future work. Let

us give an example, generalising the prototypical case of the {6, 2} twins in conventional

supergravity. As indicated, the maximally supersymmetric “parent” multiplet is given by

[8, 4]parent = [4, 2]× [4, 2], (4.2)

which corresponds to the parent N = 8 supergravity of the {6, 2} twin supergravities,

although does not exist itself as a W-supergravity.

The big twin is given by branching the right theory down to N = 2 with Sp(2)R̃ ×
Sp(2)F̃ ⊂ Sp(4)R̃,

[4, 2]× ([2, 2] + 4[2, 3/2] + 5[2, 1]) = [4, 2]× [2, 2] + 5[4, 2]× [2, 1] = [6, 4] + 5[6, 3], (4.3)

where we have employed the rule that integer and half-integer multiplets to not talk to-

one-another in the product, as described in section 3.1.4. This reflects the property of

the scattering amplitude double-copy that adjoint and non-adjoint representations of the

gauge group do not mix [43]. The multiplicities are given as representations of Sp(2)F̃ and

the total global symmetry is Sp(6)R × Sp(2)F̃ .

Following [10] the little twin is given by further branching the left theory down to

N = 0 with Sp(4)F ≡ Sp(4)R,

([0, 2] + 8[0, 3/2] + 27[0, 1] + 48[0, 1/2] + 42[0, 0])× ([2, 2] + 4[2, 3/2] + 5[2, 1]) , (4.4)
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[4, 2] ⊗ [3, 3/2] = [7, 7/2]

[4, 2] ⊗ [2, 3/2] = [6, 7/2]

[4, 2] ⊗ [2, 1] = [6, 3]

[3, 2] ⊗ [0, 3/2] = [3, 7/2] + [3, 5/2]

[3, 2] ⊗ [0, 1] = [3, 3] + [3, 2]

[3, 3/2] ⊗ [0, 3/2] = [3, 3]

[3, 3/2] ⊗ [0, 1/2] = [3, 2]

[2, 2] ⊗ [0, 1] = [2, 3] + [2, 2] + [2, 1]

[2, 3/2] ⊗ [0, 3/2] = [2, 3] + [2, 2]

[2, 3/2] ⊗ [0, 1/2] = [2, 2] + [2, 1]

[2, 1] ⊗ [0, 2] = [2, 3]

[2, 1] ⊗ [0, 1] = [2, 2]

Table 8. Some relevant products of massive long multiplets.

[4, 2] → [3, 2] + 2× [3, 3/2]

[4, 2] → [2, 2] + 4× [2, 3/2] + 5× [2, 1]

[4, 2] → [1, 2] + 6× [1, 3/2] + 14× [1, 1] + 14′ × [1, 1/2]

[4, 2] → [0, 2] + 8× [0, 3/2] + 27× [0, 1] + 48× [0, 1/2] + 42× [0, 0]

[3, 2] → [2, 2] + 2× [2, 3/2] + 1× [2, 1]

[3, 2] → [1, 2] + 4× [1, 3/2] + (5 + 1)× [1, 1] + 4× [1, 1/2]

[3, 2] → [0, 2] + 6× [0, 3/2] + (14 + 1)× [0, 1] + 14′ + 6× [0, 1/2] + 14× [0, 0]

[2, 2] → [1, 2] + 2× [1, 3/2] + 1× [1, 1]

[2, 2] → [0, 2] + 4× [0, 3/2] + (5 + 1)× [0, 1] + 4× [0, 1/2] + 1× [0, 0]

[1, 2] → [0, 2] + 2× [0, 3/2] + 1× [0, 1]

Table 9. Branchings of massive spin-2 multiplets under Sp(N ′) × Sp(N − N ′) ⊂ Sp(N ). Multi-

plicities are given in terms of Sp(N −N ′) representations.

which yields,

[2, 4] + ((1,1) + (1,5) + (27,1) + (8,4))[2, 3]

+ ((1,1) + (27,5) + (27,1) + (8,4) + (48,4) + (42,1))[2, 2]

+ ((27,1) + (48,4) + (42,5))[2, 1]

(4.5)

where we have given the multiplicities as Sp(4)F × Sp(2)F̃ representations. These may be

collected into irreducible Sp(6)F representations,

[2, 4] + 65[2, 3] + 429[2, 2] + 429′[2, 1], (4.6)

so that the total global symmetry is Sp(6)F × Sp(2)R̃. We see that the big and little twins

thus have the same global symmetries. The bosonic spectra match. For instance, the big
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twin has 71 spin-3 states in the (65 + 1,1) + (1,5) of Sp(6)R × Sp(2)F̃ , while the little

twin has 71 spin-3 states in the (1,5 + 1) + (65,1) of Sp(6)F × Sp(2)R̃. Similarly, the

spin-2 states sit in the (429 + 65 + 1,1) + (65,5) and (1,1) + (65,5 + 1) + (429,1) of

Sp(6)R × Sp(2)F̃ and Sp(6)F × Sp(2)R̃, respectively.

Using the same methodology we obtain the {5, 1}, {4, 2}, {3, 1} and {2, 1} twin W-

supergravities, analogous to the conventional D = 4 twins of table 1. There may also

be further D = 4 twins, since we also have parents with N = 3 factors, as well as twins

in other dimensions, as suggested by table 1, but we leave the complete classification for

future work.

5 Conclusions

We have argued that there are twin W-SCFTs using S-folds preserving N < 3 super-

symmetry. The lowest level spectra may be deduced from the “double-copy” of massive

long spin ≤ 1 multiplets. Similarly, at the level of spectra and symmetries there exist

twin W-supergravities. There are a number of directions we will consider in future work.

Perhaps most obviously is the need, given their intrinsically non-perturbative nature, of

a more complete understanding of the twins, and the W-SCFTs with N < 3 in general.

In particular, a string/F-theory embedding would lend further support to their existence

and twiness beyond spectra alone. One might also consider their central charges. For in-

stance, it is known (essentially using representation theory together with known properties

of N = 2 theories alone) that the N = 3 theories obey a = c [2]. This raises the possibility

of relations (if any) amongst the central charges of the twins. We will also generalise to

other dimensions, as suggested by the twin pyramid table 1. The D = 3, 4 levels of table 1

suggest the possibility of W-SCFTs in D = 2, 3. The D = 6 layer, on the other hand,

poses a puzzle as the unique D = 5 superconformal group obstructs the existence of W-

SCFT twins with distinct degrees of supersymmetry. The W-supergravities raise similar

questions, especially with regard to their twinness beyond spectra/symmetries and further

examples in D = 3, 5, 6.
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A Supercurrent component projection

In terms of component fields the N = 4 supercurrent JAB,CD is given by [15, 44],

gµν , ψAµ Aµ
A
B AABµν χA χABC ϕ ϕAB ϕABCD,

1, 4 + 4 15 6C 4 + 4 20 + 20 1C 10 + 10 20′
(A.1)

where we have indicated the corresponding SU(4) representations and

gµν =
1

2

(
ηµνF

−
ρσF

+ρσ − 4F−µ
ρF+

νρ + h.c.
)
− 1

2
λ̄Aγ(µ∂

↔
ν)λ

A

+ ηµν∂
ρφAB∂ρφAB − 2∂µφ

AB∂νφAB −
1

3
(ηµν�− ∂µ∂ν)φABφAB

(A.2a)

ψAµ = −(σF−)γµλ
A + 2iφAB∂↔µ λB +

4

3
iσµρ∂

ρ(φABλB) (A.2b)

AµA
B = φAC∂

↔
µ φ

CB + λ̄Aγµλ
B − 1

4
δA

Bλ̄Cγµλ
C (A.2c)

AABµν = λ̄Aσµνλ
B + 2iφABF+

µν (A.2d)

χA = σF+λA (A.2e)

χABE =
1

2
εABCD (φCDλE + φCEλD) (A.2f)

ϕ = F−µνF
−µν (A.2g)

ϕAB = λ̄AλB (A.2h)

ϕABCD = φABφCD −
1

12
δC

[AδD
B]φEFφEF (A.2i)

The {3, 1} twins. The fields transform under the S
{3,1}
b S-fold (3.18) with weights (in

units of 2π/k),

φab φa4 λ4 λa F+

1 −1 −1 1 1
(A.3)

which project (A.2) onto a single spin-2 N = 3 supercurrent, with component field schemat-

ically given by

(gµν , ψaµ ψµa, Aµa
b Aa4µν Aµνa4 Aµ4

4, χ4 χ4 χ
ab
4 χ4

ab χa44 χ4
a4, ϕa4 ϕa4 ϕ

a4
b4 ) (A.4)

carrying U(3) representations given in (3.20). For the complete characterisation of the

N = 3 Weyl supercurrent-multiplet see [12].

For k = 4 the fields transform under the S
{3,1}
l S-fold (3.29) with weights (in units

of π/2),

φab φa4 λ4 λa F+

−1 1 −1 1 −1
(A.5)

which project (A.2) onto a single spin-2 N = 1 supercurrent

(gµν , ψ4
µ, ψµ4, Aµ4

4) (A.6)
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and 14 spin-1 N = 1 supercurrents

(Aµa
b, χa4b , ϕb4a4), (Aµν

a4, χa, ϕa4), (Aµνb4 χb, ϕb4), (A.7)

transforming in the 80,32, 3̄−2 of U(3), respectively, as can be checked directly using the

supersymmetry transformation rules of the N = 4 super Yang-Mills multiplet with the

variational parameter εA restricted to ε4.

The {2, 1} twins. The fields transform under the big twin S
{2,1}
b S-fold (3.54) with

weights (in units of π/k),

φ34 φi4 φi3 φij λ4 λ3 λi F+

−2 1 −1 2 1 −1 2 2
(A.8)

which project (A.2) onto a single spin-2 and a single spin-1 N = 2 supercurrent, given

schematically by

(gµν , ψiµ ψµi, Aµi
j A34

µν Aµν34 Aµ3
3 +Aµ4

4, χi33 + χi44 χ3
i3 + χ4

i4, ϕ34
34) (A.9)

and

(Aµ3
3 −Aµ44, χi33 − χi44 χ3

i3 − χ4
i4, ϕj3i3 + ϕj4i4 ϕij ϕ

ij). (A.10)

where the spin 3/2, 1, 1/2 and 0 fields are in the 21 + 2−1, 30 + 12 + 1−2 + 10 + 10,

21 + 2−1 + 21 + 2−1 and 30 + 12 + 1−2 + 10 of U(2)R, respectively, in agreement with the

decomposition of (3.48) under U(2) ∈ Sp(2). The precise linear combinations are uniquely

determined by closure under the supersymmetry transformations given in [15] with the

variational parameter εA restricted to εi.

For k = 3 the fields transform under the little twin S
{2,1}
l S-fold (3.58) with weights

(in units of π/3),

φ34 φi4 φi3 φij λ4 λ3 λi F+

−2 1 −1 2 −2 2 −1 2
(A.11)

which project (A.2) onto a single spin-2 N = 1 supercurrent, given schematically by

(gµν , ψ3
µ ψµ3, Aµ3

3) (A.12)

and 5 + 1 spin-1 N = 1 supercurrents

(Aµi
j A34

µν Aµν34 Aµ3
3 − 3Aµ4

4,

χi3j χij3 χij3 χ3
ij χ34

4 χ4
34 χ4 χ4

ϕj3i3 ϕ34 ϕ34 ϕ34
34),

(A.13)

where the spin 3/2, 1, 1/2 and 0 fields are in the 11
0 + 1−10 , 30

0 + 10
2 + 10

−2 + 10
0 + 10

0,

31
0 + 11

2 + 11
−2 + 11

0 + c.c. and 30
0 + 10

2 + 10
−2 + 10

0 of U(2)F × U(1)R, respectively, in

agreement with the decomposition of (3.49) under U(1)R × U(2)F ∈ Sp(1) × Sp(2). The

precise linear combinations are uniquely determined by closure under the supersymmetry

transformations given in [15] with the variational parameter εA restricted to ε3.
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