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1 Introduction

The classification of supergravity solutions containing a factor of anti-de Sitter space is

a topic of long-standing interest in the construction of holographic duals to conformal

field theories. With the maximal number of 32 supersymmetries, the classic supergrav-

ity solutions AdS5 × S5, AdS4 × S7, and AdS7 × S4 — invariant respectively under the

Lie superalgebras PSU(2, 2|4),OSp(8|4;R), and OSp(8∗|4) — served as prototypes for the

AdS/CFT correspondence [1]. A classification of sub-superalgebras of these maximally

supersymmetric algebras containing 16 supersymmetries was developed in [2], and many

of the predicted solutions have since been constructed.

Motivated by brane considerations [3], progress was recently made on the construction

of supergravity solutions [4–6] which are holographic duals to five-dimensional supercon-

formal field theories. The superconformal algebra in five dimensions is unique and given
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by a particular real form of the exceptional Lie superalgebra F (4) with maximal bosonic

subalgebra SO(2, 5) ⊕ SO(3). This is not a sub-superalgebra of any of the three maximal

superalgebras. The corresponding Type IIB supergravity solutions have a spacetime of the

form AdS6 × S2 warped over a Riemann surface with boundary Σ, and are specified in

terms of two locally holomorphic functions A± on Σ. Globally regular and geodesically

complete solutions sourced by the charges p, q of the complex three-form field strength of

Type IIB were shown to provide fully back-reacted geometries for the near-horizon region

of general (p, q) five-brane webs [7–9].

By double analytic continuation from Minkowski signature AdS6 and AdS2 to Eu-

clidean signature S6 and S2, the existence of half-BPS AdS6 × S2 solutions suggests the

existence of half-BPS solutions with spacetime AdS2 × S6. Indeed, general local solutions

of this form were constructed in [10]. As in the case of AdS6 × S2, the solutions are given

in terms of two locally holomorphic functions A± on a Riemann surface Σ [10]. Their sym-

metry group is given by a different real form of the Lie superalgebra F (4), with maximal

bosonic superalgebra SO(1, 2)⊕SO(7), which is again not a sub-superalgebra of any of the

three maximal supersymmetric algebras.

The purpose of this paper is two-fold. In a first part, we shall investigate the exis-

tence of global AdS2×S6 solutions sourced by seven-form charges p, q, which are naturally

associated with (p, q)-strings. We shall examine the emergence of (p, q)-string web solu-

tions [11–13] in the near-horizon limit. Although the supergravity fields of the AdS2 × S6

solutions differ from those of the AdS6 × S2 solutions merely by certain sign reversals,

these simple differences make the construction of globally regular AdS2 × S6 solutions

intricate and technically difficult. While we shall succeed in producing solutions with mul-

tiple (p, q)-strings in the near-horizon limit, the geodesic completeness of such solutions

remains unsettled. In a second part we shall study solutions independently from any string

junction interpretation. We present multi-parameter families of globally regular solutions,

which have asymptotic regions where spacetime decompactifies and an AdS2×S6 “throat”

that caps off smoothly.

While the superconformal algebra F (4) is unique in five-dimensions, there exist four

distinct superconformal algebras with 16 supersymmetries in the one-dimensional theories

holographically dual to an AdS2 factor [14]. As mentioned above, the real form of F (4)

with maximal bosonic subalgebra SO(2, 1) ⊕ SO(7) is studied in this paper. OSp(4∗|4)

enters the holographic dual to a Wilson line constructed in [15], while holographic duals

to the remaining cases SU(1, 1|4) and OSp(8|2,R) are currently being investigated.

Supersymmetric AdS2 solutions have been studied in a wide variety of contexts, includ-

ing AdS2/CFT1 dualities [16, 17], relations with the SYK model [18–21], for compactifica-

tions of higher-dimensional field theories [22–25], and as black hole near-horizon geometries.

Further studies of AdS2 solutions in Type IIA and M-theory can be found in [26–31].

The remainder of the paper is organized as follows. In section 2 we review the local

AdS2×S6 solutions of [10]. In section 3 we construct an Ansatz suitable for string junction

solutions and show that they match locally to the classic (p, q)-string solution. In section 4

we construct multi-parameter families of globally regular solutions. In section 5, we briefly

study the T-duals of the D0-F1-D8 system in massive Type IIA supergravity [30]. For
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the case of AdS6 × S2, a subset of the solutions were found to correspond to Abelian and

non-Abelian T-duals of the D4-D8 system [6, 32, 33]. On the other hand, we will find that

the T-duals of the analogous D0-F1-D8 system are not of the form AdS2×S6. We conclude

with a discussion in section 6.

2 Local solution and regularity conditions

We summarize the local form of Type IIB supergravity solutions with 16 supersymmetries

and spacetime of the form AdS2 × S6 warped over a Riemann surface Σ obtained in [10],

and discuss the conditions for physical positivity and regularity of the supergravity fields.

The local solutions are invariant under the real form of the exceptional Lie superalgebra

F (4) which has maximal bosonic subalgebra SO(1, 2)⊕ SO(7).

2.1 Supergravity fields

Invariance under SO(1, 2) ⊕ SO(7) dictates the general form of the supergravity fields of

the solutions. All Fermi fields vanish and the spacetime metric takes the form,

ds2 = f2
2ds

2
AdS2

+ f2
6ds

2
S6 + 4ρ2|dw|2 (2.1)

The five-form field strength vanishes F(5) = 0 and the three-form field strength F(3) and

its Poincaré dual F(7) are given by [10],

F(3) = dC(2) C(2) = C volAdS2

F(7) = dC(6) C(6) =M volS6 (2.2)

Throughout, w is a local complex coordinate on Σ while f2, f6, and ρ are real-valued

functions on Σ. The fields C,M, and the axion-dilaton B = (1 + iτ)/(1− iτ) are complex-

valued functions on Σ. The line elements ds2
AdS2

,ds2
S6 and the volume forms volAdS2 ,volS6

are for maximally symmetric AdS2 and S6 with unit radius.

The solutions are parametrized by two locally holomorphic functions A± and expressed

conveniently in terms of the composite quantities κ2, G, and T given in terms of A± by,

κ2 = −|∂wA+|2 + |∂wA−|2 ∂wB = A+∂wA− −A−∂wA+

G = |A+|2 − |A−|2 + B + B̄ T =
1−R
1 +R

=

(
1 +

2|∂wG|2

3κ2G

) 1
2

(2.3)

Note that κ2 = −∂w∂w̄G. By construction [10], the functions κ2,G, and R are real. Fur-

thermore, R is non-negative so that T is real and satisfies T ∈ [−1, 1]. In terms of these

composites, the metric functions are given by,

f2
2 =

1

9

(
−6G
T 3

) 1
2

f2
6 = (−6GT )

1
2 ρ2 = κ2

(
T

−6G

) 1
2

(2.4)
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The functions C and M parametrizing the two- and six-form potentials are given by,

C = −2i

3

(
U

3T 2
− Ā− −A+

)
M = 80(W+ + W̄−)− 12G U + 20(A+ + Ā−)

(
2|A+|2 − 2|A−|2 − 3G

)
(2.5)

where U and W± are defined by,

κ2U = ∂wG∂wA+ + ∂wG∂wA− ∂wW± = A±∂wB (2.6)

The axion-dilaton scalar field is given by,

B = −∂wA+∂w̄G +R∂w̄Ā−∂wG
R∂w̄Ā+∂wG + ∂wA−∂w̄G

(2.7)

The global SU(1, 1) symmetry transformations of the Type IIB supergravity fields are

induced by the following transformations of A± under the group SU(1, 1)⊗ C,

A+ → A′+ = +uA+ − vA− + a

A− → A′− = −v̄A+ + ūA− + ā (2.8)

where SU(1, 1) is parametrized by u, v ∈ C with |u|2 − |v|2 = 1 and the complex shift

parameter a has the effect of producing gauge transformations in C and M only.

2.2 Positivity and regularity conditions

Minkowski signature of the ten-dimensional spacetime metric imposes the positivity con-

ditions f2
2 , f

2
6 , ρ

2 > 0 which require κ2 > 0 and GT < 0, assuming that all square roots of

positive real arguments in (2.4) are taken to be positive (see section 7 of [10]). Without

loss of generality, we may choose the branch T > 0 for the square root in (2.3), so that

0 < R < 1. As a result, the positivity conditions become,

κ2 > 0 G < 0 0 < R < 1 (2.9)

Regularity of the supergravity fields of the solutions in the interior of Σ requires that the

inequalities of (2.9) be obeyed strictly. If Σ has a non-empty boundary ∂Σ, then geodesic

completeness of the solutions requires that the six-sphere shrinks to zero size f6 → 0 at the

boundary, while the radius of AdS2 remains finite. Since we have f2
6 /f

2
2 = 9T 2 this means

that T → 0 and R → 1 as the boundary is being approached. Regularity of the solution

at the boundary then requires the following behavior as r ≡ 1−R→ 0,

κ2 = O(r) G = O(r3) ∂wG = O(r2) (2.10)

The explicit expression for R in terms of κ2G and ∂wG in (2.3) furthermore requires,

κ2G
|∂wG|2

→ −2

3
(2.11)

Note that the boundary condition ∂wG = 0 on ∂Σ is stronger than the corresponding

condition for the AdS6 case, where (∂w + ∂w̄)G = 0 was sufficient [6].
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2.3 Realizing the regularity conditions at the boundary ∂Σ

The boundary conditions discussed in section 2.2 can be realized naturally by imposing

a conjugation condition on the holomorphic functions A± on ∂Σ. We shall take ∂Σ to

consist of only a single connected boundary component, though the construction may be

easily generalized to the case when ∂Σ has several components. We may map the boundary

∂Σ to the real line by a Schwarz-Christoffel transformation, which is piecewise conformal.

Let w, w̄ be local complex coordinates in terms of which a boundary segment is given by

w = w̄. The conjugation condition is then given by,

A±(w̄) = A∓(w) (2.12)

This condition readily implies κ2 = 0 on ∂Σ and, noting that we have,

∂wG(w, w̄) = (A+(w)−A−(w))∂wA+(w) + (A+(w)−A−(w))∂wA−(w) (2.13)

it also implies ∂wG = 0 on ∂Σ. Consequently, G is constant along each boundary segment

and can be made to vanish on any one single segment by fixing the integration constant

implicit in the definitions of B and G. The behaviors near the boundary in (2.10) are implied

by the relations between G, ∂wG, and κ2 via differentiation, which in turn imply (2.11).

We conclude this section by drawing a comparison between the boundary conditions

for the AdS2 × S6 case studied here and the boundary conditions for the AdS6 × S2 case

studied in [8]. The conjugation relation between the differentials resulting from (2.12)

differs from the analogous condition for the differentials in the AdS6 × S2 solutions of [8]

only by a sign. More importantly, it was sufficient in [8] to implement a conjugation

condition on the differentials ∂wA± to ensure (∂w + ∂w̄)G|∂Σ = 0, whereas here we impose

the conjugation relation on the functions A± themselves in order to implement the stronger

condition ∂wG|Σ = 0.

Furthermore, the conjugation condition of (2.12) is incompatible with the presence of

logarithmic branch cuts in A± starting at branch points on the boundary ∂Σ and with

branch cuts along the boundary. Suppose that we have a branch point at w = 0,

A±(w) = A(0)
± (w) +A(1)

± (w) lnw A(i)
± (w̄) = A(i)

∓ (w) (2.14)

where A(0)
± (w) and A(1)

± (w) are regular and single-valued in a neighborhood of w = 0. Upon

encircling w = 0 counterclockwise, A± → A±+ iπA(1)
± . This is compatible with (2.12) and

the assumed conjugation properties of A(i)
± only if A(1)

± is zero as a function. Hence such

branch cuts are ruled out, contrary to the case of AdS6 × S2 where they were crucial

ingredients in the construction of the global solutions.

3 Towards string junction solutions

In this section we determine the behavior needed for the functions A± to source the seven-

form charges associated with (p, q)-strings. We shall show that, in addition to reproducing

the charges, A± with this behavior correctly reproduces the metric, axion-dilaton, and
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two-form fields of the near-horizon limit of the classic (p, q)-string solution, provided we

carry out a certain coordinate inversion to be explained below. Though we will be able

to write down the functions A± producing (p, q)-string charges at multiple points on ∂Σ,

the question of whether these supergravity solutions are actually geodesically complete for

some choices of the parameters remains unsettled.

3.1 Realizing the charge and the S7 of the (p, q)-string solution

To realize a (p, q)-string charge in an AdS2 × S6 supergravity solution, we begin by deter-

mining the behavior of the functions A± near a point b ∈ ∂Σ where a (p, q)-string charge

resides. A first ingredient is that the supergravity fields should be regular in a neighbor-

hood of the point b with b itself removed, and the seven-form should support (p, q) charge.

A second ingredient is the fact that the classic (p, q)-string solution exhibits a round S7

in the directions transverse to the string. Noting that the metric function f2
6 vanishes on

∂Σ, we conclude that the S7 is realized by a fibration of S6 over a curve in Σ which begins

and ends on ∂Σ. The angular dependence required to realize this fibration smoothly will

constrain the functions A±.

Consider a point b ∈ ∂Σ and local complex coordinates w, w̄ which vanish at this

point. Regularity and single-valuedness of the supergravity fields f2
2 , f

2
6 , ρ

2, and B near

w = 0 require A± to be single-valued in a neighborhood of w = 0, just as was the case

for AdS6 × S2 solutions. The extra condition that the factor dC in F(3) be residue-free

at w = 0 ensures the absence of five-brane charges and excludes logarithmic branch cuts

emanating from w = 0. Thus, we shall assume that A± has a Laurent expansion in w at

w = 0. While A± and B+ B̄ are single-valued near w = 0, this set-up still allows the factor

dM of F(7) to have a non-zero residue and thus to carry a non-zero (p, q)-string charge.

Next, we determine the order of the pole in A± by requiring a smooth S6 slicing of S7.

We shall assume that A± has a pole at w = 0 of order at most p− 1,

A±(w) =
α±
wp−1

+
β±
wp−2

+
γ±
wp−3

+ · · · (3.1)

The coefficients are constrained by (2.12), so that ᾱ± = α∓ and likewise for β±, γ±, which

forces the orders of the poles in A± to coincide with one another. Whether a smooth

7-cycle is formed around the pole at w = 0 can be inferred from the ratio f2
6 /ρ

2. In terms

of polar coordinates w = reiθ near the pole, the metric (2.1) may be written as,

ds2 = f2
2ds

2
AdS2

+ 4ρ2

(
dr2 + r2dθ2 +

f2
6

4ρ2
ds2
S6

)
(3.2)

A smooth cycle is formed if f2
6 /ρ

2 is positive for θ ∈ (0, π) and approaches zero quadratically

as θ → 0 and θ → π. For p = 2 no smooth 7-cycle is formed. For p ≥ 3 we find,

f2
6

4ρ2
= − 3G

2κ2
= 3r2 (2p− 3) sin θ − sin(2pθ − 3θ)

2(p− 1)(p− 2)(2p− 3) sin θ
+O(r3) (3.3)

For p = 3 we find f2
6 /4ρ

2 ≈ r2 sin2θ, giving rise to a round S7 from S6 and the polar part

of the metric on Σ. For integer p > 3, a smooth 7-cycle is formed which is not a round S7.

We conclude that the poles in A± must be double, with p = 3.

– 6 –
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3.2 Supergravity fields near a double pole in A±

To obtain the supergravity fields near a double pole in A±, we need the Laurent expansions

of these functions to order w3,

A± =
α±
w2

+
β±
w

+ γ± + δ±w + ε±w
2 + χ±w

3 +O(w4) (3.4)

along with the conjugation condition implied by (2.12) so that ᾱ± = α∓, etc. The first

regularity condition is that κ2 > 0 in the interior of Σ. The leading behavior of κ2 is

obtained from (3.4),

κ2 =
2ζαβ Imw

|w|6
+O(|w|−3) ζαβ = 2i(α+β− − α−β+) (3.5)

The conjugation conditions imply that ζαβ is real, and positivity of κ2 in the upper half-

plane requires ζαβ > 0. In addition, the function G, and hence B+B̄, must be single-valued.

Computing B in terms of (3.4), we find,

B =
iζαβ
6w3

+
iζαγ
2w2

+
i(3ζαδ + ζβγ)

2w
− 2i(2ζαε + ζβδ) lnw +O(|w|) (3.6)

with ζαγ etc. defined in analogy with ζαβ . Single-valuedness of B + B̄ requires the purely

imaginary coefficient of lnw to vanish,

2ζαε + ζβδ = 0 (3.7)

The functions G and T , in terms of which the metric functions f2
2 , f

2
6 , ρ

2 are given by (2.4),

take the following form near w = 0,

G ≈ −
4ζαβ(Imw)3

3|w|6
T 2 ≈ 4ξ|w|2(Imw)2 −ξ =

2ζαχ + ζβε
ζαβ

+
ζ2
αδ

ζ2
αβ

(3.8)

The condition ζαβ > 0, which already guaranteed κ2 > 0, is seen to also guarantee that

G < 0, as is indeed required by the regularity of the supergravity solution. In addition, we

impose the requirement ξ > 0 to render T positive.

With these conditions fulfilled, the behavior of the functions f2
2 , f

2
6 , ρ

2, and C near the

pole is given as follows in terms of polar coordinates w = reiθ near w = 0,

ρ2 ≈
ζ

1/2
αβ ξ

1/4

r5/2
f2

6 ≈ 4r2 sin2 θ ρ2 f2
2 ≈

ζ
1/2
αβ

9ξ3/4r9/2
C ≈ −2iα+

9ξr6
(3.9)

The complex axion-dilaton field τ , for α+ 6= α− = ᾱ+, is given by,

Re (τ) ≈ Re (α+)

Im (α+)
Im(τ) ≈

ξ1/2ζαβ
4 Im (α+)2

r3 (3.10)

Finally, the presence of string charge at the pole may be verified by examining the potential

M for the seven-form field strength F(7). By inspection of (2.5) we see that all terms inM
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are single-valued by construction, except for the contributions from the locally holomorphic

functions W±, whose behavior near w = 0 is given as follows,

W±(w) =Ws
±(w)− 3

2
i
(

(3ζαχ + ζβε)β± + ζαδδ± − ζαβχ±
)

lnw (3.11)

where Ws
± denotes the single-valued part. Therefore, as w encircles the pole at w = 0

counterclockwise in Σ by a 180◦ degree arc, the potential M shifts as follows,

M→M+ 240π
(

(3ζαχ + ζβε)β+ + ζαδδ+ − ζαβχ+

)
(3.12)

The shift inM gives the integral of the seven-form field strength over the S7, producing a

formula for the p, q string charges in terms of the coefficients of the Laurent series,

p+ iq =

∫
S7

F(7) = 80π5
(

(3ζαχ + ζβε)β+ + ζαδδ+ − ζαβχ+

)
(3.13)

where we have used vol(S7) = π4/3. Note that the dependence of the string charges p, q

on the coefficients of the Laurent series is trilinear, in contrast with the AdS6 × S2 case

where the five-brane charges had linear dependence.

3.3 Satisfying the regularity conditions near a double pole

The various positivity and regularity conditions derived in the preceding subsection may

be satisfied simultaneously. To see this, we use the SU(1, 1) symmetry of supergravity to

rotate α± to be real, and furthermore scale it to 1 without loss of generality. The conditions

then reduce to the following relations,

ζαβ = 4 Im (β+) > 0 , Im (ε+) = −1

8
ζβδ , ξ = − (Im δ+)2

(Imβ+)2
−

8 Imχ+ + ζβε
4 Imβ+

> 0 (3.14)

For given Re (β+), Im (β+) > 0, δ+, and ε+, we may always choose Im (−χ+) large enough

to satisfy the remaining condition ξ > 0. The expression for the charge p is unenlightening,

but the charge q takes the simple form q = −320π5 ξ (Imβ)2 and must be negative.

We conclude this subsection with a remark on a no-go result derived in [10]. Assuming

certain regularity conditions on κ2 and G, it was argued that κ2 > 0 and G < 0 cannot

both be realized for compact Σ with boundary. This argument was based on an integral

representation for G, obtained by solving the differential relation κ2 = −∂w∂w̄G,

G(w) = H(w) +
1

π

∫
Σ
d2z G(w, z)κ2(z) (3.15)

with harmonic H and G the Green’s function on Σ. The functions κ2 and G obtained here

circumvent this no-go result, because they are too singular at the pole to allow for the

integral representation (3.15). Indeed, the singularity in κ2 is not integrable against the

Green function, as may be seen from the form of κ2 and G given in (3.5) and (3.8). This

shows that the assumptions entering the argument of section 7.3.2 of [10] do not hold here.
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3.4 Matching with the classic (p, q)-string solutions

The classic (p, q)-string solutions of Type IIB supergravity constructed in [34] are labeled

by a pair of integers (q1, q2) which characterize the charges. The metric, two-form, and

axion-dilaton τ = χ+ ie−φ are given by,

ds2 = A−3/4
q ds2

R1,1 +A1/4
q

(
dy2 + y2ds2

S7

)
τ =

q1χ0 − q2|τ0|2 + iq1e
−φ0A

1/2
q

q1 − q2χ0 + iq2e−φ0A
1/2
q

B
(i)
01 =

(
M−1

0

)
ij
qj∆

−1/2
q A−1

q Aq = 1 +
αq
y6

(3.16)

The asymptotic values of the axion-dilaton are given by τ0 = χ0 + ie−φ0 , and we have,

αq = ∆1/2
q Q ∆q =

(
q1

q2

)t
M−1

0

(
q1

q2

)
M = eφ

(
|τ |2 χ
χ 1

)
(3.17)

As y →∞ we recover flat spacetime R1,9. The near-horizon limit corresponds to y6 � αq,

so that the first term in Aq may be neglected in this limit and we have simply Aq(y)→αq/y
6.

The supergravity fields take the following form,

ds2 =
y

9
2

α
3/4
q

ds2
R1,1 +

α
1/4
q

y
3
2

(dy2 + y2ds2
S7) τ =

q1χ0 − q2|τ0|2 + iq1e
−φ0√αq/y3

q1 − q2χ0 + iq2e−φ0
√
αq/y3

B
(i)
01 =

(
M−1

0

)
ij
qj∆

−1/2
q

y6

αq
(3.18)

In this limit, y → 0 corresponds to the location of the string, but this is a strong coupling

limit since the dilaton blows up there. The limit y →∞ corresponds to the other end of the

throat which is also a strong coupling limit. Clearly, identifying the coordinate r of (3.9)

with y does not lead to a match between the supergravity fields of the AdS2×S6 solutions

and the supergravity fields of the classic (p, q)-string solution to Type IIB. However, if we

perform a coordinate inversion on y in the string solution by setting,

y = L/r (3.19)

then the supergravity fields of the string solution in terms of r are given by,

ds2 =
L

9
2ds2

R1,1

α
3/4
q r9/2

+
L

1
2α

1/4
q

r5/2
(dr2 + r2ds2

S7) τ =
q1χ0 − q2|τ0|2 + iq1e

−φ0√αqr3/L3

q1 − q2χ0 + iq2e−φ0
√
αqr3/L3

B
(i)
01 =

(
M−1

0

)
ij
qj∆

−1/2
q

L6

αqr6
(3.20)

which perfectly match with the AdS2 × S6 solution provided we identify the parameters,

L3 =
ζαβ
3

αq = ξ (3ζ2
αβ)

2
3 (3.21)

and a corresponding identification for the flux field. Note that the worldvolume for the

AdS2 × S6 solution is AdS2, whereas for the classic string solution it is R1,1. The inver-

sion in the identification (3.19) may play a role in the physical interpretation of potential

global solutions.
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3.5 Multiple (p, q) charge solutions on the upper half-plane

In the previous subsection, we have shown that a double pole in the functions A± on the

boundary ∂Σ produces supergravity fields which may be identified locally, i.e. in a finite

neighborhood of the pole, with the supergravity fields of the classic (p, q)-string solution.

Here we shall extend this construction to the case of multiple double poles which are all

located on the boundary ∂Σ. For simplicity, we shall consider the case where Σ has the

topology of the upper half-plane, for which the boundary is the real line. Hence we shall

consider functions A± with N double poles, located at points p` ∈ R for ` = 1, · · · , N .

To make further progress, we shall assume that A± are rational functions of w and

that w = ∞ is a regular point (which may always be achieved by conformal mapping).

The functions may therefore be decomposed into partial fractions in w as follows,

A± = A(0)
± +

N∑
`=1

(
Y `
±

(w − p`)2
+

Z`±
w − p`

)
(3.22)

where Y `
− = Ȳ `

+, Z`− = Z̄`+, and A(0)
± are complex parameters which are independent of w.

This Ansatz implements the reflection condition (2.12), as a result of which κ2 and G vanish

on ∂Σ = R. It remains to enforce the positivity requirement κ2 > 0 everywhere in the

interior of the upper half-plane, which in particular requires that ∂A− has no zeros in the

upper half-plane. We also need the condition that the function B + B̄ be single-valued.

An alternative formulation starts from the differentials ∂A±, which have a triple pole

at each w = p`. We may easily enforce the conditions that the zeros of ∂A+ and ∂A− all be

located in the upper and lower half-planes, respectively, by the following parametrization

(analogous to the parametrization used for the AdS6 case in [8]),

∂wA±=P±(w)
N∏
`=1

1

(w−p`)3
P+(w) =

3N−2∏
n=1

(w−sn) P−(w) =
3N−2∏
n=1

(w−s̄n) (3.23)

with Im (sn) > 0. In order to integrate to single-valued functions A± and B + B̄, the

differentials ∂A± must have vanishing residues at p`, while the imaginary part of the

residue of the differential ∂wB must also vanish,

Res(∂wA±)
∣∣∣
w=p`

= 0 Res(∂wB)
∣∣∣
w=p`

∈ R (3.24)

The counting of parameters shows that, for a given arrangement of poles p`, there are

3N − 2 complex zeros, subject to 3N − 3 real residue conditions. Thus parameter counting

allows for the existence of large families of solutions. While it is clear that the positivity

and regularity conditions are satisfied in the neighborhood of each pole, and that the

supergravity fields match onto a classical (p, q)-string solution in the near-horizon limit, it

is unclear how to ensure regularity throughout the upper half-plane. The solutions found

numerically thus far have all been geodesically incomplete, and this includes the cases with

one and two charges. The situation will be discussed explicitly for the case of three charges

in the next subsection.
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3.6 Three charges

In this final subsection, we analyze the case of three double poles in A±, and thus three

(p, q)-string charges. In order to conveniently exploit as much symmetry of the configura-

tion as possible, we shall work on the unit disc with complex coordinates z, z̄ rather than

on the upper half-plane with complex coordinates w, w̄. The conjugation condition (2.12)

on the disc becomes A±(1/z̄) = A∓(z), and we may exploit SU(1, 1) symmetry of the unit

disc to map the positions of the poles to 1, ε, ε2 where ε is a non-trivial cube root of unity.

The differentials and polynomials of (3.23) then take the form,

∂zA±(z) =
P±(z)

(z3 − 1)3
P+(z) =

7∑
k=0

ckz
k P−(z) =

7∑
k=0

c̄7−kz
k (3.25)

The vanishing of the residues of ∂zA± at the poles gives two complex linearly independent

relations between the coefficients ck,

c3 = 5c0 + 2c6

c4 = 5c7 + 2c1 (3.26)

while the vanishing of the imaginary part of the residues of ∂zB gives two independent real

relations, which may be combined into one complex relation between the coefficients ck,

0 = 27|c7|2 + 9|c6|2 − 2|c5|2 + 2|c2|2 − 9|c1|2 − 27|c0|2

− 18c̄7c6 + 21c̄2c7 − 9c̄1c7 − 36c̄7c1 − 3c̄6c2

+ 9c̄0c6 + 36c̄6c0 + 3c̄5c1 − 21c̄0c5 + 18c̄1c0 (3.27)

where we have eliminated c3, c4 using (3.26). Global regularity and geodesic completeness

requires furthermore that we have κ2 > 0,G < 0, and T real. The condition κ2 > 0 in

the interior of the disc requires that all the zeros of P+(z) be in the interior of the disc,

which implies that all the zeros of P−(z) will be outside the disc. We have not been able

to solve this condition in any general form, nor numerically for any particular choice of

parameters ck. However, we have also not been able to show convincingly that no solutions

exist. The cases with 4 poles have also been explored, but the complexity of the conditions

required is then even more involved. In the absence of these results, we are left only with

solutions with (p, q)-string charges which are not geodesically complete.

4 Non-compact globally regular solutions

In this section, we shall study solutions independently from a string junction interpreta-

tion and construct families of globally regular and geodesically complete solutions with

asymptotic regions where spacetime decompactifies.

4.1 Poles in the interior of Σ

In the case of AdS6 solutions, poles in the interior of Σ were not compatible with the

regularity conditions [8]. In contrast, due to κ2 and G having opposite signs, poles in the
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interior of Σ can be realized for AdS2 solutions. Positivity of κ2 requires that at any singular

point the divergence in ∂wA− be at least as strong as the one in ∂wA+. We start with the

case where ∂wA+ is subleading with respect to ∂wA− and we shall generalize afterwards.

With A+ subleading to A−, the leading behavior of the composite quantities is given

by the behavior of A− as follows,

κ2 ≈ |∂wA−|2 G ≈ −|A−|2 ∂wG ≈ −Ā−∂wA− (4.1)

As the pole is approached this yields T 2 ≈ 1
3 . The metric functions, axion-dilaton scalar

B, and the functions C and M parametrizing the two- and six-form potentials become,

f2
2 ≈

4

√
4

27
|A−| f2

6 ≈
4
√

12 |A−| ρ2 ≈ 1
4
√

4 · 27

|∂wA−|2

|A−|

B ≈ −
(

2−
√

3
) Ā−
A−

C ≈ 4i

3
Ā− M≈ 8|A−|2Ā− (4.2)

In particular, we have |B| < 1, such that Im (τ) is non-zero and finite. Assuming that A−
has a pole of order n with a complex coordinate z centered on the pole, we have,

A− ≈
a

zn
∂wA− ≈ −

na

zn+1
(4.3)

Since Im (τ) is finite and non-zero, the metric in string-frame is related to the Einstein-

frame metric by a finite rescaling. The Einstein-frame metric near the pole becomes,

ds2 ≈
√

2|a|
33/4|z|n

(
ds2

AdS2
+ 3ds2

S6 + 2n2

∣∣∣∣dzz
∣∣∣∣2
)

(4.4)

The proper distance between the point z = 0 and any other point on Σ is infinite. This sug-

gests a change of coordinates on Σ to u = 1/z,1 such that the near-pole region corresponds

to |u| � 1. The metric becomes,

ds2 ≈
√

2|a|
33/4

(
|u|nds2

AdS2
+ 3|u|nds2

S6 + 2n2
∣∣∣un/2−1du

∣∣∣2) (4.5)

At the pole, the radii of AdS2 and S6 diverge. The geometry decompactifies; it is regular

and asymptotically conical. For n = 1 it approaches the asymptotic region of a cone with

deficit angle π, for n = 2 there is no deficit angle, and for n > 2 it has an excess angle. The

singularity at the apex of the cone u = 0 is not a problem since this form of the metric is

only valid in the regime |u| � 1.

The two- and six-form RR potentials are given by,

C(2) ≈
4i

3
ā
( ū
u

)n/2
|u|n volAdS2 C(6) ≈ 8|a|2ā

( ū
u

)n/2
|u|3n volS6 (4.6)

The |u|n and |u|3n divergences in C andM, respectively, combine with the volume forms on

unit-radius AdS2 and S6 to the volume forms that are naturally associated with the AdS2

1This transformation will be part of the SL(2,C) and SL(2,R) automorphisms of the sphere and the

upper half plane, respectively, in the examples to be discussed below.
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and S6 factors of radius proportional to |u|n/2 in the metric (4.5). The remaining coefficient

functions in C(2) and C(6) are finite and regular. With u = reiθ, the axion-dilaton scalar

asymptotes to,

τ ≈ sin(2nθ) + i
√

3

2− cos(2nθ)
(4.7)

showing again that the dilaton is finite at the pole, with non-trivial dependence on the

angular coordinate. The entire solution is thus regular at the pole.

The asymptotic metric has an additional U(1) isometry, acting as phase transforma-

tions on z and u. This symmetry is broken by the remaining fields τ , C(2), and C(6) to a

Zn symmetry acting as z → e2πi/nz, or u → e−2πi/nu, which leaves A− in (4.3) and the

entire solution invariant. Whether this symmetry in the asymptotic region extends to a

symmetry of the full solution depends on the precise form of A±.

Finally, we note that this regularity analysis generalizes to the case where A+ and A−
both have poles, of the form

A+ ≈
b

zn
A− ≈

a

zn
(4.8)

with |a| > |b|. An SU(1, 1) transformation (2.8) with v = bu/a and arbitrary u such that

|u|2 = |a|2/(|a|2−|b|2) then sets b = 0, and the analysis reduces to the one presented above.

The Einstein-frame metric is invariant under SU(1, 1), so the previous discussion applies

directly. Axion-dilaton scalar and RR-potentials transform but remain regular, and the

action of the Zn symmetry is unchanged.

4.2 Solutions for Σ without boundary

Having found local regularity in the vicinity of an interior pole, we now try to embed this in

a globally regular solution. We consider a compact Riemann surface Σ of genus g without

boundary, and investigate the positivity and regularity conditions on A± for such a surface.

Since there is no boundary, there is no need for a conjugation relation between A±. The

number of zeros M and the number of poles N of the meromorphic 1-form differentials

∂wA± on Σ are related to the genus g by the Riemann-Roch theorem,

M = N + 2g − 2 (4.9)

For surfaces with g > 1 the differentials ∂wA± necessarily have zeros in Σ. To keep κ2

non-negative, any zero of ∂wA− must also be a zero of ∂wA+. However, this means that

κ2 vanishes at these zeros, generally leading to solutions with conical singularities. These

zeros can be avoided for genus zero surfaces without boundary, as we now discuss, as well

as for solutions with boundary, to be discussed in the next subsection.

We take Σ to be the sphere and assume that infinity is a regular point of A±. Single-

valued differentials ∂wA± without zeros can only have one double pole. Implementing the

condition κ2 > 0 on A± and its differentials, we find,

A± = a± −
b±

w − p
∂wA± =

b±
(w − p)2

|b+| < |b−| (4.10)
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An SU(1, 1)⊗ C transformation (2.8) allows us to set b+ = a+ = 0, so that we have,

κ2 = |∂wA−|2 G = G0 − |A−|2 T 2 = 1− 2 |A−|2

3 (|A−|2 − G0)
(4.11)

with integration constant G0. Manifestly, κ2 is positive and G is negative throughout Σ

provided G0 < 0. With this choice we have 1/3 < T 2 < 1, such that the regularity

condition for R is satisfied as well. Since κ2, G, and T 2 are invariant under the SU(1, 1)⊗C
transformations (2.8), this implies that the entire class of solutions (4.10) is regular for

appropriate choices of G0. With the analysis of section 4.1 for the pole, we have thus

realized globally regular AdS2 × S6 solutions. The geometry decompactifies at the pole

and approaches the asymptotic region of a cone with deficit angle π. The axion-dilaton

scalar B and the functions C andM are single-valued for all solutions (4.10), and therefore

carry no charges.

The Ansatz (4.10) has one complex parameter in each of a±, b±, p, and an additional

real parameter in G0, making for 11 real parameters. Subtracting 3 complex parameters

for the SL(2,C) automorphisms on the sphere leaves a total of 5 real parameters. The

SU(1, 1)⊗ C duality transformations (2.8) map the class of functions (4.10) into itself.

4.3 Solutions for Σ with boundary

The presence of a boundary for Σ gives greater flexibility for the distribution of zeros and

poles of A± compatible with the positivity and regularity conditions. We take Σ to be

the upper half-plane with the real line as its boundary. Assuming that the differentials

∂wA±(w) are rational functions of w, the condition κ2 > 0 may be solved by an electro-

statics problem [8, 9] and the solution is given by,

∂wA+

∂wA−
= λ2

0

∏
n

w − sn
w − s̄n

(4.12)

where sn are points in the upper half-plane with Im (sn) > 0 and λ0 is a constant. In the

case of AdS6 solutions, no poles in the interior of Σ were allowed, which forced us to assign

all points sn to be zeros of ∂wA+ and by conjugation all points s̄n to be zeros of ∂wA−.

However, common poles on the real line were allowed. In contrast, in the case of AdS2

solutions we can allow for poles in the interior of Σ. To have single-valued A± functions,

the poles must be of order at least two. Thus, we may distribute the points sn amongst

the zeros of ∂wA+ and the poles of ∂wA−, and allow for additional zeros and poles on the

real axis common to A±. The general form of the differentials is then as follows,

∂wA+ =

N∏
k=1

1

(w − t̄k)νk
×

Nu∏
m=1

(w − um) Nu =

N∑
k=1

νk − 2

∂wA− =
N∏
k=1

1

(w − tk)νk
×

Nu∏
m=1

(w − ūm) Im (tk), Im (um) ≥ 0 (4.13)

The regularity conditions required to have a single-valued A± and G are given as follows,

Res(∂wA−)
∣∣∣
w=tk

= 0 Res(∂wB)
∣∣∣
w=tk

∈ R (4.14)
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for k = 1, . . . , N . In addition one has to ensure that G < 0 throughout the interior of Σ

with G = 0 on ∂Σ and that 0 < T 2 < 1.2 This construction introduces a large number of

parameters and we show in the following subsections that regular solutions exist.

If the conditions (4.14) are satisfied, the axion-dilaton scalar and two-form potential

do not have branch points at w = tk since A± are single-valued. In the six-form potential

the terms involving W± in M are potentially non-single-valued. However, due to the

conjugation condition relating A±, the residues of ∂wW+ at w = tk and of ∂w̄W̄− at w̄ = t̄k
are related. As a result, even though individual terms in M may have logarithmic branch

cuts, the total monodromy of M vanishes. There are thus no apparent brane charges at

the poles tk.

4.4 Minimal solutions on the disc

The minimal non-trivial case is N = 1 with ν1 = 2,

∂wA+ =
σ̄

(w − t̄1)2
∂wA− =

σ

(w − t1)2
(4.15)

The functions A± are given by

A+ = A0
+ −

σ̄

w − t̄1
A− = A0

− −
σ

w − t1
(4.16)

It will be convenient to map this solution to the disc, Σ = {z ∈ C
∣∣ |z|2 ≤ 1}. With

redefined constants ς = −σ/(t1 − t̄1) and Ã0
+ = A0

+ − ς̄, Ã0
− = A0

− − ς, the functions A±
are then,

A+ = Ã0
+ + ς̄z A− = Ã0

− +
ς

z
z =

w − t1
w − t̄1

(4.17)

They satisfy A∓(1/z̄) = A±, which is the analog of the conjugation condition (2.12) on

the disc. For κ2 and G we find, with a suitable choice of the integration constant in B to

ensure G|∂Σ = 0 and using that Ã0
+ and Ã0

− are related by conjugation,

κ2 = |ς|2
(

1

|z|4
− 1

)
G = |ς|2

(
|z|2 − 1

|z|2
− 2 ln |z|2

)
(4.18)

Manifestly, the positivity and regularity conditions κ2 > 0 and G < 0 are obeyed in the

interior of Σ, and both functions vanish on the boundary. Moreover, we have,

κ2G
|∂zG|2

=
1 + |z|2

(1− |z|2)3

(
|z|4 − 1− 2|z|2 ln |z|2

)
(4.19)

This is a smooth function which monotonically increases from −1 at |z| = 0 to −2/3 at

|z| = 1, as required by the boundary conditions. Therefore, these functions A± yield a

solution which is regular everywhere. At the pole in A−, we have that A+ is finite. By

2For the AdS6 case, regularity of κ2 together with the boundary condition for G automatically implied

the full set of regularity conditions. This is not the case for AdS2.
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the arguments of section 4.1, the geometry decompactifies at this point and approaches the

asymptotic region of a cone with deficit angle π.

Taking into account the conjugation relation between A+ and A−, the ansatz in (4.16)

has 6 real parameters. The integration constant in G is fixed by the boundary condition.

Subtracting 3 degrees of freedom for redundancies due to the SL(2,R) automorphisms of

the upper half-plane leaves 3 free real parameters. We note that the SU(1, 1)× C duality

transformations (2.8) do not map the class of functions in (4.16) into itself; the shifts do,

but SU(1, 1) transformations with v 6= 0 do not. The functions in (4.16) are therefore

representatitves of entire SU(1, 1) orbits of non-trivial solutions.

In figure 1 we plot the metric factors, axion-dilaton, and two-form fields for a minimal

solution on the disc. In order to obtain these plots, we have chosen ς = Ã0
+ = i

2 in (4.17).

Because the metric factors all take the same qualitative form, we have only included the

plot for f2
2 .

4.5 Non-minimal solutions on the disc

Generalizing to a single pole at t = t1 of higher order ν = ν1 > 2, we have,

∂wA+ =
σ̄

(w − t̄)ν
ν−2∏
k=1

(w − uk) ∂wA− =
σ

(w − t)ν
ν−2∏
k=1

(w − ūk) (4.20)

with Im (uk) > 0. Since ∂wA− has no zeros in the upper half-plane, κ2 is positive through-

out Σ. The pole at t can be mapped to w = i by SL(2,R). By partial fraction decomposition

the differentials can then be rewritten as,

∂wA± =

ν∑
k=2

Zk±
(w ± i)k

Zk+ = σ̄hν−2,k Zk− = Zk+ (4.21)

where hν−2,k(ui) are k-th order symmetric polynomials in the ν − 2 zeroes ui given by

hν−2,k(ui) = (−1)k
ν−2∑

`1<···<`k−2

(u`1 + i) . . . (u`k−2
+ i) (4.22)

The residues of ∂wA± at w = ∓i vanish, such that A± are single-valued and given by,

A± = A0
± −

ν∑
k=2

1

k − 1

Zk±
(w ± i)k−1

(4.23)

To ensure that G is single-valued we compute ∂wB,

∂wB = A0
+∂wA− −A0

−∂wA+ −
ν∑

k,`=2

1

k − 1

[
Zk+Z

`
−

(w + i)k−1(w − i)`
−

Zk−Z
`
+

(w − i)k−1(w + i)`

]
(4.24)

The residue at w = i is found to be

Res(∂wB)
∣∣∣
w=i

= −
ν∑

k,`=2

22−k−`

k − 1

(
k + `− 3

k − 2

)[
i`−kZk+Z

`
− + (−i)`−kZk−Z`+

]
(4.25)
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Figure 1. The metric factors, axion-dilaton, and two-form fields for the minimal solution with a

single interior pole of order two. We have chosen ς = Ã0
+ = i

2 in (4.17). Because the metric factors

all take the same qualitative form, we display only f22 .

This is real, satisfying (4.14) for any choice of the zeroes ui. Thus, G is single-valued for all

differentials of the form (4.20). It remains to implement G < 0 and 0 < T 2 < 1. Explicit

investigation shows that this is satisfied e.g. for A0
± = 0 and ui = . . . = uν−2 = 2i for

ν ∈ {3, 4, 5, 6}.
A more symmetric solution can be realized conveniently by working directly on the

disc, Σ = {z ∈ C
∣∣ |z|2 ≤ 1}, with the coordinate transformation used in (4.17) and the

differentials

∂zA+ = ς̄
(
zν−2 − α

)
∂zA− = − ς

z2

(
z2−ν − α

)
(4.26)
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with 0 < α < 1. This corresponds to a pole at z = 0 in ∂zA− and zeros at the (ν − 2)th

roots of α in ∂zA+. The functions A± are

A+ = A0
+ + zς̄

(
zν−2

ν − 1
− α

)
A− = A0

− +
ς

z

(
z2−ν

ν − 1
− α

)
(4.27)

They satisfy A∓(1/z̄) = A±. Under the Zν−2 generated by z → z exp( 2πi
ν−2) and an

appropriate transformation of A0
±, the functions A± transform by an overall multiplicative

phase. These Zν−2 transformations leave κ2, G, and T , and consequently the metric

functions invariant. The RR potentials and axion-dilaton scalar transform non-trivially.

The general Ansatz for the differentials (4.20) has ν complex parameters. Adding

the integration constants A0
± and subtracting 3 real degrees of freedom for the SL(2,R)

automorphisms of the upper half-plane leaves 2ν − 1 real parameters. These are subject

to additional regularity constraints to implement G < 0 and 0 < T 2 < 1. The examples

given above show that these constraints can be satisfied. Since the additional regularity

conditions take the form of inequalities, there is indeed a 2ν−1 parameter family of solutions

for each ν. The SU(1, 1) duality transformations (2.8) with v 6= 0 again do not map the

set of functions (4.23) into itself, and instead carve out SU(1, 1) orbits of regular solutions.

Adding two parameters for the SU(1, 1) transformations with v 6= 0 and subtracting one

degree for the constant shifts which only produce gauge transformations of C and M, we

arrive at 2ν parameters.

In figure 2, we plot the metric factors, axion-dilaton, and two-form fields for the sim-

plest non-minimal solution on the disc, i.e. the solution with n = 3. To obtain these plots,

we have chosen A0
± = 0, σ = 1, and u1 = 2i in (4.23). As in the case of the minimal

solutions, the metric factors all have the same qualitative form, and hence we include the

result only for f2
2 .

5 T-dual of AdS2 × S7 in Type IIA

In this section, we comment on possible T-duals of a class of AdS2 solutions in Type IIA.

T-duals of a Type IIA solution with geometry AdS6 warped over a half sphere S4 describing

the D4-D8 system could be recovered as special cases of the general local AdS6 solution in

Type IIB [6, 32, 33]. T-dualizing the Type IIA solution along the S1 Hopf fiber in S3 pro-

duces a supersymmetric solution in Type IIB, as does non-Abelian T-duality [35]. With the

AdS6 superalgebra being unique, these T-duals had to be contained in the solutions of [6].

For the case of AdS2, the solutions of [30] describing semi-localized D0-D8-F1 systems

in massive Type IIA take the form AdS2×S7 warped over an interval. One could consider

various U(1) isometries with fixed points in S7 for T-duality. Recalling that S2n+1 is a

U(1) bundle over CPn, the S1 fiber is a natural candidate on which to carry out this T-

duality. Such T-dualities have been discussed in [36–38]. With the Sp × Sq slicing of Sn,

where p + q = n − 1, the S1 in the S1 × S5 slicing may be another candidate. The S1

Hopf fiber in S3 could be used in one of the factors of the S3 × S3 slicing, or in the Hopf

fibration of S3 over S4. Non-Abelian T-duality may provide further options. None of these

options, however, would produce an S6 in the T-dual geometry. Moreover, even where
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Figure 2. The metric factors, axion-dilaton, and two-form fields for the solution with a single

interior pole of order three. We have chosen A0
± = 0, σ = 1, and u1 = 2i in (4.23). Because the

metric factors all take the same qualitative form, we display only f22 .

a superalgebra with the preserved bosonic symmetries exists, supersymmetry may not be

preserved by T-duality along U(1) isometries with fixed points (see, however, [39, 40]).

We discuss the case of CP3 in the following. We illustrate the massless case, when there

are no D8-branes, in the conventions of [30], and consider the semi-localized intersection

of D0 and F1. The generalization to the massive case is straightforward. The string-frame

metric, dilaton, and two-form field are given by,

ds2
10 =

1

4
L2W 2

[
ds2

AdS2
+ 4

(
dθ2 + 4 sin2 θds2

S7

)]
Im (τ) =

1

gsLW
B2 = −B0W

2 cos θ volAdS2 (5.1)
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where gs > 0 and B0 are constants, θ ∈ [0, π], L2 = 1
8

√
QD0QF1, and W = (sin θ)−3/2. The

F1-string wraps a combination of the AdS2 radial direction and the θ-direction. T-dualizing

along the S1 fiber in the fibration over CP3 yields the string-frame metric and dilaton

ds2
10 =

1

4
L2W 2

[
ds2

AdS2
+ 4 sin2 θ ds2

CP3

]
+

4

L2W 2 sin2 θ

[
dψ2 +

1

4
L4W 4 sin2 θdθ2

]
Im (τ) =

1

gs
sin θ (5.2)

Such a configuration could naturally arise from Type IIB solutions of the form AdS2×CP3

warped over a Riemann surface Σ, where the appropriate superalgebra would be SU(1, 1|4).

These solutions are currently under investigation.

6 Discussion

In the first part of this work we have constructed an Ansatz for global Type IIB supergravity

solutions with 16 supersymmetries on a space-time of the from AdS2 × S6 warped over

the unit disc or equivalently the upper half-plane, which may allow for an identification

with string junctions. These solutions circumvent the no-go results of [10], and naturally

implement the boundary conditions on ∂Σ which impose stronger constraints than in the

AdS6 × S2 case. The remaining conditions for regularity and geodesic completeness were

reduced to algebraic constraints on the parameters of the Ansatz, whose complete solution

remains an open problem. In analogy with the relation of AdS6 solutions to M5-brane

curves [41], one may expect the data (Σ,A±) for solutions corresponding to string junctions

to define the holomorphic curve wrapped by the M2-brane in the M-theory uplift of the

string junctions [42–45]. As discussed in section 5, the T-duals of Type IIA AdS2 solutions

relating to D0-F1-D8 systems naturally realize a different superalgebra, motivating their

further investigation.

In the second part we studied solutions independently from a string junction interpre-

tation. We presented families of non-compact solutions with geometry AdS2 × S6 warped

over a punctured sphere or a punctured disc. At the punctures the geometry decompactifies

into an asymptotic region. The explicit solutions we have presented are infinite families

which all have one asymptotic region. They are labeled by an integer ν, which corresponds

to a Zν symmetry in the asymptotic region, and have 2ν real parameters.

We laid out a systematic construction strategy which may give access to further solu-

tions with similar features. Possible generalizations include solutions with multiple asymp-

totic regions or Riemann surfaces of different topology. The construction of these AdS2

solutions involves poles of the functions A± in the interior of Σ, which would not be com-

patible with the regularity conditions in the AdS6 case [8]. This highlights the physical

independence of these two cases, despite the similarities in the general local solution to

the BPS equations. The AdS2 solutions share certain features with black hole micro-state

geometries [46–51], but we leave their interpretation for future work.

Various further generalizations of the solutions may be possible. For example, one

may try to combine the two elements discussed in this paper — namely, to realize the
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singularities allowing for a local match to (p, q)-string solutions discussed in the first part

in the non-compact solutions with asymptotic regions discussed in the second part. The

AdS6 solutions can be generalized to include 7-branes by modifying the functions A± of a

regular solution [9], and it may be possible to generalize the AdS2 solutions in a similar

way. Further solutions may also be constructed by relaxing the regularity conditions, to

allow e.g. for smeared branes along the lines of [33].
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