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1 Topological susceptibility at LO and NLO

In QCD the topological susceptibility χtop is one of the fundamental observables describing

the non-trivial properties of the QCD vacuum. Defined as the second derivative of the free

energy with respect to the θ-angle at θ = 0, it determines how the QCD vacuum energy

depends on the CP-violating θ parameter. While χtop vanishes at all order in perturbation

theory, at high temperatures its value is expected to be well reproduced by semi-classical

small-instanton configurations.1 At zero temperatures such a description is not valid, and

indeed in the chiral limit current algebra relates χtop to the chiral condensate, which is

notoriously associated to renormalons rather than to a semi-classical field configuration.

Recently the determination of χtop has seen a wave of renewed interest. Indeed, the

most plausible known solution to the strong-CP problem [7] involves the presence of a

light pseudo-Goldstone boson, the QCD axion [8–13], whose mass is determined by χtop

through the relation2 m2
a = χtop/f

2
a (where fa is the Peccei-Quinn scale controlling the

axion coupling to the Standard Model). Since the existence of the QCD axion could also

explain the dark matter abundance in our Universe [15–17], a multitude of experiments are

being pursued to search for this particle (see e.g. [18, 19]). Using various forms of resonance

effects to amplify the otherwise too feeble signal, several of these experiments would be

able to measure the axion mass with very high precision, even down to O(10−6). When

combined with measurements of the axion couplings and possibly the information of the

axion relic abundance, such precision could be used to learn about the dynamics of new

1Several lattice simulations in pure Yang-Mills [1, 2] and in QCD [3–6] indicate that the temperature

behavior predicted by the instanton gas approximation might be valid already at small temperatures, just

above the QCD transition, although the overall size of χtop is not yet well reproduced.
2Corrections to this formula are of order m2

π/f
2
a , which are negligible given that fa & 108 GeV [14].
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physics at much higher scales, as well as physics of the early universe including inflation,

reheating and pre-BBN evolution.

At a first look a high precision determination of χtop seems hampered by its non-

perturbative nature. On the contrary, chiral effective theories are particularly powerful

in this case. By exploiting the freedom to rotate the whole θ-dependence of the QCD

functional into the phases of the lightest quark masses, the θ-dependence of low-energy

QCD observables (e.g. the vacuum energy) can be computed analytically using chiral La-

grangians, which are expansions in the light quark masses. In particular using the lightest

two quarks, the effective expansion parameter, mu,d/ms ∼ few percent, is rather small,

suggesting a fast convergence.

Indeed, as shown explicitly in [20], the leading order formula [8]

χLO
top =

z

(1 + z)2
m2
π0f

2
π , z ≡ mu

md
, (1.1)

where mπ0 is the physical neutral pion mass and fπ its decay constant (normalized as fπ ∼
92.3 MeV), is accurate at the few percent level. Next to leading order (NLO) corrections

in the chiral expansion have been computed in [20], and result in

χNLO
top = χLO

top [1 + δ1] ,

δ1 = 2
m2
π0

f2
π

[
hr1 − hr3 − `r4 − (1− 2∆2)`7

]
, ∆ ≡ 1− z

1 + z
. (1.2)

where the coefficients hri and `ri are the low-energy constants (LECs) of the chiral La-

grangian defined in ref. [21]. Using the available estimates for the quark mass ratio

z = 0.48(3) and for the LECs, the topological susceptibility and the corresponding ax-

ion mass were estimated to be

χ
1/4
top = 75.5(5) MeV , ma = 5.70(6)z(4)`ri µeV

1012 GeV

fa
, (1.3)

where the uncertainties in ma come respectively from z and the LECs. This estimate

represents the current state of the art for the topological susceptibility and the QCD

axion mass.

Since the results in ref. [20] new lattice simulations became available. Direct mea-

surements of the topological susceptibility were performed in the isospin limit z = 1 in

refs. [22] and [4], which, once corrected for the leading isospin-breaking effects (i.e. the

factor z1/4
√

2/(1 + z)), give respectively χ
1/4
top = 75(3) and 75(2) MeV, in nice agreement

with eq. (1.3). While the current precision of these estimates is still roughly a factor of four

worse than (1.3), the situation may change in the near future as systematics are further

reduced on the lattice side.

At the same time new lattice estimates of the quark mass ratio z appeared and im-

proved the previous ones, namely z = 0.485(20) [23] with three dynamical quarks and

z = 0.513(31) [24] and z = 0.453(16) [25], with four dynamical quarks. By combining them

with the older z = 0.470(56) [26] (also with four dynamical quarks), we get the following

improved estimate

z =

(
mu

md

)MS

(2 GeV) = 0.472(11) , (1.4)
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which agrees with the previous estimate (z = 0.48(3)) used in ref. [20] and improves its

precision by a factor of three. We should warn the reader that here the error has been

computed by simply propagating the uncertainties quoted by each collaboration, since a

proper combination is not yet available. In the remainder of the paper we will use the

value in eq. (1.4) as reference, however we will always report separately the uncertainty

originating from z and the total one so that it can easily be rescaled if needed.

For the LECs appearing in eq. (1.2) we now use the values

hr1 − hr3 − `r4 = −0.0049(12) , `7 = 0.0065(38) . (1.5)

The first combination is computed using the matching to Lr8 as described in ref. [20] and

using the latest FLAG estimate Lr8 = 0.00055(15) [27], while the second value is taken from

the direct lattice simulation of ref. [28]. These values give

δ1 = −0.042(13) , (1.6)

where the error is dominated by the one from `7. Combining everything together we get

the updated values for the topological susceptibility and the axion mass at NLO

χ
1/4
top = 75.46(29) MeV , ma = 5.69(2)z(4)`ri µeV

1012 GeV

fa
. (1.7)

Given the improved value for the light quark mass ratio, the dominant error now became the

one from the NLO LECs, in particular `7, which also controls the strong isospin breaking

effect in the pion mass splitting, indeed poorly known. An improvement on this quantity

would directly translate into an equivalent improvement in our knowledge of χtop and thus

ma. Conversely, improvements in the direct computation of χtop on the lattice could be

used to better determine both z and `7.

A natural question to ask is how much an advance in our knowledge of the light

quark masses and the NLO LECs can increase the precision of χtop, before other unknown

corrections need to be considered. Among the latter, the most relevant are the NNLO

corrections of the chiral expansion and O(αem) electromagnetic (EM) corrections. The

firsts do not only determine the ultimate precision reachable with eq. (1.2) but also measure

the convergence and reliability of the chiral expansion. Of course the size of the NNLO

corrections is only relevant in the chiral expansion approach and does not represent a source

of uncertainty for lattice simulations,3 which contain the full non-perturbative result. The

EM corrections, on the other hand, are common to both approaches and so far have never

been considered. As we will show in the next section, their size is smaller with the choice

made in eq. (1.1) of using the value of the neutral pion mass in the LO formula. Even with

this choice, however, the value of the EM corrections is just below the size of the present

uncertainties for χtop, which means that further improvements cannot ignore them.

In the rest of the paper we will present first the analysis of the EM corrections to

the topological susceptibility in section 2, and then the NNLO ones in section 3. We will

3On the other hand, lattice simulations have to face a number of systematic uncertainties which are not

present in the chiral expansion such as finite volume, finite lattice spacing effects, explicit chiral symmetry

breaking, etc., some of which require delicate and careful analyses.
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combine all of them in section 4 where we will also give our final estimate for the axion

mass with a discussion of the various sources of uncertainties. In appendix A we report

the formulas for our results with the explicit quark mass dependence, suitable to be used

in lattice simulation fits. Finally, in appendix B we give all the details of the numerical

extraction of the values of the LECs used in the results.

2 QED corrections

While the QCD axion has a vanishing electric charge, its mass can receive O(αem) correc-

tions from several sources. Indeed, the leading order formula (1.1) involves a number of

quantities that can introduce potentially large EM corrections depending on the way they

are defined and extracted by experiments.

• The pion masses for the neutral and the charged states are degenerate at leading

order, but differ at higher orders due to isospin and EM effects. The latter largely

dominate this difference, which amounts to mπ+ −mπ0 = 4.5936(5) MeV, i.e. around

4% of the total mass. The main effect comes from the charged pion mass, whose cor-

rections are O(e2), while those in the neutral pion mass start at O(e2p2). Therefore,

depending on which pion mass is used in eq. (1.1), the axion mass can vary by 4%,

which is more than the quoted uncertainties of the previous section. As we will see

below, the naive expectation that the neutral pion mass should be used to minimize

EM effects is the correct one. Indeed the pion mass entering in the leading order

formula can be understood as arising from the mixing between the axion and the

neutral pion state.

• In QCD the pion decay constant fπ is not unambiguously defined when EM in-

teractions are turned on. In chiral perturbation theory, on the other hand, αem

can be controlled analytically and it is possible to define fπ unambiguously. The

best determination of fπ at the moment comes from (radiative) leptonic pion decays

π+ → µνµ(γ) where both experimental and theoretical uncertainties are small [14].

As we will discuss in more detail below, the EM corrections to Γπ+→µν(γ) are domi-

nated by a calculable short distance contribution. The long distance hadronic contri-

bution (which is of the same order of the EM corrections we want to compute for the

axion mass) is subleading but dominates the current error of fπ. Given the impor-

tance of such corrections for our computation, we revisit their estimate and analyze

their interplay with the genuine corrections to the axion mass. An alternative deter-

mination of fπ could be obtained from the neutral pion decay π0 → γγ, however both

the theoretical and experimental uncertainties are not competitive with the charged

pion channel [14].

• While the light quark mass ratio z = mu/md at leading order is renormalization

group (RG) invariant with respect to QCD corrections, it is not with respect to the

QED ones [29]. This introduces an O(αem) ambiguity in the tree-level formula of the
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axion mass that should be removed by the sub-leading EM corrections:

∂ log z

∂ log µ
=

6αem

4π

[(
2

3

)2

−
(
−1

3

)2
]

=
αem

2π
(2.1)

A change of O(1) in the renormalization scale introduces a shift of O(10−3) in z

that can be taken as a lower bound to the order of magnitude of the expected EM

corrections to the axion mass.

We start by reporting the result for the computation of the leading EM corrections

to the topological susceptibility, which begin at O(e2p2) in the chiral expansion once the

leading order term is written in terms of the physical4 neutral pion mass mπ0 (including

EM corrections) and the physical charged pion decay constant fπ+ (defined in pure QCD,

i.e. at αem = 0):

χtop =
z

(1 + z)2
m2
π0f

2
π+ [1 + δe + . . . ] , (2.2)

δe = e2

[
20

9
(kr1 + kr2)− 4kr3 + 2kr4 +

8

3
∆ kr7 −

Z

4π2

(
1 + log

(
m2
π

µ̄2

))]
, (2.3)

where dots in eq. (2.2) represent the non-EM corrections discussed in sections 1 and 3,

the coefficients Z and kri are the nf = 2 EM low-energy constants from [30], and µ̄ is

the renormalization scale of the chiral Lagrangian, whose dependence cancels against that

from the kri coefficients. As anticipated before, once the LO formula is written in terms of

m2
π0 , the EM corrections start at O(e2p2) (the δe term). In particular the EM pion mass

splitting effects parametrized by

Z =
m2
π+ −m2

π0

2e2f2
π+

+ · · · ' 0.81 . (2.4)

are loop suppressed. Although the value for the couplings kri is not known directly, it can

been inferred, as in [31], using their relation to the nf = 3 constants Kr
i , which have been

estimated in refs. [32, 33] using various techniques including sum rules and vector meson

dominance. The values for the kri we use are taken from [31] (with Kr
9 from [33]) and

reported in table 1. Because of the model dependence of such estimates we decided to

assign a conservative 100% uncertainty to each LEC, i.e. we use the mentioned values as

an order of magnitude estimate of their size. Substituting the numerical values we find

δe = 0.0065(21) . (2.5)

While we have assigned 100% uncertainties to the LECs kri , the uncertainty on δe only

amounts to 30% because the dominant contribution comes from the last term in eq. (2.3).

4Whenever mπ appears in the following formulas, it can be equivalently understood as mπ0 or mπ+

because the difference will be accounted by higher orders in either e2 or p2. For the numerical estimates

we used mπ = mπ0 .
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kr1 kr2 kr3 kr4 kr7

8.4 3.4 2.7 1.4 2.2 ×10−3

Table 1. Numerical values of the nf = 2 EM LECs kri at the scale µ̄ = 770 MeV extracted using

their relation to Kr
i . To the kri it is assigned a conservative 100% uncertainty.

As discussed before, the QED RG scale dependence from the quark mass ratio z in

the leading order formula (1.1) must be reabsorbed by O(αem) corrections. Indeed the EM

LECs kr5,7 have the non-trivial UV-scale µ dependence:5

µ
∂

∂µ
kr5 = −3

5

1

(4π)2
, µ

∂

∂µ
kr7 = −3

4

1

(4π)2
. (2.6)

It is easy to check that the variation of kr7 reabsorbs the dependence induced by the variation

of z in the leading order formula (in the nf = 3 case the RG scale dependence is reabsorbed

by Kr
9). In fact, the light quark mass ratio z and the constants kr5,7 cannot be determined

independently and only the RG invariant combination enters physical quantities. The

numerical value of kr7 in table 1 is of the same order of the scale dependence in eq. (2.6),

which therefore dominates its determination. In any case, the current uncertainties on the

quark mass ratio z are still bigger than the effects from the scale dependence in z, and

therefore bigger than the effects from kr7.

To complete the computation of χtop we need the value of the pion decay constant

fπ+ at αem = 0. Currently the best determination comes from the charged pion leptonic

decay, which according to the PDG [14] provides fπ+ = 92.28(9). This estimate however

involves EM corrections of the same order of δe, so that a consistent calculation of χtop

within the chiral expansion should consider the two sources of EM corrections together. In

more details fπ+ is related to the EM inclusive pion decay rate via

Γπ+→µν(γ) =
G2
F |Vud|2mπ+m2

µf
2
π+

4π

(
1−

m2
µ

m2
π+

)2 [
1 + δloc

Γ + δhad
Γ

]
(2.7)

where the δΓ terms computed in [34] are the O(αem) corrections, which we split into two

terms: the local contribution δloc
Γ and the IR one δhad

Γ , which parametrizes the hadronic

form factors and depends on the chiral LECs. Explicitly they read:

δloc
Γ =

αem

π

[
log

(
m2
Z

m2
ρ

)
+F

(
m2
µ

m2
π+

)
−
m2
µ

m2
ρ

(̄
c2 log

(
m2
ρ

m2
µ

)
+ c̄3 + c̄4

)
+
m2
π+

m2
ρ

c̄2t log

(
m2
ρ

m2
µ

)]
,

δhad
Γ = e2

[
8

3
(Kr

1 +Kr
2) +

20

9
(Kr

5 +Kr
6)− 4

3
Xr

1 − 4(Xr
2 −Xr

3)− X̃r,eff
6

+
1

(4π)2

(
2− 3Z − Z log

(
m2
K

µ̄2

)
+ (3− 2Z) log

(
m2
π

µ̄2

))]
,

F (x)≡ 3

2
log x+

13−19x

8(1−x)
− 8−5x

4(1−x)2
x log x−

(
2+

1+x

1−x
log x

)
log(1−x)−2

1+x

1−x
Li2(1−x) .

(2.8)

5This can be derived by computing the operators generated in the chiral Lagrangian by an RG trans-

formation of the quark mass matrix in terms of the EM charge spurions QL,R.
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c̄2 c̄3 c̄4 c̄2t

5.2 −10.5 1.69 0

Kr
1 Kr

2 Kr
3 Kr

4 Kr
5 Kr

6 Kr
9 Kr

10 Xr
1 Xr

2 Xr
3 X̃r,eff

6

−2.7 0.7 2.7 1.4 12 2.8 −1.3 4 −3.7 3.6 5 13 ×10−3

Table 2. Top: numerical values of the c̄i constants appearing in δloc
Γ from [34]. Bottom: numerical

values of the nf = 3 radiative and leptonic LECs from [32, 33, 35] at the scale µ̄ = 770 MeV. All

constants are assigned a conservative 100% uncertainty.

The constants c̄i have been estimated in a model dependent way in ref. [34], and for this

reason we assign a conservative 100% uncertainty to them. The corresponding numerical

values from [34] are reported in table 2. The constants Kr
i and Xr

i are the nf = 3

radiative and leptonic LECs respectively, defined in refs. [36, 37] (except for X̃r,eff
6 defined

in ref. [35]). We use the values estimated in ref. [32] for Kr
1,...,6, in ref. [33] for Kr

9,10, and

in ref. [35] for Xr
i , which we report in table 2 and to which we associate conservatively a

100% uncertainty.6

Numerically the size of the EM corrections to Γπ+→µν(γ) amounts to

δloc
Γ + δhad

Γ = 0.0177(38) , (2.9)

very close to the PDG estimate (0.0176(21)) but with larger error (here we have been more

conservative). Note that, although the uncertainties of all LECs have been taken O(1), the

result has a 20% accuracy, since the first term in δloc
Γ largely dominates over all the others.

Combining eqs. (2.7) and (2.9) we get fπ+ = 92.26(18).

Since some of the LECs appearing in δhad
Γ are common with some of those appearing in

δe, the topological susceptibility χtop should be written directly in terms of the Γπ+→µν(γ)

rather than fπ+ , i.e.

χtop =
z

(1 + z)2
m2
π0

Γπ+→µν(γ)

G2
F |Vud|2mπ+m2

µ

4π

(
1− m2

µ

m2
π+

)2

[
1 + δe − δloc

Γ − δhad
Γ + . . .

]
. (2.10)

The combination δe − δhad
Γ can be written either all entirely in terms of nf = 3 LECs, or

in a hybrid way in terms of nf = 2 kri and nf = 3 Xr
i (because the nf = 2 leptonic LECs

6The various estimates of the Kr
i in refs. [32, 33] and references therein are not always compatible with

each other, hence our conservative choice for the error, which is supposed to take those model-dependent

deviations into account.
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are not available):

δe − δhad
Γ = e2

[
2kr4 − 4kr3 +

8

3
∆ kr7 − 4kr9 +

4

3
Xr

1 + 4(Xr
2 −Xr

3) + X̃r,eff
6

−
2(1 + Z) + (3 + 2Z) log m2

π
µ̄2

(4π)2

]

= e2

[
2Kr

4 − 4Kr
3 +

8

3
∆(Kr

9 +Kr
10) +

4

3
Xr

1 + 4(Xr
2 −Xr

3) + X̃r,eff
6

− 1

(4π)2

(
2(1 + Z + ∆Z) + (3 + 2Z) log

m2
π

µ̄2
+ 2∆Z log

m2
K

µ̄2

)]
. (2.11)

In this way we get

δe − δhad
Γ − δloc

Γ = 0.024(6) , (2.12)

which in combination with eq. (2.10) can be used to evaluate the EM contribution to χtop.

The direct extraction of fπ+ from lattice QCD simulations is not competitive with the

estimate above. However, recently the EM corrections to Γπ+→µν(γ) have been computed

in a preliminary study on the lattice [38], giving7

δloc
Γ + δhad

Γ = 0.0169(15) , (2.13)

which is in very good agreement with eq. (2.9). Accidentally this value is very close to

the PDG one, both in size and uncertainty. Eq. (2.13) implies fπ+ = 92.30(7). Given the

compatibility of the chiral and the lattice results, and the fact that the latter has better

precision and less model dependence, we will use eq. (2.5) and this lattice estimation for

fπ+ , bearing in mind that numerically this choice is also equivalent to using the PDG

determination.

3 NNLO corrections

Given the smallness of the expansion parameter, the nf = 2 chiral expansion is expected to

converge very fast and the NNLO corrections to be only a few percent with respect to the

NLO ones. Nevertheless, depending on the magnitude of the low-energy coefficients, they

might be competitive with the EM corrections discussed in the previous section. Their

estimation is therefore essential for a precise calculation of χtop.

The NNLO corrections to the topological susceptibility receive contributions from the

diagrams in figure 1, which correspond to: 1) the two-loop diagrams constructed from

O(p2) vertices, 2) the one-loop diagrams generated by O(p4) vertices and 3) the tree-level

7Note however that ref. [39] alerts about upcoming results which slightly deviate from this quoted value.
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ℓ𝑖𝑖, 𝒸𝒸𝑖𝑖ℎ𝑖𝑖

Figure 1. One-particle-irreducible diagrams for the axion and pion 2-point functions at NNLO.

graphs from the O(p6) Lagrangian.8 At αem = 0, the full NNLO result is

χNNLO
top =

z

(1 + z)2
m2
π0f

2
π+ [1 + δ1 + δ2] , (3.1)

δ2 =
m4
π

f4
π

32(cr6 + 2cr19) +
2¯̀

3 + 4¯̀
4 + 3 log m2

π
µ̄2
− 2

4(4π)4
log

m2
π

µ̄2
+

3`7
8π2

log
m2
π

µ̄2

+
hr1 − hr3 − `r4 − `7

8π2
¯̀
3 −

1

(4π)4

(
¯̀2
4 − ¯̀

3
¯̀
4 +

25

16

)
+

(
32 (cr9 − 6cr10 − 4 (cr11 + cr17 + cr18)− 6cr19)− 7`7

8π2
log

m2
π

µ̄2

+8(hr1 − hr3 − `r4)`7 − 12`27 +
2¯̀

3 + 2¯̀
4 − 1

8π2
`7

)
∆2 + 20`27 ∆4

]
, (3.2)

with δ1 given in eq. (1.2) and the cri being the O(p6) nf = 2 LECs introduced in [40, 41].

Note that the charged and neutral pion decay constants (defined, as mentioned, at αem = 0)

differ only at two loops due to isospin breaking effects, so fπ in δ1 and δ2 can be understood

either as fπ+ or fπ0 , being the difference accounted by O(p8) terms. The scale dependence

of the combinations of cri in eq. (3.2) is fully reabsorbed by the log m2
π

µ̄2
and log2 m2

π
µ̄2

terms,

and since hr1 − hr3 − `r4, `7 and ¯̀
3,4 are scale invariant, the scale dependence of δ2 cancels

separately in each line of eq. (3.2).

While the numerical value of most of the O(p4) LECs is reasonably well known, the

determination of the cri is in much worse shape. In fact, only few combinations of cri can

be extracted directly because there are not enough experimental observables to fit all the

nf = 2 Lagrangian parameters.9 Recent partially-quenched lattice QCD simulations [28]

provided results for some of the combinations of cri appearing in eq. (3.2). For the remaining

ones we matched the relevant combinations to the nf = 3 LECs, for which some estimates

exist [45] (taken with a conservative 100% error). In this way we have been able to extract

an order of magnitude estimate for all the cri appearing in eq. (3.2), which we report in

table 3 (see appendix B for more details).

8Note that even with a quark field redefinition that avoids the tree-level mixing between the axion and

the neutral pion, this mixing arises at one loop, producing effects at NNLO in χtop.
9In fact, of the cri that appear in eq. (3.2), only cr6 has been extracted semi-directly from experiments,

in particular from the pion scalar form factor [42], with some phenomenological modeling. As explained

in appendix B, since on its numerical value there is still disagreement [42–44], we will not use it in our

analysis.
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106cr6 106cr7 106cr8 106cr9 106cr10 106cr11 106cr17 106cr18 106cr19

1.0(3.8) −2.2(2.0) 2.1(1.1) −0.3(1.2) −1.0(1.1) −0.1(0.7) 6.4(3.8) −2.2(5.9) −0.1(9.5)

Table 3. Numerical values of the nf = 2 LECs in δ2 at the scale µ̄ = 770 MeV extracted by

combining the lattice results of [28] and the matching with the nf = 3 LECs of [45] (see appendix B

for more details).

The LECs in table 3 and eq. (1.5), combined with the values ¯̀
3 = 2.81(49) and ¯̀

4 =

4.02(25) from [28], lead to the following numerical result for the NNLO corrections:

δ2 = −0.0071(01)z(23)`ri (19)cri = −0.0071(29) . (3.3)

While the uncertainty from z is very small, those from `ri (of which `7 provides the largest

contribution) and cri have similar size. Notice that although the relative uncertainties of

the cri are large, they only have a milder impact on the final uncertainty of δ2, because

numerically δ2 receives bigger contributions from the O(p4) LECs and the non-local contri-

butions. Moreover, the isospin-breaking terms in δ2 (the last two lines in eq. (3.2)), which

are suppressed by powers of ∆2 ≈ 0.1, contribute less than 20% to the final result and

are within the uncertainty of δ2. As a consequence, the precision on the LECs is still not

enough for the result to be sensitive to isospin breaking corrections. Finally notice that δ2

is numerically of the same order of the EM corrections in eq. (2.5), but with opposite sign.

Therefore, both have to be considered for a sub-percent estimate of χtop.

4 Final results and axion mass

We can now combine the analysis of sections 1, 2 and 3 and estimate of the topological

susceptibility to O(p6, e2p2). The final result reads

χtop =
z

(1 + z)2
m2
π0f

2
π+ [1 + δ1 + δ2 + δe] , (4.1)

where the O(p4) contribution δ1 is given in eq. (1.2), the O(p6) contribution δ2 in eq. (3.2)

and the O(e2p2) contribution δe in eq. (2.3). For completeness, in appendix A we also

report χtop expressed in terms of quark masses and bare chiral Lagrangian parameters.

Substituting our numerical estimates, the final results for the topological susceptibility

and the axion mass read

χ
1/4
top = 75.44(34) MeV , ma = 5.691(51)µeV

1012 GeV

fa
. (4.2)

Notice how these values almost coincide with the updated NLO ones in eq. (1.7), since both

NNLO and EM corrections are comparable but smaller than the present uncertainties of

the NLO estimate, and, having opposite sign, they tend to cancel each other. This result

confirms the reliability of the NLO estimate in [20]. It is instructive to deconstruct the

contributions at each order with the various uncertainties: for the axion mass case they
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read

ma =
[
5.815(22)z(04)fπ︸ ︷︷ ︸

LO

−0.121(38)`ri︸ ︷︷ ︸
NLO

−0.022(07)`ri (05)cri︸ ︷︷ ︸
NNLO

+0.019(06)kri︸ ︷︷ ︸
EM

]
µeV

1012 GeV

fa
,

(4.3)

where the reported uncertainties on each contributions come from those of z, from the EM

corrections in the extraction of fπ+ , and from those of the various LECs in the NLO (`ri
and hri ), in the NNLO (cri ) and in the EM (kri ) chiral Lagrangians.

Several comments are in order. First notice how, while NLO corrections are almost two

orders of magnitude smaller than the LO result, NNLO are barely one order of magnitude

below the NLO ones. On one side this means that the chiral expansion is nicely converging

and, given the current uncertainties on z and the LECs, the NLO result is enough. On the

other side, the size of the NNLO corrections is such that they cannot be ignored in future

improvements of ma.

EM corrections are of similar size, slightly less than 0.5% and within present uncer-

tainties. The numerical estimate of the EM corrections has been carried out using the

lattice QCD results for fπ+ extracted from eqs. (2.7) and (2.13) with δe in eq. (2.5), since

these values are more model-independent.10 However, one could have also used eqs. (2.10)

and (2.12) obtaining essentially the same central value although with an error twice as

large. As for NNLO corrections, they must be considered should the uncertainties coming

from z and the NLO LECs decrease. As commented before, the size of these corrections

also represents the ultimate precision that can be reached in lattice estimates which do not

include EM corrections.

We conclude by noticing that, if the uncertainties in mu/md and the NLO LECs (in

particular `7) are reduced by a factor of few (which is not unreasonable) our results could

be used to determine the axion mass (and χ
1/4
top) with per-mille accuracy.

Acknowledgments

We are grateful to Johan Bijnens for correspondence and clarifications on the formulas for

the pion mass and the decay constant in refs. [46, 47].

A Results in terms of the quark masses

We provide here the results for pion mass, pion decay constant and topological susceptibility

in both nf = 2 and nf = 3 chiral perturbation theory (in this last case in the unbroken

isospin limit mu = md) in terms of the bare chiral Lagrangian parameters and quark

masses. These are intermediate results used to obtain the formulas in the main sections

and the matching of appendix B.

10A very similar result would follow using the PDG value for fπ+ , which, as mentioned, is very close to

the lattice estimate both in size and error.
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A.1 Two-flavor results

We start with the neutral pion mass mπ0 , calculated at O(p6, p2e2), and the charged pion

decay constant fπ+ , defined at αem = 0 and calculated atO(p6). These have been calculated

in the unbroken isospin limit in [30, 48–51], and read:

m2
π0 = M2

[
1 + δM1 + δM2 + δMe

]
, (A.1)

fπ+ = F
[
1 + δF1 + δF2

]
, (A.2)

where M2 ≡ B(mu + md), B and F are the LECs of the leading order nf = 2 La-

grangian [21], and

δM1 =
M2

F 2

[
(2`r3 + (1/2)κλM )− (2`7)∆2

]
, (A.3)

δF1 =
M2

F 2
[`r4 − κλM ] , (A.4)

δMe = e2

[
−20

9

(
kr1 + kr2 −

9

10
(2kr3 − kr4)− kr5 − kr6 −

1

5
(1− 3∆)kr7

)
+ 2κZ (1 + λM )

]
,

(A.5)

where κ ≡ (4π)−2 and λM ≡ log M2

µ̄2
. The O(p6) contributions are

δM2 =
M4

F 4

{
− 16 (2cr6 + cr7 + 2cr8 + cr9 − 3cr10 − 2 (3cr11 + cr17 + 2cr18)) (A.6)

+ (`r1 + 2`r2 + `r3)κ+
163

96
κ2 +

[
−(14`r1 + 8`r2 + 3`r3)κ− 49

12
κ2

]
λM +

17

8
κ2λ2

M

+
[
16 (−cr7 + cr9 + 3cr10 + 2cr11) + κ(1 + 5λM )`7

]
∆2

}
,

δF2 =
M4

F 4

{
8 (cr7 + 2cr8 + cr9) + (−(1/2) `r1 − `r2 − 2`r3) κ− 13

192
κ2 (A.7)

+

[
(7`r1 + 4`r2 − 2`r3 − (1/2) `r4)κ+

23

12
κ2

]
λM −

5

4
κ2λ2

M

+
[
8 (cr7 − cr9) + κ (1 + λM )`7

]
∆2

}
.

At the same order, the topological susceptibility reads

χtop =
z

(1 + z)2
M2F 2 [1 + δχ1 + δχ2 + δχe ] , (A.8)

where the NLO correction have been first computed in ref. [52]

δχ1 =
M2

F 2

[
2 (hr1 − hr3 − `7 + `r3)− (3/2)κλM + (2`7) ∆2

]
, (A.9)

– 12 –



J
H
E
P
0
3
(
2
0
1
9
)
0
3
3

while the EM and the NNLO corrections read

δχe = e2

[
20

9
(kr5 + kr6) +

4

9
(1 + 3∆) kr7 − 2κZ (1 + λM )

]
, (A.10)

δχ2 =
M4

F 4

{
16 (3cr10 + 6cr11 + 2cr17 + 4 (cr18 + cr19))− 3κ`r3 + 3κ [−(1/4)κ− 3`r3 + 2`7]λM

− 9

8
κ2λ2

M +
[
−48cr10 − 32 (cr11 + cr17 + 2 (cr18 + cr19)) + κ (1− 7λM ) `r7 − 4`7

2
]

∆2

+ 4∆4`27

}
. (A.11)

It is a nontrivial consistency check that the dependence on the scale µ̄ cancels separately

in any of the previous equations. Moreover, the QED running of the quark masses is

compensated by the shift of kri as explained in section 2, in such a way that both mπ0 and

χtop are independent of the QED RG scale µ. Inverting eqs. (A.1)–(A.2) for M and F and

plugging the result into eq. (A.8), we obtain the topological susceptibility χtop expressed

as a function of the physical π0 mass and fπ+ only, as in eq. (4.1).

A.2 Three-flavor results

In the unbroken isospin limit mu = md ≡ m and at αem = 0, the pion mass and decay

constant at NNLO in nf = 3 chiral perturbation theory are

m2
π = M2

0

[
1 + εM1 + εM2

]
, (A.12)

fπ = F0

[
1 + εF1 + εF2

]
, (A.13)

where M2
0 ≡ 2B0m, B0 and F0 are the LECs of the leading order nf = 3 Lagrangian

of [53] and

εM1 =− B0ms

F 2
0

{
2

[
κλη

9
+ 8 (Lr4 − 2Lr6)

]
+

[
κ

(
λη
9
− λ0

)
+16 (2Lr4 + Lr5 − 4Lr6−2Lr8)

]
w

}
,

(A.14)

εF1 =− B0ms

F 2
0

{[
κλK

2
− 8Lr4

]
+

[
κ

(
2λ0 +

λK
2

)
− 8 (2Lr4 + Lr5)

]
w

}
(A.15)

Here ms is the strange quark mass, w ≡ m/ms, M
2
K ≡ B0(m + ms) and M2

η ≡
(4/3)M2

K − (1/3)M2
0 are the tree-level kaon and eta masses, λP ≡ log

M2
P

µ̄2
for P = 0,K, η,

and Lri are the NLO LECs of the nf = 3 chiral Lagrangian of [53]. The terms εM2 and εF2
are O(p6) and depend on the LECs of the nf = 3 NNLO Lagrangian, Cri . Both εM2 and εF2
involve the calculation of a two-mass scale sunset integral at non-zero external momentum,

and therefore do not admit a closed analytic expression (see [47], where a two-integral

representation is provided). However, by employing the analytic form of the two-mass

scale sunset integral at vanishing external momentum [47, 54] and the recursion relations

for sunset integrals [55–57], εM2 and εF2 can be expanded in power series of m. Such an

expansion has been calculated for the first time in [55] for εM2 and [46] for εF2 up to O(m3)

and O(m2) respectively and is sufficient for the matching of the nf = 2 and nf = 3 LECs
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discussed in appendix B. Since the result of εM2 and εF2 turns out to be quite involved, we

will avoid reporting here the explicit expressions, for which we refer to [46, 55].

Finally, the topological susceptibility at αem = 0 (first computed to O(p4) in [52])

reads

χtop =
mumd

mu +md + mumd
ms

B0F
2
0 [1 + εχ1 + εχ2 ] +O(p8) , (A.16)

where in the unbroken isospin limit mu = md ≡ m:

εχ1 =
B0ms

F 2
0 (1 + w/2)

{[
−κ
(

2λη
9

+ λK

)
+ 32Lr6

]
+

[
−κ
(

5λη
9

+ 3λ0 + 2λK

)
+ 16 (5Lr6 + 9Lr7 + 3Lr8)

]
w

+

[
−κ
(

2λη
9

+ λK

)
+ 32Lr6

]
w2

}
, (A.17)

εχ2 =
B2

0m
2
s

F 4
0 (1 + w/2)

[
εχ2,C + εχ2,log× log + εχ2,log + εχ2,log×L + εχ2,L + εχ2,L×L + εχ2,finite

]
. (A.18)

The result of εχ2 has been conveniently organized into different contributions: εχ2,C are terms

containing the LECs Cri , εχ2,log and εχ2,log× log are terms respectively linear and quadratic in

the chiral logs λ0,K,η (but without Lri ), ε
χ
2,L and εχ2,L×L are terms linear and quadratic in

Lri (but independent of chiral logs), and εχ2,log×L contains products of chiral logs and LECs.

Finally, εχ2,finite is the remaining constant piece and is automatically scale independent. In

particular:

εχ2,C = 8 {8 [Cr20+3Cr21]+4 [3Cr19+7Cr20+27Cr21+2Cr31+Cr94+6 (Cr32+Cr33)]w+ (A.19)

4 [6Cr19+Cr94+4 (4Cr20+9Cr21+Cr31+3 (Cr32+Cr33))]w2+[8Cr20+48Cr21+Cr94]w3
}
,

εχ2,log × log =
κ2

2+w

{
4

9
[λη(λη − 5λK)]+

1

3

[
46λ2

η

9
+

47λ2
K

3
− 70ληλK

3
− 4λ2

0+16ληλ0

]
w (A.20)

+

[
10λ0λη+

5λ2
η

3
− 19λ2

0

3
− 10ληλK+18λ0λK+

14λ2
K

9

]
w2

+

[
5λ0λη+

11λ2
η

18
− 71λ2

0

6
− 46ληλK

9
+12λ0λK −

7λ2
K

9

]
w3

+
1

3

[
2λ2

η

9
+2λ0λη −

8ληλK
3

]
w4

}
,

εχ2,log = − κ2

3

{
2

3

[
10λη

9
+λK

]
+

2

3

[
29λη

3
+34λK

]
w+2

[
19λη

9
+19λ0+

35λK
3

]
w2 (A.21)

+2

[
8λη
27
− λ0+

2λK
3

]
w3

}
,
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εχ2,log ×L=
8κ

2+w

{[
16

9
(3Lr4+Lr5 − 6Lr6+3Lr7 − Lr8)λη+2 (8Lr4+3Lr5 − 16Lr6 − 6Lr8)λK

]
(A.22)

+

[
8

9
(18Lr4+7Lr5 − 36Lr6 − 27Lr7 − 23Lr8)λη+3 (20Lr4+7Lr5 − 40Lr6 − 24Lr7 − 22Lr8)λK

+24 (Lr4 − 2Lr6)λ0

]
w+

[
20

3
(3Lr4+Lr5 − 4Lr8 − 6 (Lr6+Lr7))λη

+ (82Lr4+27Lr5 − 2 (82Lr6+72Lr7+51Lr8))λK

+12 (7Lr4+3Lr5 − 2 (7Lr6+9Lr7+6Lr8))λ0

]
w2+

[
2

9
(48Lr4+13Lr5−96Lr6 − 60Lr7 − 46Lr8)λη

+ (48Lr4+15Lr5 − 6 (16Lr6+12Lr7+9Lr8))λK+6 (8Lr4+3Lr5 − 16Lr6 − 6Lr8)λ0

]
w3

+

[(
2Lr4+

4

9
(Lr5 − 9Lr6 − 2Lr8)

)
λη+(10Lr4+3Lr5−20Lr6−6Lr8)λK+6 (Lr4−2Lr6)λ0

]
w4

}
,

εχ2,L =
8κ

3

{
1

3

[
22Lr4+

35Lr5
3
− 44Lr6 − 8Lr7 − 26Lr8

]
+

[
48Lr4+

35Lr5
3
− 96Lr6 −

70Lr8
3

]
w

+

[
74Lr4+29Lr5 − 148Lr6+8Lr7 −

166Lr8
3

]
w2

+
1

3

[
44Lr4 +

31Lr5
3
− 88Lr6 − 16Lr7 − 26Lr8

]
w3

}
, (A.23)

εχ2,L×L =
1024

2+w
(3Lr7+Lr8)

2 {−w+2w2 − w3
}
, (A.24)

εχ2,finite = κ2

{[
−6G

(
2w

w+1

)
− 2

9
G (1)+

2

3
G

(
2+w

3w

)
− 4

9
G

(
4

3

1+w/2

1+w

)
+

80

9

]
w (A.25)

+

[
−3G

(
2w

w+1

)
− 1

9
G(1)− 11

3
G

(
2+w

3w

)
− 5

9
G

(
4

3

1+w/2

1+w

)
+

160

9

]
w2

}
.

In this last equation we defined

G(x) ≡ 1

σ

[
4Li2

(
σ − 1

σ + 1

)
+ log2

(
1− σ
1 + σ

)
+
π2

3

]
, σ =

√
1− 4

x
, (A.26)

which arises in the evaluation of a two-mass scale sunset integral at vanishing external

momentum [46].

B Extraction of the NNLO LECs and input parameters

As mentioned in section 3, the O(p6) LECs cri of the nf = 2 chiral Lagrangian [40, 41]

are still poorly known from experimental data (see [45] for a review). To estimate the

value of the cri ’s appearing in eq. (3.2), we combined the results from recent lattice QCD

simulations [28] with the information from the matching of pion mass, decay constant and

topological susceptibility for nf = 2 and nf = 3 chiral perturbation theory of appendix A

and the estimates for the nf = 3 LECs Cri provided in [45].

• The SU(2) partially quenched simulation of ref. [28] provide fits of 8 combinations of

SU(2) LECs. In this analysis we consider the 450 MeV cut-fit for such combinations,

reported in the last column of table 6 of [28]. While this estimate is less conservative
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cr6 − cr17 −5.33(77) · 10−6

2cr6 − 12cr10 + 18cr11 − cr18 14.5(3.9) · 10−6

cr7 −3.9(2.3) · 10−6

cr8 0.0(1.8) · 10−6

2cr7 + 4cr8 6.2(3.2) · 10−6

cr9 −0.2(1.2) · 10−6

cr10 −1.0(1.1) · 10−6

19cr11 − 12cr10 10.1(3.1) · 10−6

Table 4. Numerical values of the combinations of SU(2) LECs at the scale µ̄ = 770 MeV extracted

from the 450 MeV cut-fit of the partially quenched simulations in [45] (table 6).

than the one extracted from the 370 MeV cut-fit, the two are compatible for all

reported combinations of LECs. In table 4 we quote the results expressed in terms

of cri using the relations between SU(N) and SU(2) LECs of [40].

• Ref. [45] provides estimates of 34 combinations of O(p6) three-flavor LECs, Cri . The

information of Cri can be translated into a value for three combinations of cri by

equating in the large ms/m limit (and for αem = 0 and m ≡ mu = md) the nf = 2

and nf = 3 formulas for the pion mass in eqs. (A.1) and (A.12), the pion decay

constant in eqs. (A.2) and (A.13) and the topological susceptibility in eqs. (A.8)

and (A.16). Such a matching leads respectively to the three following relations:

2cr6+cr7+2cr8+cr9 − 3cr10 − 2 (3cr11+cr17+2cr18) = (B.1)

=
κf2

π

1152m2
π

m

ms
+[2Cr12+4Cr13+Cr14+2Cr15+2Cr16+Cr17 − 3Cr19 − 2 (3Cr20+6Cr21+Cr31+2Cr32)]

+
κ2

384

[
1

9
λ2
η+ληλK+

13

6
λ2
K

]
+

κ2

589824

[
20975

3
λη+44123λK

]
+κ

[
1

36
(4Lr1+Lr2+Lr3 − 10Lr4

−3Lr5+12Lr6+12Lr7+10Lr8)λη+

(
Lr1+

Lr2
4

+
5Lr3
16
− Lr4+Lr6+

Lr8
2
− Lr5

4

)
λK

]
+

+
κ

3

[
5Lr1+

5Lr2
6

+
205Lr3

144
+6Lr6+

11Lr7
24

+
73Lr8

24
− 17Lr4

3
− 13Lr5

9

]
− 4 [(2Lr4+Lr5) (2Lr4+Lr5 − 2 (2Lr6+Lr8))]+

κ2

589824

[
1373

4
G

(
4

3

)
+

219836

3

]
,

cr7+2cr8+cr9 = (B.2)

=− κf2
π

64m2
π

m

ms
+[Cr14+2Cr15+2Cr16+Cr17]− κ2

384

[
7

3
ληλK+λ2

K

]
+

κ2

589824
[44549λK−10245λη]

+κ

[
1

36
(4Lr1+Lr2+Lr3 − 2Lr4 − Lr5)λη+

(
Lr1+

Lr2
4

+
5Lr3
16

+
Lr4
4
− Lr6 −

Lr8
4

)
λK

]
+

+
κ

3

[
5Lr1+

5Lr2
6

+
205Lr3

144
+

5Lr4
4

+
23Lr5

48
− 6Lr6 −

15Lr8
8

]
− [2Lr4+Lr5]

2
+

κ2

49152

[
5825

16
G

(
4

3

)
+5225

]
,
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Lr1 Lr2 Lr3 Lr4 Lr5 Lr6 Lr7 Lr8

0.5(2) 0.8(3) −3.1(1.0) 0.09(34) 1.19(40) 0.16(20) −0.34(11) 0.55(18) ×10−3

Cr12 Cr13 Cr14 Cr15 Cr16 Cr17 Cr19 Cr20 Cr21 Cr31 Cr32 Cr33

−2.8 1.5 −1.0 −3.0 3.2 −1.0 −4.0 1.0 −0.48 2.0 1.7 0.82 ×10−6

Table 5. Numerical value of the NLO and NNLO couplings Lri and Cri at the scale µ̄ = 770 MeV.

We associated 100% uncertainty to the Cri .

3cr10+6cr11+2cr17+4cr18+4cr19 = (B.3)

=
f2
π

2m2
π

m

ms

[
κ

32

(
λη
3

+
λK
2
− 23

18

)
−
(

3Lr6
2

+9Lr7+3Lr8

)]
+

[
3Cr19

2
+

21Cr20

4
+

27Cr21

4
+Cr31

+3Cr32+3Cr33

]
− κ2

27

[
λ2
η+

3λK
256

(26λη+113λK)

]
− κ2

768

[
1346λη

27
+95λK

]
+
κ

4

[(
4Lr4

3
− 3Lr7 − Lr8 −

10Lr6
3

)
λη+

3

8
(12Lr4+3Lr5 − 24Lr6 − 24Lr7 − 14Lr8)λK

]
+

κ

24

[
317Lr4

6
+

217Lr5
12

− 127Lr7 −
157Lr8

2
− 317Lr6

3

]
+4
[
− 3 (Lr6+6Lr7+2Lr8)Lr4

+ 6 (Lr6)
2
+7 (3Lr7+Lr8) 2+12Lr6 (3Lr7+Lr8)

]
+
κ2

576

[
G(1)+

1

2
G

(
4

3

)
− 7π2 − 2275

9

]
.

The notation in eqs. (B.1)–(B.3) is as in appendix A.2 (except that m/m2
π, fπ and

M2
K,η in λK,η are computed at mu = md = m = 0), and the contributions on the

r.h.s. have been ordered as in eq. (A.18). The numerical value of the NLO couplings

Lri is reported in table 5: in particular, Lr4, L
r
5 and Lr6 are taken from lattice QCD

studies [27], while the others from ref. [45]. Moreover, to all Lri a 30% intrinsic

uncertainty from higher order 3-flavor corrections has been added (this is not present

for 2-flavor where higher order corrections are much smaller). The value of the NNLO

couplings Cri appearing in the r.h.s. of eqs. (B.1)–(B.3) taken from table 4 of ref. [45]

is also reported in table 5. Since ref. [45] did not provide uncertainties for the Cri
coefficients we assume that they reproduce at least the right orders of magnitude and

conservatively assign to them a 100% uncertainty.

Eqs. (B.1)–(B.3) then lead to:

2cr6 + cr7 + 2cr8 + cr9 − 3cr10 − 2 (3cr11 + cr17 + 2cr18) =− 3.5(22.0) · 10−6 ,

cr7 + 2cr8 + cr9 = 4.7(9.2) · 10−6 , (B.4)

3cr10 + 6cr11 + 2cr17 + 4cr18 + 4cr19 = 0.3(25.5) · 10−6 .

The final value of the 9 couplings cri in table 3 has been extracted by combining the

lattice results in table 4 with the 2-3 flavor matching result in eq. (B.4) through a χ2 fit,

whose quality (χ2 ∼ 3) turns out to be good. In principle, an estimate of cr6 could be

directly extracted from the pion scalar form factor, as in ref. [45] where cr6 ≈ −1.9× 10−5.

– 17 –
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z 0.472(11) eq. (1.4) w−1 27 [27]

fπ 92.3 [14] ¯̀
3 2.81(49) [28]

mπ0 134.98 [14] ¯̀
4 4.02(25) [28]

mπ+ 139.57 [14] hr1 − hr3 − `r4 -0.0049(12) eq. (1.5)

mK 495 [14] `7 0.0065(38) [28]

mρ 775 [14] α−1
em 137 [14]

mµ 105.658 [14] Γπ+→µν(γ) 2.5281 · 10−14 [14]

GF 1.16638 · 10−11 [14] Vud 0.9742 [14]

Table 6. Numerical input values used in the computations. Dimensionful quantities are given

in MeV.

However, since there is still a factor ∼ 3 uncertainty on how to theoretically model this

last quantity [42–44], we chose not to use this estimate of cr6 in our numerical analysis.

In any case, the NNLO corrections to χtop in eq. (3.2) taking into account also cr6 =

−1.9(1.9) × 10−5 result in δ2 = −0.006(3), still compatible with eq. (3.3), but with an

overall lower quality fit of the cri .

Finally, for convenience in table 6 we summarize the values of the parameters used

in this work, which should be considered together with the LECs in tables 1, 2, 3 and 5.

When uncertainties are not quoted it means that their effect was negligible and they have

not been used.
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