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yses of AdS4, we show how they arise with alternate AdS boundary conditions. In the

3D holographic description, these alternate boundary conditions correspond to a mod-

ified C̃FT3 obtained by Chern-Simons gauging of the CFT3 dual defined by standard

boundary conditions, so that Kac-Moody symmetries then follow from the familiar Chern-

Simons/Wess-Zumino-Witten correspondence. Apart from their own intrinsic interest,

in abelian AdS4 gauge theories these alternate boundary conditions are equivalent to

standard boundary conditions imposed on electric-magnetic dual variables. In the holo-
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and modified CFTs. Further, in both abelian and non-abelian theories we show that

the alternative/C̃FT3 theory emerges at leading order in large Chern-Simons level from
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memory effects.
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1 Introduction

In gravitational and gauge theories, asymptotic symmetries (AS) are a global remnant of

large diffeomorphisms and gauge transformations which act non-trivially on physical data

at spacetime infinity. The classic example of infinite-dimensional AS, and in many ways

the best understood and applied, is that of (quantum) General Relativity (GR) in asymp-

totically 3D Anti-de Sitter (AdS3) spacetime. The analysis of Brown and Henneaux [1]

uncovered Virasoro symmetries which presaged, and were ultimately elegantly incorporated

into, the AdS3/CFT2 correspondence, translating into the implications of 2D conformal

invariance and unitarity. The Virasoro structure and central charges, with modular in-

variance, led to a precise microscopic account [2] of the Bekenstein-Hawking entropy of
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AdS3 Schwarzchild black holes, dual to the CFT2 Cardy formula [3]. There is an ongoing

program of exploiting this symmetry structure to address more detailed aspects of black

hole information puzzles [4, 5]. In a similar vein to these gravitational asymptotic sym-

metries, 3D Chern-Simons (CS) gauge theories display infinite-dimensional Kac-Moody

(KM) asymptotic symmetries with central extensions, reflecting 2D Wess-Zumino-Witten

(WZW) current algebras via the technically simpler CS/WZW correspondence [6–9].

In higher dimensions the situation is intriguing, but less well understood. The pri-

mordial example is provided by the infinite-dimensional BMS “supertranslations” of GR

in asymptotically 4D Minkowski spacetime (Mink4) [10, 11], later extended to include

Virasoro-type “superrotations” [12, 13], and Kac-Moody asymptotic symmetries from 4D

gauge theory [14–17]. However, the symmetry algebras have appeared without central ex-

tensions, ordinarily required by unitarity in lower-dimensional contexts. There are new

deep aspects in 4D, unifying asymptotic symmetries with soft limits of gravitons and

gauge bosons, and with in-principle physical gravitational and gauge “memory” effects (see

ref. [18] for a review and extensive list of references). There are also hopes of applying AS to

help understand black hole information [19–23], although this is still under debate [24–29].

The asymptotic symmetries can be shown to derive from 2D current algebras “living” on

the celestial sphere, but it is unclear what the precise connection is between this structure

and some form of holography in Minkowski spacetime. One hint comes from an intermedi-

ate step between 4D and 2D: the soft limit of gravitational and gauge fields renders them

effectively 3-dimensional, in a more nuanced generalization of the trivial loss of the time

dimension in the static limit. In particular, some of the soft fields take the form of 3D GR

and CS [30], with close ties to the AdS3/CFT2 and CS/WZW correspondences [6–9].

In order to explore the connection of 4D asymptotic symmetries to holography, ref. [31]

turned to the study of asymptotic symmetries in (portions of) AdS4, taking advantage of

the well-established AdS4/CFT3 correspondence. In this context, there is a natural way to

include 3D (conformal) GR and CS, by simply having them gauge the holographic CFT3 at

the outset. Applying 3D (conformal) GR and CS (+ CFT3 “matter”) analyses then yields

a set of infinite-dimensional asymptotic symmetries with central extensions. Even in the

limit in which the external 3D GR and CS fields decouple from CFT3, these asymptotic

symmetries remain, but losing their central extensions as the price for restricting to CFT

correlators with a well-defined decoupling limit. The resulting asymptotic symmetries

closely parallel the supertranslation, superrotation and Kac-Moody asymptotic symmetries

of Mink4.

In this paper, we continue the study of asymptotic symmetries in the context of

AdS4/CFT3. We restrict our attention to gauge theory in the Poincaré patch of AdS4

for technical and conceptual simplicity, with 4D GR only an incidental presence needed

for duality with CFT3. Within this framework, we will identify different but intercon-

nected ways in which Kac-Moody asymptotic symmetries arise. Most directly we extend

the approach of ref. [31] to the Poincaré patch, with CS-gaugings of the holographic CFT

defining new C̃FTs, and the canonical CS structure leading to Kac-Moody asymptotic

symmetries with finite central extensions. The AdS dual of the modified C̃FT shares the

same 4D dynamics as the AdS dual of the original CFT, but with the former having an
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alternate set of AdS boundary conditions [32](particular to 4D). This is key to evading

no-go arguments [33, 34] for infinite-dimensional asymptotic symmetries in AdSd>3.

In the case of abelian gauge/global symmetries of AdS4/CFT3, we can make a stronger

statement because the original CFT and the C̃FTs are connected by SL(2,Z) “mirror”

symmetry [32]. From the AdS4 viewpoint, this SL(2,Z) is associated to electric-magnetic

duality, which relates the standard boundary conditions to alternate boundary conditions.

In this sense, Kac-Moody asymptotic symmetries structure already resides in the stan-

dard AdS4/CFT3 construction, albeit applied in suitable electric-magnetic/mirror dual

variables.

For both abelian and non-abelian theories, there is another way in which we will

show that the standard AdS4/CFT3 theory contains the “seeds” of the alternate/C̃FT

theory, namely by taking gauge-boson long-wavelength limits in the holographically emer-

gent dimension within ∂AdS4 correlators. We show that this “holographic soft limit” of

the standard theory yields the correlators and Kac-Moody asymptotic symmetries of the

alternate theory to leading order in the CS level, closely matching and adding physical

significance to the decoupling limit AS analysis of ref. [31]. Paralleling the connections

in Mink4 between asymptotic symmetries, soft limits and memory effects, we will show

in AdS4 abelian gauge theory that the KM asymptotic symmetries and holographic soft

limits are closely connected to “magnetic” gauge memory effects.

The paper is organized as follows. In section 2, we introduce gauge theory in the

Poincaré patch of AdS4, standard and alternate boundary conditions, and their holographic

translations in terms of CFT3 and C̃FT3 ≡ CS+CFT3, respectively. In section 3 we derive

the Kac-Moody asymptotic symmetries of the alternate AdS4/C̃FT3 theory from its canon-

ical CS structure. In section 4, we restrict to abelian theories and point out the passage

from standard AdS4/CFT3 to alternate AdS4/C̃FT3, and hence Kac-Moody asymptotic

symmetries, via electric-magnetic/mirror duality. In section 5, we derive another passage

from standard AdS4/CFT3 to alternate AdS4/C̃FT3 in abelian theories, this time by in-

troducing the “holographic soft limit” in its simplest form. In section 6 we generalize this

soft limit analysis to non-abelian gauge theories in AdS4, involving more careful treatment

of multiple soft external lines. In section 7 we describe (abelian) magnetic memory effects

in standard AdS4/CFT3 and give their holographic interpretation and connections to Kac-

Moody asymptotic symmetries structure and soft limits. We provide our conclusions in

section 8, including several parallels and contrasts between the AdS4 and Mink4 asymptotic

symmetry analyses.

2 AdS4 gauge theory, boundary conditions and holography

We describe the Poincaré patch of AdS4 by coordinates XM ≡ (t, x, y, z) and metric,

ds2
AdS4

=
dt2 − dx2 − dy2 − dz2

z2
, z > 0, (2.1)
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where we work in units of the AdS radius of curvature. Its boundary, ∂AdS4 ≡ Mink3, is

at z = 0, with 3D coordinates xµ ≡ (t, x, y). We consider AdS dynamics of the form,

LAdS4 = − 1

2g2
TrFMNFMN +

θ

16π2
TrFMN F̃MN +AaMJM a + · · · , (2.2)

where AM ≡ AaM ta is a 4D gauge field with field strength FMN ≡ FaMN t
a, J aM is the 4D

current due to gauge-charged matter, ta are the generators of gauge group, normalized as

Tr tatb = δab/2, and the ellipsis includes the 4D matter Lagrangian as well as 4D quantum

gravity. We will not explicitly need the details of quantum gravity in this paper, but with

it the AdS4 theory has a CFT3 holographic dual on Mink3, which we will invoke (see

refs. [35, 36] for a review).

2.1 Standard “Dirichlet” boundary conditions

The standard AdS4 boundary condition (b.c.) is

Aaµ(xν , z) −−−→
z→0

Aaµ(xν) , (2.3)

where Aaµ(xν) is the source for the dual CFT3 conserved global current, Jaµ(xν). The 4D

θ-term introduces a subtlety, seen by the decomposition,

θ = θ̄ + 2πκ, θ̄ ∈ [0, 2π), κ ∈ Z. (2.4)

4D bulk physics only depends on the angle θ̄ as usual. For simplicity, in this paper we

restrict attention to θ̄ = 0. However, given the total derivative nature of the θ-term, κ

survives as a ∂AdS4 action for the source Aµ,

LMink3 = LCFT3 +AaµJ
µa +

κ

4π
εµνρ Tr

(
Aµ∂νAρ +

2

3
AµAνAρ

)
. (2.5)

This gives extra contact terms, consistent with 3D conformal invariance, in multi-current

correlators at coincident points [32]. For example,〈
T
{
Jaµ(x)Jbν(x′) · · ·

}〉
⊃ κ εµνρδ

ab∂ρδ3(x− x′) 〈· · · 〉 . (2.6)

For vanishing source, A = 0, the boundary condition takes the “Dirichlet” (D) form

Aµ(xν , z) −−−→
z→0

0, or more gauge-invariantly,

Faµν(xν , z) −−−→
z→0

0 , (2.7)

since the 3D dual description is also gauge-invariant if we transform the source Aµ as a

background 3D gauge field.

2.2 CS-gauged CFT3 and alternate boundary conditions

We define a modified C̃FT3 by simply elevating the source Aµ above to a fully dynamical

field with the same action, eq. (2.5). The κ terms no longer represent contact terms for
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global current correlators of CFT3, but rather a CS action for Aµ, which then gauges the

CFT3 current Jµ. Schematically, C̃FT3 = CS + CFT3.

The AdS4 dual of C̃FT3 is given by the same bulk dynamics as for the original CFT3

but with an alternate boundary condition [32]. A large set of gauge-invariant boundary

conditions respecting the AdS4 isometries (3D conformal invariance) exist because one can

replace the “Dirichlet” vanishing of Fµν at the boundary by vanishing of a more general

linear combination of Fµν and F̃µν . We see that the CS equations of motion corresponding

to the action of eq. (2.5) is matched by alternate boundary condition of the form,

κ

2π
Fµν +

1

g2
F̃µν −−−→

z→0
0, (2.8)

because of the standard holographic matching

2F̃µν ≡ εµνρzFzρ −−−→
z→0

2g2 εµνρJ
ρ. (2.9)

In the simplest case, κ = 0, the alternate boundary condition is just a gauge invariant

version of “Neumann” (N) boundary condition:

2F̃µν ≡ εµνρzFzρ −−−→
z→0

0 , (2.10)

as is clear in axial gauge Aaz = 0,

Fzρ = ∂zAρ −−−→
z→0

0 . (2.11)

3 Kac-Moody AS from CS structure

In this section we consider the above AdS4 gauge theory (+ quantum gravity) with al-

ternate boundary condition, or equivalently in 3D, C̃FT3 ≡ CS + CFT3, with level κ.

3D CS gauge theory coupled to matter (provided here by CFT3) describes relativistic

(non)-abelian Aharanov-Bohm type effects between separated charges (e.g. see ref. [37] for

a review), thereby providing charged matter with quantum “topological hair”. This is

manifest already in the CS Gauss Law constraint (Aa0 equation of motion),

κ

2π
F axy = Ja0 , (3.1)

where F aµν is the field strength of A. Outside the support of the charge density J0, Fxy = 0,

but spatial Wilson loops (as seen by test charges) here are non-trivial when enclosing charge

J0, as in figure 1.

Related to the topological nature of their Aharanov-Bohm effects, CS structure on 3D

spacetimes with a 2D boundary can be mapped to WZW 2D current algebras, exhibiting

Kac-Moody asymptotic symmetries at the 2D boundary [6–9]. In the present context

however, CS lives on Mink3, with no finite 2D boundary. But from the canonical viewpoint

the state wavefunctional, Ψ, at some fixed time, say t = 0, does exhibit Euclidean signature

WZW/KM structure on the spatial x− y plane at that time, the relevant Ward identities

supplied by Gauss’ Law [6]. One can think of Ψ(t = 0) as given by a CS + CFT3 path

integral on the earlier half of Mink3, t < 0, a spacetime with 2D boundary t = 0.
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x

y

t

Figure 1. Non-trivial Wilson loops C enclosing charge density, giving rise to Aharanov-Bohm type

effects on test charges.

3.1 Gauss law constraints on canonical CS fields

To review this, we introduce complex coordinates,

u ≡ x+ iy, ū ≡ x− iy, (3.2)

in which Gauss’ Law (A0 equation of motion) reads(
∂ūj

a − 2iκ ∂uA
a
ū − fabcjbAcū

)
Ψ[Aū] = 2πJa0 Ψ[Aū]. (3.3)

To explain our notation, from eq. (2.5) we see from the CS Lagrangian that (after inte-

grating out Aa0) Au and Aū are canonically conjugate. Here, we choose to work in Aū
field-space, and denote a (non-canonically normalized, for later convenience) conjugate

field-momentum by

ja(u, ū) ≡ iπ∂LCS

∂Ȧaū
= 2iκAau. (3.4)

The wavefunctional Ψ is taken to depend on Aū (coherent state representation) and the

CFT fields. At the quantum level the conjugate field-momentum is then given by

ja(u, ū) = iπ
δ

δAaū(u, ū)
, (3.5)

The quantum Gauss’ Law has the form of a functional differential equation that effectively

determines the Aū-dependence of the wavefunctional in terms of the matter CFT state.

3.2 Holomorphic 2D WZW current and KM symmetry from CS

For simplicity, we begin by exploring Ψ at Aū = 0 and for the special case of the CFT

state consisting only of pointlike disturbances at t = 0,

Ψ ∝
∏
n

On(u, ū) |0〉 , (3.6)

where the O are local operators. We discuss more general Aū below, and more general

CFT states in the next subsection.
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For the special state above, Gauss’ Law reduces to

∂ūj
a(u, ū)Ψ[Aū = 0] = 2π

n∑
α=1

T a(α)δ
2(u− uα)Ψ[Aū = 0] , (3.7)

where T a(α) is the representation of the (non-)abelian generator acting on the particular

local CFT operator Oα(uα, ūα), giving its charge. This equation can be integrated1 to give

ja(u, ū)Ψ[Aū = 0] =
∑
α

T a(α)

u− uα
Ψ[Aū = 0] , (3.8)

using the identity ∂ū (1/(u− uα)) = 2π δ2(u − uα). From this we can then extract a 2D

“OPE”, matching that of a standard holomorphic WZW current with a charged operator

in 2D Euclidean field theory (e.g. see ref. [38] for a review),

ja(u, ū)Oα(uα, ūα) −−−−→
u→uα

T a(α)Oα(uα, ūα)

u− uα
. (3.9)

Next, we begin with non-vanishing Aū and act on Gauss’ Law with the operator

jb(u′, ū′) ≡ iπδ/δAbū(u′, ū′), and only then set Aū = 0:[
κ ∂uδ

2(u− u′)δab +
1

2π
∂ūj

ajb
′ − i

2
fabcδ2(u− u′)jc

]
Ψ = jb(u′, ū′)Ja0 (u, ū)Ψ . (3.10)

We consider u away from any CFT local operators at uα (within Ψ), so the right-hand side

is non-singular in u − u′. The left-hand side can again be integrated, using the identity

−∂ū
(
1/(u− u′)2

)
= ∂ū∂u (1/(u− u′)) = 2π ∂uδ

2(u− u′), to give the jj′ OPE,

ja(u, ū)jb(u′, ū′) −−−→
u→u′

κ

(u− u′)2 δ
ab +

ifabc

2(u− u′)
jc . (3.11)

Choosing u′ = 0 the 2D holomorphic current can be expanded in a Laurent expansion of

KM charges

ja(u) ≡
∑
m

Qam
um+1

, (3.12)

Plugging this into the OPE and interpreting the result in standard 2D Euclidean radial

quantization gives the KM symmetry algebra,[
Qam, Q

b
n

]
= κ m δab δm,−n + ifabc Qcm+n , (3.13)

where the central extension is provided by the CS level κ.

Via AdS4/CFT3 duality, we then conclude that with alternate boundary condition,

eq. (2.8), this CFT derivation of the Kac-Moody algebra structure translates to AdS4

gauge theory. So far our derivation focused on the special CFT state with all charged

local operators acting on the vacuum at the same time, t = 0, dual to all charged lines in

AdS4 arriving at the boundary at the same time t = 0. Below, we consider more general

CFT/AdS states.

1We are assuming the wavefunctional is a well-behaved function of Aū at infinity, so that we do not have

to include an analytic function of u as integration constant in r.h.s. of eq. (3.8).
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3.3 General CFT states and non-holomorphicity of WZW current

More typical CFT states cannot be described by purely local disturbances of the vacuum,

created by just local operators at t = 0. Instead, we can think of them as follows. If we

consider the CFT to have a large-N type gauge theoretic structure, it will contain CFT-

gauge charged “quarks” also transforming under a global symmetry of the CFT, which is

then gauged by CS. The state at t = 0 will consist of CFT-gauge singlet combinations of

these 3D “quarks” and “gluons”, but the quarks in a minimal CFT-singlet will typically

not all be localized at a single point, but rather dispersed to some extent in 2D space.

From this fundamental CFT3 perspective, our construction of j will still be a holomorphic

current, with simple poles at the locations of the 3D quarks at t = 0, and the entire KM

algebra and symmetry structure via Gauss’ Law still follows straightforwardly.

However, from the AdS4 dual perspective individual CFT quarks are not explicitly

described, rather the 4D description is an effective “hadronic” description of the different

CFT-gauge-singlet combinations of 3D quarks and gluons, in terms of which we only see

a “smeared” continuum approximation to the fundamentally pointlike quark CS-charges,

with J0 taking the form of the boundary limit of the 4D transverse electric field. Local

CFT/boundary operators can still be used to interpolate the more general states, but they

must be allowed to act before t = 0 so that their disturbance of the vacuum can spread by

t = 0. This is dual to 4D particles created at the boundary at early times having moved

off into the bulk of AdS4 by t = 0.

We illustrate the nature of this smearing in the case of abelian CS symmetry. The

discrete sum over CS-charge locations in eq. (3.7) is more generally replaced by the charge

density J0 as in eq. (3.3), so that j in eq. (3.8) is replaced by a “smeared” integral over poles,

j =

∫
d2u′

J0(u′, ū′)

u− u′
, (3.14)

rather than the discrete sum of poles that is more familiar from standard CS/WZW

contexts. Nevertheless, we know from the CFT quark perspective that the KM symmetry

structure is fully intact for general states. Even at the smeared level of description, the

meaning of the KM charges can be discerned. For example, if we consider a state at t = 0

with some finite region of support for J0, then j is holomorphic outside this region. If the

support of J0 excludes the origin, we can expand for small u,

j = −
∑
n≥0

∫
d2u′

J0(u′, ū′)un

u′n+1
, (3.15)

corresponding to KM charges as moments of the charge distribution,

Qn = −
∫
d2u′

J0(u′, ū′)

u′n
, n < 0. (3.16)

We can also expand for large u compared to the support of J0,

j =
∑
n≥0

∫
d2u′

J0(u′, ū′)u′n

un+1
, (3.17)
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thereby identifying effective KM charges,

Qn =

∫
d2u′J0(u′, ū′)u′n, n ≥ 0. (3.18)

In later sections we will discuss “smeared” KM structure and associated memory effects

in the context of ∂AdS4 correlators with standard Dirichlet boundary conditions, which

more closely parallel features of the Mink4 S-matrix and memory effects. Nevertheless,

the above features of KM structure from the canonical wavefunctional viewpoint for (the

holographic dual of) alternate boundary conditions are already somewhat reminiscent of

Mink4. The 2D KM current construction in Mink4 gauge theory, has simple poles at angular

locations of charged particles arriving at lightlike infinity, I+. But here too this simple pole

structure can be smeared out if the charged particles instead arrive at timelike infinity [17,

18, 39]. However, in Mink4 the final destination of charged particles is determined by their

4D mass, massless charges automatically arriving at I+ and massive charges at timelike

infinity. In this sense, the simple pole structure in Mink4 is more readily arranged, by

restricting to a final state with only massless charges. By contrast in AdS4, the restricted

states at t = 0 yielding simple pole structure do not follow automatically by restricting the

4D particle species/masses of the final state.

Amusingly, the holographic perspective reveals that there is indeed a correlation be-

tween the mass of charges and the robustness of the simple pole structure of the 2D KM

currents, but the correlation is given in terms of 3D holographic masses! Furthermore, it is

for the massive case that the simple pole structure is robust and for the massless case that

it is not. In CS theories with massive 3D charged species, the restriction to states with

a few pointlike charged excitations at t = 0 is automatic given a finite energy “budget”,

yielding simple-pole structure of j generally. But a CFT3 consists instead of 3D-massless

(and strongly-coupled) “quarks” as discussed above, so a typical state is a collection of

indefinite numbers of these “quarks”.

4 AS from 4D electric-magnetic duality/3D mirror symmetry

We have seen that alternate AdS4 boundary condition, dual to the modified C̃FT3, ex-

plicitly contains CS and hence CS/WZW-related KM structure. But this analysis seems

to exclude the case of standard AdS4 boundary condition, dual to the isolated original

CFT3. The remainder of this paper is devoted to showing different senses in which even

this original unmodified theory does connect to Kac-Moody asymptotic symmetries. In

this section, we will show that in the case of abelian AdS4 gauge symmetry there is a

full CS and Kac-Moody asymptotic symmetries structure arising from standard boundary

condition, when these are imposed on the 4D gauge theory in suitable electric-magnetic

dual variables. At the holographic level, this shows how the standard and modified CFTs

transform into one another via 3D mirror symmetries.

The most familiar form of electric-magnetic duality arises from the invariance of pure

Maxwell theory under

F → F̃ , F̃ → −F . (4.1)

– 9 –
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More precisely, in the presence of charged matter it is described by a discrete duality

transformation, S, which acts on states with electric charge ng and magnetic charge 2πm/g

(where n,m are integers for Dirac quantization) according to

S(n,m) = (m,−n). (4.2)

From the viewpoint of the 4D magnetic dual gauge field, ÃM : F̃MN = ∂M ÃN − ∂N ÃM ,

the roles of the “standard” D and “Neumann” N boundary conditions are exchanged,

as is clear from their gauge-invariant forms, eq. (2.7), and eqs. (2.10), (2.11). That is,

D ≡ Ñ , N ≡ D̃.

Electric-magnetic duality extends to a full SL(2,Z), generated by S and T , where T

corresponds to the shift in the CP-violating parameter θ → θ + 2π, another invariance of

the bulk 4D physics. Witten has pointed out that general shifts in θ induce shifts in the

spectrum of electric charges of states with non-zero magnetic charge. For the (2π)integer

shift of T this Witten effect [40] corresponds to

T (n,m) = (n+m,m). (4.3)

In this way, SL(2,Z) duality exchanges ordinary electric charges with more general dyonic

charges (n,m).

As we saw for the S transformation above, the AdS boundary conditions are not in-

variant under the more general SL(2,Z) transformations, since they pick out the particular

type of (n,m) charge whose gauge field is given Dirichlet boundary condition, thereby

defining the global current of the dual CFT. The standard boundary condition picks out

ordinary electric charges (1, 0) of course. For a general (n,m) the boundary conditions

involve an obvious linear combination of the Dirichlet and Neumann boundary conditions,

gnFµν +
2πm

g
F̃µν −−−→

z→0
0. (4.4)

SL(2,Z) thereby incarnates as 3D mirror symmetry, transforming between the different

CFTs given by these different boundary conditions.

For example, if we first apply the TS transformation to the 4D gauge theory and then

impose standard boundary conditions, we get Dirichlet boundary condition applied to the

gauge field that couples to TS(1, 0) = (−1,−1) charges,

gFµν +
2π

g
F̃µν −−−→

z→0
0. (4.5)

From the discussion of subsection 2.2, we see that this corresponds to a CS gauging of

the original CFT3, with level κ = 1.

In this way, SL(2,Z) equates the standard boundary conditions of AdS4 gauge the-

ory with alternative boundary conditions, which then manifest Kac-Moody asymptotic

symmetries as described earlier.
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5 Alternate/C̃FT correlators from “holographic soft limit”

We now turn to the sense in which the standard AdS4 Dirichlet boundary condition, dual

to CFT3 in isolation, has implicit CS structure and AS in the original “electric” variables

once we include a natural AdSPoincaré generalization of the notion of “soft limit”, applying

whether the 4D gauge theory is abelian or non-abelian. This form of CS/AS represents

our closest analog of the Mink4 AS analysis developed in ref. [30], and also builds on the

AdSPoincaré
4 discussion of ref. [31] . We begin with abelian gauge theory for simplicity in

this section, and extend to non-abelian gauge theory in the next.

5.1 Fixed helicity ∂AdS4 correlators

In Mink4 an S-matrix amplitude with an external photon takes the form,∫
Mink4

d4XAMJM , AM (X) = ε±M (q)eiq·X , (5.1)

where J represents the on-shell current consisting of the rest of the amplitude with am-

putated photon leg, and ε±M (q) is the polarization vector for ± helicity, satisfying

q2 = q · ε± = ε± · ε± = 0, ε± · ε∓ = 1 . (5.2)

In AdS4 we compute boundary correlators rather than an S-matrix,∫
∂AdS4

d3xAµ(x)
〈
T{JCFT

µ (x) · · · }
〉

=

∫
AdS4

d4XAM (X)JM (X) , Aµ(x, z) −−−→
z→0

Aµ(x) ,

(5.3)

where AM satisfies the AdS Maxwell’s equations. Given the obvious Weyl invariance of

the Maxwell action and the Weyl equivalence of AdS4 to half of Mink4,

ds2
AdS4

∼
Weyl

dt2 − dx2 − dy2 − dz2 , z > 0 , (5.4)

Mink4 LSZ wavefunctions for external photons, A±M (X) = ε±M (q)eiq·X , are also valid choices

for AdS correlators. This corresponds to a CFT3 source,

A±µ (x) = ε±µ (q)eiq̂·x , q̂ ≡ (q0, qx, qy) . (5.5)

While A,A are complex, their real and imaginary parts define standard ∂AdS/CFT corre-

lators, and we are just considering their complex superposition.

We choose to work in 4D axial gauge, εz = 0. It is clear that A’s of the above form span

all possible sources in Mink3 with timelike 3-momentum, q̂, given that J is conserved (in

momentum space, q̂.J(q̂) = 0). We see that 4D helicity for massless photons matches a 3D

“helicity” for timelike CFT sources. The different helicity sources satisfy Chern-Simons-

Proca (CSP) equations:

2εµνρ∂νAρ = ±m3A
µ , m3 ≡ qz, (5.6)

for ± helicity. Here, m3 is the mass Casimir invariant of Mink3, that is m2
3 = q̂2 ≡ qµq

µ

for momentum eigenstates, so that m3 = qz by eq. (5.2). This has a similar structure to

the 3D CSP form of helicity-cut Mink4 S-matrix amplitudes derived in ref. [30], where m3

was the Casimir invariant of a Euclidean AdS3 foliation of (a future light cone in) Mink4.
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5.2 The “holographic soft limit” of ∂AdS4 correlators

In Mink4, it was shown that the conventional (leading) soft photon limit of amplitudes

captured by the Weinberg Soft Theorems, was equivalent to the limit m3 → 0. Here, we

simply translate the analogous definition of “soft limit” to the AdS4 context, as vanishing

CSP mass, m3 → 0, arriving at the (sourceless) CS equation,

εµνρ∂νAρ = 0 , ∂µA
µ = 0 . (5.7)

We also effectively have a Lorentz-gauge fixing condition as can be seen by taking the

divergence of the CSP eq. (5.6) for m3 6= 0 followed by m3 → 0. This gives rise to a “soft”

∂AdS/CFT correlator, eq. (5.3), where

Aµ(x, z) = Aµ(x) , Az = 0 . (5.8)

This follows because A is pure gauge in Mink3 since F = 0 by eq. (5.7), and therefore

this AM is pure gauge in AdS4, hence trivially satisfying 4D Maxwell’s equations and

Aµ(x, z) −−−→
z→0

Aµ(x).

From the 4D viewpoint, unlike the standard notion of “soft” in Minkowski spacetime, it

is (only) the holographically emergent direction’s z-dependence, rather than t-dependence

(overall energy) which is softened.2 The above 4D pure gauge configurations in the holo-

graphic soft limit are the “large” gauge transformations at the root of AS, which we now

derive.

It is convenient to focus on CFT3 correlators of the form,〈
0|T

{
ei

∫
d3x Aµ(x)Jµ(x)O1(x1)· · ·On(xn)

}
|in
〉
, (5.9)

as depicted in figure 2a, where Aµ(x) is the source for “soft” photons, the Oα are arbitrary

local CFT operators with U(1) charges Qα (including possibly Jµ itself, corresponding to

∂AdS correlators for 4D photons which are “hard” in our sense), and the |in〉 represents a

generic initial CFT state.

We write the pure gauge form of A solving the (Lorentz-gauge) CS equations as

Aµ(x) = ∂µλ(x) , �Mink3λ(x) = 0. (5.10)

We can specify a particular solution in terms of the “initial” value (t = 0), ā(u, ū) ≡
Aū(u, ū, t = 0), first determining

λ(u, ū, t = 0) =

∫
d2u′

2π

ā(u′, ū′)

u− u′
, (5.11)

and then uniquely extending to all t once we impose only positive frequencies (absorbing

source) in λ(u, ū, t),

λ(qu, qū, t) = λ(qu, qū, t = 0) e−2i
√
quqū t. (5.12)

2In both Mink4 and AdS4 it is important that the helicity is fixed as we take the soft limit.
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(a) (b)

Figure 2. Typical ∂AdS4 correlators involving 4D photons and matter particles, dual to CFT3

correlators of the form eq. (5.9) involving the U(1) current and other local operators. (a) corresponds

to charged matter lines arriving at general times on the boundary, while (b) corresponds to the

special case in which all charged matter arrives at t = 0.

By the CFT current Ward identity,

∂µJ
µ = −

∑
α

Qαδ
3(x− xα), (5.13)

we find

i

∫
d3xAµ(x)Jµ(x) = i

∑
α

Qαλ(xα) (5.14)

5.3 2D holomorphic abelian WZW current from holographic soft limit

Let us focus first on the special case that all the Oα are simultaneous, tα = 0, as depicted

in figure 2b, so that by eqs. (5.14), (5.11),

i

∫
d3xAµ(x)Jµ(x) = −i

∫
d2u

2π
ā(u, ū)

∑
α

Qα
u− uα

. (5.15)

Thinking of ā(u, ū) as a source defining a 2D current j ≡ 2πi δ/δā(u, ū), we arrive at a 2D

holomorphic form for j,

〈0|j(u, ū)O1(x1) · · · On(xn)|in〉 =
∑
α

Qα
u− uα

〈0|O1(x1) · · · On(xn)|in〉 . (5.16)

The simple pole structure of j is clearly very similar to that observed in soft limits of the

Mink4 S-matrix. We can straightforwardly obtain multiple-j correlators since the source

– 13 –



J
H
E
P
0
3
(
2
0
1
9
)
0
1
7

is simply exponentiated, but there is no central extension singularity in jj correlators as

they coincide, for reasons further discussed in the next section.

In the general case of non-simultaneous tα (figure 2a), eq. (5.14) gives a 2D current

defined by source ā,

j(u, ū) = −2π
∑
α

Qα
δλ(ā, xα)

δā(u, ū)
, (5.17)

but this is no longer holomorphic, reminiscent of the case of massive charges in the Mink4 S-

matrix. We explore this non-holomorphic structure more closely in section 7 in the context

of the memory effect.

6 Non-abelian generalization of holographic soft limit and AS

There is a natural generalization of “soft” to (tree-level) non-Abelian AdS4 gauge theory.

Generalizing eq. (5.3), we consider a 4D “soft” field AaM which is a complex solution to the

4D Yang-Mills equations, coupled to a 4D gauge current J aM representing other charged

matter and “hard” gluons. The boundary limit Aaµ
z→0−−−→ Aaµ of such a complex solution

simply corresponds to a complex source Aµ for JCFT
µ and its associated CFT correlators.

When there are multiple “soft” gluons, we must generalize the fixing of helicity of “soft”

photons in the Abelian case in a manner that is compatible with Yang-Mills self-couplings.

This is given by requiring the complex AaM to be self-dual (or alternatively, anti self-dual):

1

2
εµνρFaµν(x, z) = iFρz a(x, z) =

axial gauge
i∂zAa ρ(x,w), (6.1)

where F is the full non-abelian 4D field strength. This is closely analogous to what is seen

in 4D Minkowski spacetime, where the non-abelian soft “branches” attached to a hard

scattering process are self-dual when all its external soft gluons have positive helicity [30].

In axial-gauge, the holographic soft limit is again that in which Aaρ is z-independent.

Self-duality then implies the vanishing of all of F , so that A is pure-gauge. The CFT

source is simply given by Aaµ ≡ Aaµ(x, z → 0) = Aaµ(x), so that it satisfies a (sourceless)

non-Abelian CS equation,

εµνρF aνρ(x) = 0, (6.2)

again closely analogous to the Mink4 analysis. More precisely, there will also be an effective

3D gauge-fixing condition that results from the approach to the soft limit, but it will be

more complicated than the simple 3D Lorentz gauge of the Abelian case, eq. (5.7). As

for the Abelian case, this condition will not be relevant for the special case of equal-time

correlators of CFT local operators, to which we now turn.

6.1 2D holomorphic non-abelian WZW current from holographic soft limit

The vanishing of the non-Abelian field strength of the source in the soft limit has the

solution,

iAµ(x) = e−iλ(x)∂µe
iλ(x) , λ ≡ λata, Aµ ≡ Aaµta , (6.3)
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where the λa(x) are complex gauge transformation fields, reflecting the complex nature of

Aaµ (necessary for Lorentzian self-dual gauge fields). Starting from the general correlator,〈
T
{
ei

∫
d3x Aaµ(x)Jµa(x)O1(x1)· · ·On(xn)

}〉
, (6.4)

we will again consider āa(u, ū) ≡ Aaū(u, ū, t = 0) as the independent variables behind our

soft source Aµ(x), and define a 2D current

ja(u, ū) ≡ 2πi
δ

δāa(u, ū)
. (6.5)

For single j correlators with equal-time “hard” operators, tα = 0, the non-Abelian

structure is clearly irrelevant, and we arrive at the analog of eq. (5.16) again,

〈0|ja(u, ū)O1(x1) · · · On(xn)|in〉 =
∑
α

T a(α)

u− uα
〈0|O1(x1) · · · On(xn)|in〉 . (6.6)

Next we probe correlators 〈ja(u, ū)jb(u′, ū′) . . .〉, to search for a non-abelian contribu-

tion to the jj′ 2D “OPE”. This requires us to work to order ā2. At first order in ā, we

obviously have

λ(1) a(u, ū, t = 0) =

∫
d2u′

2π

āa(u′, ū′)

u− u′
, (6.7)

as in the Abelian case. To second order, by eq. (6.3),

Aaµ(x) ≈ ∂µλ(1) a(x)− 1

2
fabcλ(1) b(x)∂µλ

(1) c(x) + ∂µλ
(2) a(x) . (6.8)

We can use the ū component of this to solve for λ(2)(t = 0),

∂ūλ
(2) a(u, ū, t = 0) =

1

2
fabcλ(1) b(u, ū, t = 0) āc(u, ū) , (6.9)

from which we derive

λ(2) a(u, ū, t = 0) =
1

2
fabc

∫
d2u′

2π

∫
d2u′′

2π

āb(u′, ū′) āc(u′′, ū′′)

(u− u′′)(u′′ − u′)
. (6.10)

In this way we see two types of non-abelian corrections enter into the typical ∂AdS4/CFT3

correlator compared to the abelian case, as depicted in figure 3. Of course there are non-

abelian interactions in the 4D bulk, but we also have non-abelian corrections to the CFT

“softened” source Aaµ when expressed in terms of the independent variables āa.

We see that eq. (6.10) can give rise to a non-trivial “OPE” divergence for coinciding

j’s, so we drop λ(1) contributions to focus on that of λ(2):∫
d3x Aaµ(x)Jµa(x) ⊃

∫
d3x ∂µλ

(2) a(x)Jµa(x)

= −
∫
d3x λ(2) a(x)∂µJ

µa(x) =
∑
α

λ(2) a(xα)T a(α) . (6.11)
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Figure 3. A typical ∂AdS4 correlator for non-abelian AdS gauge theory, with all hard matter

arriving at t = 0. Note that there are both non-abelian bulk interactions and non-abelian corrections

to the “softened” source in terms of the independent variables āa. The leading source term A(1) is

similar in form to the abelian case, while the next non-abelian correction A(2) is given by the last

two terms in eq. (6.8).

Specializing to the simultaneous limit, tα = 0,∫
d3x Aaµ(x)Jµa(x) ⊃

∑
α

λ(2) a(uα, ūα, tα = 0)T a(α)

=
1

2
fabc

∫
d2u

2π

∫
d2u′

2π

āb(u, ū) āc(u′, ū′)

(uα − u′)(u′ − u)
T a(α) . (6.12)

We thereby derive,〈
0|T

{
ja(u, ū)jb(u′, ū′)O1(x1) · · · On(xn)

}
|in
〉

⊃ 1

2
fabc

∑
α

T c(α)

{
1

(uα − u)(u− u′)
− 1

(uα − u′)(u′ − u)

}
〈0|O1(x1) · · · On(xn)|in〉

∼
u′→u

fabc

u′ − u
∑
α

T c(α)

u− uα
〈0|O1(x1) · · · On(xn)|in〉

=
fabc

u′ − u
〈0|T {jc(u, ū)O1(x1) · · · On(xn)} |in〉 . (6.13)

In this sense, we have arrived at the Euclidean 2D KM “OPE”,

ja(u, ū) jb(u′, ū′) ∼
u→u′

fabc

u− u′
jc(u, ū), (6.14)

but unlike the canonical eq. (3.11) we see that we have vanishing central extension here!

This absence of a central extension in AS from soft limits matches what is seen in 4D
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Minkowski spacetime. But as pointed out in ref. [30], it is closer to the truth to say that

we have infinite central extension, as we review below.

6.2 Holographic soft limit as portal from standard to alternate theory

The structure of correlators of j we see in the holographic soft limit with Dirichlet boundary

condition precisely matches that found in ref. [31] for alternate b.c in the κ→∞ limit, as

shown there by simple κ-counting diagrammatic arguments. Here, we just give a heuristic

argument for why this is so, based on the path integral for dynamical CS coupled to the

CFT (dual to alternate boundary condition),∫
DAµ exp

{
i

∫
d3x

κ

4π
εµνρ Tr

(
Aµ∂νAρ +

2

3
AµAνAρ

)
+Aaµ J

µa
CFT3

}
. (6.15)

We see that as the CS level κ→∞, there is a wild phase in the path integral, forcing the κ-

dependent part of the action to be extremized, yielding eq. (6.2), derived here via the “soft”

limit. With the t = 0 condition on the path integral, Aaū(t = 0) ≡ āa (and gauge-fixing),

this leads to a specific Aaµ(x). In this way, the alternate boundary condition becomes

effectively Dirichlet boundary condition as κ→∞, in particular matching the holographic

soft limit. The one “flaw” with this argument is that the κ→∞ limit for dynamical A is

ill-defined for jj′ correlators, precisely because of the central term in eq. (3.11). As pointed

out in ref. [31], this is avoided by only considering connected correlators of the CS fields

with the CFT, since the central term arises from connected correlators of CS with only

itself. From the Dirichlet boundary condition viewpoint, this restriction is automatic since

we are always considering soft dressing of “hard” CFT correlators. With this restriction,

the central extension of KM is absent, as if it vanished, when in fact it is infinite as κ→∞.

The seeds of alternate boundary condition correlators are contained in the Dirichlet

boundary condition AdS4 (pure CFT3) correlators via their holographic soft limits. One can

then unitarize these leading-in-κ correlators by going to finite large κ <∞, and including

the simple pure-CS correlators, which contain the central extension. In this nuanced sense,

AS from soft limits are a remnant of the alternate b.c theory, dual to the CS-gauged CFT3.

7 CS memory effects and the holographic soft limit

Finally, we point out that AdS4 gauge theory exhibits an analog of the electromagnetic

“memory” phenomenon of Mink4 [18, 41–43], closely connected to AS structure. The

memory effect compares the parallel transport between two test charges far from a scat-

tering process, long before and after the scattering event, more precisely given by a Wilson

loop consisting of spatial transport between the two charges at early and late times, and

temporal transport between those times. We focus on the abelian case.

7.1 Alternate boundary conditions and electric memory

We begin with alternate boundary condition, in its dual formulation as U(1) CS + CFT3.

Canonically, the CS fields are Aū, Au, effectively in temporal gauge A0 = 0 after deriving

the Gauss Law constraint. For simplicity focussing on vanishing electromagnetic field
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strengths at early times (hence only neutral particles in the initial state), we can choose

the further gauge condition Au(t = −∞), Aū(t = −∞) = 0. We see that our canonical

(can) fields therefore precisely define “memory” Wilson loops in more general (gen) gauges,

Acan
i (u, ū, t = 0)dxi = Agen

i (u, ū, t = 0)dxi +

∫ −∞
0

dt′Agen
0 (u+ du, ū+ dū, t′) (7.1)

−Agen
i (u, ū, t = −∞)dxi +

∫ 0

−∞
dt′Agen

0 (u, ū, t′) , where i ≡ u, ū.

The four terms on the right define four sides of a narrow gauge-invariant “memory” Wilson

loop, from u to u+ du at time t = 0, to time −∞ at u+ du, back from u+ du to u at time

−∞, and then from time −∞ to t = 0 at u. Similarly, a Wilson line of Acan along a finite

spatial curve C in the x − y plane at time t = 0 is equivalent to a more general memory

Wilson loop in a general gauge, completing the curve with time-like lines to t = −∞ and

spatial Wilson line reversing C at time −∞. This is depicted in figure 4. Because of the

Gauss Law constraint, the precise choice of C does not matter as along as one does not

cross 3D charges in deforming the curve.

In the above sense, arbitrary CS gauge theories describe the dynamics of memory

effects in 3D. But when the CS charged matter is a CFT3 with AdS4 dual, the memory

effects “lift” to 4D. The 3D memory Wilson loop above is now seen as a 4D memory Wilson

loop at (or near) ∂AdS4, z = 0, far from a bulk scattering. This is similar to the Mink4

memory Wilson loops at large distance from a scattering process [41–43]. In the alternate

boundary condition AdS case, the CS Gauss Law gives a general relationship between the

canonical memory fields Acan
u , Acan

ū . As noted in subsection 3.1, this relationship effectively

determines the CS quantum state completely in terms of the matter CFT state, say as

a wavefunctional in Acan
ū in coherent state basis. Both Acan

u and Acan
ū are determined as

operators acting on this state. That is, Gauss’ Law completely determines the memory

effect at the quantum level. As we saw in subsections 3.2 and 3.3 Gauss’ Law is essentially

equivalent to the KM structure. Thus, at the most fundamental level, the memory effect

is the physical face of the AS structure.

7.2 Dirichlet boundary conditions and magnetic memory

Let us switch to Dirichlet boundary condition, in which case the boundary-localized mem-

ory Wilson loop vanishes (dual to the absence of CS fields, given just the isolated CFT3).

But we saw in section 4 that in magnetic dual variables Ã the boundary condition becomes

effectively Neumann. This allows us to consider non-vanishing magnetic memories, given

by ’t Hooft loops (Wilson loops in Ã(z → 0)). We will see that this can be non-trivial

even in processes involving only standard electric charges but no magnetic charges. These

effects are analogous to (the electric-magnetic dual of) the magnetic memory effects in

Mink4 discussed in ref. [43].

There is an important but subtle contrast with the previous subsection. From the

holographic viewpoint of the magnetic dual description, there is a 3D Ã which is the

mirror version of A above. Naively, this Ã translates via AdS/CFT into Ã(z = 0) in the

4D description. But formally Ã has a CS level κ̃ = 0, so that rather than being a CS
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Figure 4. A general CS memory Wilson loop in Mink3, comparing parallel transport along the

spatial curve C at early and late times, where for simplicity the early state has vanishing gauge field

strength. It can be viewed as composed of many narrow memory Wilson loops, with shared timelike

lines canceling due to their opposing orientations. In terms of the canonical CS fields, effectively

in temporal gauge, this general Wilson loop is therefore given by just the late Wilson line along C.
(See eq. (7.1)).

field it reduces to a simple Lagrange multiplier for J̃ , which translates via AdS/CFT to

the Lagrange multiplier enforcing the Neumann boundary conditions in AdS. Thus, once

we are considering the 4D magnetic dual description with Neumann boundary conditions,

this Ã(z = 0) has already been integrated out of the theory. Instead, in this subsection

we are considering the distinct Neumann bulk field Ã(z) in the limit z → 0. Unlike A (or

Ã), Ãu(z → 0) and Ãū(z → 0) are not canonically conjugate, and are not constrained by

a (mirror) Gauss Law constraint.

We begin with the standard AdS/CFT identification of holographic charge density,

JCFT
0 ≡ 1

g2
F0z(z → 0) =

1

g2
F̃xy(z → 0) =

−2i

g2

(
∂uÃū(z → 0)− ∂ūÃu(z → 0)

)
. (7.2)

Note that this relates the magnetic Ã(z → 0) gauge field with the original electric CFT3

current. For given J , this is a general constraint on the memories measured by the (tem-

poral gauge) Ãu(z → 0), Ãū(z → 0).

In special circumstances, analogous to the set-up in Mink4, we can make a stronger

statement. We will assume that our initial state has vanishing field strengths, involving a

non-trivial scattering of neutral particles deep in the bulk of AdS4, and results in production

of 4D electromagnetic radiation and electrically (not magnetically) charged particles. We

take the charges to be massless so that we can continue to treat AdS4 as effectively Mink4/2

by Weyl invariance, and take local CFT operators Oα(xα) to annihilate the charges on

∂AdS4 at tα < 0, before the memory measurement at t = 0. More generally, we take the
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Figure 5. A ∂AdS4 correlator for radiation and charged matter created by a distant bulk scattering,

initiated from an electromagnetically neutral state. We focus on a ’t Hooft line at t = 0 in temporal

gauge, corresponding to a magnetic memory loop, allowed by the standard boundary conditions. It

receives contributions from the secondary radiation emitted by charged matter annihilated at the

boundary by local operators. Radiation from the bulk scattering is either absorbed by the CFT cur-

rent J or reflected by the boundary, and therefore does not contribute to the late-time ’t Hooft line.

radiation and particles to arrive at ∂AdS4 earlier than t = 0, and either be reflected away

into the bulk or absorbed by boundary/CFT operators. Therefore, radiation from the bulk

scattering does not contribute to the boundary Ã(z → 0) gauge fields at t = 0. This set-up

is depicted in figure 5.

But further radiation can result when the charged particles are absorbed by Oα
on ∂AdS4, effectively “annihilating” with their images in the Mink4 covering space of

Mink4/2 ∼ AdS4. This secondary radiation from z ∼ 0 can spread until t = 0 and con-

tribute to the boundary fields Ã(z → 0) then. In temporal gauge, the transverse radiation

satisfies ∂xÃx(z → 0) + ∂yÃy(z → 0) + ∂zÃz(z → 0) = 0 as usual. Since the secondary

radiation travels in the x− y directions but remains at z ∼ 0 in order to contribute to the

memory measurement there, the z-momentum is subdominant, and we have

∂xÃx(z → 0) + ∂yÃy(z → 0) ≡ ∂uÃū(u, ū, z → 0, t = 0) + ∂ūÃu(u, ū, z → 0, t = 0) ≈ 0.

(7.3)
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We can then solve the simultaneous equations, eqs. (7.2), (7.3), for the memory fields,

Ãu(u, ū, z → 0, t = 0) = − ig
2

4

∫
d2u′

2π

J0(u′, ū′, t = 0)

u′ − u

Ãū(u, ū, z → 0, t = 0) =
ig2

4

∫
d2u′

2π

J0(u′, ū′, t = 0)

ū− ū′
. (7.4)

We now show that the above memory effect precisely matches the holographic soft limit

we derived in section 5. First we note that the secondary radiation satisfies the Maxwell

equations,

0 = ∂iBi + ∂zBz ≈ ∂iBi
0 = ∂0Bi + εij∂jEz − εij∂zEj ≈ ∂0Bi + εij∂jEz, where i ≡ x, y, (7.5)

and where again the z-momentum is subdominant so that we drop the ∂z terms. Since we

are near the boundary, we can translate Bi → g2εijJj and Ez → g2J0, so that the above

relations become

εµνρ∂νJρ ≈ 0 . (7.6)

Therefore Jµ ≈ ∂µΦ is a total gradient. The current Ward identity, eq. (5.13), then reads

∂µ∂
µΦ = −

∑
α

Qαδ
3(x− xα) , (7.7)

with solution

Φ(x) = −i
∑
α

QαGS(x− xα) , (7.8)

where GS is the Mink3 scalar Φ propagator. Therefore, eq. (7.4), reads

Ãu(u, ū, z → 0, t = 0) = −g
2

4

∑
α

Qα

∫
d2u′

2π

∂0GS(u′ − uα, ū′ − ūα,−tα)

u− u′
. (7.9)

Let us compare this result with the holographic soft limit for non-simultaneous Oα, as

given by

j(u, ū) =
∑
α

Qα

∫
d2u′

u− u′

∫
dqu
2π

dqū
2π

eiqu(uα−u′) eiqū(ūα−ū′) e−2i
√
quqūtα (7.10)

following from eqs. (5.17), (5.12), (5.11). This precisely matches the form of memory,

eq. (7.9), since the time-ordering in GS is fixed because all tα < 0.

The special case of tα → 0 in AdS4 is similar to the case of massless charges in Mink4

reaching lightlike infinity, in each case leading to holomorphic j with simple poles. We

see this explicitly at tα = 0 in eq. (7.10), where the Fourier transforms give δ2(u′ − uα).

General tα 6= 0 in AdS4 is similar to the case of massive charges in Mink4 which approach

timelike infinity, in which case j is not holomorphic. See refs. [17, 18, 39] for the same

smeared structure of poles in Mink4 memory for massive charges as our eq. (7.4). However,

we see that in AdS4 we have a clear holographic interpretation for this smearing in terms of

the spreading of holographic charge density over time starting from δ-function localization,
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J0 ∝ ∂0GS , because the 3D charges are “blobs” of massless CFT constituents. This is in

contrast to a 3D theory with only 3D-massive point-particle charges (without 4D dual),

where J0 would retain the form of δ-functions at particle locations over time, and the

analogous construction of j would have simple poles in u without smearing over time. See

the discussion in subsection 3.3.

8 Discussion

In this paper we have studied infinite-dimensional Kac-Moody (KM) asymptotic symme-

tries arising in AdSPoincaré
4 gauge theories. The standard asymptotic analysis, famously

admitting only the finite-dimensional global symmetries of a holographically dual CFT3,

was evaded in two steps, identified in ref. [31] but taking their simplest form here. In the

present context, the major step was to consider alternate AdS boundary conditions pecu-

liar to four dimensions, holographically dual to a modified C̃FT3 obtained by an external

Chern-Simons (CS) gauging of the original CFT3. The second step was to restrict atten-

tion to boundary/CFT correlators (or wavefunctional) at a fixed time, say t = 0, where the

canonical CS structure yields holomorphic currents, whose Laurent expansion coefficients

are KM charges. For more general correlators the physical essence of the KM symmetries

is retained and generalized by the CS structure, but with a smearing out of the simple pole

structure of KM holomorphic currents. We showed how all this connects to “holographic

soft limits” in AdSPoincaré
4 which underlie its KM asymptotic symmetries, for both abelian

and non-abelian gauge fields. The 4D fields in this “soft limit” take the form of 3D CS fields

(implying alternate boundary conditions for the AdS dual) which then lead to KM symme-

tries on an effectively 2D boundary of the CS spacetime, via the CS/WZW correspondence.

While soft limits yield the alternate/C̃FT3 theory to leading order in the associated

CS level, in the sense of ref. [31], it is interesting to see if the all-orders theory (finite CS

level) can naturally emerge from the standard/CFT3 construction. We showed this for the

case of abelian symmetry, where the standard construction imposed on electric-magnetic

(mirror) dual variables assumes the alternate (C̃FT3) form in the original variables, with

finite CS level in the holographic description! The KM symmetries were thereby seen to be

generalizations of dyonic charge conservation rather than simple electric charge conserva-

tion. It is less clear whether there is a non-abelian generalization, given the key role played

by the S-duality transformation exchanging electric and magnetic charges. Perhaps a good

theoretical laboratory is provided by those special supersymmetric non-abelian theories in

which S-duality persists [44].

There are several ways in which the KM structure derived in this work bears a resem-

blance to that of gauge theories in 4D Minkowski spacetime. It is useful to explore the

similarities and differences in AS analyses of Mink4 and AdS4. In AdS4, we have seen here

and in ref. [31] that holography allows us to straightforwardly and insightfully arrive at an

AS structure previously unnoticed, whereas in Mink4 there is a more familiar AS structure

which may well point to some version of Minkowski holography, as yet unknown. In what

follows, we comment on the similarities and differences, summarized briefly in table 1. The

first hint that the AS structures in these two spacetimes may have some commonalities
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Mink4 AdS4

S-matrix ∂AdS4/CFT3 local correlators

Timelike infinity ≡ Euclidean AdS3 ∂AdS4 ≡ Mink3

Null infinity (I), 2D geometry Fixed time t = 0 on ∂AdS4, 2D geometry

Soft limit, m3 → 0, where m3 is the

Casimir invariant of Euclidean AdS3 [30]

Holographic soft limit, m3 → 0, where m3

is the Casimir invariant of Mink3

CS structure of soft fields CS structure of soft fields

2D holomorphic-WZW currents ja for

(massless) charges hitting I
2D holomorphic-WZW currents ja for

charges hitting t = 0 on ∂AdS4

(Non-)abelian Kac-Moody AS (Non-)abelian Kac-Moody AS

Electric/Magnetic Memories Electric/Magnetic Memories

Electric flux Memory Kernel Electric flux/Holographic charge density

? ? Holographic Duality

? ? C̃FT3 with fully dynamical CS (finite

level)

Table 1. The parallel developments between Mink4 and AdS4 gauge dynamics, their soft limits

and associated infinite-dimensional KM asymptotic symmetries. AdS/CFT holography provides

more of an explanatory structure in the case of AdS4.

comes from the observation that the underlying CS gauge structure responsible for KM

asymptotic symmetries in AdS4, was also seen in the Minkowski analysis of ref. [30]. Yet,

naively, a close resemblance would have seemed unlikely — AdS4 and Mink4 are different

spacetimes, with very different boundary structures. Further, Mink4 KM asymptotic sym-

metries reflect gauge-boson soft limits, whereas standard AdSglobal lacks such soft limits.

Nevertheless, we showed here that there is a simple generalization to “holographic soft

limits” in AdSPoincaré which underlies its KM asymptotic symmetries.

In Mink4 gauge theory, massive charges emerging from a scattering event asymptot-

ically approach future timelike infinity. This is a space parametrized by particle boosts,

geometrically 3D hyperbolic space or, more suggestively, Euclidean AdS3 [45]. Its boundary

is future null infinity, I+, the destination for massless particles, which, while 3-dimensional,

has 2D geometry due to the one null direction. In AdS4, there are also asymptotic 3D and

2D geometries. The asymptotic infinity of AdSPoincaré
4 is of course the boundary ≡ Mink3,

the entire spacetime from the holographic perspective. The analogous “2D boundary” for

AdS4 is provided by a constant time slice on ∂AdS4, a boundary if one considers a wave-

functional on this time slice as determined by a path integral over just the earlier spacetime

region. Canonically in CS, AS structure is associated to the wavefunctional, at say t = 0,
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with its spacelike 2D geometry. In this work, we considered scattering in the bulk of AdS4,

with some outgoing particles headed to the boundary and absorbed by local (CFT3) oper-

ators there. Charged particles arriving at ∂AdS4 at t = 0 then play a somewhat analogous

role to massless charged particles arriving at I+ in Mink4. This is seen more sharply by

the soft CS/WZW structure that arises. In both cases, we get 2D holomorphic currents,

with poles at the locations of the charges, and with Laurent expansions in terms of KM

charges. Charged particles arriving at ∂AdS4 at more general t 6= 0 are the analogs of

massive charges arriving at timelike infinity in Mink4 — the 2D currents exist but are no

longer holomorphic, the above-mentioned poles effectively being “smeared” [17, 18, 39].

This smearing effect in the context of AdS4 finds a natural holographic explanation in the

tendency of 3D charge density to spread in a CFT3 even if initially created in point-like

form by a local operator. As discussed in subsection 3.3, this smearing for general AdS4

states does not compromise the KM structure, and furthermore in the CFT3 dual descrip-

tion the smeared pole structure again resolves into discrete simple poles at the level of the

3D “quarks” of the CFT.

The analogy between AdS4 and Mink4 is imperfect in one significant regard: while

massless 4D charges robustly arrive at null infinity, I+, in Mink4, and massive charges

do not, in AdS4 there is no such robust determinant of whether 4D charges will arrive at

∂AdS4 at t = 0 or not. Instead, from the 3D Chern-Simons perspective the determining

factor of whether KM currents have robust simple pole structure or not is whether 3D

charges are massive or massless, respectively. Of course, for the CFT3 dual to AdS4 the

fundamental charges are massless.

Like in Mink4, AdS4 also has a close connection between KM symmetries and the

memory effect, given by a large asymptotic spacetime Wilson loop. In AdS4, the anal-

ogous Wilson loop at the AdS boundary must vanish by standard boundary conditions.

Nevertheless, we demonstrated that non-trivial “magnetic” memory effects exist even with

standard boundary conditions in AdS4, associated with non-vanishing ’t Hooft loops on the

boundary, and that these are closely related to holographic soft limits and KM structure.

It is an exciting open question as to how the rich structure of asymptotic symmetries

and memories imply a new form of “hair” for complex 4D states such as black holes, and can

algebraically encode information that might seem lost according to standard 4D effective

field theory analysis. We hope that the simple form and derivation of asymptotic symme-

tries and memories presented here for AdSPoincaré
4 , and the deep connection to holography,

will help to answer this question in the future.
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