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ABSTRACT: Based on the calculations using the lattice QCD by the RBC-UKQCD collab-
oration and a large N, dual QCD, the resulting €’/e, which is less than the experimental
data by more than a 20 in the standard model (SM), suggests the necessity of a new physics
effect. In order to complement the insufficient €' /e, we study the extension of the SM with
a colored scalar in a diquark model. In addition to the pure diquark box diagrams, it is
found that the box diagrams with one W-boson and one diquark, ignored in the literature,
play an important role in the AS = 2 process. The mass difference between K and Kg in
the diquark model is well below the current data, whereas the Kaon indirect CP violation
€K gives a strict constraint on the new parameters. Three mechanisms are classified in the
study of € /e. They include a tree-level diagram, QCD and electroweak (EW) penguins, and
chromomagnetic operators (CMOs). Taking the Kobayashi-Maskawa phase as the unique
CP source, we analyze each contribution of the three mechanisms in detail and conclude
that with the exception of QCD and EW penguins, the tree and CMO effects can singly
enhance € /e to be of O(107%), depending on the values of the free parameters, when the
bound from ek is satisfied.
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1 Introduction

It is known that the measured CP violation in K and B meson decays can be attributed
to the unique CP phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2] in the
standard model (SM). However, it is a long-standing challenge to theoretically predict the
Kaon direct CP violation €' /e in the SM. Now, the progress in predicting €' /e has taken
one step forward based on two results: one is from lattice QCD calculations and the other
is a QCD theory-based approach.

Firstly, the RBC-UKQCD collaboration recently reported surprising lattice QCD re-
sults on the matrix elements of K — 7m and € /e [3-7], where the electroweak (EW)
penguin contribution to € /e and the Kaon direct CP violation are, respectively, shown
as [6, 7]:

Re(€'/e)pwp = —(6.6 £ 1.0) x 107, Re(¢'/e) = 1.38(5.15)(4.59) x 107*; (1.1)

however, the experimental average measured by the NA48 [8] and KTeV [9, 10] is Re(¢' /e) =
(16.6 +2.3) x 10~%. As a result, the lattice calculations indicate that the SM prediction is
2.10 below the experimental value.

Using a large N, dual QCD (DQCD) approach [11, 12], which was developed by [14—
18], the calculations of Re(€’/¢) in the QCD-based approach support the RBC-UKQCD
results, and the results are given as:

—a. (g2 _ p(3/2) _ 4.
Re(e/e)sa — { (8.6 £3.2) x 10-4; (B{? = BP/? =1);

1.2
(6.0 £2.4) x 1074; (B{? = B2 = 0.76) (12)

where Bél/ ? and Bég/ 2 denote the non-perturbative parameters of the gluon (Qg) and EW
(Qs) penguin operators, respectively. Regardless of what the correct values of Bé/ % and
BS/Q are, the predicted Re(€’/€)s is also over 20 below the data. Although the uncertainty
of Bél/ 2 is still large, it is found that both approaches obtain consistent values in Bél/ 2)

and Bégﬂ) as [11]:
B (me) = 0574019, B (mg) = 0.76 £ 0.05 (RBC-UKQCD),
B <BOP <1, B (m)=080£01,  (large No).  (L3)

If the RBC-UKQCD results of Bél/Q)(mc) =0.57+0.19 and Bé3/2) (me) = 0.76 £ 0.05 are
used, the Kaon direct CP violation becomes [12]:

Re(€'/e)gm = (1.9 £ 4.5) x 107, (1.4)

where the DQCD’s value is even closer to the RBC-UKQCD result shown in eq. (1.1).
Moreover, using the lattice QCD results, the authors in [13] also obtained a consistent
result with Re(e'/e) = (1.06 £ 5.07) x 10~* in the next-leading order (NLO) corrections.
Since the DQCD result arises from the short-distance (SD) four-fermion operators, it
is of interest to find other mechanisms that can complement the insufficient €' /e, in the
SM, such as the long-distance (LD) final state interactions (FSIs). However, the conclusion
as to the LD contribution is still uncertain, where the authors in [19] obtained a negative
conclusion, but the authors in [21] obtained Re(¢'/¢) = (1547) x 10~* when the SD and LD
effects were included. On the other hand, in spite of the large uncertainty of the current



lattice calculations, if we take the RBC-UKQCD’s central value as the tendency of the SM,
the alternative source to enhance €'/e can be from a new physics effect [22-44].

To explore new physics contributions to the €’ /e and the Kaon indirect CP violation e,
in this work, we investigate the diquark effects, where the diquark is a colored scalar and
can originate from grand unified theories (GUTs) [45, 46]. Even without GUTs, basically, a
diquark is allowed in the SU(3)c x SU(2)r x U(1)y gauge symmetry, and its representation
in the symmetry group depends on the coupled quark-representation [47]. In this study,
we concentrate on the color triplet and SU(2), singlet diquark.

Although the diquark effects on ex and €’/e were investigated in [46], some new diquark
characteristics are found in this study, which can be summarized as follows: (a) the SU(2)[,
singlet diquark can couple to the left-handed doublet and right-handed singlet quarks
simultaneously. (b) When the sizable top-quark mass is taken into account, the AS = 2
box diagrams with the intermediates of W-boson (including the charged Goldstone boson)
and diquark become significant, in which the effects were ignored in [46]. (c¢) New scalar-
scalar and tensor-tensor operators for AS = 1 are induced at the tree level; due to large
mixings between the scalar and tensor operators, the €'/e is dominated by the isospin
I = 2 amplitude, which is produced by the tensor-tensor operators [42]. (d) QCD and EW
penguin diagrams are included in € /e, and with the renormalization group (RG) effect,
it is found that the I = 2 amplitude, induced by the (QJg operator, become dominant.
(e) Chromomagnetic operators (CMOs) generated from the gluon-penguin diagrams are
considered based on the matrix elements obtained in [37].

Although the involved new free parameters generally can carry CP phases, in this
work, we assume that the origin of the CP violation is still from the Kobayashi-Maskawa
(KM) phase of the CKM matrix. This assumption can be removed if necessary. Hence,
it can be concluded that € /e can be significantly enhanced by the diquark effects when
the bound from ep is satisfied. In addition, although rare B-meson processes, such as
Bg — Bg (¢ = d, s) mixings, involve different parameters, e.g. gé%L, which are irrelevant to
the current study, for the purpose of comparison, we briefly discuss the B-meson constraints
in this study.

The paper is organized as follows: in section 2, we introduce the diquark Yukawa
couplings to the SM quarks and the gauge couplings to the gluons, ~, and Z-boson. In
section 3, we derive the diquark-induced effective Hamiltonian for the AS =1 and AS =2
processes, where the used three-point vertex functions of d — sg™),~®), Z* are derived in
the appendix. The hadronic effects for the K — 77 decays and the K® — K© transition
are shown in section 4. We also summarize the formulations of €’/e and ey from various
operators in this section. The constraints from AS = 2 are shown in section 5. The detailed
numerical analysis on €'/e based on various different mechanisms is given in section 6. A
summary is given in section 7.

2 Color-triplet diquark Yukawa and gauge couplings

In this section, we introduce the diquark Yukawa couplings and gauge couplings to the
gauge bosons, including the gluons, photon, and Z-boson. Based on SU(3)¢ gauge invari-



ance, it can be seen that the involved diquarks from the Yukawa sector can be color-triplet
and -sextet due to 3 x 3 = 3+ 6. From the SU(2), gauge invariance, the diquark candi-
dates can be the SU(2), singlet and triplet [46]. In order to provide a detailed study on
the diquark effects, we thus focus on the SU(2), singlet and color-triplet diquark [46].

It can be found that the possible diquark candidates in the SU(3)¢c x SU(2)r x U(1)y
gauge group are (3,1,1/3) and (3,1,—2/3). For (3,1,—2/3), the Yukawa couplings to the
quarks are:

fideTCPRH;dj +H.c., (2.1)
where C' = iy27? is the charge conjugation; Prry = (1 £75)/2, and fi; = —fji due to
d;FC’PRHgdiT = —d;fFCPRH;dj. As a result, the AS = 2 process and €'/e both arise
from one-loop effects. Thus, it may not be possible to explain the € /e data when the
parameters are constrained by €;-". In addition, since the involved quarks inside the loop
are the down-type quarks, because of a lack of heavy quark enhancement, e.g. m?/ m%{g,
the effects are expected to be relatively small. Hence, in this work, we devote ourselves to
the H3(3,1,1/3) contributions to the AS =1 and AS = 2 processes.

2.1 Yukawa couplings

The gauge invariant Yukawa couplings of H3(3,1,1/3) to the quarks in the SM gauge
symmetry can be written as:

— Ly = f;QT CeHLPLQ; + gFul CH Prd; + Hec., (2.2)

where the indices i, j denote the flavor indices; € is a 2 X 2 antisymmetric matrix with €15 =
—€91 = 1, and the color-triplet diquark representation in SU(3)¢ can be expressed as Hg =
K*H$ with (K%)% = 1/4/2¢*J. For the complex conjugate state, we use (K,);; = (K)7%,
ie. Hg; = K,H3,; thus, we obtain Tr(K°K,) = 6¢ and (K*)P*(K,) e = 1/2((5?(52‘ — 0552).
The explicit matrix forms of K* (a = 1,2,3) can be found in [48]. If we decompose the
SU(2)r, quark doublets, eq. (2.2) can be expressed as:

—Ly =i CK, (9P + g Pr) d;H3, + Hee. (2.3)

where the Hg Yukawa couplings to the left-handed quarks, defined by giLj = fij + fji, are
symmetric in flavor space.

2.2 Gauge couplings

In order to calculate the gluon-penguin diagrams for the d — s¢® transition, we need
to know the gluon couplings to the diquark. Since the diquark state carries two color
indices, the associated gauge covariant derivative is different from that of the fundamental
representation of SU(3)¢ and can be written as:

D,Hs = 9,Hs +ig, A, Hs + ig,HsA | (2.4)

where A, = T*Aj, denotes the multiplication of the SU(3) generators and the gluon fields.
From the SU(3)¢ gauge invariant kinetic term of Hjz, the gluon couplings to the diquark-
pair can be obtained as:

L, = igs (), (0" Hy) HS AL — H, (0" 1) A% (2:5)
with (t4)? = 2Tr(K,TAK?) = —(T4)? /2.



Since Hj is an SU(2); singlet, the H3 hypercharge is equal to its electric charge.
The photon and Z-boson gauge couplings to the diquark can be obtained from the U(1)y
gauge invariant kinetic term of H3, and the associated U(1)y covariant derivative of Hs can
written as D, Hs = (0, +1i9'Yn, B,,)Hs, where ¢ is the U(1)y gauge coupling constant; Y,
is the H3 hypercharge, and B, is the U(1)y gauge field. Using B, = cosw A, —sinbw Z,,
the EW gauge couplings to the diquark can then be found as:

Ly pyuy = iepge(0,Hy, HY — H3,0,Hg)AY

_gen, sin? Oy (
_ s W

cos Oy 8NH?TaHg - HgaaﬂHg)Z“ ) (26)

where Oy is the Weinberg’s angle; e = ¢’ cosfyy = gsin by and ¢'/g = tan Oy are applied;
g is the SU(2), gauge coupling constant, and ep, = Y, = 1/3 is the HS electric charge.

3 Diquark-induced effective Hamiltonian for the AS = 1 and AS = 2
processes

In the diquark model, the K — w7 decays can be produced through the tree, QCD penguin,
and EW penguin diagrams. In this section, we discuss in detail the effective Hamiltonian
for the AS = 1 processes induced by each type of Feynman diagram. For the AS = 2
process, the involved effects include W—-H3s-mediated box diagrams and pure Hs-mediated
box diagrams. The AS = 2 process with a massless quark approximation in the box
diagrams was studied in [46]. In our study, the diquark can couple to the left- and right-
handed quarks at the same time. It will be found that the dominant contributions to
the AS = 2 process indeed arise from g£5g% and (g% g%)(gds g% ), where the results are
associated with m? /qu3 That is, the light quark contributions have no effects on the
corresponding Feynman diagrams. Moreover, from our analysis, the H3 Yukawa couplings
to the light quarks can be constrained by the tree AS = 1 processes, where the constraint
from the tree level is stronger than that from the loop level. In order to show the significant
effects from the massive top-quark in the W—-Hjs and Hs—Hjs box diagrams, for the penguin
and box diagrams, we only consider the top-quark loop contributions and assume that the
light-quark loop effects can be neglected.

3.1 Effective Hamiltonian for K — nmw
3.1.1 Tree diagram

The Feynman diagram of tree-level diquark contribution to the K — 7w decays is shown
in figure 1. Using the Yukawa couplings in eq. (2.3), the four-fermion interactions can be

written as:
[_{ Ka Po * *
Hueo = — I KO (gt py o gft Pr) 5, 085 P+ ol PG (31
Hj

where the charge-conjugation state of a fermion is defined by f¢ = Crof* = CfT. We can
express the Hiree in terms of fermion states using the Fierz and C-parity transformations,
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Figure 1. Tree diagram for the K — w7 decays mediated by color-triplet diquark Hs.

which are:
- - 1 - - 1 - = v
fsPxfo iPfo = =5 (o Pufi)(fsPfa) = g(fQO'WPxfl)(f?,U” Py fa)
fiCPxfC = f_Pva
fTUuqufC = _fUuVPxfa (32)
with Py = Pg(ry. As a result, eq. (3.1) can be formulated as:

GrV2V, ' !
%%V [ 3 (Q1— Qo) + (3 (Q) — @Y)

SLL, SLL, SLL, SLL,
_2LlR(4< 1 U+Q2 u)+Q3 U+Q4 u)

_ ﬁL <4( /ISLL,u+Q/QSLL,u) _i_QéSLL,u_i_QilSLL,u)} : (3.3)

/Htree = -

where G is the Fermi constant; V;; denotes the CKM matrix element; yy = m%v / m%h,
and the parameters (] are defined as:

L(R) L(R)* L(R) R(L)x
LL(RR) _ 911 Y12 ,LR(RL) _ 911 Y12 " (3.4)
21 QQ‘/{;%d ) 521 g2 tz‘/td

Following the notations shown in [42, 55], the effective operators are defined as:

Q1= (8d)y_a(uu)y—_a, Q2 = (su)v-a(ud)y-a,
SEL = (50 Ppu®) (s PLd®), 3 1 = (BaPrd®) (3P’
gLL,u _ —(EQUWPLUB)(TL&UWPLCZQ) , fLL’“ = _(gagWPLda)(ﬂga“”PLu'B) , (35)

where (ff')v—a = fyu(1 —75)f’, and the prime operators can be obtained from the un-
primed operators using Pr (g instead of Pg(r). It can be seen that the current-current
interactions induced at the tree-level involve vector-, scalar-, and tensor-type currents.
Although the tensor-tensor operator contributions to the K — mm decays vanish at the
factorization scale, since a large mixing between the scalar-scalar and tensor-tensor oper-
ators is induced at one-loop QCD corrections [42], the tensor-type interaction can have a
large contribution to € /e.
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Figure 2. Gluon-penguin diagrams for the d — s¢(*) transition mediated by color-triplet di-
quark Hs.

3.1.2 QCD penguins

In addition to the tree-level diagrams, the K — wm decays in the diquark model can arise
from the gluon-penguin diagrams, as shown in figure 2. It is known that the loop diagram
usually leads to an ultraviolet divergence, so to obtain the finite coupling for the d — sg(*)
vertex, we have to renormalize the three-point vertex function by including the self-energy
diagram for the d — s flavor changing transition. The detailed discussions for renormalizing
the d — sg(*) vertex are given in the appendix; here, we simply use the obtained results of
figure 2(a) and 2(b) to produce the effective Hamiltonian for the K — 77 decays.

Because the gluon momentum k satisfies k? < m?,m%{37 we can expand the three-
point functions in terms of k2 /m%,3 and keep the leading k> /m%{3 terms. Thus, based
on the renormalized vertex obtained in eq. (A.16), the penguin-induced interactions for
d — sg* can be expressed as:

gs k?

—— T (y)57" (95195 Pr + 931935 Pr) T°d A3, (3.6)
(4 ) mH

,Hd—>sg* =
where Igi(y;) with y, = m?/m? 71, denotes the loop integral function and can be found
from eq. (A.17). Accordingly, the effective Hamiltonian for the d — sgq decays from the
gluon-penguin can be obtained as:

~aslgi(yt)
Haep = 32mmd, 9% 951 | Qa + Qo Q3 Q5
Rx R ! / 1 / 1 /
+932 931 | Qs + @6 — §Q3 - §Q5 ) (3.7)
where we have used: . )
ey = g (9% - 3302 (3.5)
the unprimed operators at the mpg, scale are the same as those in the SM and can be
found as:
Qs = (3d)y-a Y (q@)v-a, Q1= (3ad’)y-2 > (@ad’)v-a,
q a
Qs = (5d)v-a Y (q@)v+a, Qs = (5ad”)v-1Y (7’ )via, (3.9)
q q



Figure 3. Feynman diagrams for the d — s(y™*) | Z*) processes.

and the prime operators can be obtained from the unprimed ones via the exchange of Pr(g)
and PR(L) .

3.1.3 EW penguins

The d — sqq decays can be also induced from the EW penguin diagrams through the
mediation of the off-shell photon and Z-boson, for which the Feynman diagrams are shown
in figure 3. According to egs. (A.18) and (A.22), the loop-induced interactions for d —
s(v*, Z*) can be written as:

ek? _ " "
L (ye)sv" (9519% Pr + 95, 955 Pr) d Ay

H * * —
s—dy*,Z 3(47T)2mH3

g , . .
T ooty ram ™ 12 w) (91955 PL — 931955 Pr) d 2, (3.10)

where I,; and Iz are the associated loop functions and can be found in egs. (A.19)
and (A.23). Based on eq. (3.10), the effective Hamiltonian for the d — sqg decays can
be written as:

Hew = —GF‘%V“ CZQs+ CEQL+ i (CZZQi + CﬁZQ;)] : (3.11)
=7
where the effective operators Q7—Q19 are the same as those in the SM and are expressed as:
Qr = g(gd)V—A > eg(@q)via, Qs = g(gadﬁ)V—A > eq@sa™)via,
q q
Qo = g(gd)va Z eq(qq)v-a, Q1o = g(gadﬁ)va Z eq(@q™)v-a, (3.12)
q q

and e, is the g-quark electric charge. The prime operators Q5—Q, can be obtained from
the unprimed operators through the exchange of Prgr) and Pg(r). The effective Wilson

coefficients C,L.(/) Z and Ci(/)vZ are given as:

CZ — o IZ (yt)hél
3 67 sin® Oy 4

o Iz(yhd
67 sin? Oy 4 ’

1Z
) 05 =

dac T h% 2yw L. hk
C;Z 6: Z(yi) 21 (?;T Y 'y;(yt) 21 ng C;yZ 4032’
da 1 hit 2yw I hi
CQZ 670; Z(yi) 21 GO;T Y 7%(%) 21 C;«,Z Céyz_élcéz, (3.13)



where a = e2/4m; yw = m%v/m%?); CE(;/MZ = C&)WZ = 0, and the hgl’R parameters are
defined by:

ViV ViV ‘
In the numerical analysis, we use the hQLiR parameters instead of 93%27?)1 to study the diquark
contributions to € /e.

3.1.4 Combination of the QCD and EW penguins and CMOs

After respectively obtaining the QCD and EW penguin contributions to the d — sqq
decays, the effective Hamiltonian for the AS = 1 processes in the diquark model can be
combined as:

Has=1= —GFVtS%d Z < H3Qz + y@HSQ ) (3.15)
where the effective Wilson coefficients y; A3 and y’H3 are given as:
vt = —%hélywlcl(yt)JngZ, v = by e ()
yit = — =k le () v =it yit =%,y =cg7,
Yy = *%hmyWIGl(yt)a it = 4;h2RlyWIG1(yt)a
ng;; — yéH3—|-C,Z, yéHg — yﬁng , y/7H3 _ C;YZ, yéHg _ ngZ’
(3.16)

and ygi”o = ygﬁ% = 0. Hence, we will use eqgs. (3.15) and (3.16) to study € /e.

In addition to the QCD and EW penguins, the gluonic and electromagnetic dipole
operators can contribute to the K — 7w decays. Since the strong interactions dominate,
we only study the gluonic dipole contributions in this paper. Therefore, according to
eq. (A.16), the effective Hamiltonian for d — sg in the chromomagnetic dipole form can

be written as: GoVEV,
,Hdﬁsg = _% (CgHGBQBG’ + Cég3Q/8G> ’ (317)

where the dimension-6 CMOs Qgé are defined as:

Qsc = —3msSo - GPrd,
QSG’ mdsa GPRd (3.18)
with o - G = o"'T*GY,,, and the associated Wilson coefficients are shown as:
my 932 1H my 932
Cclls = he yw Ice(ye), Cits = R yw I (ye) - (3.19)
8G M 932 8G mq 932

I is the loop integral function and can be found from eq. (A.17). Because the involved
H; Yukawa couplings in the induced CMOs are gfgl and g5 glt, from eq. (3.19), it is
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Figure 4. Box diagrams for AS = 2 in the diquark model, where the subscripts denote the color
indices.

seen that h¥; and hl are associated with the gf* /gLy

and g / g35 factors, respectively.
Since g?z and 93’}2 cannot be singly constrained, we can take gz B gk 935 ~ 1 and simply use
hgl’R as the independent variables to study the CMO effects. Recently, the K — 77 matrix
elements of the CMOs were calculated based on a DQCD approach [20], and the results
were consistent with the lattice QCD, as calculated by ETM collaboration [63]. Thus,
based on the Hamiltonian in eq. (3.17) and the K — 77 matrix elements obtained using

the DQCD approach, we can estimate the contribution of Hz-induced CMO to € /e.

3.2 AS = 2 in the diquark model

Next, we study the H3 contributions to the AS = 2 process, where the involved Feynman
diagrams are sketched in figure 4. It has been pointed out that the contribution of fig-
ure 4(a) vanishes in the chiral limit, i.e., m; ~ 0 [46]. In the following analysis, in addition
to discussing the origin of the vanished result, we also demonstrate that the figure 4(a)
contribution is interesting and important when m; ~ 165GeV and mpy, ~ O(1) TeV are
taken.

To study the diquark contributions to AS = 2, we follow the notations in [56] and
write the effective Hamiltonian as:

G2 Vekm
HAS—2 = EET N WZCX (3.20)

where Vexm = (Vi Via)? is the product of the CKM matrix elements; CX (1) are the Wilson
coefficients at the p scale, and the relevant operators Q) are given as:

50 WPLd)(so—‘“’PLd) (3.21)

The operators QYRR and QfRR can be obtained from QYLL and QiSLL by switching Pgr
and Pr, respectively. We use the effective operators in eq. (3.21) to show the diquark
contributions.

~10 -



3.2.1 Box diagrams from one W-boson and one diquark

Based on the Yukawa couplings in eq. (2.3) and using the 't Hooft-Feynman gauge, the
effective Hamiltonian for AS = 2 via the mediation of W and Hj3 shown in figure 4(a) can
be written as:

d*q 1
(2m)* (¢* = mip)(q® —miy ) (¢* —m3)?

PAVA]
9" VisVia - arp' B
ML, = T () ()

< |ah9ks (47gr.PLd”) (52" gPasG) +migfi ol (%07, PLd’) (5,7 PLsS) |
(3.22)

It can be seen that because W-boson only couples to the left-handed quarks, without the
chirality flipping effect, e.g. m;, the first term depends on 93%1 93%2* . With the chirality flip,
which arises from the mass insertions in the two top-quark propagators the second term
in eq. (3.22) is associated with the right-handed quark couphngs m? 931 g . Interestingly,
when v, = guv — 10, (Ka )pg(Ka)p B = (55 5p — o5 55 )/2, and Fierz transformations
are applied, it can be found that the g31 gg* term indeed Vanlshes That is, in the limit of
my ~ 0, the box diagrams mediated by one W and one Hj3 have no contributions to the
AS = 2 process.

In order to avoid gauge dependence, we have to include the charged-Goldstone-boson
(G) contributions, where the dominant Yukawa coupling is mVi,/(vV2mw) trar G (¢ =
d,s). Hence, in terms of the effective operators in eq. (3.21), the effective Hamiltonian
including W and G bosons is written as:

HN o = qﬁﬁ miy (Ciift, 1QT7 + Ciifly, 2Q5F) | (3.23)

where the effective Wilson coefficients are given as:

CWHg 1= 4h [ Box (yW7yt) IBOX (Z/W,yt)] CWH3 2= 2CWH3 1

Yt ve—yw  ywlhhyw  (y7 —yw)lny
IW 3 Yw,Yt) = |: + + )
pox ( 2 (e —yw)? | 1—w 1 —yw (1—y)?
2 2
GH. Y Yy Inyw
IBOX3 (yW7yt) = - ; - 1

20 —y) (e —yw) 21 —yw)(ye — yw)?

v (e — 22— w)yw) Iny
200 —ye)?(ye —yw)?

(3.24)

With mpg, = 1.5 TeV, the loop functions can be Iggf?’ (yw,ye) =~ 0.68 and IG5 (yyy, y;) ~
0.02. However, when gy factor is included, we obtain ywlg/ Hs *(yw,yt) =~ 0.002, which is

smaller than Igox‘(yw, y¢) by one order of magnitude; that is, Iy G o> dominates.
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3.2.2 Box diagrams from the color-triplet diquark

The effective Hamiltonian through the mediation of the diquark H3 shown in figure 4(b)
can be written as:

Ko [ d'q NH3
fz/HAs 27 o /(27‘1’)4 (¢ _m%/[/) (@ —m)2’ (3.25)
Ke = (K)ol K" (Ra)or (K = 1 (55,05 + 5555)
Nu, = (gpﬂxgld’g)(gp’ﬁXgldﬁl) + th(ngmd )(5p’X21d’8/) ; (3.26)

where the crossed diagram by exchanging top-quark and Hs is included, and the definitions
of x¥; and Xgl can be found from eq. (A.4) in the appendix. Using the Fierz transformations
and the identities in eq. (3.2), we find that the effective operators in eq. (3.21) can be all
generated from the box diagrams, and eq. (3.25) can be formed as:

G VoM VILQVLL | QVRRQYRR LR
HAS 2= F167.r2 m3 w [Cry, + Oy @1 + CHs QT+ CHa 2@
_1_0]5{?7[1/ fLL ]S—IgléQSLL + C}gi?QfRR + Cf[nggRR] , (327)

where the associated effective Wilson coefficients at the p = mp, scale are expressed as:

2 . 2
Chat = dywIgi (ye) (h31)” Ol = dyw I} (o) (h3h)”
Cf]f,l = dyw {Igf (yt) + Igz (?/t)} h%lhgl ) CH3 2= _20H3 15
RN 2 OSLL
Citk = 2w ) (92 Cfth = Il
932
. AN A
Ciigt = 2ywlp3 (ye) (h3h)? <gii) : Cligs = ——— (3.28)
32

The loop functions I gf (y;) and I gg (y¢) are defined as:

I1+y ylny

153 (y) =

W) =3y Ty
2 1+y)1

C(1-y? (1—y)p?

From the interactions in eq. (3.27), it can be seen that eight different operators are involved.
We will show that although the hadronic matrix elements of QV* and QY are smaller
than those of QYL and QPFE, because Igg’(yt) <1 gf (y¢), their contributions indeed are
Cf%L Cfém explicitly depend on g% /g%, in order to use hg“l’R as

comparable. Since and

the free parameters, we will take g§2 = gfz in the numerical analysis.
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4 €'/e and ex with hadronic effects in the diquark model

4.1 Matrix elements for the K — ww decays
The decay amplitudes for K — 77 in terms of the isospin of 77 final state can be written

as [51]:

3
AKT = 770 = 51426162 ,

: 1 A
A(KO N 7T+7T_) — Aoez&) + \/QAQGZ& ,
AK? — 797%) = Age™ — /24562 (4.1)

where A2y denotes the isospin I = 0(2) amplitude; do(2) is the strong phase and dp — d2 =
(47.5+£0.9)° [51]. The experimental data indicate that Re Ay = 27.04(1) x 107% GeV and
Re AS = 1.210(2) x 1078 GeV [58]. Using the isospin amplitudes, the direct CP violating
parameter from new physics in K system can be estimated by [12]:

€ w ImAg ImAs
Rel - | ~— — 4.2
e<€> \/§’€K| |:R6A0 ReAJ ’ ( )

where w = Re A2/ Re Ag ~ 1/22.35 denotes the AI = 1/2 rule. From eq. (4.2), it can
be seen that € /e is related to the ratios of hadronic matrix elements. In the following,

we summarize the relevant matrix elements for the involved operators that are from the
tree-level and loop diagrams.

4.1.1 K — 7w hadronic matrix elements of the tree-level operators

Although only one Feynman diagram is used to generate the AS = 1 processes at the tree

level, from eq. (3.3), twelve effective operators are involved in the processes, such as Q1 2,

fﬁf’“ and their prime operators. The operators 1 2 are the same as those generated via
the mediation of the W-boson in the SM; thus, the associated hadronic matrix elements can
SLLu
i

be quoted from the SM calculations. However, the operators @ are new operators and

do not mix with the SM operators; therefore, if Q12 and QSLL¥ are taken as two different
classes of operators, and we can separately introduce their matrix elements. According to
the notations in [12], we thus define the new operators in terms of 1 and Q2 as:

1 1
Qr=3 (Q2+ Q1) , Q- = 5 (Q2— Q1) - (4.3)
The isospin amplitudes for the K — 77 decays in the SM can be given as [12]:
GrV,; Vi
Re ASM T8 TusTud vy (1 + ,
0 N (@=)o(1+qr)
GrV}V,
Re A3M &~ Z2us4d 5 (), (4.4)

V2

where g7 = 24 (Q+4)o/(2-(Q=)0), 2+ = 22 * z1, and the values of 219 at © = m, are
z1 = —0.409 and z9 = 1.212 [12]. Because ¢r < 0.1, we will ignore its contribution in the

~13 -



new physics study. In addition, we assume Re A(S)’%\g) ~ Re Agg’) in the following analysis;

that is, (@+) can be determined by the experimental data.
SLLu

Using the results obtained in [42], the matrix elements arisen from the Q) operators
for the isospin I = 0 at the factorizable scale are given as:
( SLL,u> _ (1) f { SLL,u> _ _7“2(#) f
1 0 48 T 2 0 24 T
2
,
I (@) =0, (4.5)
with )
2m
r() = s (4.6)

mi(p) +ma(p)

The matrix elements for the isospin I = 2 are given as <O$LL’U>2 = <OZS LEuy /3/2. Based

(2
on the DQCD approach, the matrix elements at the nonfactorizable scale A can be expressed

as [42]:

@ = (1 3R2) @ -+ 4R(Q5E.

(@ = (14 3R2) @5+ 2AQEE s - QS
@M = (14 3R2) @3~ 168205

QM (M) s = A (=8(@7 )1 +2(Q3" ")) (4.7)

where A is defined as:

A=

2 2 _ 2
<1+mrr> A2 =Tk Ti/fe a1 15 Gev?. (4.8)

47Tfﬂ— Ai fK/fﬂ'_l

The matrix elements at a higher scale, e.g. u > 1GeV, can be obtained through

SLL, Qs . (0 2 SLL,

Qs = (8- 24012 ) @ (ol (@9)

where the associated anomalous dimension matrix (ADM) in the basis of ( fLL’“, gLL’“,
SLLu ~SLLuy s . )
5770 QL7Y) is given as [42]:

6/N. —6 N./2—1/N,  1/2
3(0)SLLu _ 0 —6Ne + 6/N. 1 —1/Ne , (4.10)
—48 /N, + 24N, 24 —2/N. — 4N, 6
48 —48/N, 0 2N. —2/N,
SLLu

with N, = 3. According to the results in [42], we show the numerical values of the Q;
matrix elements for the K — 7m decays at 4 = m. = 1.3 GeV in table 1. We note that the
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ME | @M @™ @ @it
0 —0.005 —0.044 —0.371 —0.214
2 —0.003 —0.031 —0.262 —0.151

1
1

Table 1. Value of hadronic matrix elements (MEs) in units of GeV? for K — 77 from the QfLL’“
operators at the = 1.3 GeV.

matrix elements of the prime operators in terms of magnitude are the same as those of the
unprimed operators, but their signs are opposite.

To calculate the K — 77 decay amplitudes, in addition to the hadronic matrix ele-
ments, we also need the effective Wilson coefficients at 1 = m,., which can be obtained
using RG running from the ¢ = mpy, scale. Therefore, for the operators QEI)SLL’U, the
necessary ADM at the LO QCD corrections can be found from eq. (4.10). Since Q1,2 mix
with the QCD and EW penguin operators, i.e. (J3-19, we basically need the 10 x 10 ADM
matrix for the operators )1 19. Since the mixture of ()12 and @3 19 is dominated by the
QCD penguin operators, we adopt the 6 x 6 ADM for the new physics effects, and the
ADM is given as [54]:

Nic 6 0 0 0 0
g =6 =2 2 —2 2
Nec 3N¢ 3 3N, 3
—22 22 —4 4
50 0 0 35 3 In 3 (4.11)
CD ’ .

EERICREEE S S5 T
0 0 0 N% —6

—2f 2f —3f —6(—1+N2) | 2f

0 0 35 3 3N, N o TF

with f being the number of flavors. If we take the operators QJ1_g as a basis, from
eq. (3.3), the corresponding Wilson coefficients can form a vector and be expressed as
Cr = (1,-1,0,0,0,0)¢iL and CL = (1,-1,0,0,0,0)¢EE at the mpy, scale. Using RG
evolution with ADM in eq. (4.11) [54], the Wilson coefficients at the m, scale can be
obtained as:

Cr(me) =~ (2.0, —=2.0, 0, 0, 0, 0)¢&E, (4.12)

where we have ignored the effects that are less than or around +0.1, and C/.(m,) can be
obtained from Cr(m,) using (£ instead of ¢l

Similarly, we can apply the same approach to the Qg’ZZLL’u operators. From the
Hamiltonian in eq. (3.3), the Wilson coefficients at the 4 = mp, scale can be formed
as OCSLEu = (4, 4,1, 1)¢HF and C"STEv = (4, 4, 1, 1)¢SF. Using the ADM in eq. (4.10),
the Wilson coeflicients at © = m, can then be obtained as:

CSELu(m,) = (—5.44, 1.33, 2.41, 0.09)¢HEE . (4.13)

We can obtain "S54 (m,) from CSLE%(m,.) using ¢t instead of ¢2iF.
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Following eqs. (3.3) and (4.2) and using the introduced matrix elements, Re(¢’/€) from
the tree-level diquark contributions can be formulated as:

N e
o). =Ty!" 157,

€

2.0
Ti? = St [ (6B - BP)]
0.94r2y
" omea, PG -G
72— 067Tryw . [ (CBE — ¢4 (4.14)
Hs 2Re As t (521 21 ) :

where the values of matrix elements in table 1 have been applied; the ¢ related effect is
neglected; \¢ = ViViq,

w Grw

— AN 64.T6, 1o = ~1.17 x 1071 GeV 2, (4.15)

7" _=
' 2lex|

and () are determined at the u = mp, scale. Due to Hizee D le) — g) and (Q1)2 = (Q2)2,

(3/2) SLL,
TH3 “

can only arise from the Q operators.

i

4.1.2 K — 7w matrix elements of the QCD and EW penguin operators

The operators induced from the QCD and EW penguins for AS = 1 in the diquark model
are similar to those generated in the left-right symmetric model [57], in which the SM
operators are included; therefore, we can directly use the SM results for the K — 7m
decays. Using the Fierz transformations, it can be found that the operators Q49,10 can be
expressed as:

Q=20 +Qs, Qo= 5(Qs Q) ~ 505,
Qu =3 (32 +Q) ~ 5Qs. (4.16)
Thus, the associated matrix elements can be written as:
(@1)o=2(@ )o+ (@s)o (@s)o=5 (@+)o — (Q)o) — 5(Qsho.
(@uo)o = 5 (3{Q )0 +{Q-)0) — 3 (@s)o,  (@o)2 = (Quol = 5(Q1)a, (417

where (Q_)2 = (Q3)2 = 0 are applied. From a native factorization, it can be found that
(Q3) indeed is smaller than (Q4) by a factor of N.. If we drop the (Q3)o contributions,
the matrix elements in eq. (4.17) can be further simplified and are only related to (Q4).
It can be found that the same property can be also applied to (@5) and (Q7); therefore, in
the numerical estimates, we take the approximation by neglecting the (Q35.7) effects.
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The matrix elements for the Qg g operators can be parametrized as [12]:

(Qo(m))o = —(fr — f)r*(w) BN
(@s(mho = Tr2(w) B,

\fffr v2(11)B 83/2)

(Qs(p))2 = , (4.18)

Where Bél/ 2 and B(3/ ) are the nonperturbative parameters. We note that although the
Qs 10 operators do not appear in the Hamiltonian at the p = mpy, scale, they can be
induced through RG evolution. Moreover, the matrix elements of the prime operators can
be obtained by reversing the signs of the unprimed operators.

In sum, from eq. (4.2), we can formulate Re(€¢'/€), which arises from the penguin
diagrams in the diquark model, as:

N w6
S) =R R,
P

p(1/2) o172 4 ,(/2) p(1/2)

H30 H36 6 ?
PI({?;/Q) (3/2) +a (3/2) (3/2), (4.19)
where agl/m and a§3/2) are given by:
r
affld) ~ ot [ (4940 (me) - 393" (me) + Ayff (me))]
r2(Q8)0 H;
+ Re Aq Im [)\tAyS (mc)} ,

12 _  12(Qe)o Hs
CHs6 B(l/Q) Re Ag Im [)\tAyG (mc)} ’

affly) 5ot [ (A9 (me) + Ay o))

3/2 T2<Q8>2 H
agf:fs) ~ B8P R A, Im [AtAys 3(%)} : (4.20)
8

with AyiH3 (me) = yZH3( ) — y;H?’( ¢). Using the leading order 10 x 10 ADM for the @Q1-1¢
operators [54], the effective Wilson coefficients appearing in eq. (4.20) at g4 = m. can be
obtained as:

3(me) ~ —0.700y2 + 1.095y4™ — 0.105y2™ — 0.565y4™ ,
s (me) ~ —0.100y2"% — 0.476y2" +0.930yL" 4 3.186y + 0.120y4"
53 (me) ~ 1.0753/53 ,
s (me) ~ 1366yl
y%g (me) ~ —O.655yé{3 , (4.21)
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where we have dropped the operator mixing effects that are smaller than 10%, and 5yf{3 =
yZH3 — y;H?’ denote the quantities at the y = mpy, scale. From eq. (4.20), it can be seen that
the involved hadronic effects explicitly shown in Re(€’/ e)§3 are only (Qg) and (Qsg).

4.1.3 K — 7w matrix element of the CMOs
To estimate the K — w7 hadronic matrix element via the operators Qé’é, we take the
results obtained by a DQCD approach as [20]:

9mz  mils

11 A3 my(p) +ma(p)

(mm|Cye@sa (=) K) = Cyi(p) (4.22)

where Qsg(—) = gs/(167r2)§a“”Tav5dGZl,, Cgi:() is the effective Wilson coefficient with
mass dimension (—1) at the u scale, and A, can be found in eq. (4.8). Thus, the Kaon

direct CP violation arisen from CMOs can be estimated as:

Re <€/> —~ w (Im AQ)gG
€/ sa V2|ex| Redo

~ —(4.1 x 1072 GeV?)

A
\/§|€K‘ Re A()

With |ex| = 2.228 x 1073 and Re Ag = 27.04 x 1078 GeV, eq. (4.23) can be expressed as:

m(Cgp(me)) - (4.23)

Re <€I> ~ —(1.74 x 10° GeV) x Im(Cgy(me)) - (4.24)
8G

€

According to the Hamiltonian shown in eq. (3.17), we can write the Cég’_ in the
diquark model at © = m, as:

_ Gr. ..
Csdd ™ (me) = _T;Vtsvtdn80 (deéZB - mscgé;‘)
G *
~ LV Viameyw Iea(ymse (W — 1) (4.25)

V2

where the definitions of Cég shown in eq. (3.19) are applied to the second line; gf% /gh, ~ 1
is used, and nge ~ 0.418 is the RG evolution factor from mg, = 1.5 TeV to m, = 1.3 GeV.
For the study of the new physics effects, we only consider the leading-order QCD ADM for
the operators Q1-6, O7., and Qsg [54].

4.2 AS = 2 in the diquark model

Using the effective Hamiltonian in eq. (3.20), the hadronic matrix element of K%K mixing
is written as:
My = (K°[Has=2|K°) . (4.26)

Accordingly, the K-meson mixing parameter and indirect CP violating parameter can be

obtained as:
e’iﬂ/4

AMK%2R8M12, EK%W
K

Im M12 5 (427)
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where the small contribution of Im Ag/ Re Ap from K — 77 in ex has been neglected.
Since AMp is measured well, we directly take the AMg data for the denominator of €.
It has been found that the short-distance SM result on AMpg can explain the data by
~ T0%, and the long-distance effects may contribute another 20-30% with a large degree
of uncertainty [53]. Conservatively, the new physics can contribute 20% of the experimental
value.

To investigate the new physics contributions to AMpg and €, we use the formalism
obtained in [56], which is given as:

_ G2V,
<K0!HAs:2]KO> _ % KfK{ VLL[ VLL(IUt) +CYRR(Mt)]
+P1LRCLR( )—|—P2LRCLR( t)+ SLL [CSLL(Ht)+Ci9RR(Mt)]
SLL [CSLL( ) CSRR( )]}’ (4.28)

where the Wilson coefficients C* are taken at the py = my scale, and the values of P* at

1= 2GeV are shown as:

PV ~0.48, PER ~ —36.1, PF ~ 593,
PP~ 1811, Py~ 322, (4.29)

Since the Wilson coefficients C’;‘I“» in the diquark model are obtained at p = mpy,, due
to my < mpy,, we have to use the RG evolution to obtain C}i,g ; (). For comparison, we
separate the discussions of figure 4(a) and 4(b) in the following analysis.

4.2.1 Box diagrams from one W and one Hj

According to eq. (3.23), the related operators arisen from figure 4(a) are QlLR and Q%R,
and the associated Wilson coefficients are CﬁRl and CﬁRQ To obtain the C§R1(2) at the
pe scale, we adopt the leading QCD corrections, where the one-loop ADM for (Q1 QLF)

is given as [56]:

) 2 12
FOLE _ (o _16> . (4.30)

Using the ADM, we can obtain the Cﬁii(ut) as

C‘%}}‘Ig,l(ut) 3/210L H5,1 ?
2 _ _
Ciif s () = 3 (773/21 -1 24/21) Ciiftrsn +1 24/210WH3,27 (4.31)

with n = al? (mHB)/ag (m¢). Using the result of C’WH 2= 20{%/}}{3,17 the KV — K° mixing

matrix element is expressed as:
_ G2V,
0|y WH, 0 FYCKM 2 2 3/21 pLR
(ROM ) = “EO e 1 (3122

2 -
+5 (2 2702 )CWHg (4.32)
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4.2.2 Box diagrams from the mediation of Hg

The situation for figure 4(b) is more complicated. From eq. (3.27), it can be seen that
<K0]Hg%:2]KO> involve five hadronic effects, i.e., PY/LL, PlLéz, and PfQLL. Although the

magnitude of P}*¥ is much smaller than that of ]PIS(’;)L |, when including the loop functions

with Ipy < Iy, I BIPIV LL and I nglsé)L become comparable. In addition, although the
magnitudes of PlLf are larger than the others and the associated loop function is Ip,
because the Yukawa couplings are h%l hﬁ, either of them might be small. Hence, we should
retain all contributions at the moment.

To estimate the Wilson coefficients at p, in addition to the ADM shown in eq. (4.30),

we need the ADMs for QV*% and Qig’:, where they are given as [56]:

—10 1/6
2~ (0)VLL —4 ~(0)SLL — . 4.33
ol , (_ 40 34 /3> (4.33)
Using 01552 = —20%151 and C’gg% = —Cflgﬁ /4, the Wilson coefficients at p; can then be

expressed as:
SLL 6/21 ~VLL
CH3,1(Mt) =" / CH3,1 )
LR 3/21 ~LR
CHg,l(l’Lt) = 7] / CHg,l ?

2 B
Ciiya(m) = 3 (?73/21 —4n 24/21) CHYy

n?—nt 1
Cot () = ( +5 0+ ™) ) Cl

2241
15 (77r2 — 7]”) 1 r r
Cith(u) = (U - Lo ) Ct (4.3

with r; = (v/241 + 1)/21 and rp = —(v/241 — 1)/21. Since QCD does not distinguish
chirality, eq. (4.34) can be directly applied to C} 7% (u;) and CoRR(y,).

5 Constraints from the AS = 2 process

5.1 Experimental and theoretical inputs

For the numerical analysis, in addition to the values of the theoretical parameters, in this
section, we introduce the experimental data used to bound the free parameters. The data
of the AS = 2 process are given as [58]:

AMPP = (3.482 £0.006) x 1071 GeV, €5 = (2.228 £0.011) x 107, (5.1)
Since ek in the SM fits well with the experimental data [54], we use
ek [ <0.4x1073 (5.2)

to bound the new physics effects [25]. The uncertainties of the NLO [59] and NNLO [60]
QCD corrections to the short-distance contribution to A M in the SM are somewhat large,
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so we take the combination of the short-distance (SD) and long-distance (LD) effects as
AMM(SD+LD) = (0.80£0.10) AM ™ [53]. Thus, the new physics contribution to AMg
is required to satisfy:

IAMEY| < 0.2 AME® . (5.3)

With the Wolfenstein parametrization [61], the CKM matrix elements can be taken as:

Vid " Vs m1—=X2/2, Viyem —Vagm A=10.225, Vi~ 0.0038¢™93 | 3 = 73.5°,
Vip ~ —Vis = 0.0407, Vg ~ 0.0088¢ %2 | bo A 23.4° (5.4)

where V, and V,; are taken from the averages of the inclusive and exclusive semilep-
tonic decays [22]; the ¢3 angle is the central value averaged by the heavy flavor averaging
group (HFLAV) through all charmful two-body B-meson decays [62], and ¢9 is determined
through the inputs of eq. (5.4). The particle masses used to estimate the numerical values
are given as:

myy ~ 80.385 GeV , my ~ 165 GeV , mg =~ 0.489 GeV ,
me ~ 1.3GeV, ms(me) ~ 0.109 GeV , ma(me) =~ 5.44 MeV . (5.5)

5.2 AMkg and ex from ?-LVAVL&2

The involved parameters for the AS = 2 process in the diquark model contain 9?]31,327 92?1,327
and mp,. However, it was found that the new parameters hgl’R, defined in eq. (3.14), are
more useful to study the diquark effects for the ex and € /e. Generally, the CP phases of
9§f§2 are free variables; in order to simplify the numerical analysis, we assume that their
CP phases are the same as V;;V;4 although this assumption is not necessary. That is, we
will take hgl’R to be real parameters and the CP violating source to be uniquely dictated
by the KM phase. In sum, there are three new free parameters for the AS = 2 process in
this study, which are hgl’R and mg,.

Since HZVL&”Q only depends on hgl and mpy,, we can use the AS = 2 process to directly
bound these parameters. We find that the mass difference between K and Kg, which arise
from the W (G) — Hs box diagrams, is far smaller than the required limit of |AMEY| <
0.2AMP. Since AM '8 and €} '* originate from the same box diagrams, due to the CP
phase of V;5Vi4 being of O(1), it can be expected that ex gives a strict constraint on the
free parameters. Therefore, based on the transition matrix elements given in eq. (4.32), we
s

plot the contours for € in units of 1073) as a function of my, and A% in figure 5(a)

IVgH3 as a function of hl} is shown in figure 5(b), where the solid, dashed, and dotted

and e
lines represent the contributions of mg, = (1, 1.5, 2) TeV, respectively. From the results,
it can be seen that ex can strictly constrain the th1 parameter. For instance, using mpy, =
1.5 TeV, we obtain |hdj| < 0.11, where the magnitude of |g¥ g% | can be roughly estimated
by |92 gdt | < 1.7 x 1075, Since gk, = gLt is taken in our numerical analysis and the allowed
hL is much larger than the allowed hlj, we can choose |g4i| to be smaller than |gf| to

satisfy the upper limit.
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Figure 5. (a) Contours for ey ' (in units of 1073) as a function of mp, and hi. (b) ey 7

a function of i, where the solid, dashed, and dotted lines represent the contributions of mg, =
(1, 1.5, 2) TeV, respectively. The band denotes the required limit shown in eq. (5.2).

as

5.3 AMg and ex from %Z‘g:z

As discussed before, eight effective operators are involved in the purely Hgz-mediated box
diagrams for the AS = 2 process. Since the hadronic effects have the properties of

Plv LLVRR) |PIS 2L L(SRR)|, the contributions from QYLL(VRR) are comparable to those

from QfgL(SRR) because the associated loop functions in the former and latter satisfy

Igf (ye) > Igg’ (y:). In addition, it can be seen from eq. (3.28) that the Wilson coeffi-

VLL(RLL) 04 C’i gL(SRR) depend on hél(R) in quadratic form. Therefore, it is of

cients C}
interest to understand their contributions to AMg and ex without the ClL’g effects, where

C’f§ o h¥ hf and the associated loop functions show up in the form of T5? (y;) + I53 (yq)-

Thus, taking mp, = 1.5TeV, hk; = 0, and hf = 0.11, where the chosen values obey the

bound from e?H:‘, we find:

AM® ~ 275 x 1078 GeV, i ~ —2.90 x 1079. (5.6)

VLL(VRR) . 4 Qi gL(S k) operators that are induced

Clearly, the contributions from the @
from the Hs box diagrams are small and negligible. Since the behavior of h%l is the same
as that of hlY, the conclusion will not change even with hl; ~ O(10), with the exception

of h¥; ~ 0(100). In addition, it is not necessary to combine HZVL&”Q and 7—[2%22 because

the pure hij effect in HZIg:Q as shown above cannot compete with that in HK&Q.

The H3z box diagrams could play an important role through the Cf§ effects. In
addition to the loop function [ gf (y¢), the enhancement factors are from the associated
hadronic effects \PlL;‘\, which are larger than the others. For clarity, we make contour
plots for AM};I:” (in units of 10717) and e?‘ (in unit of 107) as a function of h¥; and hf
in figure 6, where we fix mpg, = 1.5TeV. From the plots, we can see that AM 53 is still
far below the required limit in the taken ranges of hQLiR; however, the allowed parameter
spaces of hQLiR could be further limited by the required limit of [e}F| < 0.4 x 1073.
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Figure 6. Contours, which arise from the H3 — H3 box diagrams, for (a) AMy (in units of 10717)
and (b) ex (in units of 1073) as a function of hZ; and k%, where my, = 1.5 TeV is used.

It can be seen from the figure 6(b) that as |hj| becomes smaller, the allowed |hi;
becomes larger due to C’f§ oc hi hE . TIf we take hi} ~ 0, i.e., HZVSI{;‘2 ~ 0 and C’{Jg ~ 0,
the hly, dictated by the QYLL(VRR) and QigL(SRR) effects, can be much larger than O(10).
Since hf; is defined through 1/|g2ViVi4| ~ 6.4 x 103, hi; of O(30) indicates |gk | ~ 0.07
for gl ~ gk, and is still in the perturbation range.

In addition to the AS = 2 constraint, it is also of interest to understand the constraints
from AB = 2 although the associated new parameters may not be directly related to ex
and €’/e, which we mainly study in this work. For simplicity, we use the By system to show
the constraint. It can be found that the results in eq. (3.23) and eq. (3.27) for AS = 2
can be applied to the calculation of (By|Hap=2|By) when the associated hadronic effects
and CKM factor in K-meson are replaced by those in Bz-meson. Therefore, to estimate
Amp,, the input values for the By system are taken as [56, 64]:

mp, ~ 5.28GeV fB, ~ 0.191CeV, Vip~ 1,
PYEL 084, Pl ~ —1.62(2.46) P ~ —1.47(-2.98). (5.7)

The SM prediction on AMp, is consistent with the experimental data, where the
results are given as AMP ~ 3.651 x 107'% GeV [64] and AMpY = (3.332 £ 0.0125) x
10713 GeV [58], respectively. In order to constrain the free parameters, we require that the
new physics contributions to AMp, should obey |AM§5\ < 0.1 x 1073 GeV. Thus, using
the parameter defined by hf = gfgl /(g*V;iVia), the contours for AMEZH?’ (in units of
10~1), which arises from the W (G) — H3 box diagrams, as a function of mp, and h%
are shown in figure 7(a). According to the results, if we take |hf| ~ 0.3 and |h&i| ~ 0.1,
which were obtained earlier in K-meson, the magnitude of gfg can be roughly estimated
as |glt| ~ 0.3. The contours for AM 113{;7 which arises from the H3 — H3 box diagrams, as
a function of hY and h% are shown in figure 7(b), where mpy, = 1.5TeV is used. From
the plot, it can be seen that similar to the case in K-meson system, the allowed values of
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Figure 7. (a) Contours for AME;HB (in units of 107) as a functions of mpy, and h%. (b)
Contours for AM};I; (in units of 10714) as a function of h%, and hf; with mpy, = 1.5 TeV.

h%, are much larger than those of h%. If we take |hf;| ~ 5 and |hZ;| ~ 10, the magnitude
of gk can be estimated as |gl5| ~ 0.64. It can be found that although h%; is one order
larger than A%, the magnitude of g& is only larger than that of gf% by a factor of 2. This
behavior is attributed to the fact that gf in A is much smaller than g% in h¥;.

5.4 Bounds from the LHC

Searches for narrow resonances decaying to dijet final states have been performed by the
ATLAS [65-67] and CMS collaborations [68-70] at /s = 13 TeV. According to the recent
CMS measurement [70], the upper limit on o AB for the diquark resonance decaying to
quark-quark at mp, ~ 1.5 TeV is given by ~ 0.1 pb, where o, A, and B denote the produc-
tion cross section, acceptance, and branching fraction, respectively. If we use the simulation
results obtained in [71] by rescaling the g} coupling from 0.1 to 0.01, the scalar diquark
production cross section can be estimated to be ~ 0.01 pb at mg, ~ 1.5TeV. It can be seen
that g3, = 0.005 ~ 0.01 obtained from the AS = 1 constraint and mpy, = 1.5 TeV used
in our numerical estimates satisfy the current upper limit. In addition, the scalar diquark
can also be produced through pair-produced processes. However, the situation is similar to
the search for the sbottom particle in the supersymmetric R-parity violating model, where
the upper limit is weak, and the current bound is m; > 307 GeV [58].

6 Numerical analysis on €'/e in the diquark model

In this section, we numerically study the Hs contributions to €¢’/e. Based on the earlier
discussions, it is known that three possible mechanisms can contribute to the Kaon di-
rect CP violation, including the tree-level diagram, the QCD and EW penguins, and the
chromomagnetic dipole, where their formulations are given in eq. (4.14), eq. (4.19), and
eq. (4.23), respectively. In the following, we discuss their contributions one by one.
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Figure 8. Contours for (6//6)7;13 (in units of 107%) as a function of (a) (&% — ¢5F and ¢ — (4P
and (b) my, and (ftF — (L4F, where mpy, = 1.5TeV is used in plot (a), and we assume (FF = (&L

in plot (b).

6.1 Tree-level

From (¢'/ e)¥3 shown in eq. (4.14), five free parameters are involved in the tree-level-induced
AS = 1 processes, in which they are CQLlL’RR, QRIL’LR, and mp,. However, it can be seen
that the parameter dependence shows up in the form of (£ — ¢4E and ¢f2F — ¢4E; thus, it
is more convenient to show the numerical analysis if we use these two forms of parameters
as the relevant parameters. In addition, since ¢} is scaled by V;%V,g, like the case in hél(R),
where the KM phase is taken as the unique origin of CP violation, we also assume () to
be real parameters in this study although this assumption generally is not necessary.

To illustrate the diquark effects, we show the contours for Re(€'/ 6)?3 (in units of 1073)
as a function of ¢ — (&L and (il — (42 in figure 8(a), where my, = 1.5 TeV is used. From
the plot, (¢//€)1* is insensitive to (5F — (4L, This behavior can be understood from the
small coefficient of 2rjypy /z_ in T}I/?) 2, where it is above one order of magnitude smaller than
0.67r2yw /(2 Re A2) in TI‘ZQ; that is, TI?}/32 in (e’/e)¥3 dominates. Assuming (£ = (LF, we
show the contours for (€ /€)#* as a function of (i — (5 and mp, in figure 8(b). From
these plots, it can be seen that the tree-level diquark effect can significantly enhance € /e.

In the following analysis, we estimate the typical size of the gﬁ (12) parameter. From

g = 3, it can be found that gfygfs = gfigfy or g1 /9 = 915 /9l . According to the

result in figure 8(a), if we take (L — (I ~ 0.7 as an illustrative example, we find:

L\ 2

RL_ ChR = (B [1 - <g;}> ] ~0.7. (6.1)
911

Clearly, gF # gf. Using (&X' ~ 0.8, we obtain g4 ~ ¢f{/(2v/2) and ¢} ~ g /(2v/2). As

discussed earlier, |gf{| ~ 0.01 can satisfy the current LHC bound. If we take |gft| ~ 0.01,

from (- ~ 0.8, we obtain |gf,| ~ 0.0125 ~ |gF|. If we take |gf%| ~ 0.005 and ¢tF ~ 0.8,

then the value of g¥, can be |gly| ~ 0.025 and can be larger than gf% by a factor of 5. It is
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worth comparing the result of (Ji < 1 with that of A2 < 0.11, which is obtained from the
W-Hjs box diagram. Although g%“g:ﬁ has a stronger phenomenological constraint than
gﬁ ng*, due to the mi(c) / m%,g suppression, the light quark contributions to the AS = 2
box diagrams can be neglected. The same situation can be also applied to the CMO
on € /e. From the results in figure 6(b), the maximal allowed hl; is |hlj| ~ 6 when
|hf| ~ 0.11. However, the u-quark contribution to the same Hz~Hj diagram is dictated
by 95195 /(g*V;:V;4) and can be nothing to do with m?2 / mlzqd According to above analysis,
it can be found that |gf gl /(g2V;:Via)| < 0.28; that is, the u-quark contribution can be

neglected. If we assume g% ~ gl , the c-quark contribution can be also neglected.

6.2 QCD and EW penguins

According to the formulations of Re(e’/e)§3 in egs. (4.19) and (4.20) and the relevant
effective Wilson coefficients at p = m, defined in eq. (4.21), the diquark contributions are
dictated by the factors sy (a = 3,4,6,7,9), which exhibit left-right asymmetry at the

p = my, scale. In order to observe the magnitude of each §y!’3, following eq. (3.13) and

eq. (3.16), we show the hgl(R) dependence with mpy, = 1.5 TeV as:

Sy5'® ~ (0.16h%; +0.04h%) x 1074,

dys' ~ 0.11 (hdy — hE) x 1074,

ys’s ~ (—0.04hk, +0.23h8%) x 1071,

Syel ~ 0.11 (k) — hEL) x 1074,

Sys'® ~ (0.16h%; — 0.58h%%) x 1074,

yg' ~ (—0.62h% +0.20n%) x 1077, (6.2)
Based on the results, we can understand each dy!’ as follows: for 5y§13, since there is a yy

suppression factor in the QCD-penguin, the main contribution is from the Z-penguin, i.e.
CZ  Izhky; therefore, it can be seen that the hl; part is much larger than the hf part.

Because (5yﬂ?é) is only from the QCD-penguin, it can be seen that hl; and h¥: have equal
contributions; in addition, since yi,()g % is a factor of 3 larger than the QCD-penguin part

of yg)H3, we therefore see that the 0.11 factor in 5yﬁ%) is almost a factor of 3 larger than

the 0.04 appearing in the parentheses of 6y§1 3. The behavior of 5yf3 should be similar to
5y§{3, but it is dominated by Cf oc Izh .

Although ~- and Z-penguin both contribute to 5y;{3, due to the yy suppression ap-
pearing in ~y-penguin, 5y$13 indeed is dominated by the Z-penguin. It can be found that
the hi; and A% terms in 5y§{3 are different from the hl; term in 5y§13 and the A term in
5yé{3 by factors of 4sin? Oy ~ 0.92 and —4, respectively. According to these differences, we
can roughly understand the numbers in 5y$[3 from the corresponding numbers in 5y§{3 and
5y5H3. From eq. (3.13), (5@/5{3 is also dominated by the Z-penguin. We find that the hf; and
hE terms in 5y§{3 approximately differ from the corresponding terms in 5y§13 and 5y§13 by
factors of —4 + 4sin? Oy ~ —3.08 and 4 sin? Oy, respectively. Using these factors, we then

can roughly obtain the numbers in the 5y53

from those numbers in 5y3{{3 and 5yf3.
Since mp, is a global parameter in the study, we can simplify the numerical analysis

by fixing its value. Hereafter, we fix mp, = 1.5GeV in the numerical calculations, unless
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Figure 9. (a) Contours for (¢'/e)* (in units of 1073) as a function of h% and hf, where

mpy, = 1.5TeV is used, and the dashed lines and shaded area denote the constraint from
lef3| < 0.4 x 1073, (b) Each contribution of 0}1{3207 a}f;GBél/z), %3207 and ai/fng/Q with

mp, = 1.5TeV and hf = 0.035.

stated otherwise. Thus, we can implement the results in eq. (6.2) to AyZH‘"’ (me) (1 =
4,6,8,9,10) in eq. (4.21). Using egs. (4.19) and (4.20), we plot the contours for (e'/e)g3
(in units of 1073) as a function of h¥; and h% in figure 9(a), where the shaded area denotes
the constraint of \e§3| < 0.4 x 1073, From the plot, it can be clearly seen that the diquark
parameter spaces, when allowed to enhance € /¢, are limited when the strict bound from ex
is included. In addition, we need to rely on the large h%l values to enhance €’/e although

3/2

the large hZ; is allowed. In order to understand the role of a}{f(o 6) and a which are

H5(0,8)°
defined in eq. (4.20), in € /e, we show the effect of each a}ﬁ(’gﬁ& effect on Re(€'/ 6)53 in
figure 9(b), where the solid, dotted, dashed, and dot-dashed lines denote the contributions
of a}{fo, a}ffﬁ, a%jo, and a%js, respectively, and hﬁ = 0.035 is taken. Clearly, ai{fB makes
the main contribution because the factor ro(Qs)2/ Re Az in a%jS is larger than the others
by more than one order of magnitude. In addition, it can be seen that in order to obtain
positive (€'/ e)g3, hi, prefers negative values. We can simply understand the preference
as follows: it is known that (e’/e)g3 is dominated by _a?{/js x —Ay(me) ~ =0yt o

(—0.16h% 4 0.58h%,). Therefore, a negative hk, can positively enhance (€' /e)f?.

6.3 Chromomagnetic dipole

From eq. (4.25), it can be seen that the involved new parameters contributing to €'/e
through the CMOs are hféR and simply appear in the form of hj — h&;. The contours
for (¢'/ e)?é

the shaded area denotes the constraint of eg"’ < 0.4 x 1073. From the results, we can see

(in units of 1073) as a function of k%, and h&. are shown in figure 10, where

that €’ /e can be significantly enhanced by the CMOs in the diquark model when the bound
from the ex is satisfied. Due to the dependence of hf — hl,, a negative hl; can lead to
a positive (€'/ e)g 5. Comparing the results with those in (€'/ e)gg’, it can be found that
(€'/ e)gé is larger than (¢//e)5? in the same allowed parameter space of h;.
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Figure 10. The legend is the same as that in figure 9(a) with the exception of (¢’ /e)42.

7  Summary

We investigated the color-triplet diquark Hg contributions to the AS = 2 and AS =1
processes in detail. In addition to the Hs Yukawa couplings to the SM quarks, we also
derived the strong and electroweak gauge couplings to H3. Using the obtained couplings,
we calculated renormalized vertex functions for d — s(g(*),’y(*), Z). Based on the results,
we studied the implications on the Kaon direct and indirect CP violation.

We found that the box diagrams mediated by one W (G)-boson and one Hs for AS = 2,
which were neglected in [46], play an important role on the constraint of parameter hgl
when the sizable top-quark mass is taken. The constraint on h%l can be achieved through
the pure Hs-mediated box diagrams.

It was found that three potential mechanisms could enhance the Kaon direct CP viola-
tion parameter €' /¢, including the tree-level diagram, the QCD and electroweak penguins,
and the chromomagnetic dipole operators. To clearly see each effect, we separately discuss
their contributions. In order to study the €'/e, in this work, we simply assume that the
origin of the CP violation only arises from the so-called KM phase of the CKM matrix in
the SM. Using the limited parameters and the hadronic matrix elements provided in [42],
we find that the AS = 2 process cannot give a strict bound on the tree-level parameters

2R1R’LL and CﬁL’LR; therefore, the parameter spaces to significantly enhance (¢’/¢) are wide.

The parameters associated with the QCD and electroweak penguins and the chromo-
magnetic dipole are the same. In the same hl; parameter space, which can generate a
sizable € /e, the contribution to €'/e from the chromomagnetic operators is much larger
than that from the QCD and EW penguins.

A Renormalized two- and three-point diagrams for the d — sV tran-
sition

We calculate the renormalized vertices for the d — sV transition, where V' denotes the
gluon, photon, and Z gauge bosons. To deal with the calculations of one-loop Feynman
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Figure 11. Self-energy diagram for the d — s transition mediated by color-triplet diquark Hs.

diagrams, we show the useful d-dimensional integral as:
dy (52)m
sdom i) = |
R T R AL
(_1)m—n(M2B)d/2+m—n F(n —m— d/Q)F(m + d/2)

= e T(d/2)T(n) - A

Using dimensional regulation with d = 4 + 2¢, renormalization scale p, and I'(—e) =
—1/€e — vg, the relevant integrals in the study are explicitly written as:

2e 2
v A
J(d,0,2,4%) = i—-—1n —-,
B Am? g
1 1
J(d,0,3,4%) = —i——s—e—
( s Yy muB) Z(4W)2F(3) M23 )
d
J(dalaSaMZB) = Zj(d70727H2B) ) (A.2)
where we define In A2 = —1/¢ — yg + In(47p?), and g is the Euler-Mascheroni constant.

The self-energy diagram mediated by Hs for the d — s transition is sketched in fig-
ure 11. Using the Yukawa couplings in eq. (2.3), the result of figure 11 can be expressed as:

1
iS(p) = sTd =3 [Ml [ doea(@0.2.8,0%)
0

1
s [ e (d.0.2 u2B1<p2>>] d, (4.3)
0
X51 = 9% 95 PL + 955 9% PR,
Xgl = 9:?2*9:%1PL + 93%2*951]31% ) (A.4)

where (K*)P*(Ky)ap = o7 is used, and wh (p*) = mix +mi(l —z) — p*z(1 —z). To
obtain the renormalized I', we require ¥(p) = 0 when the momentum of the external quark
is taken on the mass shell, i.e., p = pg or p = p,. If we write the renormalized I'g as:

FR:F‘f‘ClZﬁPL‘FCQpPR‘FCgPR"‘CZPL, (A5)

the requirements of X r(pg) = 0 and Xr(ps) = 0 lead to

Cio) = —952*(3*)951(3)10, Cs(a) =~ —gfg(R*)ggﬁ(L)mtfc,
1
o= [ deal(d0.2.1,(0)), (A.6)
0
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where we have dropped the light quark mass effects. We note that the mass dimension in
C)(2) is different from that in Cyy).

The color-triplet-mediated three-point diagrams for d — sg®*) are shown in figure 2,
where g(*) denotes the on-shell (off-shell) gluon. The result of figure 2(a), where the gluon
is emitted from the top-quark, is given as:

d
x 5, {—Alx3) + Abx3 } d° (A.7)
Al = [+ [mf — kP a (s — 1),
Ay = my((zg — )V + 22ky"]
pha(K*) = mi, (1 = x1) + mizy + kg (22 — 1) (A.8)

where T4 are the generators of SU(3)¢ and their normalizations are taken as Tr(TATE) =
648 /2. Using the results given as:

A\P
(K7 (T4)5 (Kp)as = (TQ)ﬁ,
die # 1+4+¢€
/ (2m) (2 —i% ikms - r<+3> 7(d,0,2, 4, (k7)) (A.9)

2% can be reformulated as:

1
DA = ( )37 P T d/ dxl/ dxsy

D (o) ot

s _an S A o 1
+1 5AES, T d/ dxl/ dxa
2(477)2 2221 0 0 MQBQ(]‘?2

Based on the diquark-gluon coupling shown in eq. (2.5), the result of figure 2(b), where

(A.10)

the gluon is emitted from the Hg, can be obtained as:

Ap g V A ! o 2 A?
TAH — 95 gV rAg [ g daop®In ——
To T T2t X / / w2

g P o b
—i—= 5T d/ d:vl/ dxo
2(4m)2" 2 0 0 135 (k2)

From the Ward-Takahashi identity, it is known that the three-point vertex correction

(A.11)

can be related to the two-point function ¥(p) = sI'd through the relation:
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with X(p )p = 5,I'd’. In order to obtain the renormalized 4% we can require that the

Ward-Takahashi identity is retained as k,I'y An gs(TA) [ZR(p k) Yr(p )g [49, 50].
If we set I'p, A —pAn 4 x At the Ward- Takahashl 1dent1ty can lead to:

2
XA =

1
A
EW“X;/ITAd/O dz xp? In 5 (A.13)

(4m)? 151 (0)

The ultraviolet divergence of I‘é" , which is related to In A2 terms, can then be cancelled as:

1 T 1 A2
0.8 —/ dl’l/ d$2 -
div 0 0

In order to verify the gauge invariance, we can take k? = 0 for the on-shell gluon; thus, the

A A
Tt =1

A
= + X4
div a+b‘div

1
><2—|—/ drrxInA*>=0. (A.14)
0

Ward identity can be satisfied as:

1 2 2
kufé“m/ d:zl/ do~ HMBQ(O) +1 2mt +1In :uB32(O)
2 mH 1“32(0) M,

3
/ dzx In :“31 0)

% ;/0 dx [(1 —2x)In(x + (1 — x)) — M] =0, (A.15)

with y; = m?/ml%]3 For k% # 0, because k? < m?, the leading k? term and chromomagnetic
dipole effect of Fé“ can be obtained as:

gsk?

. ARA . _ _ my
ZGﬁFRM = —ZWIGl (yt)S¢AX¥1TAd +1 (47-()2 4mH IGQ (yt)SO"u' X21 TAd Gﬁy y
3 3
(A.16)
where the loop-integral functions are given as:
202 + 11y —7 (P +3y—2)Iny
IGl(y) = 3 4 )
36(1 —y) 12(1 —y)
1 In
Iea(y) = — - Y (A.17)

(I-y) (1-y)?

The Feynman diagrams for d — sy*) are shown in figure 3. It can be seen that with
the exception of the gauge couplings, the calculations for d — sy®*) are similar to those for
d — sg™); therefore, the results of figure 3(a) and 3(b) can be respectively obtained from
egs. (A.10) and (A.11) when the strong interactions are replaced by the electromagnetic
interactions. Thus, using the gauge coupling in eq. (2.6), the renormalized vertices of
figure 3(a) and 3(b) can be obtained as:

. . €k2 _ V . e mt _ S
ulyn = gy, S i g e W) S G B (A8)
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where the loop-integral functions are given as:

25y — 65y +34 P +2(2 - 3y)

=T a e e
Ip(y) = —oo— Y - Btylny, (A.19)

21-y)* (1-y)?
To calculate the Z-penguin induced three-point vertex for d — sZ*, we write the
Z-couplings to quarks as:

g _
Hzqg = mq’m(CgPL + CRPr)Z" (A.20)

Cl =TI~ e, sin® Oy, C% = —eqsin’ Oy, (A.21)

where 17 and e, are the weak isospin and electric charge of the g-quark, respectively. From
the Z-boson interactions, it can be seen that the e; sin? Ay -related currents indeed are the
same as the electromagnetic currents; that is, the corresponding three-point vertex function
should be proportional to k2. Since the Z-boson is a massive particle, unlike the case in
d — sv*, the k2-related effects will be suppressed by &%/ mQZ in the decays such as d — sqq
and d — s€f. Thus, it can be expected that the renormalized d — sZ* vertex is only
related to the weak isospin I = 1/2 when the k? effects are neglected. Using the same
renormalized procedure in d — sg(*), the renormalized three-point vertex for s — dZ* can
be obtained as:

gl

2 ot (951953 L2(0) PL — 51955 T2 () Pr) d. (A.22)

 Zre
’LE#FZR—

where the loop integral function Iz (y;) is defined as:

Iz(y) = — . ;- (lyinjp : (A.23)
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