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Abstract: Based on the calculations using the lattice QCD by the RBC-UKQCD collab-

oration and a large Nc dual QCD, the resulting ε′/ε, which is less than the experimental

data by more than a 2σ in the standard model (SM), suggests the necessity of a new physics

effect. In order to complement the insufficient ε′/ε, we study the extension of the SM with

a colored scalar in a diquark model. In addition to the pure diquark box diagrams, it is

found that the box diagrams with one W -boson and one diquark, ignored in the literature,

play an important role in the ∆S = 2 process. The mass difference between KL and KS in

the diquark model is well below the current data, whereas the Kaon indirect CP violation

εK gives a strict constraint on the new parameters. Three mechanisms are classified in the

study of ε′/ε. They include a tree-level diagram, QCD and electroweak (EW) penguins, and

chromomagnetic operators (CMOs). Taking the Kobayashi-Maskawa phase as the unique

CP source, we analyze each contribution of the three mechanisms in detail and conclude

that with the exception of QCD and EW penguins, the tree and CMO effects can singly

enhance ε′/ε to be of O(10−3), depending on the values of the free parameters, when the

bound from εK is satisfied.
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1 Introduction

It is known that the measured CP violation in K and B meson decays can be attributed

to the unique CP phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2] in the

standard model (SM). However, it is a long-standing challenge to theoretically predict the

Kaon direct CP violation ε′/ε in the SM. Now, the progress in predicting ε′/ε has taken

one step forward based on two results: one is from lattice QCD calculations and the other

is a QCD theory-based approach.

Firstly, the RBC-UKQCD collaboration recently reported surprising lattice QCD re-

sults on the matrix elements of K → ππ and ε′/ε [3–7], where the electroweak (EW)

penguin contribution to ε′/ε and the Kaon direct CP violation are, respectively, shown

as [6, 7]:

Re(ε′/ε)EWP = −(6.6± 1.0)× 10−4 , Re(ε′/ε) = 1.38(5.15)(4.59)× 10−4 ; (1.1)

however, the experimental average measured by the NA48 [8] and KTeV [9, 10] is Re(ε′/ε) =

(16.6± 2.3)× 10−4. As a result, the lattice calculations indicate that the SM prediction is

2.1σ below the experimental value.

Using a large Nc dual QCD (DQCD) approach [11, 12], which was developed by [14–

18], the calculations of Re(ε′/ε) in the QCD-based approach support the RBC-UKQCD

results, and the results are given as:

Re(ε′/ε)SM =

{
(8.6± 3.2)× 10−4 ; (B

(1/2)
6 = B

(3/2)
8 = 1) ;

(6.0± 2.4)× 10−4 ; (B
(1/2)
6 = B

(3/2)
8 = 0.76) ,

(1.2)

where B
(1/2)
6 and B

(3/2)
8 denote the non-perturbative parameters of the gluon (Q6) and EW

(Q8) penguin operators, respectively. Regardless of what the correct values of B
1/2
6 and

B
3/2
8 are, the predicted Re(ε′/ε)SM is also over 2σ below the data. Although the uncertainty

of B
(1/2)
6 is still large, it is found that both approaches obtain consistent values in B

(1/2)
6

and B
(3/2)
8 as [11]:

B
(1/2)
6 (mc) = 0.57± 0.19 , B

(3/2)
8 (mc) = 0.76± 0.05 (RBC-UKQCD) ,

B
(1/2)
6 ≤ B(3/2) < 1 , B

(3/2)
8 (mc) = 0.80± 0.1 , (large Nc) . (1.3)

If the RBC-UKQCD results of B
(1/2)
6 (mc) = 0.57± 0.19 and B

(3/2)
8 (mc) = 0.76± 0.05 are

used, the Kaon direct CP violation becomes [12]:

Re(ε′/ε)SM = (1.9± 4.5)× 10−4 , (1.4)

where the DQCD’s value is even closer to the RBC-UKQCD result shown in eq. (1.1).

Moreover, using the lattice QCD results, the authors in [13] also obtained a consistent

result with Re(ε′/ε) = (1.06± 5.07)× 10−4 in the next-leading order (NLO) corrections.

Since the DQCD result arises from the short-distance (SD) four-fermion operators, it

is of interest to find other mechanisms that can complement the insufficient ε′/ε, in the

SM, such as the long-distance (LD) final state interactions (FSIs). However, the conclusion

as to the LD contribution is still uncertain, where the authors in [19] obtained a negative

conclusion, but the authors in [21] obtained Re(ε′/ε) = (15±7)×10−4 when the SD and LD

effects were included. On the other hand, in spite of the large uncertainty of the current
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lattice calculations, if we take the RBC-UKQCD’s central value as the tendency of the SM,

the alternative source to enhance ε′/ε can be from a new physics effect [22–44].

To explore new physics contributions to the ε′/ε and the Kaon indirect CP violation εK ,

in this work, we investigate the diquark effects, where the diquark is a colored scalar and

can originate from grand unified theories (GUTs) [45, 46]. Even without GUTs, basically, a

diquark is allowed in the SU(3)C×SU(2)L×U(1)Y gauge symmetry, and its representation

in the symmetry group depends on the coupled quark-representation [47]. In this study,

we concentrate on the color triplet and SU(2)L singlet diquark.

Although the diquark effects on εK and ε′/ε were investigated in [46], some new diquark

characteristics are found in this study, which can be summarized as follows: (a) the SU(2)L
singlet diquark can couple to the left-handed doublet and right-handed singlet quarks

simultaneously. (b) When the sizable top-quark mass is taken into account, the ∆S = 2

box diagrams with the intermediates of W -boson (including the charged Goldstone boson)

and diquark become significant, in which the effects were ignored in [46]. (c) New scalar-

scalar and tensor-tensor operators for ∆S = 1 are induced at the tree level; due to large

mixings between the scalar and tensor operators, the ε′/ε is dominated by the isospin

I = 2 amplitude, which is produced by the tensor-tensor operators [42]. (d) QCD and EW

penguin diagrams are included in ε′/ε, and with the renormalization group (RG) effect,

it is found that the I = 2 amplitude, induced by the Q8 operator, become dominant.

(e) Chromomagnetic operators (CMOs) generated from the gluon-penguin diagrams are

considered based on the matrix elements obtained in [37].

Although the involved new free parameters generally can carry CP phases, in this

work, we assume that the origin of the CP violation is still from the Kobayashi-Maskawa

(KM) phase of the CKM matrix. This assumption can be removed if necessary. Hence,

it can be concluded that ε′/ε can be significantly enhanced by the diquark effects when

the bound from εK is satisfied. In addition, although rare B-meson processes, such as

B0
q − B̄0

q (q = d, s) mixings, involve different parameters, e.g. gR,L33 , which are irrelevant to

the current study, for the purpose of comparison, we briefly discuss the B-meson constraints

in this study.

The paper is organized as follows: in section 2, we introduce the diquark Yukawa

couplings to the SM quarks and the gauge couplings to the gluons, γ, and Z-boson. In

section 3, we derive the diquark-induced effective Hamiltonian for the ∆S = 1 and ∆S = 2

processes, where the used three-point vertex functions of d→ sg(∗), γ(∗), Z∗ are derived in

the appendix. The hadronic effects for the K → ππ decays and the K0 − K̄0 transition

are shown in section 4. We also summarize the formulations of ε′/ε and εK from various

operators in this section. The constraints from ∆S = 2 are shown in section 5. The detailed

numerical analysis on ε′/ε based on various different mechanisms is given in section 6. A

summary is given in section 7.

2 Color-triplet diquark Yukawa and gauge couplings

In this section, we introduce the diquark Yukawa couplings and gauge couplings to the

gauge bosons, including the gluons, photon, and Z-boson. Based on SU(3)C gauge invari-
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ance, it can be seen that the involved diquarks from the Yukawa sector can be color-triplet

and -sextet due to 3 × 3 = 3̄ + 6. From the SU(2)L gauge invariance, the diquark candi-

dates can be the SU(2)L singlet and triplet [46]. In order to provide a detailed study on

the diquark effects, we thus focus on the SU(2)L singlet and color-triplet diquark [46].

It can be found that the possible diquark candidates in the SU(3)C × SU(2)L×U(1)Y
gauge group are (3̄, 1, 1/3) and (3̄, 1,−2/3). For (3̄, 1,−2/3), the Yukawa couplings to the

quarks are:

fijd
T
i CPRH†3dj + H.c. , (2.1)

where C = iγ2γ0 is the charge conjugation; PR(L) = (1 ± γ5)/2, and fij = −fji due to

dTj C PRH†3d
T
i = −dTi C PRH†3dj . As a result, the ∆S = 2 process and ε′/ε both arise

from one-loop effects. Thus, it may not be possible to explain the ε′/ε data when the

parameters are constrained by εexp
K . In addition, since the involved quarks inside the loop

are the down-type quarks, because of a lack of heavy quark enhancement, e.g. m2
t /m

2
H3

,

the effects are expected to be relatively small. Hence, in this work, we devote ourselves to

the H3(3̄, 1, 1/3) contributions to the ∆S = 1 and ∆S = 2 processes.

2.1 Yukawa couplings

The gauge invariant Yukawa couplings of H3(3̄, 1, 1/3) to the quarks in the SM gauge

symmetry can be written as:

− LY = fijQ
T
i CεεεH

†
3PLQj + gRiju

T
i CH†3PRdj + H.c. , (2.2)

where the indices i, j denote the flavor indices; εεε is a 2×2 antisymmetric matrix with εεε12 =

−εεε21 = 1, and the color-triplet diquark representation in SU(3)C can be expressed as H3 =

KaHa
3 with (Ka)ij = 1/

√
2εaij . For the complex conjugate state, we use (K̄a)ij = (Ka)ji,

i.e. H†3 = K̄aH
∗
3a; thus, we obtain Tr(KaK̄b) = δab and (Ka)βα(K̄a)ρσ = 1/2(δβσδαρ − δ

β
ρ δασ ).

The explicit matrix forms of Ka (a = 1, 2, 3) can be found in [48]. If we decompose the

SU(2)L quark doublets, eq. (2.2) can be expressed as:

−LY = uTi CK̄a

(
gLijPL + gRijPR

)
djH

∗
3a + H.c. , (2.3)

where the H3 Yukawa couplings to the left-handed quarks, defined by gLij ≡ fij + fji, are

symmetric in flavor space.

2.2 Gauge couplings

In order to calculate the gluon-penguin diagrams for the d → sg(∗) transition, we need

to know the gluon couplings to the diquark. Since the diquark state carries two color

indices, the associated gauge covariant derivative is different from that of the fundamental

representation of SU(3)C and can be written as:

DµH3 ≡ ∂µH3 + igsAµH3 + igsH3A
T
µ , (2.4)

where Aµ = T aAaµ denotes the multiplication of the SU(3) generators and the gluon fields.

From the SU(3)C gauge invariant kinetic term of H3, the gluon couplings to the diquark-

pair can be obtained as:

LAH3H3 = igs(t
A)ba

[
(∂µH∗3a)H

b
3A

A
µ −H∗3a(∂µHb

3)AAµ

]
, (2.5)

with (tA)ba = 2Tr(K̄aT
AKb) = −(TA)ba/2.
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Since H3 is an SU(2)L singlet, the H3 hypercharge is equal to its electric charge.

The photon and Z-boson gauge couplings to the diquark can be obtained from the U(1)Y
gauge invariant kinetic term of H3, and the associated U(1)Y covariant derivative of H3 can

written as DµH3 = (∂µ+ig′YH3Bµ)H3, where g′ is the U(1)Y gauge coupling constant; YH3

is the H3 hypercharge, and Bµ is the U(1)Y gauge field. Using Bµ = cos θWAµ− sin θWZµ,

the EW gauge couplings to the diquark can then be found as:

LV H3H3 = ieH3e(∂µH
∗
3aH

a
3 −H∗3a∂µHa

3 )Aµ

− igeH3 sin2 θW
cos θW

(∂µH
∗
3aH

a
3 −H∗3a∂µHa

3 )Zµ , (2.6)

where θW is the Weinberg’s angle; e = g′ cos θW = g sin θW and g′/g = tan θW are applied;

g is the SU(2)L gauge coupling constant, and eH3 = YH3 = 1/3 is the Ha
3 electric charge.

3 Diquark-induced effective Hamiltonian for the ∆S = 1 and ∆S = 2

processes

In the diquark model, the K → ππ decays can be produced through the tree, QCD penguin,

and EW penguin diagrams. In this section, we discuss in detail the effective Hamiltonian

for the ∆S = 1 processes induced by each type of Feynman diagram. For the ∆S = 2

process, the involved effects include W–H3-mediated box diagrams and pure H3-mediated

box diagrams. The ∆S = 2 process with a massless quark approximation in the box

diagrams was studied in [46]. In our study, the diquark can couple to the left- and right-

handed quarks at the same time. It will be found that the dominant contributions to

the ∆S = 2 process indeed arise from gR∗32 g
R
31 and (gR∗32 g

R
31)(gL∗32 g

L
31), where the results are

associated with m2
t /m

2
H3

. That is, the light quark contributions have no effects on the

corresponding Feynman diagrams. Moreover, from our analysis, the H3 Yukawa couplings

to the light quarks can be constrained by the tree ∆S = 1 processes, where the constraint

from the tree level is stronger than that from the loop level. In order to show the significant

effects from the massive top-quark in the W–H3 and H3–H3 box diagrams, for the penguin

and box diagrams, we only consider the top-quark loop contributions and assume that the

light-quark loop effects can be neglected.

3.1 Effective Hamiltonian for K → ππ

3.1.1 Tree diagram

The Feynman diagram of tree-level diquark contribution to the K → ππ decays is shown

in figure 1. Using the Yukawa couplings in eq. (2.3), the four-fermion interactions can be

written as:

Htree = −
(K̄a)αβ(Ka)ρσ

m2
H3

[
uCα(gL11PL + gR11PR)dβ s̄ρ(g

L∗
12 PR + gR∗12 PL)uCσ

]
, (3.1)

where the charge-conjugation state of a fermion is defined by fC = Cγ0f
∗ = Cf̄T . We can

express the Htree in terms of fermion states using the Fierz and C-parity transformations,

– 5 –
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dβ uα

sρ uσ

H3

Figure 1. Tree diagram for the K → ππ decays mediated by color-triplet diquark H3.

which are:

f̄3Pχf2 f̄1Pχf4 = −1

2
(f̄2Pχf1)(f̄3Pχf4)− 1

8
(f̄2σµνPχf1)(f̄3σ

µνPχf4) ,

fCPχf
C = f̄Pχf ,

fCσµνPχf
C = −f̄σµνPχf , (3.2)

with Pχ = PR(L). As a result, eq. (3.1) can be formulated as:

Htree = −GFV
∗
tsVtd√
2

yW
2

[
ζLL21 (Q1 −Q2) + ζRR21

(
Q′1 −Q′2

)
− ζLR21

(
4
(
QSLL,u1 +QSLL,u2

)
+QSLL,u3 +QSLL,u4

)
−ζRL21

(
4
(
Q′SLL,u1 +Q′SLL,u2

)
+Q′SLL,u3 +Q′SLL,u4

)]
, (3.3)

where GF is the Fermi constant; Vij denotes the CKM matrix element; yW = m2
W /m

2
H3

,

and the parameters ζχ21 are defined as:

ζ
LL(RR)
21 =

g
L(R)
11 g

L(R)∗
12

g2V ∗tsVtd
, ζ

LR(RL)
21 =

g
L(R)
11 g

R(L)∗
12

g2V ∗tsVtd
. (3.4)

Following the notations shown in [42, 55], the effective operators are defined as:

Q1 = (s̄d)V−A(ūu)V−A , Q2 = (s̄u)V−A(ūd)V−A ,

QSLL,u1 = (s̄αPLu
β)(ūβPLd

α) , QSLL,u2 = (s̄αPLd
α)(ūβPLu

β) ,

QSLL,u3 = −(s̄ασµνPLu
β)(ūβσ

µνPLd
α) , QSLL,u4 = −(s̄ασµνPLd

α)(ūβσ
µνPLu

β) , (3.5)

where (f̄f ′)V−A = f̄γµ(1 − γ5)f ′, and the prime operators can be obtained from the un-

primed operators using PL(R) instead of PR(L). It can be seen that the current-current

interactions induced at the tree-level involve vector-, scalar-, and tensor-type currents.

Although the tensor-tensor operator contributions to the K → ππ decays vanish at the

factorization scale, since a large mixing between the scalar-scalar and tensor-tensor oper-

ators is induced at one-loop QCD corrections [42], the tensor-type interaction can have a

large contribution to ε′/ε.

– 6 –
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dβ tα tσ sρ

H3

g

dβ tα sρ

H3

g

(a) (b)

Figure 2. Gluon-penguin diagrams for the d → sg(∗) transition mediated by color-triplet di-

quark H3.

3.1.2 QCD penguins

In addition to the tree-level diagrams, the K → ππ decays in the diquark model can arise

from the gluon-penguin diagrams, as shown in figure 2. It is known that the loop diagram

usually leads to an ultraviolet divergence, so to obtain the finite coupling for the d→ sg(∗)

vertex, we have to renormalize the three-point vertex function by including the self-energy

diagram for the d→ s flavor changing transition. The detailed discussions for renormalizing

the d→ sg(∗) vertex are given in the appendix; here, we simply use the obtained results of

figure 2(a) and 2(b) to produce the effective Hamiltonian for the K → ππ decays.

Because the gluon momentum k satisfies k2 � m2
t ,m

2
H3

, we can expand the three-

point functions in terms of k2/m2
H3

and keep the leading k2/m2
H3

terms. Thus, based

on the renormalized vertex obtained in eq. (A.16), the penguin-induced interactions for

d→ sg∗ can be expressed as:

Hd→sg∗ =
gs k

2

(4π)2m2
H3

IG1(yt)s̄γ
µ
(
gL31g

L∗
32 PL + gR31g

R∗
32 PR

)
T adAaµ , (3.6)

where IG1(yt) with yt = m2
t /m

2
H3

denotes the loop integral function and can be found

from eq. (A.17). Accordingly, the effective Hamiltonian for the d → sq̄q decays from the

gluon-penguin can be obtained as:

HQCD = −αsIG1(yt)

32πm2
H3

[
gL∗32 g

L
31

(
Q4 +Q6 −

1

3
Q3 −

1

3
Q5

)
+gR∗32 g

R
31

(
Q′4 +Q′6 −

1

3
Q′3 −

1

3
Q′5

)]
, (3.7)

where we have used:

(T a)αβ(T a)ρσ =
1

2

(
δασ δ

ρ
β −

1

3
δαβ δ

ρ
σ

)
; (3.8)

the unprimed operators at the mH3 scale are the same as those in the SM and can be

found as:

Q3 = (s̄d)V−A
∑
q

(q̄q)V−A , Q4 = (s̄αd
β)V−A

∑
q

(q̄αq
β)V−A ,

Q5 = (s̄d)V−A
∑
q

(q̄q)V+A , Q6 = (s̄αd
β)V−A

∑
q

(q̄αq
β)V+A , (3.9)

– 7 –
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dβ tα tσ sρ

H3

γ, Z

dβ tα sρ

H3

γ, Z

(a) (b)

Figure 3. Feynman diagrams for the d→ s(γ(∗) , Z∗) processes.

and the prime operators can be obtained from the unprimed ones via the exchange of PL(R)

and PR(L).

3.1.3 EW penguins

The d → sqq̄ decays can be also induced from the EW penguin diagrams through the

mediation of the off-shell photon and Z-boson, for which the Feynman diagrams are shown

in figure 3. According to eqs. (A.18) and (A.22), the loop-induced interactions for d →
s(γ∗, Z∗) can be written as:

Hs→dγ∗,Z∗ =
ek2

3(4π)2m2
H3

Iγ1(yt)s̄γ
µ
(
gL31g

L∗
32 PL + gR31g

R∗
32 PR

)
dAµ ,

+
g

2 cos θW (4π)2
s̄γµIZ(yt)

(
gL31g

L∗
32 PL − gR31g

R∗
32 PR

)
dZµ , (3.10)

where Iγ1 and IZ are the associated loop functions and can be found in eqs. (A.19)

and (A.23). Based on eq. (3.10), the effective Hamiltonian for the d → sqq̄ decays can

be written as:

HEW = −GFV
∗
tsVtd√
2

[
CZ3 Q3 + C ′Z5 Q′5 +

10∑
i=7

(
CγZi Qi + C ′γZi Q′i

)]
, (3.11)

where the effective operators Q7–Q10 are the same as those in the SM and are expressed as:

Q7 =
3

2
(s̄d)V−A

∑
q

eq(q̄q)V+A , Q8 =
3

2
(s̄αd

β)V−A
∑
q

eq(q̄βq
α)V+A ,

Q9 =
3

2
(s̄d)V−A

∑
q

eq(q̄q)V−A , Q10 =
3

2
(s̄αd

β)V−A
∑
q

eq(q̄βq
α)V−A , (3.12)

and eq is the q-quark electric charge. The prime operators Q′7–Q′10 can be obtained from

the unprimed operators through the exchange of PL(R) and PR(L). The effective Wilson

coefficients C
(′)Z
i and C

(′)γZ
i are given as:

CZ3 =
α

6π sin2 θW

IZ(yt)h
L
21

4
, C ′Z5 = − α

6π sin2 θW

IZ(yt)h
R
21

4
,

CγZ7 =
4α

6π

IZ(yt)h
L
21

4
+

α

6π

2yW Iγ1(yt)h
L
21

3
, CγZ9 = CγZ7 − 4CZ3 ,

C ′γZ9 = −4α

6π

IZ(yt)h
R
21

4
+

α

6π

2yW Iγ1(yt)h
R
21

3
, C ′γZ7 = C ′γZ9 − 4C ′Z5 , (3.13)
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where α = e2/4π; yW = m2
W /m

2
H3

; C
(′)γZ
8 = C

(′)γZ
10 = 0, and the hL,R21 parameters are

defined by:

hL21 =
gL∗32 g

L
31

g2V ∗tsVtd
, hR21 =

gR∗32 g
R
31

g2V ∗tsVtd
. (3.14)

In the numerical analysis, we use the hL,R21 parameters instead of gL,R32,31 to study the diquark

contributions to ε′/ε.

3.1.4 Combination of the QCD and EW penguins and CMOs

After respectively obtaining the QCD and EW penguin contributions to the d → sqq̄

decays, the effective Hamiltonian for the ∆S = 1 processes in the diquark model can be

combined as:

H∆S=1 = −GFV
∗
tsVtd√
2

10∑
i=3

(
yH3
i Qi + y′H3

i Q′i

)
, (3.15)

where the effective Wilson coefficients yH3
i and y′H3

i are given as:

yH3
3 = − αs

12π
hL21yW IG1(yt)+C

Z
3 , yH3

4 =
αs
4π
hL21yW IG1(yt) ,

yH3
5 = − αs

12π
hL21yW IG1(yt) , yH3

6 = yH3
4 , yH3

7 = CγZ7 , yH3
9 = CγZ9 ,

y′H3
3 = − αs

12π
hR21yW IG1(yt) , y′H3

4 =
αs
4π
hR21yW IG1(yt) ,

y′H3
5 = y′H3

3 +C ′Z5 , y′H3
6 = y′H3

4 , y′H3
7 = C ′γZ7 , y′H3

9 = C ′γZ9 ,

(3.16)

and yH3
8,10 = y′H3

8,10 = 0. Hence, we will use eqs. (3.15) and (3.16) to study ε′/ε.

In addition to the QCD and EW penguins, the gluonic and electromagnetic dipole

operators can contribute to the K → ππ decays. Since the strong interactions dominate,

we only study the gluonic dipole contributions in this paper. Therefore, according to

eq. (A.16), the effective Hamiltonian for d → sg in the chromomagnetic dipole form can

be written as:

Hd→sg = −GFV
∗
tsVtd√
2

(
CH3

8GQ8G + C ′H3
8G Q′8G

)
, (3.17)

where the dimension-6 CMOs Q
(′)
8G are defined as:

Q8G =
gs

8π2
mss̄σ ·GPLd ,

Q′8G =
gs

8π2
mds̄σ ·GPRd , (3.18)

with σ ·G = σµνT aGaµν , and the associated Wilson coefficients are shown as:

CH3
8G =

mt

ms

gR∗32

gL∗32

hL21yW IG2(yt) , C
′H3
8G =

mt

md

gL∗32

gR∗32

hR21yW IG2(yt) . (3.19)

IG2 is the loop integral function and can be found from eq. (A.17). Because the involved

H3 Yukawa couplings in the induced CMOs are gR∗32 g
L
31 and gL∗32 g

R
31, from eq. (3.19), it is

– 9 –
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dβ

dCρ

W

Ha
3

tβ tρ′

sρ′

sCβ′
(a)

sCρ

dCβ

Hb
3

Ha
3

tα tα′

dCβ′

sCρ′
(b)

+ crossed

Figure 4. Box diagrams for ∆S = 2 in the diquark model, where the subscripts denote the color

indices.

seen that hL21 and hR21 are associated with the gR∗32 /g
L∗
32 and gL∗32 /g

R∗
32 factors, respectively.

Since gR32 and gL32 cannot be singly constrained, we can take gR32/g
L
32 ≈ 1 and simply use

hL,R21 as the independent variables to study the CMO effects. Recently, the K → ππ matrix

elements of the CMOs were calculated based on a DQCD approach [20], and the results

were consistent with the lattice QCD, as calculated by ETM collaboration [63]. Thus,

based on the Hamiltonian in eq. (3.17) and the K → ππ matrix elements obtained using

the DQCD approach, we can estimate the contribution of H3-induced CMO to ε′/ε.

3.2 ∆S = 2 in the diquark model

Next, we study the H3 contributions to the ∆S = 2 process, where the involved Feynman

diagrams are sketched in figure 4. It has been pointed out that the contribution of fig-

ure 4(a) vanishes in the chiral limit, i.e., mt ∼ 0 [46]. In the following analysis, in addition

to discussing the origin of the vanished result, we also demonstrate that the figure 4(a)

contribution is interesting and important when mt ≈ 165 GeV and mH3 ≈ O(1) TeV are

taken.

To study the diquark contributions to ∆S = 2, we follow the notations in [56] and

write the effective Hamiltonian as:

H∆S=2 =
G2
FVCKM

16π2
m2
W

∑
i

Cχi (µ)Qχi , (3.20)

where VCKM = (V ∗tsVtd)
2 is the product of the CKM matrix elements; Cχi (µ) are the Wilson

coefficients at the µ scale, and the relevant operators Qχi are given as:

QV LL1 = (s̄γµPLd)(s̄γµPLd) ,

QLR1 = (s̄γµPLd)(s̄γµPRd) ,

QLR2 = (s̄PLd)(s̄PRd) ,

QSLL1 = (s̄PLd)(s̄PLd) ,

QSLL2 = (s̄σµνPLd)(s̄σµνPLd). (3.21)

The operators QV RR1 and QSRRi can be obtained from QV LL1 and QSLLi by switching PR
and PL, respectively. We use the effective operators in eq. (3.21) to show the diquark

contributions.
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3.2.1 Box diagrams from one W -boson and one diquark

Based on the Yukawa couplings in eq. (2.3) and using the ’t Hooft-Feynman gauge, the

effective Hamiltonian for ∆S = 2 via the mediation of W and H3 shown in figure 4(a) can

be written as:

HWH3

∆S=2 = −g
2V ∗tsVtd

2
(K̄a)ρβ(Ka)ρ

′β′
∫

d4q

(2π)4

1

(q2 −m2
H2

3
)(q2 −m2

W )(q2 −m2
t )

2

×
[
gL31g

L∗
32

(
dCρ/qγµPLd

β
) (
s̄ρ′γ

µ
/qPRs

C
β′

)
+m2

t g
R
31g

R∗
32

(
dCργµPLd

β
) (
s̄ρ′γ

µPLs
C
β′

)]
,

(3.22)

It can be seen that because W -boson only couples to the left-handed quarks, without the

chirality flipping effect, e.g. mt, the first term depends on gL31g
L∗
32 . With the chirality flip,

which arises from the mass insertions in the two top-quark propagators, the second term

in eq. (3.22) is associated with the right-handed quark couplings m2
t g
R
31g

R∗
32 . Interestingly,

when γµγν = gµν − iσµν , (K̄a)ρβ(Ka)ρ
′β′ = (δβ

′
ρ δ

ρ′

β − δ
ρ′
ρ δ

β′

β )/2, and Fierz transformations

are applied, it can be found that the gL31g
L∗
32 term indeed vanishes. That is, in the limit of

mt ∼ 0, the box diagrams mediated by one W and one H3 have no contributions to the

∆S = 2 process.

In order to avoid gauge dependence, we have to include the charged-Goldstone-boson

(G) contributions, where the dominant Yukawa coupling is mtVtq/(
√

2mW ) t̄RqLG
+ (q =

d, s). Hence, in terms of the effective operators in eq. (3.21), the effective Hamiltonian

including W and G bosons is written as:

HWH3
∆S=2 =

G2
FVCKM

16π2
m2
W

(
CLRWH3,1Q

LR
1 + CLRWH3,2Q

LR
2

)
, (3.23)

where the effective Wilson coefficients are given as:

CLRWH3,1 = 4hR21

[
yW I

WH3
Box (yW , yt)− IGH3

Box (yW , yt)
]
, CLRWH3,2 = 2CLRWH3,1 ,

IWH3
Box (yW , yt) =

yt
(yt − yW )2

[
yt − yW
1− yt

+
yW ln yW
1− yW

+
(y2
t − yW ) ln yt
(1− yt)2

]
,

IGH3
Box (yW , yt) = − y2

t

2(1− yt)(yt − yW )
−

yty
2
W ln yW

2(1− yW )(yt − yW )2

− y2
t (yt − (2− yt)yW ) ln yt
2(1− yt)2(yt − yW )2

. (3.24)

With mH3 = 1.5 TeV, the loop functions can be IWH3
Box (yW , yt) ≈ 0.68 and IGH3(yW , yt) ≈

0.02. However, when yW factor is included, we obtain yW I
WH3
Box (yW , yt) ≈ 0.002, which is

smaller than IGH3
Box (yW , yt) by one order of magnitude; that is, IGH3

Box dominates.
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3.2.2 Box diagrams from the color-triplet diquark

The effective Hamiltonian through the mediation of the diquark H3 shown in figure 4(b)

can be written as:

−iHH3
∆S=2 =

KC

2

∫
d4q

(2π)4

NH3

(q2 −m2
W )2(q2 −m2

t )
2
, (3.25)

KC = (K̄b)βα(Kb)α
′ρ′(K̄a)β′α′(K

a)αρ =
1

4

(
δρβ′δ

ρ′

β + δρ
′

β′δ
ρ
β

)
,

NH3 = (s̄ρ/qχ
V
21d

β)(s̄ρ′/qχ
V
21d

β′) +m2
t (s̄ρχ

S
21d

β)(s̄ρ′χ
S
21d

β′) , (3.26)

where the crossed diagram by exchanging top-quark and H3 is included, and the definitions

of χV21 and χS21 can be found from eq. (A.4) in the appendix. Using the Fierz transformations

and the identities in eq. (3.2), we find that the effective operators in eq. (3.21) can be all

generated from the box diagrams, and eq. (3.25) can be formed as:

HH3
∆S=2 =

G2
FVCKM

16π2
m2
W

[
CV LLH3,1Q

V LL
1 + CV RRH3,1 Q

V RR
1 + CLRH3,1Q

LR
1 + CLRH3,2Q

LR
2

+CSLLH3,1Q
SLL
1 + CSLLH3,2Q

SLL
2 + CSRRH3,1Q

SRR
1 + CSRRH3,2Q

SRR
2

]
, (3.27)

where the associated effective Wilson coefficients at the µ = mH3 scale are expressed as:

CV LLH3,1 = 4yW I
H3
B1 (yt)

(
hL21

)2
, CV RRH3,1 = 4yW I

H3
B1 (yt)

(
hR21

)2
,

CLRH3,1 = 4yW

[
IH3
B1 (yt) + IH3

B2 (yt)
]
hL21h

R
21 , CLRH3,2 = −2CLRH3,1 ,

CSLLH3,1 = 2yW I
H3
B2 (yt)(h

L
21)2

(
gR∗32

gL∗32

)2

, CSLLH3,2 = −
CSLLH3,1

4
,

CSRRH3,1 = 2yW I
H3
B2 (yt)(h

R
21)2

(
gR∗32

gL∗32

)−2

, CSRRH3,2 = −
CSRRH3,1

4
. (3.28)

The loop functions IH3
B1 (yt) and IH3

B2 (yt) are defined as:

IH3
B1 (y) =

1 + y

2(1− y)2
+

y ln y

(1− y)3
,

IH3
B2 (y) = − 2y

(1− y)2
− y(1 + y) ln y

(1− y)3
. (3.29)

From the interactions in eq. (3.27), it can be seen that eight different operators are involved.

We will show that although the hadronic matrix elements of QV LL1 and QV RR1 are smaller

than those of QSLLi and QSRRi , because IH3
B2 (yt)� IH3

B1 (yt), their contributions indeed are

comparable. Since CSLL1,2 and CSRR1,2 explicitly depend on gR32/g
L
32, in order to use hL,R21 as

the free parameters, we will take gL32 = gR32 in the numerical analysis.
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4 ε′/ε and εK with hadronic effects in the diquark model

4.1 Matrix elements for the K → ππ decays

The decay amplitudes for K → ππ in terms of the isospin of ππ final state can be written

as [51]:

A(K+ → π+π0) =
3

2
A2e

iδ2 ,

A(K0 → π+π−) = A0e
iδ0 +

√
1

2
A2e

iδ2 ,

A(K0 → π0π0) = A0e
iδ0 −

√
2A2e

iδ2 (4.1)

where A0(2) denotes the isospin I = 0(2) amplitude; δ0(2) is the strong phase and δ0− δ2 =

(47.5±0.9)◦ [51]. The experimental data indicate that ReAexp
0 = 27.04(1)×10−8 GeV and

ReAexp
2 = 1.210(2)× 10−8 GeV [58]. Using the isospin amplitudes, the direct CP violating

parameter from new physics in K system can be estimated by [12]:

Re

(
ε′

ε

)
≈ − ω√

2|εK |

[
ImA0

ReA0
− ImA2

ReA2

]
, (4.2)

where ω = ReA2/ReA0 ≈ 1/22.35 denotes the ∆I = 1/2 rule. From eq. (4.2), it can

be seen that ε′/ε is related to the ratios of hadronic matrix elements. In the following,

we summarize the relevant matrix elements for the involved operators that are from the

tree-level and loop diagrams.

4.1.1 K → ππ hadronic matrix elements of the tree-level operators

Although only one Feynman diagram is used to generate the ∆S = 1 processes at the tree

level, from eq. (3.3), twelve effective operators are involved in the processes, such as Q1,2,

QSLL,u1–4 and their prime operators. The operators Q1,2 are the same as those generated via

the mediation of the W -boson in the SM; thus, the associated hadronic matrix elements can

be quoted from the SM calculations. However, the operators QSLL,ui are new operators and

do not mix with the SM operators; therefore, if Q1,2 and QSLL,u are taken as two different

classes of operators, and we can separately introduce their matrix elements. According to

the notations in [12], we thus define the new operators in terms of Q1 and Q2 as:

Q+ =
1

2
(Q2 +Q1) , Q− =

1

2
(Q2 −Q1) . (4.3)

The isospin amplitudes for the K → ππ decays in the SM can be given as [12]:

ReASM
0 ≈ GFV

∗
usVud√
2

z−〈Q−〉0 (1 + qT ) ,

ReASM
2 ≈ GFV

∗
usVud√
2

z+〈Q+〉2 , (4.4)

where qT = z+〈Q+〉0/(z−〈Q−〉0), z± = z2 ± z1, and the values of z1,2 at µ = mc are

z1 = −0.409 and z2 = 1.212 [12]. Because qT . 0.1, we will ignore its contribution in the
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new physics study. In addition, we assume ReASM
0(2) ≈ ReAexp

0(2) in the following analysis;

that is, 〈Q±〉 can be determined by the experimental data.

Using the results obtained in [42], the matrix elements arisen from the QSLL,ui operators

for the isospin I = 0 at the factorizable scale are given as:

〈QSLL,u1 〉0 =
r2(µ)

48
fπ , 〈QSLL,u2 〉0 = −r

2(µ)

24
fπ ,

〈QSLL,u3 〉0 = −r
2(µ)

4
fπ , 〈QSLL,u4 〉0 = 0 , (4.5)

with

r(µ) =
2m2

K

ms(µ) +md(µ)
. (4.6)

The matrix elements for the isospin I = 2 are given as 〈OSLL,ui 〉2 = 〈OSLL,ui 〉0/
√

2. Based

on the DQCD approach, the matrix elements at the nonfactorizable scale Λ can be expressed

as [42]:

〈QSLL,u1 (Λ)〉I =

(
1 +

4

3
Λ̂2

)
〈QSLL,u1 〉I + 4Λ̂2〈QSLL,u2 〉I ,

〈QSLL,u2 (Λ)〉I =

(
1 +

4

3
Λ̂2

)
〈QSLL,u2 〉I + 2Λ̂2〈QSLL,u1 〉I −

1

2
〈QSLL,u3 〉I ,

〈QSLL,u3 (Λ)〉I =

(
1 +

4

3
Λ̂2

)
〈QSLL,u3 〉I − 16Λ̂2〈QSLL,u2 〉I ,

〈QSLL,u4 (Λ)〉I = Λ̂2
(
−8〈QSLL,u1 〉I + 2〈QSLL,u3 〉I

)
, (4.7)

where Λ̂ is defined as:

Λ̂ =
Λ

4πfπ

(
1 +

m2
π

Λ2
χ

)
, Λ2

χ =
m2
K − fK/fπm2

π

fK/fπ − 1
≈ 1.15 GeV2 . (4.8)

The matrix elements at a higher scale, e.g. µ > 1 GeV, can be obtained through

〈QSLL,ui (µ)〉I =

(
δij −

αs
4π
γ̂

(0)
ij ln

µ

µ0

)
〈QSLL,ui (µ0)〉I , (4.9)

where the associated anomalous dimension matrix (ADM) in the basis of (QSLL,u1 , QSLL,u2 ,

QSLL,u3 , QSLL,u4 ) is given as [42]:

γ̂(0)SLL,u =


6/Nc −6 Nc/2− 1/Nc 1/2

0 −6Nc + 6/Nc 1 −1/Nc

−48/Nc + 24Nc 24 −2/Nc − 4Nc 6

48 −48/Nc 0 2Nc − 2/Nc

 , (4.10)

with Nc = 3. According to the results in [42], we show the numerical values of the QSLL,ui

matrix elements for the K → ππ decays at µ = mc = 1.3 GeV in table 1. We note that the
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ME 〈QSLL,u1 〉I 〈QSLL,u2 〉I 〈QSLL,u3 〉I 〈QSLL,u4 〉I
I = 0 −0.005 −0.044 −0.371 −0.214

I = 2 −0.003 −0.031 −0.262 −0.151

Table 1. Value of hadronic matrix elements (MEs) in units of GeV3 for K → ππ from the QSLL,ui

operators at the µ = 1.3 GeV.

matrix elements of the prime operators in terms of magnitude are the same as those of the

unprimed operators, but their signs are opposite.

To calculate the K → ππ decay amplitudes, in addition to the hadronic matrix ele-

ments, we also need the effective Wilson coefficients at µ = mc, which can be obtained

using RG running from the µ = mH3 scale. Therefore, for the operators Q
(′)SLL,u
i , the

necessary ADM at the LO QCD corrections can be found from eq. (4.10). Since Q1,2 mix

with the QCD and EW penguin operators, i.e. Q3–10, we basically need the 10× 10 ADM

matrix for the operators Q1–10. Since the mixture of Q1,2 and Q3–10 is dominated by the

QCD penguin operators, we adopt the 6 × 6 ADM for the new physics effects, and the

ADM is given as [54]:

γ̂
(0)
QCD =



6
Nc

6 0 0 0 0

6 −6
Nc

−2
3Nc

2
3

−2
3Nc

2
3

0 0 −22
3Nc

22
3

−4
3Nc

4
3

0 0 6− 2f
3Nc

−6
Nc

+ 2f
3
−2f
3Nc

2f
Nc

0 0 0 0 6
Nc

−6

0 0 −2f
3Nc

2f
3

−3f
3Nc

−6(−1+N2
c )

Nc
+ 2f

3


, (4.11)

with f being the number of flavors. If we take the operators Q1−6 as a basis, from

eq. (3.3), the corresponding Wilson coefficients can form a vector and be expressed as

CT = (1,−1, 0, 0, 0, 0)ζLL21 and C ′T = (1,−1, 0, 0, 0, 0)ζRR21 at the mH3 scale. Using RG

evolution with ADM in eq. (4.11) [54], the Wilson coefficients at the mc scale can be

obtained as:

CT (mc) ≈ (2.0, −2.0, 0, 0, 0, 0)ζLL21 , (4.12)

where we have ignored the effects that are less than or around ±0.1, and C ′T (mc) can be

obtained from CT (mc) using ζRR21 instead of ζLL21 .

Similarly, we can apply the same approach to the Q
(′)SLL,u
1−4 operators. From the

Hamiltonian in eq. (3.3), the Wilson coefficients at the µ = mH3 scale can be formed

as CSLL,u = (4, 4, 1, 1)ζLR21 and C ′SLL,u = (4, 4, 1, 1)ζRL21 . Using the ADM in eq. (4.10),

the Wilson coefficients at µ = mc can then be obtained as:

CSLL,u(mc) = (−5.44, 1.33, 2.41, 0.09)ζLR21 . (4.13)

We can obtain C ′SLL,u(mc) from CSLL,u(mc) using ζRL21 instead of ζLR21 .
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Following eqs. (3.3) and (4.2) and using the introduced matrix elements, Re(ε′/ε) from

the tree-level diquark contributions can be formulated as:(
ε′

ε

)H3

T

= T
(1/2)
H3

− T (3/2)
H3

,

T
(1/2)
H3

=
2.0r1yW
z−

Im
[
λt
(
ζRR21 − ζLL21

)]
− 0.94r2yW

2 ReA0
Im
[
λt
(
ζRL21 − ζLR21

)]
,

T
(3/2)
H3

= −0.67r2yW
2 ReA2

Im
[
λt
(
ζRL21 − ζLR21

)]
, (4.14)

where the values of matrix elements in table 1 have been applied; the qT related effect is

neglected; λt ≡ V ∗tsVtd,

r1 =
ω√

2|εK |V ∗usVud
≈ 64.76 , r2 =

GFω

2|εK |
≈ 1.17× 10−4 GeV−2 , (4.15)

and ζχ21 are determined at the µ = mH3 scale. Due to Htree ⊃ Q(′)
1 −Q

(′)
2 and 〈Q1〉2 = 〈Q2〉2,

T
(3/2)
H3

can only arise from the QSLL,ui operators.

4.1.2 K → ππ matrix elements of the QCD and EW penguin operators

The operators induced from the QCD and EW penguins for ∆S = 1 in the diquark model

are similar to those generated in the left-right symmetric model [57], in which the SM

operators are included; therefore, we can directly use the SM results for the K → ππ

decays. Using the Fierz transformations, it can be found that the operators Q4,9,10 can be

expressed as:

Q4 = 2Q− +Q3 , Q9 =
3

2
(Q+ −Q−)− 1

2
Q3 ,

Q10 =
1

2
(3Q+ +Q−)− 1

2
Q3 . (4.16)

Thus, the associated matrix elements can be written as:

〈Q4〉0 = 2〈Q−〉0 + 〈Q3〉0 , 〈Q9〉0 =
3

2
(〈Q+〉0 − 〈Q−〉0)− 1

2
〈Q3〉0 ,

〈Q10〉0 =
1

2
(3〈Q+〉0 + 〈Q−〉0)− 1

2
〈Q3〉0 , 〈Q9〉2 = 〈Q10〉2 =

3

2
〈Q+〉2 , (4.17)

where 〈Q−〉2 = 〈Q3〉2 = 0 are applied. From a native factorization, it can be found that

〈Q3〉 indeed is smaller than 〈Q4〉 by a factor of Nc. If we drop the 〈Q3〉0 contributions,

the matrix elements in eq. (4.17) can be further simplified and are only related to 〈Q±〉.
It can be found that the same property can be also applied to 〈Q5〉 and 〈Q7〉; therefore, in

the numerical estimates, we take the approximation by neglecting the 〈Q3,5,7〉 effects.
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The matrix elements for the Q6,8 operators can be parametrized as [12]:

〈Q6(µ)〉0 = −(fK − fπ)r2(µ)B
(1/2)
6 ,

〈Q8(µ)〉0 =
fπ
2
r2(µ)B

(1/2)
8 ,

〈Q8(µ)〉2 =

√
2fπ
4

r2(µ)B
(3/2)
8 , (4.18)

where B
(1/2)
6,8 and B

(3/2)
8 are the nonperturbative parameters. We note that although the

Q
(′)
8,10 operators do not appear in the Hamiltonian at the µ = mH3 scale, they can be

induced through RG evolution. Moreover, the matrix elements of the prime operators can

be obtained by reversing the signs of the unprimed operators.

In sum, from eq. (4.2), we can formulate Re(ε′/ε), which arises from the penguin

diagrams in the diquark model, as:(
ε′

ε

)H3

P

= P
(1/2)
H3

− P (3/2)
H3

,

P
(1/2)
H3

= a
(1/2)
H30 + a

(1/2)
H36 B

(1/2)
6 ,

P
(3/2)
H3

= a
(3/2)
H30 + a

(3/2)
H38 B

(3/2)
8 , (4.19)

where a
(1/2)
i and a

(3/2)
i are given by:

a
(1/2)
H30 ≈

r1

2z−
Im
[
λt

(
4∆yH3

4 (mc)− 3∆yH3
9 (mc) + ∆yH3

10 (mc)
)]

+
r2〈Q8〉0
ReA0

Im
[
λt∆y

H3
8 (mc)

]
,

a
(1/2)
H36 ≈

r2〈Q6〉0
B

(1/2)
6 ReA0

Im
[
λt∆y

H3
6 (mc)

]
,

a
(3/2)
H30 ≈

3r1

2z+
Im
[
λt

(
∆yH3

9 (mc) + ∆yH3
10 (mc)

)]
,

a
(3/2)
H38 ≈

r2〈Q8〉2
B

(3/2)
8 ReA2

Im
[
λt∆y

H3
8 (mc)

]
, (4.20)

with ∆yH3
i (mc) = yH3

i (mc)−y′H3
i (mc). Using the leading order 10×10 ADM for the Q1−10

operators [54], the effective Wilson coefficients appearing in eq. (4.20) at µ = mc can be

obtained as:

∆yH3
4 (mc) ≈ −0.70δyH3

3 + 1.09δyH3
4 − 0.10δyH3

5 − 0.56δyH3
6 ,

∆yH3
6 (mc) ≈ −0.10δyH3

3 − 0.47δyH3
4 + 0.93δyH3

5 + 3.18δyH3
6 + 0.12δyH3

9 ,

∆yH3
8 (mc) ≈ 1.07δyH3

7 ,

∆yH3
9 (mc) ≈ 1.36δyH3

9 ,

∆yH3
10 (mc) ≈ −0.65δyH3

9 , (4.21)
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where we have dropped the operator mixing effects that are smaller than 10%, and δyH3
i =

yH3
i −y

′H3
i denote the quantities at the µ = mH3 scale. From eq. (4.20), it can be seen that

the involved hadronic effects explicitly shown in Re(ε′/ε)PH3
are only 〈Q6〉 and 〈Q8〉.

4.1.3 K → ππ matrix element of the CMOs

To estimate the K → ππ hadronic matrix element via the operators Q
(′)
8G, we take the

results obtained by a DQCD approach as [20]:

〈ππ|C−8GQ8G(−)|K〉 ≈ C−8G(µ)
9

11

m2
π

Λ2
χ

m2
Kfπ

ms(µ) +md(µ)
, (4.22)

where Q8G(−) ≡ gs/(16π2)s̄σµνT aγ5dG
a
µν , C−8G(µ) is the effective Wilson coefficient with

mass dimension (−1) at the µ scale, and Λχ can be found in eq. (4.8). Thus, the Kaon

direct CP violation arisen from CMOs can be estimated as:

Re

(
ε′

ε

)
8G

≈ − ω√
2|εK |

(ImA0)8G

ReA0

≈ −(4.1× 10−3 GeV2)
ω√

2|εK |ReA0

Im(C−8G(mc)) . (4.23)

With |εK | = 2.228× 10−3 and ReA0 = 27.04× 10−8 GeV, eq. (4.23) can be expressed as:

Re

(
ε′

ε

)
8G

≈ −(1.74× 105 GeV)× Im(C−8G(mc)) . (4.24)

According to the Hamiltonian shown in eq. (3.17), we can write the CH3−
8G in the

diquark model at µ = mc as:

CH3−
8G (mc) = −GF√

2
V ∗tsVtdη8G

(
mdC

′H3
8G −msC

H3
8G

)
≈ −GF√

2
V ∗tsVtdmtyW IG2(yt)η8G

(
hR21 − hL21

)
, (4.25)

where the definitions of C
(′)
8G shown in eq. (3.19) are applied to the second line; gR32/g

L
32 ≈ 1

is used, and η8G ≈ 0.418 is the RG evolution factor from mH3 = 1.5 TeV to mc = 1.3 GeV.

For the study of the new physics effects, we only consider the leading-order QCD ADM for

the operators Q1–6, O7γ , and Q8G [54].

4.2 ∆S = 2 in the diquark model

Using the effective Hamiltonian in eq. (3.20), the hadronic matrix element of K0–K̄0 mixing

is written as:

M∗12 = 〈K̄0|H∆S=2|K0〉 . (4.26)

Accordingly, the K-meson mixing parameter and indirect CP violating parameter can be

obtained as:

∆MK ≈ 2 ReM12 , εK ≈
eiπ/4√

2∆M exp
K

ImM12 , (4.27)
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where the small contribution of ImA0/ReA0 from K → ππ in εK has been neglected.

Since ∆MK is measured well, we directly take the ∆MK data for the denominator of εK .

It has been found that the short-distance SM result on ∆MK can explain the data by

∼ 70%, and the long-distance effects may contribute another 20–30% with a large degree

of uncertainty [53]. Conservatively, the new physics can contribute 20% of the experimental

value.

To investigate the new physics contributions to ∆MK and εK , we use the formalism

obtained in [56], which is given as:

〈K̄0|H∆S=2|K0〉 =
G2
FVCKM

48π2
m2
WmKf

2
K

{
P V LL1

[
CV LL1 (µt) + CV RR1 (µt)

]
+ PLR1 CLR1 (µt) + PLR2 CLR2 (µt) + PSLL1

[
CSLL1 (µt) + CSRR1 (µt)

]
+PSLL2

[
CSLL2 (µt) + CSRR2 (µt)

]}
, (4.28)

where the Wilson coefficients Cχi are taken at the µt = mt scale, and the values of Pχi at

µ = 2 GeV are shown as:

P V LL1 ≈ 0.48 , PLR1 ≈ −36.1 , PLR2 ≈ 59.3 ,

PSLL1 ≈ −18.1 , PSLL2 ≈ 32.2 . (4.29)

Since the Wilson coefficients CχH3,i
in the diquark model are obtained at µ = mH3 , due

to mt < mH3 , we have to use the RG evolution to obtain CχH3,i
(µt). For comparison, we

separate the discussions of figure 4(a) and 4(b) in the following analysis.

4.2.1 Box diagrams from one W and one H3

According to eq. (3.23), the related operators arisen from figure 4(a) are QLR1 and QLR2 ,

and the associated Wilson coefficients are CLRH3,1
and CLRH3,2

. To obtain the CLRH3,1(2) at the

µt scale, we adopt the leading QCD corrections, where the one-loop ADM for (QLR1 , QLR2 )

is given as [56]:

γ̂(0)LR =

(
2 12

0 −16

)
. (4.30)

Using the ADM, we can obtain the CLRH3,i
(µt) as:

CLRWH3,1(µt) = η3/21CLRWH3,1 ,

CLRWH3,2(µt) =
2

3

(
η3/21 − η−24/21

)
CLRWH3,1 + η−24/21CLRWH3,2 , (4.31)

with η = α
(6)
s (mH3)/α

(6)
s (mt). Using the result of CLRWH3,2

= 2CLRWH3,1
, the K0− K̄0 mixing

matrix element is expressed as:

〈K̄0|HWH3
∆S=2|K

0〉 =
G2
FVCKM

48π2
m2
WmKf

2
K

(
η3/21PLR1

+
2

3

(
η3/21 + 2η−24/21

)
PLR2

)
CLRWH3,1 . (4.32)
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4.2.2 Box diagrams from the mediation of H3

The situation for figure 4(b) is more complicated. From eq. (3.27), it can be seen that

〈K̄0|HH3
∆S=2|K0〉 involve five hadronic effects, i.e., P V LL1 , PLR1,2 , and PSLL1,2 . Although the

magnitude of P V LL1 is much smaller than that of |PSLL1(2) |, when including the loop functions

with IB2 � IB1, IB1P
V LL
1 and IB2P

SLL
1(2) become comparable. In addition, although the

magnitudes of PLR1,2 are larger than the others and the associated loop function is IB1,

because the Yukawa couplings are hL21h
R
21, either of them might be small. Hence, we should

retain all contributions at the moment.

To estimate the Wilson coefficients at µt, in addition to the ADM shown in eq. (4.30),

we need the ADMs for QV LL1 and QSLL1,2 , where they are given as [56]:

γ̂(0)V LL = 4 , γ̂(0)SLL =

(
−10 1/6

−40 34/3

)
. (4.33)

Using CLRH3,2
= −2CLRH3,1

and CSLLH3,2
= −CSLLH3,1

/4, the Wilson coefficients at µt can then be

expressed as:

CSLLH3,1(µt) = η6/21CV LLH3,1 ,

CLRH3,1(µt) = η3/21CLRH3,1 ,

CLRH3,2(µt) =
2

3

(
η3/21 − 4η−24/21

)
CLRH3,1 ,

CSLLH3,1(µt) =

(
ηr2 − ηr1

2
√

241
+

1

2
(ηr2 + ηr1)

)
CSLLH3,1 ,

CSLLH3,2(µt) =

(
15 (ηr2 − ηr1)

8
√

241
− 1

8
(ηr2 + ηr1)

)
CSLLH3,1 , (4.34)

with r1 = (
√

241 + 1)/21 and r2 = −(
√

241 − 1)/21. Since QCD does not distinguish

chirality, eq. (4.34) can be directly applied to CV RR1 (µt) and CSRRi (µt).

5 Constraints from the ∆S = 2 process

5.1 Experimental and theoretical inputs

For the numerical analysis, in addition to the values of the theoretical parameters, in this

section, we introduce the experimental data used to bound the free parameters. The data

of the ∆S = 2 process are given as [58]:

∆M exp
K = (3.482± 0.006)× 10−15 GeV , εexp

K = (2.228± 0.011)× 10−3 . (5.1)

Since εK in the SM fits well with the experimental data [54], we use∣∣εNP
K

∣∣ ≤ 0.4× 10−3 (5.2)

to bound the new physics effects [25]. The uncertainties of the NLO [59] and NNLO [60]

QCD corrections to the short-distance contribution to ∆MK in the SM are somewhat large,
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so we take the combination of the short-distance (SD) and long-distance (LD) effects as

∆MSM
K (SD+LD) = (0.80±0.10)∆M exp

K [53]. Thus, the new physics contribution to ∆MK

is required to satisfy:

|∆MNP
K | ≤ 0.2 ∆M exp

K . (5.3)

With the Wolfenstein parametrization [61], the CKM matrix elements can be taken as:

Vud ≈ Vcs ≈ 1− λ2/2 , Vus ≈ −Vcd ≈ λ = 0.225 , Vub ≈ 0.0038e−iφ3 , φ3 = 73.5◦ ,

Vcb ≈ −Vts ≈ 0.0407 , Vtd ≈ 0.0088e−iφ2 , φ2 ≈ 23.4◦ , (5.4)

where Vcb and Vub are taken from the averages of the inclusive and exclusive semilep-

tonic decays [22]; the φ3 angle is the central value averaged by the heavy flavor averaging

group (HFLAV) through all charmful two-body B-meson decays [62], and φ2 is determined

through the inputs of eq. (5.4). The particle masses used to estimate the numerical values

are given as:

mW ≈ 80.385 GeV , mt ≈ 165 GeV , mK ≈ 0.489 GeV ,

mc ≈ 1.3 GeV , ms(mc) ≈ 0.109 GeV , md(mc) ≈ 5.44 MeV . (5.5)

5.2 ∆MK and εK from HWH3
∆S=2

The involved parameters for the ∆S = 2 process in the diquark model contain gL31,32, gR31,32,

and mH3 . However, it was found that the new parameters hL,R21 , defined in eq. (3.14), are

more useful to study the diquark effects for the εK and ε′/ε. Generally, the CP phases of

gL,R31,32 are free variables; in order to simplify the numerical analysis, we assume that their

CP phases are the same as V ∗tsVtd although this assumption is not necessary. That is, we

will take hL,R21 to be real parameters and the CP violating source to be uniquely dictated

by the KM phase. In sum, there are three new free parameters for the ∆S = 2 process in

this study, which are hL,R21 and mH3 .

Since HWH3
∆S=2 only depends on hR21 and mH3 , we can use the ∆S = 2 process to directly

bound these parameters. We find that the mass difference between KL and KS , which arise

from the W (G) −H3 box diagrams, is far smaller than the required limit of |∆MNP
K | ≤

0.2∆M exp
K . Since ∆MWH3

K and εWH3
K originate from the same box diagrams, due to the CP

phase of V ∗tsVtd being of O(1), it can be expected that εK gives a strict constraint on the

free parameters. Therefore, based on the transition matrix elements given in eq. (4.32), we

plot the contours for εWH3
K (in units of 10−3) as a function of mH3 and hR21 in figure 5(a)

and εWH3
K as a function of hR21 is shown in figure 5(b), where the solid, dashed, and dotted

lines represent the contributions of mH3 = (1, 1.5, 2) TeV, respectively. From the results,

it can be seen that εK can strictly constrain the hR21 parameter. For instance, using mH3 =

1.5 TeV, we obtain |hR21| . 0.11, where the magnitude of |gR∗32 g
R
31| can be roughly estimated

by |gR∗32 g
R
31| . 1.7×10−5. Since gL32 = gR32 is taken in our numerical analysis and the allowed

hL21 is much larger than the allowed hR21, we can choose |gR31| to be smaller than |gR32| to

satisfy the upper limit.
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Figure 5. (a) Contours for εWH3

K (in units of 10−3) as a function of mH3
and hR21. (b) εWH3

K as

a function of hR21, where the solid, dashed, and dotted lines represent the contributions of mH3
=

(1, 1.5, 2) TeV, respectively. The band denotes the required limit shown in eq. (5.2).

5.3 ∆MK and εK from HH3
∆S=2

As discussed before, eight effective operators are involved in the purely H3-mediated box

diagrams for the ∆S = 2 process. Since the hadronic effects have the properties of

P
V LL(V RR)
1 � |PSLL(SRR)

1,2 |, the contributions from Q
V LL(V RR)
1 are comparable to those

from Q
SLL(SRR)
1,2 because the associated loop functions in the former and latter satisfy

IH3
B1 (yt) � IH3

B2 (yt). In addition, it can be seen from eq. (3.28) that the Wilson coeffi-

cients C
V LL(RLL)
1 and C

SLL(SRR)
1,2 depend on h

L(R)
21 in quadratic form. Therefore, it is of

interest to understand their contributions to ∆MK and εK without the CLR1,2 effects, where

CLR1,2 ∝ hL21h
R
21 and the associated loop functions show up in the form of IH3

B1 (yt) + IH3
B2 (yt).

Thus, taking mH3 = 1.5 TeV, hL21 = 0, and hR21 = 0.11, where the chosen values obey the

bound from εWH3
K , we find:

∆MH3
K ≈ −2.75× 10−23 GeV , εH3

K ≈ −2.90× 10−9 . (5.6)

Clearly, the contributions from the Q
V LL(V RR)
1 and Q

SLL(SRR)
1,2 operators that are induced

from the H3 box diagrams are small and negligible. Since the behavior of hL21 is the same

as that of hR21, the conclusion will not change even with hL21 ∼ O(10), with the exception

of hL21 ∼ O(100). In addition, it is not necessary to combine HWH3
∆S=2 and HH3

∆S=2 because

the pure hR21 effect in HH3
∆S=2 as shown above cannot compete with that in HWH3

∆S=2.

The H3 box diagrams could play an important role through the CLR1,2 effects. In

addition to the loop function IH3
B1 (yt), the enhancement factors are from the associated

hadronic effects |PLR1,2 |, which are larger than the others. For clarity, we make contour

plots for ∆MH3
K (in units of 10−17) and εH3

K (in unit of 10−3) as a function of hL21 and hR21

in figure 6, where we fix mH3 = 1.5 TeV. From the plots, we can see that ∆MH3
K is still

far below the required limit in the taken ranges of hL,R21 ; however, the allowed parameter

spaces of hL,R21 could be further limited by the required limit of |εNP
K | ≤ 0.4× 10−3.
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Figure 6. Contours, which arise from the H3−H3 box diagrams, for (a) ∆MK (in units of 10−17)

and (b) εK (in units of 10−3) as a function of hL21 and hR21, where mH3
= 1.5 TeV is used.

It can be seen from the figure 6(b) that as |hR21| becomes smaller, the allowed |hL21|
becomes larger due to CLR1,2 ∝ hL21h

R
21. If we take hR21 ≈ 0, i.e., HWH3

∆S=2 ≈ 0 and CLR1,2 ≈ 0,

the hL21, dictated by the Q
V LL(V RR)
1 and Q

SLL(SRR)
1,2 effects, can be much larger than O(10).

Since hL21 is defined through 1/|g2V ∗tsVtd| ∼ 6.4 × 103, hL21 of O(30) indicates |gL31| ∼ 0.07

for gL31 ∼ gL32 and is still in the perturbation range.

In addition to the ∆S = 2 constraint, it is also of interest to understand the constraints

from ∆B = 2 although the associated new parameters may not be directly related to εK
and ε′/ε, which we mainly study in this work. For simplicity, we use the Bd system to show

the constraint. It can be found that the results in eq. (3.23) and eq. (3.27) for ∆S = 2

can be applied to the calculation of 〈B̄d|H∆B=2|Bd〉 when the associated hadronic effects

and CKM factor in K-meson are replaced by those in Bd-meson. Therefore, to estimate

∆mBd
, the input values for the Bd system are taken as [56, 64]:

mBd
≈ 5.28 GeV , fBd

≈ 0.191 GeV , Vtb ≈ 1 ,

P V LL1 ≈ 0.84 , PLR1(2) ≈ −1.62(2.46) , PSLL1(2) ≈ −1.47(−2.98) . (5.7)

The SM prediction on ∆MBd
is consistent with the experimental data, where the

results are given as ∆MSM
Bd
≈ 3.651 × 10−13 GeV [64] and ∆M exp

Bd
= (3.332 ± 0.0125) ×

10−13 GeV [58], respectively. In order to constrain the free parameters, we require that the

new physics contributions to ∆MBd
should obey |∆MNP

Bd
| ≤ 0.1× 10−13 GeV. Thus, using

the parameter defined by hR31 = gR33g
R
31/(g

2V ∗tbVtd), the contours for ∆MWH3
Bd

(in units of

10−14), which arises from the W (G) − H3 box diagrams, as a function of mH3 and hR31

are shown in figure 7(a). According to the results, if we take |hR31| ∼ 0.3 and |hR21| ∼ 0.1,

which were obtained earlier in K-meson, the magnitude of gR33 can be roughly estimated

as |gR33| ∼ 0.3. The contours for ∆MH3
Bd

, which arises from the H3 −H3 box diagrams, as

a function of hR31 and hL31 are shown in figure 7(b), where mH3 = 1.5 TeV is used. From

the plot, it can be seen that similar to the case in K-meson system, the allowed values of
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Figure 7. (a) Contours for ∆MWH3

Bd
(in units of 10−14) as a functions of mH3

and hR31. (b)

Contours for ∆MH3

Bd
(in units of 10−14) as a function of hR31 and hL21 with mH3 = 1.5 TeV.

hL31 are much larger than those of hR31. If we take |hL31| ∼ 5 and |hL21| ∼ 10, the magnitude

of gL33 can be estimated as |gL33| ∼ 0.64. It can be found that although hL31 is one order

larger than hR31, the magnitude of gL33 is only larger than that of gR33 by a factor of 2. This

behavior is attributed to the fact that gR31 in hR31 is much smaller than gL31 in hL31.

5.4 Bounds from the LHC

Searches for narrow resonances decaying to dijet final states have been performed by the

ATLAS [65–67] and CMS collaborations [68–70] at
√
s = 13 TeV. According to the recent

CMS measurement [70], the upper limit on σAB for the diquark resonance decaying to

quark-quark at mH3 ≈ 1.5 TeV is given by ∼ 0.1 pb, where σ, A, and B denote the produc-

tion cross section, acceptance, and branching fraction, respectively. If we use the simulation

results obtained in [71] by rescaling the gχ11 coupling from 0.1 to 0.01, the scalar diquark

production cross section can be estimated to be ∼ 0.01 pb at mH3 ≈ 1.5 TeV. It can be seen

that gχ11 = 0.005 ∼ 0.01 obtained from the ∆S = 1 constraint and mH3 = 1.5 TeV used

in our numerical estimates satisfy the current upper limit. In addition, the scalar diquark

can also be produced through pair-produced processes. However, the situation is similar to

the search for the sbottom particle in the supersymmetric R-parity violating model, where

the upper limit is weak, and the current bound is mb̃ > 307 GeV [58].

6 Numerical analysis on ε′/ε in the diquark model

In this section, we numerically study the H3 contributions to ε′/ε. Based on the earlier

discussions, it is known that three possible mechanisms can contribute to the Kaon di-

rect CP violation, including the tree-level diagram, the QCD and EW penguins, and the

chromomagnetic dipole, where their formulations are given in eq. (4.14), eq. (4.19), and

eq. (4.23), respectively. In the following, we discuss their contributions one by one.
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Figure 8. Contours for (ε′/ε)TH3
(in units of 10−3) as a function of (a) ζRR21 − ζLL21 and ζRL21 − ζLR21

and (b) mH3 and ζRL21 − ζLR21 , where mH3 = 1.5 TeV is used in plot (a), and we assume ζRR21 = ζLL21

in plot (b).

6.1 Tree-level

From (ε′/ε)H3
T shown in eq. (4.14), five free parameters are involved in the tree-level-induced

∆S = 1 processes, in which they are ζLL,RR21 , ζRL,LR21 , and mH3 . However, it can be seen

that the parameter dependence shows up in the form of ζRR21 − ζLL21 and ζRL21 − ζLR21 ; thus, it

is more convenient to show the numerical analysis if we use these two forms of parameters

as the relevant parameters. In addition, since ζχ21 is scaled by V ∗tsVtd, like the case in h
L(R)
21 ,

where the KM phase is taken as the unique origin of CP violation, we also assume ζχ21 to

be real parameters in this study although this assumption generally is not necessary.

To illustrate the diquark effects, we show the contours for Re(ε′/ε)H3
T (in units of 10−3)

as a function of ζRR21 −ζLL21 and ζRL21 −ζLR21 in figure 8(a), where mH3 = 1.5 TeV is used. From

the plot, (ε′/ε)H3
T is insensitive to ζRR21 − ζLL21 . This behavior can be understood from the

small coefficient of 2r1yW /z− in T
1/2
H3

, where it is above one order of magnitude smaller than

0.67r2yW /(2 ReA2) in T
3/2
H3

; that is, T
3/2
H3

in (ε′/ε)H3
T dominates. Assuming ζRR21 = ζLL21 , we

show the contours for (ε′/ε)H3
T as a function of ζRL21 − ζLR21 and mH3 in figure 8(b). From

these plots, it can be seen that the tree-level diquark effect can significantly enhance ε′/ε.

In the following analysis, we estimate the typical size of the gχ11(12) parameter. From

ζLL21 = ζRR21 , it can be found that gL11g
L∗
12 = gR11g

R∗
12 or gL11/g

R
11 = gR∗12 /g

L∗
12 . According to the

result in figure 8(a), if we take ζRL21 − ζLR21 ∼ 0.7 as an illustrative example, we find:

ζRL21 − ζLR21 = ζRL21

[
1−

(
gL11

gR11

)2
]
∼ 0.7 . (6.1)

Clearly, gL11 6= gR11. Using ζRL21 ∼ 0.8, we obtain gL11 ∼ gR11/(2
√

2) and gR12 ∼ gL12/(2
√

2). As

discussed earlier, |gR11| ∼ 0.01 can satisfy the current LHC bound. If we take |gR11| ∼ 0.01,

from ζRL21 ∼ 0.8, we obtain |gL12| ∼ 0.0125 ∼ |gR11|. If we take |gR11| ∼ 0.005 and ζRL21 ∼ 0.8,

then the value of gL12 can be |gL12| ∼ 0.025 and can be larger than gR11 by a factor of 5. It is
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worth comparing the result of ζRL21 . 1 with that of hR21 . 0.11, which is obtained from the

W–H3 box diagram. Although gR∗32 g
R
31 has a stronger phenomenological constraint than

gR11g
L∗
12 , due to the m2

u(c)/m
2
H3

suppression, the light quark contributions to the ∆S = 2

box diagrams can be neglected. The same situation can be also applied to the CMO

on ε′/ε. From the results in figure 6(b), the maximal allowed hL21 is |hL21| ∼ 6 when

|hR21| ∼ 0.11. However, the u-quark contribution to the same H3–H3 diagram is dictated

by gL11g
L∗
12 /(g

2V ∗tsVtd) and can be nothing to do with m2
u/m

2
H3

. According to above analysis,

it can be found that |gL11g
L∗
12 /(g

2V ∗tsVtd)| < 0.28; that is, the u-quark contribution can be

neglected. If we assume gL22 ∼ gL11, the c-quark contribution can be also neglected.

6.2 QCD and EW penguins

According to the formulations of Re(ε′/ε)H3
P in eqs. (4.19) and (4.20) and the relevant

effective Wilson coefficients at µ = mc defined in eq. (4.21), the diquark contributions are

dictated by the factors δyH3
a (a = 3, 4, 6, 7, 9), which exhibit left-right asymmetry at the

µ = mH3 scale. In order to observe the magnitude of each δyH3
a , following eq. (3.13) and

eq. (3.16), we show the h
L(R)
21 dependence with mH3 = 1.5 TeV as:

δyH3
3 ≈

(
0.16hL21 + 0.04hR21

)
× 10−4 ,

δyH3
4 ≈ 0.11

(
hL21 − hR21

)
× 10−4 ,

δyH3
5 ≈

(
−0.04hL21 + 0.23hR21

)
× 10−4 ,

δyH3
6 ≈ 0.11

(
hL21 − hR21

)
× 10−4 ,

δyH3
7 ≈

(
0.16hL21 − 0.58hR21

)
× 10−4 ,

δyH3
9 ≈

(
−0.62hL21 + 0.20hR21

)
× 10−4 . (6.2)

Based on the results, we can understand each δyH3
a as follows: for δyH3

3 , since there is a yW
suppression factor in the QCD-penguin, the main contribution is from the Z-penguin, i.e.

CZ3 ∝ IZh
L
21; therefore, it can be seen that the hL21 part is much larger than the hR21 part.

Because δyH3

4(6) is only from the QCD-penguin, it can be seen that hL21 and hR21 have equal

contributions; in addition, since y
(′)H3

4(6) is a factor of 3 larger than the QCD-penguin part

of y
(′)H3

3 , we therefore see that the 0.11 factor in δyH3

4(6) is almost a factor of 3 larger than

the 0.04 appearing in the parentheses of δyH3
3 . The behavior of δyH3

5 should be similar to

δyH3
3 , but it is dominated by C ′5 ∝ IZhR21.

Although γ- and Z-penguin both contribute to δyH3
7 , due to the yW suppression ap-

pearing in γ-penguin, δyH3
7 indeed is dominated by the Z-penguin. It can be found that

the hL21 and hR21 terms in δyH3
7 are different from the hL21 term in δyH3

3 and the hR21 term in

δyH3
5 by factors of 4 sin2 θW ≈ 0.92 and −4, respectively. According to these differences, we

can roughly understand the numbers in δyH3
7 from the corresponding numbers in δyH3

3 and

δyH3
5 . From eq. (3.13), δyH3

9 is also dominated by the Z-penguin. We find that the hL21 and

hR21 terms in δyH3
9 approximately differ from the corresponding terms in δyH3

3 and δyH3
5 by

factors of −4 + 4 sin2 θW ≈ −3.08 and 4 sin2 θW , respectively. Using these factors, we then

can roughly obtain the numbers in the δyH3
9 from those numbers in δyH3

3 and δyH3
5 .

Since mH3 is a global parameter in the study, we can simplify the numerical analysis

by fixing its value. Hereafter, we fix mH3 = 1.5 GeV in the numerical calculations, unless
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Figure 9. (a) Contours for (ε′/ε)H3

P (in units of 10−3) as a function of hL21 and hR21, where

mH3
= 1.5 TeV is used, and the dashed lines and shaded area denote the constraint from

|εH3

K | ≤ 0.4 × 10−3. (b) Each contribution of a
1/2
H30, a

1/2
H36B

(1/2)
6 , a

3/2
H30, and a

3/2
H38B

3/2
8 with

mH3 = 1.5 TeV and hR21 = 0.035.

stated otherwise. Thus, we can implement the results in eq. (6.2) to ∆yH3
i (mc) (i =

4, 6, 8, 9, 10) in eq. (4.21). Using eqs. (4.19) and (4.20), we plot the contours for (ε′/ε)H3
P

(in units of 10−3) as a function of hL21 and hR21 in figure 9(a), where the shaded area denotes

the constraint of |εH3
K | ≤ 0.4× 10−3. From the plot, it can be clearly seen that the diquark

parameter spaces, when allowed to enhance ε′/ε, are limited when the strict bound from εK
is included. In addition, we need to rely on the large hL21 values to enhance ε′/ε although

the large hL21 is allowed. In order to understand the role of a
1/2
H3(0,6) and a

3/2
H3(0,8), which are

defined in eq. (4.20), in ε′/ε, we show the effect of each a
1/2,3/2
H3(0,6,8) effect on Re(ε′/ε)H3

P in

figure 9(b), where the solid, dotted, dashed, and dot-dashed lines denote the contributions

of a
1/2
H30, a

1/2
H36, a

3/2
H30, and a

3/2
H38, respectively, and hR21 = 0.035 is taken. Clearly, a

3/2
H38 makes

the main contribution because the factor r2〈Q8〉2/ReA2 in a
3/2
H38 is larger than the others

by more than one order of magnitude. In addition, it can be seen that in order to obtain

positive (ε′/ε)H3
P , hL21 prefers negative values. We can simply understand the preference

as follows: it is known that (ε′/ε)H3
P is dominated by −a2/3

H38 ∝ −∆yH3
8 (mc) ∼ −δyH3

7 ∝
(−0.16hL21 + 0.58hR21). Therefore, a negative hL21 can positively enhance (ε′/ε)H3

P .

6.3 Chromomagnetic dipole

From eq. (4.25), it can be seen that the involved new parameters contributing to ε′/ε

through the CMOs are hL,R12 and simply appear in the form of hR21 − hL21. The contours

for (ε′/ε)H3
8G (in units of 10−3) as a function of hL21 and hR21 are shown in figure 10, where

the shaded area denotes the constraint of εH3
K ≤ 0.4 × 10−3. From the results, we can see

that ε′/ε can be significantly enhanced by the CMOs in the diquark model when the bound

from the εK is satisfied. Due to the dependence of hR21 − hL21, a negative hL21 can lead to

a positive (ε′/ε)H3
8G. Comparing the results with those in (ε′/ε)H3

P , it can be found that

(ε′/ε)H3
8G is larger than (ε′/ε)H3

P in the same allowed parameter space of hL21.
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Figure 10. The legend is the same as that in figure 9(a) with the exception of (ε′/ε)H3

8G.

7 Summary

We investigated the color-triplet diquark H3 contributions to the ∆S = 2 and ∆S = 1

processes in detail. In addition to the H3 Yukawa couplings to the SM quarks, we also

derived the strong and electroweak gauge couplings to H3. Using the obtained couplings,

we calculated renormalized vertex functions for d → s(g(∗), γ(∗), Z). Based on the results,

we studied the implications on the Kaon direct and indirect CP violation.

We found that the box diagrams mediated by one W (G)-boson and one H3 for ∆S = 2,

which were neglected in [46], play an important role on the constraint of parameter hR21

when the sizable top-quark mass is taken. The constraint on hL21 can be achieved through

the pure H3-mediated box diagrams.

It was found that three potential mechanisms could enhance the Kaon direct CP viola-

tion parameter ε′/ε, including the tree-level diagram, the QCD and electroweak penguins,

and the chromomagnetic dipole operators. To clearly see each effect, we separately discuss

their contributions. In order to study the ε′/ε, in this work, we simply assume that the

origin of the CP violation only arises from the so-called KM phase of the CKM matrix in

the SM. Using the limited parameters and the hadronic matrix elements provided in [42],

we find that the ∆S = 2 process cannot give a strict bound on the tree-level parameters

ζRR,LL21 and ζRL,LR21 ; therefore, the parameter spaces to significantly enhance (ε′/ε) are wide.

The parameters associated with the QCD and electroweak penguins and the chromo-

magnetic dipole are the same. In the same hL21 parameter space, which can generate a

sizable ε′/ε, the contribution to ε′/ε from the chromomagnetic operators is much larger

than that from the QCD and EW penguins.

A Renormalized two- and three-point diagrams for the d → sV tran-

sition

We calculate the renormalized vertices for the d → sV transition, where V denotes the

gluon, photon, and Z gauge bosons. To deal with the calculations of one-loop Feynman
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dβ sρ
tαp p

H3

Figure 11. Self-energy diagram for the d→ s transition mediated by color-triplet diquark H3.

diagrams, we show the useful d-dimensional integral as:

J(d,m, n, µ2
B) =

∫
dd`

(2π)d
(`2)m

(`2 − µ2
B)n

= i
(−1)m−n(µ2

B)d/2+m−n

(4π)d/2
Γ(n−m− d/2)Γ(m+ d/2)

Γ(d/2)Γ(n)
. (A.1)

Using dimensional regulation with d = 4 + 2ε, renormalization scale µ, and Γ(−ε) =

−1/ε− γE, the relevant integrals in the study are explicitly written as:

J(d, 0, 2, µ2
B) = i

µ2ε

(4π)2
ln

Λ2

µ2
B

,

J(d, 0, 3, µ2
B) = −i 1

(4π)2Γ(3)

1

µ2
B

,

J(d, 1, 3, µ2
B) =

d

4
J(d, 0, 2, µ2

B) , (A.2)

where we define ln Λ2 = −1/ε− γE + ln(4πµ2), and γE is the Euler-Mascheroni constant.

The self-energy diagram mediated by H3 for the d → s transition is sketched in fig-

ure 11. Using the Yukawa couplings in eq. (2.3), the result of figure 11 can be expressed as:

iΣ(p) = s̄Γ d = s̄

[
/pχ

V
21

∫ 1

0
dxxJ(d, 0, 2, µ2

B1(p2))

+mtχ
S
21

∫ 1

0
dx J(d, 0, 2, µ2

B1(p2))

]
d , (A.3)

χV21 = gL∗32 g
L
31PL + gR∗32 g

R
31PR ,

χS21 = gR∗32 g
L
31PL + gL∗32 g

R
31PR , (A.4)

where (Ka)ρα(K̄a)αβ = δρβ is used, and µ2
B1(p2) = m2

H3
x + m2

t (1 − x) − p2x(1 − x). To

obtain the renormalized Γ, we require Σ(p) = 0 when the momentum of the external quark

is taken on the mass shell, i.e., p = pd or p = ps. If we write the renormalized ΓR as:

ΓR = Γ + C1/pPL + C2/pPR + C3PR + C4PL , (A.5)

the requirements of ΣR(pd) = 0 and ΣR(ps) = 0 lead to

C1(2) ' −g
L∗(R∗)
32 g

L(R)
31 IC , C3(4) ' −g

L∗(R∗)
32 g

R(L)
31 mtIC ,

IC =

∫ 1

0
dxxJ(d, 0, 2, µ2

B1(0)) , (A.6)
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where we have dropped the light quark mass effects. We note that the mass dimension in

C1(2) is different from that in C3(4).

The color-triplet-mediated three-point diagrams for d → sg(∗) are shown in figure 2,

where g(∗) denotes the on-shell (off-shell) gluon. The result of figure 2(a), where the gluon

is emitted from the top-quark, is given as:

iΓAµa = gs(K
b)ρσ(TA)ασ(K̄b)αβΓ(3)

∫ 1

0
dx1

∫ x1

0
dx2

∫
dd`

(2π)d
1

(`2 − µ2
B2(k2))3

× s̄ρ
{
−Aµ1χ

V
21 +Aµ2χ

S
21

}
dβ , (A.7)

Aµ1 = /̀γµ/̀+ [m2
t − k2x2(x2 − x1)]γµ ,

Aµ2 = mt[(x2 − x1)γµ/k + x2/kγ
µ] ,

µ2
B2(k2) = m2

H3
(1− x1) +m2

tx1 + k2x2(x2 − x1) , (A.8)

where TA are the generators of SU(3)C and their normalizations are taken as Tr(TATB) =

δAB/2. Using the results given as:

(Kb)ρσ(TA)ασ(K̄b)αβ = −
(TA)ρβ

2
,∫

dd`

(2π)d
/̀γµ/̀

(`2 − µ2
B2

(k2))3
= −γµ 1 + ε

Γ(3)
J(d, 0, 2, µ2

B2
(k2)) , (A.9)

ΓAµa can be reformulated as:

iΓAµa = −i gs
2(4π)2

s̄γµχV21T
Ad

∫ 1

0
dx1

∫ x1

0
dx2

×
[
µ2ε

(
ln

Λ2

µ2
B2(k2)

− 1

)
+
m2
t + k2x2(x2 − x1)

µ2
B2(k2)

]
+ i

gs
2(4π)2

s̄Aµ2χ
S
21T

Ad

∫ 1

0
dx1

∫ x1

0
dx2

1

µ2
B2(k2)

. (A.10)

Based on the diquark-gluon coupling shown in eq. (2.5), the result of figure 2(b), where

the gluon is emitted from the H3, can be obtained as:

iΓAµb = −i gs
2(4π)2

s̄γµχV21T
Ad

∫ 1

0
dx1

∫ x1

0
dx2µ

2ε ln
Λ2

µ2
B3(k2)

− i gs
2(4π)2

s̄χS21T
Ad

∫ 1

0
dx1

∫ x1

0
dx2

Bµ
2

µ2
B3(k2)

. (A.11)

From the Ward-Takahashi identity, it is known that the three-point vertex correction

can be related to the two-point function Σ(p) = s̄Γd through the relation:

kµΓAµ = kµΓAµa+b = gs(T
A)ρβ

[
Σ(p− k)βρ − Σ(p)βρ

]
, (A.12)

– 30 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
9

with Σ(p)βρ = s̄ρΓd
β . In order to obtain the renormalized ΓAµ, we can require that the

Ward-Takahashi identity is retained as kµΓAµR = gs(T
A)ρβ

[
ΣR(p− k)βρ − ΣR(p)βρ

]
[49, 50].

If we set ΓAµR = ΓAµ +XAµ, the Ward-Takahashi identity can lead to:

XAµ =
i

(4π)2
s̄γµχV21T

Ad

∫ 1

0
dxxµ2ε ln

Λ2

µ2
B1(0)

. (A.13)

The ultraviolet divergence of ΓAµR , which is related to ln Λ2 terms, can then be cancelled as:

ΓAµR

∣∣∣
div

= ΓAµa+b

∣∣∣
div

+XAµ
∣∣∣
div
∝ −

∫ 1

0
dx1

∫ x1

0
dx2

ln Λ2

2
× 2 +

∫ 1

0
dxx ln Λ2 = 0 . (A.14)

In order to verify the gauge invariance, we can take k2 = 0 for the on-shell gluon; thus, the

Ward identity can be satisfied as:

kµΓAµR ∝
∫ 1

0
dx1

∫ x1

0
dx2

1

2

[(
ln
µ2
B2(0)

m2
H3

+ 1

)
− m2

t

µ2
B2(0)

+ ln
µ2
B3(0)

m2
H3

]

+

∫ 1

0
dxx ln

µ2
B1(0)

m2
H3

=
1

4
+

1

2

∫ 1

0
dx

[
(1− 2x) ln(x+ yt(1− x))− yt(1− x)

x+ yt(1− x)

]
= 0 , (A.15)

with yt = m2
t /m

2
H3

. For k2 6= 0, because k2 � m2
t , the leading k2 term and chromomagnetic

dipole effect of ΓAµR can be obtained as:

iεAµΓAµR = −i gsk
2

(4π)2m2
H3

IG1(yt)s̄/ε
AχV21T

Ad+ i
gs

(4π)2

mt

4m2
H3

IG2(yt)s̄σ
µνχS21T

AdGAµν ,

(A.16)

where the loop-integral functions are given as:

IG1(y) =
2y2 + 11y − 7

36(1− y)3
+

(y3 + 3y − 2) ln y

12(1− y)4
,

IG2(y) = − 1

(1− y)
− ln y

(1− y)2
. (A.17)

The Feynman diagrams for d → sγ(∗) are shown in figure 3. It can be seen that with

the exception of the gauge couplings, the calculations for d→ sγ(∗) are similar to those for

d → sg(∗); therefore, the results of figure 3(a) and 3(b) can be respectively obtained from

eqs. (A.10) and (A.11) when the strong interactions are replaced by the electromagnetic

interactions. Thus, using the gauge coupling in eq. (2.6), the renormalized vertices of

figure 3(a) and 3(b) can be obtained as:

iεµΓµγR = −i ek2

3(4π)2m2
H3

Iγ1(yt)s̄/εχ
V
21d− i

e

(4π)2

mt

6m2
H3

Iγ2(yt)s̄σ
µνχS21dFµν , (A.18)
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where the loop-integral functions are given as:

Iγ1(y) =
25y2 − 65y + 34

36(1− y)3
+
y3 + 2(2− 3y)

6(1− y)4
ln y ,

Iγ2(y) = − 7− y
2(1− y)2

− (2 + y) ln y

(1− y)3
. (A.19)

To calculate the Z-penguin induced three-point vertex for d → sZ∗, we write the

Z-couplings to quarks as:

HZqq =
g

cos θW
q̄γµ(CqLPL + CqRPR)Zµ , (A.20)

CqL = Iq − eq sin2 θW , CqR = −eq sin2 θW , (A.21)

where Iq and eq are the weak isospin and electric charge of the q-quark, respectively. From

the Z-boson interactions, it can be seen that the et sin2 θW -related currents indeed are the

same as the electromagnetic currents; that is, the corresponding three-point vertex function

should be proportional to k2. Since the Z-boson is a massive particle, unlike the case in

d→ sγ∗, the k2-related effects will be suppressed by k2/m2
Z in the decays such as d→ sqq̄

and d → s`¯̀. Thus, it can be expected that the renormalized d → sZ∗ vertex is only

related to the weak isospin It = 1/2 when the k2 effects are neglected. Using the same

renormalized procedure in d→ sg(∗), the renormalized three-point vertex for s→ dZ∗ can

be obtained as:

iεZµΓµZR = −i gIt

(4π)2 cos θW
s̄/εZ

(
gL31g

L∗
32 IZ(yt)PL − gR31g

R∗
32 IZ(yt)PR

)
d , (A.22)

where the loop integral function IZ(yt) is defined as:

IZ(y) = − y

1− y
− y ln y

(1− y)2
. (A.23)
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