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1 Introduction

The most remarkable achievement of string theory is arguably the derivation of non-

perturbative dualities between quantum field theories. The network of dualities obtained

in this way is particularly rich among four dimensional (class S) N = 2 super Yang-Mills

(SYM) theories, and their five dimensional N = 1 uplifts. Indeed, these theories sus-

tain correspondences with both classical and quantum integrable systems [1–3], but also

with 2D Liouville/Toda conformal field theories (or q-deformed conformal blocks in the

5D scenario) through the celebrated AGT conjecture [4–6]. Furthermore, these supersym-

metric gauge theories can be realized as the low-energy limit of brane dynamics, and the

application of (type IIB strings theory) S-duality on this construction generates dualities

among them [7–9]. From the 5D gauge theory perspective, S-duality implies an enhance-

ment of global symmetries at the UV fixed points [10], a fact that was first predicted by

Seiberg in [11] (and generalized further in [12, 13]). This enhancement has been explicitly

observed by computation of BPS quantities (conformal index in [14], Nekrasov partition

functions in [10]).

This paper explores the realization of S-duality, also called fiber-base duality (see be-

low), among 5D N = 1 quiver gauge theories using an algebraic formalism developed

recently in the series of papers [15–21], and based on the Ding-Iohara-Miki (DIM) alge-

bra [22, 23]. This formalism, referred here as algebraic engineering, highlights the integrable

properties of the gauge theories’ BPS sector, and, at the same time, expresses in a very

elegant manner the covariance properties under the (q-deformed) W-algebra at the root

of AGT correspondence. In fact, we have two main motivations for our study. The first

one is the perspective to export the S-duality tool to integrable systems and 2D conformal

field theories (CFTs). In this way, a systematic derivation of spectral dualities between

integrable systems (such as the one observed in [24–27]), as well as non-trivial relations

between 2D conformal blocks [10, 28], could be obtained. Our second motivation is the

possibility to exploit the algebraic formalism to write the proofs of the non-trivial (and

non-perturbative) relations that S-duality implies among gauge theories quantities (par-

tition functions, BPS Wilson loops, . . .). Here, we propose to address these two issues
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using an automorphism of the DIM algebra, namely Miki’s automorphism [23], to twist

the coalgebraic structure responsible for integrability.1

In order to understand better the role of Miki’s automorphism, it is necessary to

review first the (p, q)-brane construction of these gauge theories [8, 30]. In type IIB string

theory, a (p, q)-brane is a bound state of p D5 and q NS5-branes. It is a 5-brane that

fills the dimensions 0-4 (where the gauge theory background lies) and forms a segment

in the 56-plane oriented along the direction of angle θ56 ∼ arctan(p/q). Hence, with

this convention, pure NS5-branes are drawn horizontally (in the ‘5’ direction) and pure

D5-branes vertically. The brane-web represents the configuration of (p, q)-branes in the

56-plane, and characterizes the underlying N = 1 theory. To be specific, we consider here

5D N = 1 theories on the Omega-deformed background R2
ε1×R2

ε2×S
1
R. The corresponding

partition functions are one-loop exact, but contain a tower of non-perturbative (instanton)

corrections that have been computed by localization in [31]. Alternatively, the partition

function can also be derived as a topological string amplitude [32]. Away from the self-

dual case ε1 + ε2 = 0, it is necessary to employ the refined version of the topological vertex

introduced in [33–35]. The topological string is compactified on a certain Calabi-Yau

threefold for which the toric skeleton (or, simply, toric diagram) coincides with the (p, q)-

brane web [36]. As a result, the brane-web provides the gluing rules for the topological

vertices associated to each (p, q)-brane junction.

In the (p, q)-brane web construction, the action of S-duality exchanges D5 and NS5-

branes, and more generally acts on the branes’ charges by sending (p, q) to (q,−p). This

operation effectively rotates the (p, q)-branes web by 90◦, and thereby induces a duality

between the gauge theories associated to the two brane webs, the original and the rotated

ones. In the topological strings setup, the rotation of the toric diagram exchanges fiber

and base for the Calabi-Yau, which coined the term fiber-base duality [37].

The algebraic engineering of the gauge theory is based on a realization by Awata,

Feigin and Shiraishi [38] of the (refined) topological vertex as an intertwiner of the DIM

algebra.2 This algebra depends on two parameters q1 and q2 that encode the dependence

on the background parameters: q1 = eRε1 and q2 = eRε2 . The algebraic engineering is, in

fact, a reformulation of the (p, q)-brane construction in algebraic terms: to each brane of

charge (p, q) corresponds a representation characterized by the two levels (`, ¯̀) = (q, p),

and to each (trivalent) brane junction, or topological vertex, is associated an operator

intertwining between three representations. The gluing rules of intertwiners also follow

the brane-web picture, the gluing being simply realized as a product of operators in the

shared representation. In this way, it is possible to associate to each brane-web an operator

T acting on a tensor product of representations. This operator is the essential object of

the construction. Its vacuum expectation value (v.e.v.) reproduces the instanton partition

function of the gauge theory [20, 21]. Besides, it can further be used to compute other

BPS quantities (like the qq-characters [20]).

1As this paper was almost completed, we received the preprint [29] in which a similar program is

proposed.
2The use of such intertwiners has been popularized by the Japanese school of Integrability, see for

instance the book of Jimbo and Miwa [39].
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In [23], Miki describes an automorphism of the DIM algebra that acts on the two

central charges (c, c̄) by sending them to (−c̄, c). As a result, a representation ρ with lev-

els (ρ(c), ρ(c̄)) = (`, ¯̀) composed with this automorphism becomes a representation ρ′ of

different levels (ρ′(c), ρ′(c̄)) = (−¯̀, `). Since the two levels encode the branes charges, the

composition by Miki’s automorphism renders the S-duality transformation in the algebraic

formalism [17].3 Building on this fact, we investigate here the transformation of intertwin-

ers, and their composite objects (T -operators, Lax matrices).4 In this process, a twist of

the coproduct by Miki’s automorphism appears naturally, an the S-duality is reformulated

as an equivalence between quantities derived from the two different coalgebraic structures.

Note that this approach is essentially different from the one employed by Awata and Kanno

in [40], and in which S-duality relations follow from a change of the preferred direction for

the topological vertex. In our case, the preferred direction is fixed, it corresponds to the

vertical representation and it is associated to D5-branes once and for all. In practice, the

main difference is that, in addition to changing the way topological vertices are coupled,

we also need to implement the rotation of the vertices, and thus introduce new types of

intertwiners associated to the rotated representations.

This paper is organized as follows. In the section two, we introduce the DIM algebra,

describe the vertical (D5) and horizontal (NS5, NS5+D5) representations, and discuss the

action of Miki’s automorphism. The notion of intertwiner is reviewed in the third section,

their transformation properties are investigated at a general level, and many new types of

intertwiners are constructed. These results are used in the section four and five to analyze

the S-transformation of Lax matrices and T -operators (respectively). Three important

examples will be provided: the (resolved) conifold, and the pure U(1) and U(2) gauge

theories. In each example, the S-duality relation appearing in gauge theory follows from

the equality between the v.e.v. of algebraic quantities derived from the two coalgebraic

structures. The transformation of the vacuum state is a key point in this derivation, and

must be studied case by case. The technical parts of the discussions have been gathered in

the appendices. The appendix A presents advanced properties of Miki’s automorphism, it

includes expressions for the S-dual generators, discusses their action in the vertical module,

and investigate the possibility to refine the definition of Miki’s automorphism using grading

operators. The second appendix is a simple reminder on the building blocks entering in

the construction of Nekrasov partition functions. Appendix C shows the construction of

a new type of intertwiners, but also introduces new operators in the Cartan sector, and

defines a set of coherent state for the Fock modules of horizontal representations. Finally,

the appendix D contains the calculations relevant to the S-transformation of vacua.

3In fact, the whole SL(2,Z) invariance of type IIB string theory can be realized in this way, but we will

restrict ourselves to the element S.
4We call Lax matrix the evaluation of the universal R-matrix in two specified representations. The R-

matrix is the central object of quantum integrability, it is defined as an intertwiner between the coproduct

and its permutation ∆′, i.e. R∆ = ∆′R. On the other hand, (Baxter’s) T -operators commute with the

action of the algebra. These objects can be constructed using trivalent intertwiners, they will be defined

more rigorously in the main body of the paper.
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2 Algebra, representations and automorphisms

2.1 Presentation of the Ding-Iohara-Miki algebra

The DIM algebra ADIM is, in fact, the quantum toroidal algebra of gl1. It can be formulated

in terms of four currents

x±(z) =
∑
k∈Z

z−kx±k , ψ±(z) =
∑
k≥0

z∓kψ±±k, (2.1)

together with a central element γ̂, that satisfy

[ψ±(z),ψ±(w)] = 0, ψ+(z)ψ−(w) =
g(γ̂z/w)

g(γ̂−1z/w)
ψ−(w)ψ+(z),

ψ+(z)x±(w) = g(γ̂±1/2z/w)±1x±(w)ψ+(z), ψ−(z)x±(w) = g(γ̂∓1/2z/w)±1x±(w)ψ−(z),

x±(z)x±(w) = g(z/w)±1x±(w)x±(z),

[x+(z),x−(w)] =κ
(
δ(γ̂−1z/w)ψ+(γ̂1/2w)−δ(γ̂z/w)ψ−(γ̂−1/2w)

)
. (2.2)

In this formulation, κ is a C-number and g(z) a function that can be expressed in terms of

the three complex parameters q1, q2, q3 constraint under the relation q1q2q3 = 1,

κ =
(1− q1)(1− q2)

(1− q1q2)
, g(z) =

∏
α=1,2,3

1− qαz
1− q−1

α z
. (2.3)

The function g(z) obeys the ‘unitarity’ property g(z)g(1/z) = 1 necessary to the consistency

of the relations (2.2). The form of this algebra directly follows from the gauge theory

background R2
ε1 × R2

ε2 × S
1
R, and the parameters are identified as (q1, q2) = (eRε1 , eRε2).

Deformations of this algebra have been introduced to treat different backgrounds: an

elliptic deformation for 6D gauge theories [41], a higher rank version (quantum toroidal

gln) for the 5D background with orbifold [42], and a degenerate version for 4D N = 2

gauge theories [43].

The DIM algebra possesses two central charges denoted c and c̄. The first one cor-

responds to the central element γ̂ that can be written γ̂ = γc with the shortcut notation

γ = q
1/2
3 . The second one is associated to the zero modes ψ±0 of the currents ψ±(z): these

two modes are also central, and can be written ψ±0 = γ∓c̄.5 Hence, representations are

labeled by two (integer) levels (`, ¯̀) corresponding to the value of the central elements

ρ(`,¯̀)
v (c) = `, ρ(`,¯̀)

v (c̄) = ¯̀. (2.4)

Vector spaces equipped with a representation ρ
(`,¯̀)
v of levels (`, ¯̀) and weight v will be de-

noted (`, ¯̀)v. Weights will later be associated to the (exponentiated) positions of the branes.

The subalgebra generated by the elements ψ±±k and the central element γ̂ can be

seen as the analogue of the Cartan subalgebra of standard Lie algebras. It is sometimes

5The requirement ψ+
0 = (ψ−0 )−1 fixes partially the invariance of the algebra under a rescaling of the

generators. The remaining invariance x±(z)→ ω±1x±(z) is associated to an automorphism generated by a

grading element, it will be discussed below.

– 4 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
3

Figure 1. DIM generators represented according to their degree (x, y) = (d̄,−d) ∈ Z⊗ Z.

useful to express the Cartan generators ψ±±k in terms of the modes ak of an Heisenberg

subalgebra [23],

ψ±(z) = ψ±0 exp

(
±
∑
k>0

z∓ka±k

)
. (2.5)

Then, the relations ψψ, ψx, and [x, x] given in (2.2) take a simpler form:

[ak, al] = (γ̂k − γ̂−k)ckδk+l, [ak, x
±
l ] = ±γ̂∓|k|/2ckx±l+k,

[x+
k , x

−
l ] =


κγ̂(k−l)/2ψ+

k+l, k + l > 0

κγ̂(k−l)/2ψ+
0 − κγ̂−(k−l)/2ψ−0 , k + l = 0

−κγ̂−(k−l)/2ψ−k+l, k + l < 0.

(2.6)

On the other hand, the q-commutation relations x±x± remain fairly complicated. The

coefficients ck in the r.h.s. of the commutators arise from the expansion of the function

g(z) in (2.2):

[g(z)]± = exp

(
±
∑
k>0

z∓kc±k

)
, ck = −1

k

∏
α=1,2,3

(1− qkα). (2.7)

Here [g(z)]+ refers to the expansion of the function g(z) at infinity, while [g(z)]− denotes

its expansion in a neighborhood of zero. It follows from the unitarity property of g(z) that

the coefficients ck obey ck = c−k.

In addition, it is possible to associate two different degrees to the generators of the

DIM algebra using the grading operators d and d̄ obeying the commutation relations

[d, x±k ] = −kx±k , [d, ψ±±k] = ∓kψ±±k, [d̄, x±k ] = ±x±k , [d̄, ψ±±k] = 0. (2.8)

These relations assign the degrees (d̄,−d) ∼ (±1, k) and (d̄,−d) ∼ (0,±k) respectively to

the modes x±k and ψ±±k, while central elements are of degrees (0, 0). Operators of higher

degree under d̄ are obtained from the commutation of the modes x±k . Thus, DIM operators

can be classified according to their degrees (d̄,−d) ∈ Z× Z, and the generators have been

represented in figure 1. Furthermore, the grading operators can be used to define two

different automorphisms,

τω(e) = ωdeω−d, τ̄ω̄(e) = ω̄d̄eω̄−d̄, (2.9)

– 5 –
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for any element e of the DIM algebra ADIM. These automorphisms act on the modes of

the Drinfeld currents as follows:

τω(x±(z)) = x±(ωz), τω(ψ±(z)) = ψ±(ωz),

and τ̄ω̄(x±(z)) = ω̄±1x±(z), τ̄ω̄(ψ±(z)) = ψ±(z).
(2.10)

In effect, τω describes the freedom of rescaling the variable z of the currents, while τ̄ω̄
generates a rescaling of the currents x±(z). These two automorphisms are discussed in

greater details in the appendix (section A.3). In string theory, automorphisms of the DIM

algebra correspond to geometric transformations of the (56)-plane (see for instance [20],

section 2.6). It is shown in appendix that the action of τω corresponds to an overall

translation along the NS5-direction, while the action of τ̄ω̄ encodes the translation along

the perpendicular direction (D5-branes).

2.2 Miki’s automorphism

The automorphism S discovered by Miki in [23] is fully determined by its action on the

central charges (c, c̄)→ (−c̄, c) and on the four generators

a1 → (γ − γ−1)x+
0 → −a−1 → −(γ − γ−1)x−0 → a1. (2.11)

It is readily seen that this automorphism is of degree four (i.e. S4 = 1). Formulas for the

transformation of the generators x±k , ψ±±k are provided in appendix A. However, since they

involve repeated commutations, they quickly become cumbersome to use. Apart from the

modes a±1 and x±0 appearing in (2.11), the four modes x±1 and x±−1 are the only ones that

are mapped to modes of the Drinfeld currents (2.1):

x+
1 → γ−(c+c̄)/2x+

−1 → −x
−
−1 → −γ

(c+c̄)/2x−1 → x+
1 . (2.12)

Miki’s automorphism also acts on the grading operators, sending (d, d̄) to (−d̄, d). This

transformation follows from the requirement of keeping the commutation relations (2.8)

invariant. As a consequence, an element e ∈ ADIM of degrees (de, d̄e) is mapped to another

element with degrees (d̄e,−de). It results that the automorphism S acts as a clockwise

rotation of angle 90◦ on the representation of the generators (cf. figure 1).

As we mentioned in the introduction, it is possible to define a new representation by

the composition ρ
(`,¯̀)
v ◦ S. For short, we will call it the S-dual representation. Due to the

transformation property of central charges, this representation has levels (−¯̀, `). In string

theory, the (p, q)-branes are uniquely characterized by their charges (and position), and so

we expect that the representations associated to them will also be fully characterized by

their levels (and weight). Thus, from the physics perspective, we expect that the S-dual

representation ρ
(`,¯̀)
v ◦S identifies with a given representation ρ

(−¯̀,`)
ṽ , up to a possible change

of basis:

ρ(`,¯̀)
v (S · e) =M(`,¯̀)−1

S ρ
(−¯̀,`)
ṽ (e)M(`,¯̀)

S , with M(`,¯̀)
S : (`, ¯̀)v → (−¯̀, `)ṽ. (2.13)

In this relation, the image of the element e ∈ ADIM under the automorphism S has been

denoted S · e, and M(`,¯̀)
S is an infinite (yet graded) matrix. Note also that while trans-

formation of levels is known, on the contrary the transformation of the weights, formally

– 6 –
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denoted here ṽ = S · v, depends on the explicit form of the representation and has to be

resolved case by case. Mathematically, the assumption (2.13) is rather challenging, and

needs to be properly established. We will see below that the matrices M(`,¯̀)
S can be con-

structed explicitly for the representations relevant to our construction. Furthermore, these

matrices can be used to define the transformation matrices M(`,¯̀)

Sk of arbitrary powers Sk

of Miki’s automorphism using relations of the form

M(`,¯̀)
S2 =M(−¯̀,`)

S M(`,¯̀)
S , M(−`,−¯̀)

S2 =M(`,¯̀)−1
S2 , and M(`,¯̀)

S−1 =M(¯̀,−`)−1
S . (2.14)

2.3 Twisted coproducts

2.3.1 Twist by an automorphism

The DIM algebra has the structure of a Hopf algebra with the Drinfeld coproduct defined as

∆(x+(z)) =x+(z)⊗1+ψ−(γ̂
1/2
(1) z)⊗x+(γ̂(1)z),

∆(x−(z)) =x−(γ̂(2)z)⊗ψ+(γ̂
1/2
(2) z)+1⊗x−(z),

∆(ψ±(z)) =ψ±(γ̂
±1/2
(2) z)⊗ψ±(γ̂

∓1/2
(1) z), ∆(ak) = ak⊗γ̂−|k|/2+γ̂|k|/2⊗ak,

∆(γ̂) = γ̂⊗γ̂, ∆(c) = c⊗1+1⊗c, ∆(c̄) = c̄⊗1+1⊗c̄.

(2.15)

We denoted here γ̂(1) = γ̂ ⊗ 1 and γ̂(2) = 1⊗ γ̂. The coalgebraic structure also contains an

antipode and a co-unit but since we do not need them in this paper, we will not give their

expression. This Hopf algebra is quasi-triangular, which implies the existence of a universal

R-matrix R that intertwines ∆ with the opposite coproduct ∆′ obtained by permutation

(∆′ = P∆P with P(a⊗ b) = (b⊗ a)P, P2 = 1):

R∆ = ∆′R, (∆⊗ 1)R = R13R23, (1⊗∆)R = R13R12. (2.16)

Unfortunately, no explicit expression of the universal R-matrix is known (for generic c and

c̄), but partial/implicit expressions are discussed in [17, 19, 44–46].

Miki’s automorphism preserves both the linear and multiplicative structure of the

algebra, therefore it can be used to twist the co-algebraic structure [47]. The twisted

coproduct6

∆S(e) = (S−1 ⊗ S−1)∆(S · e), ∀e ∈ ADIM, (2.18)

defines a new quasi-triangular Hopf algebra with the universal R-matrix RS = (S−1 ⊗
S−1)R and a twisted antipode. The coproduct ∆S appears naturally in the transformation

of trivalent intertwiners (a.k.a. topological vertices). Indeed, the intertwining property

involves a representation ρ obtained from two other representations ρ1 and ρ2 by coproduct,

that is ρ = (ρ1⊗ ρ2)∆. Then, the S-dual representation ρ′ = ρ ◦ S can be written in terms

of ρ′i = ρi ◦ S (i = 1, 2) using the twisted coproduct ρ′ = (ρ′1 ⊗ ρ′2)∆S .

6This coproduct ∆S differs from ∆ as it is possible to compute, for instance,

∆(x+
0 ) = x+

0 ⊗ 1 +
∑
k>0

γ−k(c⊗1)/2 ψ−−k ⊗ x
+
k and ∆S(x+

0 ) = x+
0 ⊗ γ

−c̄/2 + γ c̄/2 ⊗ x+
0 . (2.17)
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We can define in a similar way a twisted coproduct ∆Sk for any power Sk of Miki’s

automorphism. The action of S2 on the Drinfeld currents (2.1) takes a simple form:

S2 · x±(z) = −x∓(z−1), S2 ·ψ±(z) = ψ∓(z−1), S2 · (c, c̄) = (−c,−c̄), S2 · ak = −a−k.
(2.19)

As a result, it is possible to write down explicitly the action of the twisted coproduct

∆S2 on these generators. Remarkably, this twisted coproduct coincides with the opposite

coproduct ∆′ involved in the definition of the universal R-matrix. This leads to interpret

the automorphism S as a sort of square root of the R-matrix. This result should have

tremendous consequences for integrable systems built upon DIM algebra [48–50]. We hope

to come back to this important issue in a future publication.

2.3.2 Twist by a two-tensor

The so-called Drinfeld twist provides another way to deform a coalgebraic structure [47, 51].

In this case, the coproduct is twisted by an invertible two-tensor F that should satisfy the

following properties:

F12(∆⊗ 1)F = F23(1⊗∆)F , (ε⊗ 1)F = (1⊗ ε)F = 1. (2.20)

Here we used the standard notation Fij for the action of F in ith and jth tensor space

and ε denotes the co-unit. The twisted coproduct F∆F−1 defines a new quasi-triangular

Hopf algebra with universal R-matrix F∗RF−1, F∗ = F21 denoting the permutation of the

two-tensor, i.e. PFP . Although a general statement does not seem to exist, it has been

observed in some cases that the twisting by an automorphism can also be realized as a

two-tensor twist. For instance, this is the case for Lusztig’s automorphism of Uq(g) where

g is a simple, finite-dimensional, Lie algebra [47]. This is also the case for the twist by the

automorphism S2, since ∆S2 identifies with the opposite coproduct, and the corresponding

two-tensor FS2 is simply the universal R-matrix R. In fact, the existence of the two tensor

FS has been prooved in [49] (lemma A.5) in the restricted case c = 0.

In this paper, it will be convenient, although not essential, to assume that the

S-twisted coproduct ∆S defined in (2.18) can also be obtained by a Drinfeld twist with the

two-tensor FS :

∆S = FS∆F−1
S , RS = F∗SRF−1

S , (2.21)

where F∗S = FS21 is the permutation of FS . This assumption will provide us a general

intuition on the transformation of algebraic objects. However, strictly speaking, we do not

need the existence of the universal object FS , but only its realization in specific represen-

tations. The latter will be constructed explicitly below, up to a normalization factor, using

a product of intertwiners.

Several interesting properties follow from our assumption (2.21). First, the opposite

coproduct ∆′ can be twisted in the same manner,

∆′S(e) = (S−1 ⊗ S−1)∆′(S · e) = F∗S∆′(e)F∗−1
S . (2.22)

Moreover, since S4 = 1, we notice that ∆′S = ∆S3 = ∆S−1 , which implies the existence of

the two tensor FS−1 = F∗SR associated with the twist by the automorphism S−1, and the
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corresponding twisted R-matrix is RS−1 = R−1
S . Similarly, the identification ∆′S−1 = ∆S

provides the permuted relation F∗S−1 = FSR−1. Finally, inverting these relations, it is

possible to express the universal R-matrices solely in terms of FS and FS−1 (and their

permutation), and re-interpret them as factors in a certain decomposition,

R = F∗−1
S−1FS = F∗−1

S FS−1 , RS = F∗SF∗−1
S−1 = FS−1F−1

S . (2.23)

2.4 Representations

In the algebraic engineering, vertical representations are associated to (multiple) D5-branes,

and horizontal representations to NS5-branes (possibly dressed by extra D5-branes). These

representations have already been presented in several papers, we reproduce them here for

consistency and follow the conventions employed in [21]. Then, we investigate the S-dual

representations and derive the expression of several matrices M(`,¯̀)
S .

2.4.1 Vertical representations

The modules of vertical representations, denoted here (0,m)~v were introduced in [52].

They are infinite dimensional vector spaces with a basis of states |~v,~λ〉〉 parameterized by

an m-tuple Young diagram ~λ = (λ(1), · · · , λ(m)), and on which the Drinfeld currents act

as follows:

ρ
(0,m)
~v (x+(z)) |~v,~λ〉〉 =

∑
x∈A(~λ)

δ(z/χx) Res
z=χx

1

zY~λ(z)
|~v,~λ+ x〉〉,

ρ
(0,m)
~v (x−(z)) |~v,~λ〉〉 = γ−m

∑
x∈R(~λ)

δ(z/χx) Res
z=χx

z−1Y~λ(q−1
3 z) |~v,~λ− x〉〉,

ρ
(0,m)
~v (ψ±(z)) |~v,~λ〉〉 = γ−m

[
Ψ~λ

(z)
]
± |~v,~λ〉〉.

(2.24)

These representations have levels (`, ¯̀) = (0,m), they are lowest weight representations,

with the vacuum |~v, ∅〉〉 corresponding to empty Young diagrams, and the lowest weights

given by the vector ~v = (v1, · · · , vm). They are associated to m parallel D5-branes, with

(exponentiated) positions v1, · · · , vm along the axis ‘5’ of the 56-plane. In the gauge the-

ory, the level m coincides with the rank of the gauge group U(m), and the weight with the

exponentiated Coulomb branch v.e.v. .

The modes of the currents x±(z) behave as instantons creation/annihilation operators,

and their action involves a summation over the sets of boxes A(~λ) (resp. R(~λ)) that can

be added to ~λ (or removed from ~λ). To each box x = (l, i, j) in ~λ with coordinates (i, j) in

the lth Young diagram, has been associated the complex parameter χx = vlq
i−1
1 qj−1

2 ∈ C.

The vertical action (2.24) has been written using the functions

Ψ~λ
(z) =

Y~λ(q−1
3 z)

Y~λ(z)
, Y~λ(z) =

∏
x∈A(~λ)

1− χx/z∏
x∈R(~λ)

1− χx/(q3z)
. (2.25)
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These two functions possess an alternative expression as a product over the box content of

each Young diagram:

Ψ~λ
(z) =

m∏
l=1

1− q3vl/z

1− vl/z
∏
x∈~λ

g(z/χx), Y~λ(z) =

m∏
l=1

(
1− vl

z

)∏
x∈~λ

S(χx/z),

S(z) =
(1− q1z)(1− q2z)

(1− z)(1− q1q2z)
.

(2.26)

The function S(z) is related to the function g(z) defined in (2.3), and involved in the

definition of the algebra, through the relation g(z) = S(z)/S(z−1). It obeys the functional

identity S(q3z) = S(z−1).

By expanding the functions Ψ~λ
(z) both around z = ∞ and z = 0, it is possible to

deduce the representation of the modes ak describing the Cartan sector:

ρ
(0,m)
~v (ak)|~v,~λ〉〉 = ck

∑
x∈~λ

χkx −
1

(1− qk1 )(1− qk2 )

m∑
l=1

vkl

 |~v,~λ〉〉, k ∈ Z \ {0}. (2.27)

This expression involves the coefficients ck defined in (2.7) from the two expansions of the

function g(z).

It is also necessary to introduce a dual basis 〈〈~v,~λ| for the vertical modules, which is

orthogonal (but not orthonormal) to the basis of states |~v,~λ〉〉:

〈〈~v,~λ|~v,~λ′〉〉 = δ~λ,~λ′ a
−1
~λ
, a~λ = Zvect.(~v,~λ)

m∏
l=1

(−γvl)−|
~λ|
∏
x∈~λ

χmx . (2.28)

The scalar product involves the quantity Zvect.(~v,~λ) that coincides with the vector multiplet

contribution to the Nekrasov instanton partition function. A brief reminder on the various

building blocks for these partition functions can be found in appendix B. Note that in

the case of m = 1, the (inverse) norms aλ are in fact independent of the weight v of the

representation. The non-trivial norm is introduced here in order to simplify the expression

of the contragredient representation ρ̂ that acts on the dual basis in such a way that

(
〈〈~v,~λ|ρ̂(0,m)(e)

)
|~v,~λ′〉〉 = 〈〈~v,~λ|

(
ρ(0,m)(e)|~v,~λ′〉〉

)
, ∀e ∈ ADIM. (2.29)

With our choice of normalization, the action of ρ̂ reads just like (2.24), but with x±(z)

replaced by −x∓(z).

Vertical representations of levels (`, ¯̀) = (0,−m) can be defined using the automor-

phism S2. The corresponding modules are isomorphic to (0,m)~v, and the action of the
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Drinfeld currents on the basis takes the form

ρ
(0,−m)
~v (x+(z)) |~v,~λ〉〉 = γ−m

∑
x∈R(~λ)

δ(zχx) Res
z=χ−1

x

z−1Y~λ(q−1
3 z−1) |~v,~λ− x〉〉,

ρ
(0,−m)
~v (x−(z)) |~v,~λ〉〉 =

∑
x∈A(~λ)

δ(zχx) Res
z=χ−1

x

1

zY~λ(z−1)
|~v,~λ+ x〉〉,

ρ
(0,−m)
~v (ψ±(z)) |~v,~λ〉〉 = γ−m

[
Ψλ(z−1)

]
± |~v,~λ〉〉,

ρ
(0,−m)
~v (ak)|~v,~λ〉〉 = −ck

∑
x∈~λ

χ−kx −
1

(1− q−k1 )(1− q−k2 )

m∑
l=1

v−kl

 |~v,~λ〉〉.
(2.30)

Since by definition ρ
(0,−m)
~v (e) = ρ

(0,m)
~v (S2 ·e), the transformation matrixM(0,m)

S2 is actually

trivial here, and (p, q)-branes of charges (0,m) and (0,−m) can be formally identified.

2.4.2 Horizontal representations

Representations with level ` ∈ Z \ {0} are called horizontal representations, they are ob-

tained as a tensor product of |`| q-bosonic Fock modules. In this paper, we restrict ourselves

to the case of a single q-boson, i.e. |`| = 1. Then, all the modules (±1, n)u with n ∈ Z are

isomorphic to the Fock space defined over the q-bosonic modes αk with the commutation

relations

[αk, αl] = σkδk+l, with σk = kγk(1− qk1 )(1− qk2 ). (2.31)

Positive modes annihilate the Fock vacuum |∅〉, while negative modes create excitations.

We further introduce the dual state 〈∅|, annihilated by negative modes, and the normal

ordering : · · · : is defined by moving the positive modes to the right. The horizontal

representation will be defined using the vertex operators

η±(z) =: exp

∓∑
k 6=0

z−k

k
γ∓|k|/2αk

 :, ϕ±(z) = exp

(
±
∑
k>0

z∓k

k
(γk − γ−k)α±k

)
.

(2.32)

In representation of levels (±1, n) and weight u, the DIM algebra acts on the Fock

modules as follows [53]:7

ρ(1,n)
u (ak) =

γk − γ−k

k
αk, ρ(−1,n)

u (ak) = −γ
k − γ−k

k
α−k, ρ(±1,n)

u (γ̂) = γ±1,

ρ(1,n)
u (x±(z)) = u±1z∓nη±(z), ρ(1,n)

u (ψ±(z)) = γ∓nϕ±(z),

ρ(−1,n)
u (x±(z)) = −u∓1z±nη∓(z−1), ρ(−1,n)

u (ψ±(z)) = γ∓nϕ∓(z−1). (2.33)

As the levels indicate, these representations are associated to a bound state of a single

NS5-brane and |n| D5-branes. The weight u encodes the position of the (p, q)-brane along

the axis ‘6’ of the 56-plane. Due to the property ρ
(1,n)
u (S2 · e) = ρ

(−1,−n)
u (e) (∀e ∈ ADIM),

the transformation matrices M(±1,n)
S2 are trivial, and the weight u remains invariant under

S2. As a result, (p, q)-branes of charges (1, n) and (−1,−n) can also be identified.

7In contrast with the convention used in [20], here we have rescaled the weights of representations (±1, n)

by sending u→ ±uγ∓n.
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2.4.3 Action of Miki’s automorphism on the representations

In this paper, we restrict ourselves to representations with levels `, ¯̀ ∈ {−1, 0, 1} that

define a closed subset under the action of Miki’s automorphism. To study this action,

we need to introduce a new basis in the horizontal Fock space, in addition to the usual

PBW basis. This is achieved using an isomorphism sending horizontal representations

into representations acting on Macdonald symmetric polynomials Pλ with the parameters

q = q2 and t = q−1
1 [53]. Under this isomorphism, the vacuum state |∅〉 coincides with

the constant 1, and the oscillator modes are written in terms of the power sum symmetric

polynomials pk:

α−k ≡ (1− qk1 )γk/2pk, αk ≡ k(1− qk2 )γk/2
∂

∂pk
, (k > 0). (2.34)

Under this identification, the zero mode of the vertex operator η+(z) reproduces the Mac-

donald operator. The latter is diagonalized by the Macdonald polynomials Pλ. It leads

us to introduce the corresponding states |Pλ〉 in the Fock modules as an eigenbasis of the

operator η+
0 with the non-degenerate eigenvalues Eλ:8

η+
0 |Pλ〉 = Eλ |Pλ〉 , with Eλ =

∑
(i,j)∈A(λ)

qi−1
1 qj−1

2 −
∑

(i,j)∈R(λ)

qi1q
j
2. (2.36)

However, this eigenvalue equation does not fix the normalization of the states. Instead of

taking the standard norm of Macdonald polynomials, here we adjust it in such a way that

the Pieiri rule with the elementary symmetric polynomial e1 = p1 coincides precisely with

the vertical action of x+
0 :9

α−1 |Pλ〉 = −
∑

x∈A(λ)

Res
z=χx

1

zYλ(z)
|Pλ+x〉 . (2.39)

In the same spirit, we also modified the norm of dual Macdonald polynomial Qλ, and

introduced the dual basis 〈Pλ| such that 〈Pλ|Pµ〉 = a−1
λ δλ,µ with the coefficients aλ given

8The two possible expressions for the function Y~λ(z) (given (2.25) and (2.26)) induce at the asymptotics

z →∞ the relation ∑
x∈A(~λ)

χx −
∑

x∈R(~λ)

q−1
3 χx =

∑
l

vl − σ1γ
−1
∑
x∈~λ

χx, (2.35)

which provides an alternative expression for Eλ.
9The original Pieiri rule for e1 with the standard norm of Macdonald polynomials [54] can be written as

e1Pλ =
∑

x∈A(λ)

∏
y∈R(λ)
y<x

(1− q−1
3 χy/χx)

∏
y∈A(λ)
y<x

(1− q3χy/χx)∏
y∈R(λ)
y<x

(1− χy/χx)
∏

y∈A(λ)
y<x

(1− χy/χx)
Pλ+x, (2.37)

where the ordering on the boxes x = (i, j) ∈ λ is defined such that x < x′ iff i < i′ or i = i′ and j < j′.

However, here instead of the normalization Pλ = mλ + · · · (with mλ the monomial symmetric function),

we use Pλ = nλmλ + · · · with

nλ =

(
−γ1/2 (1− q−1

2 )

(1− q3)

)|λ| ∏
x,y∈λ
y<x

S(χx/χy)
∏

(i,j)∈λ

(1− q−i1 q−j2 )
1− q1q1−j

2

1− q−j2

. (2.38)

We would have chosen the standard norm instead, the coefficients nλ would have appeared as the values of

the matrices M(·,·)
S on the diagonal.
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in (2.28). This choice of normalization for the vertical and horizontal basis corresponds to

a choice of framing factors for the topological vertex [35].

In order to compare with vertical representations, we also need the action of η−0 on the

Macdonald states |Pλ〉. It can be obtained using the isomorphism σV that sends the DIM

algebra with parameters q1, q2, q3 to the DIM algebra with inverse parameters q−1
1 , q−1

2 , q−1
3 .

This isomorphism encodes the vertical reflection in the 56 plane [21]. It sends the mode

x+
0 to x−0 , and as a consequence,

η−0 |Pλ〉 = E∗λ |Pλ〉 , with E∗λ =
∑

(i,j)∈A(λ)

q
−(i−1)
1 q

−(j−1)
2 −

∑
(i,j)∈R(λ)

q−i1 q−j2 . (2.40)

Finally, the action of α1 follows from the Pieiri rules applied to the dual Macdonald poly-

nomial with our specific choice of normalization it gives

α1 |Pλ〉 = −γ−1
∑

x∈R(λ)

Res
z=χx

z−1Yλ(q−1
3 z) |Pλ−x〉 . (2.41)

We now compare horizontal and vertical modules. It is seen in appendix A that the

DIM algebra is in fact generated by only four modes: a±1 and x±0 . Hence, it is sufficient to

examine the action of these four modes in order to show the isomorphism (2.13) between

vertical and horizontal modules. Comparing ρ
(0,±1)
v (S · e) and ρ

(±1,0)
u (e) for e ∈ {a±1, x

±
0 },

we deduce the existence of the isomorphisms M(0,±1)
S andM(±1,0)

S mapping vertical states

|v, λ〉〉 to the Macdonald states |Pλ〉, and vice-versa:

M(0,1)
S =M(0,−1)

S =
∑
λ

aλ |Pλ〉 〈〈v, λ| , M(1,0)
S =M(−1,0)

S =
∑
λ

aλ |v, λ〉〉 〈Pλ| . (2.42)

Under this transformation, the vertical weights v are mapped to horizontal weights u=−γv,

(0, 1)v → (−1, 0)−γv → (0,−1)v → (1, 0)−γv → (0, 1)v. (2.43)

The presence of this extra factor is a matter of conventions, it is related to the fact that

the weights of the vertical representation are usually defined as (minus) the roots of the

Drinfeld polynomial that really correspond to −γvl (` = 1, · · · ,m).

Finally, we would like to consider the S-transformation of horizontal representations

(1,±1) and (−1,±1). Using the properties

ρ(1,n)
u (x+

n ) = uη+
0 , and ρ(−1,n)

u (x−n ) = −uη+
0 , (2.44)

it is easy to show that, the modules beeing isomorphic, if the matrices M(±1,1)
S and

M(1,±1)
S exist, they must be diagonal in the basis |Pλ〉. Moreover, the identities M(1,1)

S2 =

M(−1,1)
S M(1,1)

S (and similarly for the four other matrices) impose some relations among

the eigenvalues of the different matrices MS . At this stage, we can write down following

the Ansatz:

M(1,1)
S =M(−1,−1)

S =
∑
λ

aλdλ |Pλ〉 〈Pλ| , M(1,−1)
S =M(−1,1)

S =
∑
λ

aλd
−1
λ |Pλ〉 〈Pλ| ,

(2.45)
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with dλ unknown coefficients. The horizontal weights are, once again, observed to be

invariant under S-transformation.

The proof of the existence of the matricesMS between the representations (±1, 1) and

(±1,−1) is a little more involved. We consider only M(1,1)
S , since the other matrices can

be treated in the same way. The DIM algebra is generated by only four modes that we

can choose to be a±1 and x±±1. The previous arguments can be applied to both x±±1 using

the isomorphism σV . Thus, it only remains to treat the case of a±1 ∝ S · x∓0 , for which we

need to show that

ρ(1,1)
u (S · x±0 ) =M(1,1)−1

S ρ
(−1,1)
ũ (x±0 )M(1,1)

S ⇔ M(1,1)−1
S η±±1M

(1,1)
S = ũ∓1α±1. (2.46)

For this purpose, we consider the commutator η±±1 = ±γ±1/2σ−1
1 [α±1, η

±
0 ] in the Macdonald

basis |Pλ〉. We will focus here on η+
1 , the treatment of η−−1 being similar. Comparing

M(1,1)−1
S η+

1M
(1,1)
S |Pλ〉 = −γ−1/2σ−1

1

∑
x∈R(λ)

dλ
dλ−x

(Eλ − Eλ−x) Res
z=χx

z−1Y~λ(q−1
3 z) |Pλ−x〉

(2.47)

with the action (2.41) of α1, we deduce that the constraint (2.46) on η+
1 is satisfied provided

that the diagonal elements of the matrix M(1,1)
S equal

dλ = d∅(−γ1/2ũ−1)|λ|

 ∏
(i,j)∈λ

qi−1
1 qj−1

2

−1

. (2.48)

The analysis of the constraint coming from η−−1 in (2.46) gives the same value for dλ. The

choice of d∅ is let free, we set d∅ = 1 so that M(1,1)
S maps the vacuum state |∅〉 to itself.

3 S-transformation of intertwiners

3.1 A general approach to S-dual intertwiners

3.1.1 Definition of intertwiners and twisting

Trivalent intertwiners are the building blocks of the algebraic engineering of 5D N = 1

gauge theories for which they play the role of the refined topological vertex. However,

in contrast with topological strings, there exists several types of intertwiners in the DIM

algebra, each parameterized by the level of the representations involved. In this way, it

is possible to associate certain ‘higher rank’ intertwiners to brane-webs involving more

than one topological vertex (see [20]), leading to a more efficient method to compute

topological strings amplitudes. In addition, it is also necessary to distinguish between the

intertwiner Φ, and the dual one Φ∗. Indeed, the web of intertwiners should be oriented,

the orientation corresponding to the mapping from one module to another. Intertwiners Φ

and Φ∗ correspond respectively to vertices with one and two outgoing arrows (see figure 2).

Notice that Φ∗ can be obtained from Φ by a reflection along the diagonal x5 + x6 = 0 in

the 56 plane (flipping also the arrows).
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Φ(`1, ¯̀
1)v1

(`2, ¯̀
2)v2

(`, ¯̀)v

Φ∗
(`2, ¯̀

2)v1

(`1, ¯̀
1)v2

(`, ¯̀)v

Figure 2. Representation of the intertwiners Φ and Φ∗ as generalized topological vertices.

Algebraically, intertwiners are defined as the solution to the following equations:

ρ(`,¯̀)
v (e)Φ

[
`1 ¯̀

1

`2 ¯̀
2

]
= Φ

[
`1 ¯̀

1

`2 ¯̀
2

] (
ρ(`1,¯̀1)
v1

⊗ ρ(`2,¯̀2)
v2

∆(e)
)
,(

ρ(`1,¯̀1)
v1

⊗ ρ(`2,¯̀2)
v2

∆′(e)
)

Φ∗
[
`1 ¯̀

1

`2 ¯̀
2

]
= Φ∗

[
`1 ¯̀

1

`2 ¯̀
2

]
ρ(`,¯̀)
v (e).

(3.1)

These equations do not determine the intertwiners uniquely, as it is still possible multiply

them by a factor depending on the levels and weights (for instance). Whenever it is

possible, this ambiguous factor will be set to one. Once this ambiguity is fixed, we expect

that intertwiners involved in the correspondence with topological strings become unique.

The relations (3.1) applied to the central charges c and c̄ imply the conservation of the

levels ` = `1 + `2 and ¯̀= ¯̀
1 + ¯̀

2, corresponding to the charge conservation of the branes.

Thus, intertwiners can be labeled by only two sets of levels (`1, ¯̀
1) and (`2, ¯̀

2). Obviously,

intertwiners also depend on the weights of the representations, however we will not indicate

them in order to lighten the notation. A constraint on these weights is also observed, it takes

the form ω(`,¯̀)(v) = ω(`1,¯̀1)(v1)ω(`2,¯̀2)(v2) with the representation-dependent functions of

the weights ω(`,¯̀)(v). Explicit calculations give the values ω(±1,n)(u) = u for horizontal

representations, and ω(0,±m)(~v) =
∏m
l=1(−γvl) for vertical representations.

There are two (somewhat equivalent) ways of defining the action of S-duality on inter-

twiners: either replacing the representations by the S-dual ones, or replacing the coproduct

by its twisted version. The first point of view is relevant to string theory, since S-duality

implies the rotation of (p, q)-branes that effectively replace representations by the dual

ones. We will call rotated intertwiner the intertwiner Φ
[
−¯̀

1 `1
−¯̀

2 `2

]
describing the topological

vertex after rotation of the brane web. On the other hand, the replacement of the coprod-

uct by its twisted version is more interesting from the integrability perspective. We will

call S-dual intertwiner the corresponding intertwiner, and denote it ΦS . This object is

defined as the solution of the equations (3.1) with ∆ replaced by ∆S :

ρ(`,¯̀)
v (e)ΦS

[
`1 ¯̀

1

`2 ¯̀
2

]
= ΦS

[
`1 ¯̀

1

`2 ¯̀
2

] (
ρ(`1,¯̀1)
v1

⊗ ρ(`2,¯̀2)
v2

∆S(e)
)
,(

ρ(`1,¯̀1)
v1

⊗ ρ(`2,¯̀2)
v2

∆′S(e)
)

Φ∗S

[
`1 ¯̀

1

`2 ¯̀
2

]
= Φ∗S

[
`1 ¯̀

1

`2 ¯̀
2

]
ρ(`,¯̀)
v (e).

(3.2)

The relation between rotated and S-dual intertwiners involves the matrices MS , it will be

given below.
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3.1.2 Action of S2 and inversion of intertwiners

Before looking at the action of S, it is instructive to consider first S2. There are two

different ways to solve the equations (3.1) for ΦS2 and Φ∗S2 (i.e. with ∆ and ∆′ exchanged

since ∆S2 = ∆′ and S4 = 1). The first possibility is to use the intertwining property of the

universal R-matrix and replace ∆′ with R∆R−1. As a result, we find the solutions

ΦS2

[
`1 ¯̀

1

`2 ¯̀
2

]
= Φ

[
`1 ¯̀

1

`2 ¯̀
2

]
R
[
`1 ¯̀

1

`2 ¯̀
2

]−1
, Φ∗S2

[
`1 ¯̀

1

`2 ¯̀
2

]
= R

[
`1 ¯̀

1

`2 ¯̀
2

]−1
Φ∗
[
`1 ¯̀

1

`2 ¯̀
2

]
, (3.3)

where we have introduced the Lax matrix

R
[
`1 ¯̀

1

`2 ¯̀
2

]
=
(
ρ(`1,¯̀1)
v1

⊗ ρ(`2,¯̀2)
v2

)
R. (3.4)

A second solution can be found by introducing the matrices MS2 using the prop-

erty (2.13). A simple calculation gives

ΦS2

[
`1 ¯̀

1

`2 ¯̀
2

]
=M(`,¯̀)−1

S2 Φ
[
−`1 −¯̀

1

−`2 −¯̀
2

] (
M(`1,¯̀1)
S2 ⊗M(`2,¯̀2)

S2

)
,

Φ∗S2

[
`1 ¯̀

1

`2 ¯̀
2

]
=
(
M(`1,¯̀1)−1
S2 ⊗M(`2,¯̀2)−1

S2

)
Φ∗
[
−`1 −¯̀

1

−`2 −¯̀
2

]
M(`,¯̀)
S2 .

(3.5)

This solution relates the two definitions of S2-dual intertwiners. However, the main subtlety

here is that this second solution may not coincide with the previous one, although we expect

that they differ only by a normalization factor. In the following, as a point of reference for

normalization factors, we consider (3.5) as the genuine solution.

Then, it is important to observe the following fact. Considering the two following

products of intertwiners (taken in both intermediate modules (`1, ¯̀
1)v1 and (`2, ¯̀

2)v2) as

endomorphisms of (`, ¯̀)v,

N
[
`1 ¯̀

1

`2 ¯̀
2

]
= Φ

[
`1 ¯̀

1

`2 ¯̀
2

]
Φ∗S2

[
`1 ¯̀

1

`2 ¯̀
2

]
, N ∗

[
`1 ¯̀

1

`2 ¯̀
2

]
= ΦS2

[
`1 ¯̀

1

`2 ¯̀
2

]
Φ∗
[
`1 ¯̀

1

`2 ¯̀
2

]
, (3.6)

it is possible to show using the properties (3.1) that they commute with the action of the

DIM algebra in the representation (`, ¯̀)v. In the case of interest, namely vertical (0,±m)

and horizontal (±1, n) representations, this property implies that N and N ∗ are constants

(of course, depending on levels and weights). When these constants are finite, the dual

intertwiner Φ∗S2 provides the right inverse of Φ, and similarly ΦS2 gives the left inverse of

Φ∗. We would like to emphasize that these considerations, although very general, can also

be used in practice to write down the inverse of an intertwiner using the solution (3.5)

found previously. We will give below an explicit verification of the two identities (3.6) in

certain representations.

We would like to conclude this paragraph on the action of S2 with a side remark. In

fact, there is a third way to find a solution for ΦS2 and Φ∗S2 , in which we introduce the

permutation operator P(a⊗ b) = (b⊗ a)P. In this way, we find:

ΦS2

[
`1 ¯̀

1

`2 ¯̀
2

]
= Φ

[
`2 ¯̀

2

`1 ¯̀
1

]
P
[
`1 ¯̀

1

`2 ¯̀
2

]
, Φ∗S2

[
`1 ¯̀

1

`2 ¯̀
2

]
= P

[
`2 ¯̀

2

`1 ¯̀
1

]
Φ∗
[
`2 ¯̀

2

`1 ¯̀
1

]
, (3.7)

with

P
[
`1 ¯̀

1

`2 ¯̀
2

]
: (`1, ¯̀

1)⊗ (`2, ¯̀
2)→ (`2, ¯̀

2)⊗ (`1, ¯̀
1). (3.8)
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3.1.3 S-transformation of intertwiners

Just like in the case of ΦS2 , there exists several ways of solving the twisted intertwining

relations (3.2). The simplest way, assuming the existence of the two-tensor FS , is to replace

∆S with FS∆F−1
S (and ∆′S with F∗S∆′F∗−1

S ). In this case, we find

ΦS

[
`1 ¯̀

1

`2 ¯̀
2

]
= Φ

[
`1 ¯̀

1

`2 ¯̀
2

]
FS
[
`1 ¯̀

1

`2 ¯̀
2

]−1
, Φ∗S

[
`1 ¯̀

1

`2 ¯̀
2

]
= F∗S

[
`1 ¯̀

1

`2 ¯̀
2

]
Φ∗
[
`1 ¯̀

1

`2 ¯̀
2

]
, (3.9)

with

FS
[
`1 ¯̀

1

`2 ¯̀
2

]
= ρ(`1,¯̀1)

v1
⊗ ρ(`2,¯̀2)

v2
FS , F∗S

[
`1 ¯̀

1

`2 ¯̀
2

]
= ρ(`1,¯̀1)

v1
⊗ ρ(`2,¯̀2)

v2
F∗S . (3.10)

This solution is not very useful since no expression is known for FS in general. Yet, it

could be employed in a reverse way to find an expression for the specialization FS
[
`1 ¯̀

1

`2 ¯̀
2

]
from the knowledge of ΦS and Φ.

The second method employs the property (2.13), it provides a relation between the

S-dual intertwiner ΦS and the rotated one,

ΦS

[
`1 ¯̀

1

`2 ¯̀
2

]
=M(¯̀,−`)

S Φ
[

¯̀
1 −`1

¯̀
2 −`2

] (
M(¯̀

1,−`1)−1
S ⊗M(¯̀

2,−`2)−1
S

)
,

Φ∗S

[
`1 ¯̀

1

`2 ¯̀
2

]
=
(
M(¯̀

1,−`1)
S ⊗M(¯̀

2,−`2)
S

)
Φ∗
[

¯̀
1 −`1

¯̀
2 −`2

]
M(¯̀,−`)−1
S .

(3.11)

Note however that in this formula, the rotation of intertwiners Φ and Φ∗ is performed in

the opposite direction, so that it corresponds the action of S−1 on the representations.

Using the formula for the inversion of intertwiners (3.6), combined with the solu-

tion (3.5) for ΦS2 , the rotated intertwiner Φ
[
−¯̀

1 `1
−¯̀

2 `2

]
can be expressed in terms of the

original one,

Φ
[
−¯̀

1 `1
−¯̀

2 `2

]
=M(`,¯̀)

S Φ
[
`1 ¯̀

1

`2 ¯̀
2

]
F̄S
[
`1 ¯̀

1

`2 ¯̀
2

]
, Φ∗

[
−¯̀

1 `1
−¯̀

2 `2

]
= F̄∗S

[
`1 ¯̀

1

`2 ¯̀
2

]−1
Φ∗
[
`1 ¯̀

1

`2 ¯̀
2

]
M(`,¯̀)−1
S ,

(3.12)

with

F̄S
[
`1 ¯̀

1

`2 ¯̀
2

]
= N

[
`1 ¯̀

1

`2 ¯̀
2

]−1 (
M(`1,¯̀1)−1
S2 ⊗M(`2,¯̀2)−1

S2

)
Φ∗
[
−`1 −¯̀

1

−`2 −¯̀
2

]
M(−¯̀,`)
S Φ

[
−¯̀

1 `1
−¯̀

2 `2

]
,

F̄∗S
[
`1 ¯̀

1

`2 ¯̀
2

]−1
= N

[
−`1 −¯̀

1

−`2 −¯̀
2

]−1
Φ∗
[
−¯̀

1 `1
−¯̀

2 `2

]
M(−¯̀,`)−1
S Φ

[
−`1 −¯̀

1

−`2 −¯̀
2

] (
M(`1,¯̀1)
S2 ⊗M(`2,¯̀2)

S2

)
.

(3.13)

In contrast with the transformation two-tensors FS
[
`1 ¯̀

1

`2 ¯̀
2

]
with which they are affiliated,

the expression for the two-tensors F̄S
[
`1 ¯̀

1

`2 ¯̀
2

]
can be written down explicitly, and we will

provide several examples later on. Assuming that the solutions ΦS obtained with the

different methods are proportional, the two-tensors can be related as follows:

F̄S
[
`1 ¯̀

1

`2 ¯̀
2

]
∝
(
M(`1,¯̀1)−1
S ⊗M(`2,¯̀2)−1

S

)
FS
[
−¯̀

1 `1
−¯̀

2 `2

]
,

F̄∗S
[
`1 ¯̀

1

`2 ¯̀
2

]
∝
(
M(`1,¯̀1)−1
S ⊗M(`2,¯̀2)−1

S

)
F∗S
[
−¯̀

1 `1
−¯̀

2 `2

]
.

(3.14)
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In fact, even though it can be made explicit, the exact expression for the two-tensors

F̄S will remain rather complicated. On the other hand, they satisfy simple covariance

properties under the action of DIM algebra that can (and will) be exploited:

F̄S
[
`1 ¯̀

1

`2 ¯̀
2

] (
ρ

(−¯̀
1,`1)

ṽ1
⊗ ρ(−¯̀

2,`2)
ṽ2

∆(e)
)

=
(
ρ(`1,¯̀1)
v1

⊗ ρ(`2,¯̀2)
v2

∆(S · e)
)
F̄S
[
`1 ¯̀

1

`2 ¯̀
2

]
,(

ρ
(−¯̀

1,`1)
ṽ1

⊗ ρ(−¯̀
2,`2)

ṽ2
∆′(e)

)
F̄∗S
[
`1 ¯̀

1

`2 ¯̀
2

]−1
= F̄∗S

[
`1 ¯̀

1

`2 ¯̀
2

]−1 (
ρ(`1,¯̀1)
v1

⊗ ρ(`2,¯̀2)
v2

∆′(S · e)
)
.

(3.15)

These relations have been established by a direct calculation.

3.2 Example of intertwiners

In this subsection, we provide the explicit expression for several types of intertwiners. These

expressions will be used to check some of the identities obtained previously using Miki’s

automorphism. Moreover, they will also be employed in the next sections to investigate

the action of S-duality on particular brane webs.

3.2.1 Generalized AFS intertwiners

The first intertwiners for the DIM algebra were introduced by Awata, Feigin and Shiraishi

in [38], they correspond in our notation to Φ[ 0 1
1 n ] and Φ∗[ 0 1

1 n ]. They are associated to the

genuine refined topological vertex [33, 34] and describe the junction of a D5-brane and a

NS5-brane, dressed by n-D5 brane, forming a bound state of one NS5-brane and n+ 1 D5-

branes. These intertwiners were later generalized in [20] to vertical representations of higher

level m > 0 using a fusion technique. The new intertwiners involve the representations

(1, n+m)u′ , (0,m)~v and (1, n)u, and describe m topological vertices with parallel preferred

direction, and successively glued along a non-preferred direction. In this way, they represent

a NS5-brane, dressed by n D5-brane, meeting a stack of m D5-brane (not necessarily

overlayed), to form a bound state of one NS5-brane dressed by n+m D5-branes.

The generalized AFS intertwiners are conveniently presented as vectors of the vertical

modules, with coefficients being vertex operators mapping the Fock spaces of the horizontal

modules:

Φ[ 0 m
1 n ] =

∑
~λ

a~λΦ~λ[ 0 m
1 n ]〈〈~v,~λ| , Φ∗[ 0 m

1 n ] =
∑
~λ

a~λΦ∗~λ[ 0 m
1 n ] |~v,~λ〉〉,

Φ~λ[ 0 m
1 n ] = t~λ[ 0 m

1 n ] :
m∏
l=1

Φ∅(vl)
∏
x∈~λ

η+(χx) :, Φ∗~λ[ 0 m
1 n ] = t∗~λ[ 0 m

1 n ] :
m∏
l=1

Φ∗∅(vl)
∏
x∈~λ

η−(χx) :,

(3.16)

where t~λ and t∗~λ
denote the normalization coefficients

t~λ[ 0 m
1 n ] = (u′)|

~λ|
∏
x∈~λ

χ−n−mx , t∗~λ[ 0 m
1 n ] = u−|

~λ|γ−m|
~λ|
∏
x∈~λ

χnx. (3.17)

The vertical components associated to the vacuum involve the operators Φ∅(v) and Φ∗∅(v)

that defines a sort of Fermi sea. They can be built using a product over the boxes of an
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infinite, fully filled, Young diagram λ∞ = {(i, j) ∈ Z>0 × Z>0},

Φ∅(v) =:
∏
x∈~λ∞

η+(χx)−1 :=: exp

∑
k 6=0

(γv)−k

σk
γ−|k|/2αk

 :,

Φ∗∅(v) =:
∏
x∈~λ∞

η−(χx)−1 :=: exp

−∑
k 6=0

(γv)−k

σk
γ|k|/2αk

 :,

(3.18)

with the coefficients σk given in (2.31).

3.2.2 New intertwiners V ×H ↔ H

In fact, the generalized AFS intertwiner Φ presented above belong to a set of eight intertwin-

ers obtained either by flipping the signs of the levels (1, n)→ (−1, n), or (0,m)→ (0,−m),

or exchanging the representations (0,±m)↔ (±1, n). By convention, we denote the weight

of representations (±1, n) as u, (0,±m) as ~v, and (±1, n + m) as u′. These intertwiners

can also be decomposed over their vertical components, as in (3.16), and the corresponding

coefficients read

Φ~λ
[

0 m
−1 n

]
= t~λ

[
0 m
−1 n

]
:

m∏
l=1

Φ∗∅(q
−1
3 v−1

l )
∏
x∈~λ

η−(χ−1
x ) :, t~λ

[
0 m
−1 n

]
=u−|

~λ|γ−m|
~λ|
∏
x∈~λ

χnx,

Φ~λ
[

0 −m
1 n

]
= t~λ

[
0 −m
1 n

]
:

m∏
l=1

Φ∅(q
−1
3 v−1

l )−1
∏
x∈~λ

η+(χ−1
x )−1 :, t~λ

[
0 −m
1 n

]
=u−|

~λ|
∏
x∈~λ

χ−nx ,

Φ~λ
[

0 −m
−1 n

]
= t~λ

[
0 −m
−1 n

]
:
m∏
l=1

Φ∗∅(vl)
−1
∏
x∈~λ

η−(χx)−1 :, t~λ
[

0 −m
−1 n

]
= (u′)|

~λ|γ−m|
~λ|
∏
x∈~λ

χ−m+n
x ,

(3.19)

and

Φ~λ[1 n
0 m ] = t~λ[1 n

0 m ] :

m∏
l=1

Φ∗∅(vl)
−1
∏
x∈~λ

η−(χx)−1 :, t~λ[1 n
0 m ] = (u′)|

~λ|γ−m|
~λ|
∏
x∈~λ

χ−n−mx ,

Φ~λ
[−1 n

0 m

]
= t~λ

[−1 n
0 m

]
:

m∏
l=1

Φ∅(q
−1
3 v−1

l )−1
∏
x∈~λ

η+(χ−1
x )−1 :, t~λ

[−1 n
0 m

]
=u−|

~λ|
∏
x∈~λ

χnx,

Φ~λ
[

1 n
0 −m

]
= t~λ

[
1 n
0 −m

]
:

m∏
l=1

Φ∗∅(q
−1
3 v−1

l )
∏
x∈~λ

η−(χ−1
x ) :, t~λ

[
1 n
0 −m

]
=u−|

~λ|γ−m|
~λ|
∏
x∈~λ

χ−nx ,

Φ~λ
[−1 n

0 −m
]

= t~λ
[−1 n

0 −m
]

:
m∏
l=1

Φ∅(vl)
∏
x∈~λ

η+(χx) :, t~λ
[−1 n

0 −m
]

= (u′)|
~λ|
∏
x∈~λ

χ−m+n
x .

(3.20)

Note that the vertical coefficients of the intertwiner with opposite levels (`, ¯̀) → (−`,−¯̀)

can be obtained from the original ones by sending η±(z) → η∓(z)−1, and u → uγ±m. In

fact, this property follows from the action (2.19) of the automorphism S2.
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In the same way, it is possible to define eight dual intertwiners, including the one given

in (3.18),

Φ∗~λ

[
0 m
−1 n

]
= t∗~λ

[
0 m
−1 n

]
:

m∏
l=1

Φ∅(q
−1
3 v−1

l )
∏
x∈~λ

η+(χ−1
x ) :, t∗~λ

[
0 m
−1 n

]
= (u′)|

~λ|
∏
x∈~λ

χ−n−mx ,

Φ∗~λ

[
0 −m
1 n

]
= t∗~λ

[
0 −m
1 n

]
:
m∏
l=1

Φ∗∅(q
−1
3 v−1

l )−1
∏
x∈~λ

η−(χ−1
x )−1 :, t∗~λ

[
0 −m
1 n

]
= (u′)|

~λ|γ−m|
~λ|
∏
x∈~λ

χ−m+n
x ,

Φ∗~λ

[
0 −m
−1 n

]
= t∗~λ

[
0 −m
−1 n

]
:
m∏
l=1

Φ∅(vl)
−1
∏
x∈~λ

η+(χx)−1 :, t∗~λ

[
0 −m
−1 n

]
=u−|

~λ|
∏
x∈~λ

χ−nx ,

(3.21)

and

Φ∗~λ[1 n
0 m ] = t∗~λ[1 n

0 m ] :

m∏
l=1

Φ∅(vl)
−1
∏
x∈~λ

η+(χx)−1 :, t∗~λ[1 n
0 m ] =u−|

~λ|
∏
x∈~λ

χnx,

Φ∗~λ

[−1 n
0 m

]
= t∗~λ

[−1 n
0 m

]
:
m∏
l=1

Φ∗∅(q
−1
3 v−1

l )−1
∏
x∈~λ

η−(χ−1
x )−1 :, t∗~λ

[−1 n
0 m

]
= (u′)|

~λ|γ−m|
~λ|
∏
x∈~λ

χ−(n+m)
x ,

Φ∗~λ

[
1 n
0 −m

]
= t∗~λ

[
1 n
0 −m

]
:

m∏
l=1

Φ∅(q
−1
3 v−1

l )
∏
x∈~λ

η+(χ−1
x ) :, t∗~λ

[
1 n
0 −m

]
= (u′)|

~λ|
∏
x∈~λ

χ−m+n
x ,

Φ∗~λ

[−1 n
0 −m

]
= t∗~λ

[−1 n
0 −m

]
:
m∏
l=1

Φ∗∅(vl)
∏
x∈~λ

η−(χx) :, t∗~λ

[−1 n
0 −m

]
=u−|

~λ|γ−m|
~λ|
∏
x∈~λ

χ−nx .

(3.22)

Action of S2. These exact expressions give us the opportunity to verify some of the

relations obtained using the action of S2. For instance, combining the expressions of

ΦS2 given either in terms of the permutation operator (3.7), or in terms of the matrices

MS2 (3.5), we deduce the relations

Φ
[
`2 ¯̀

2

`1 ¯̀
1

]
=M(`,¯̀)−1

S2 Φ
[
−`1 −¯̀

1

−`2 −¯̀
2

] (
M(`1,¯̀1)
S2 ⊗M(`2,¯̀2)

S2

)
P
[
`2 ¯̀

2

`1 ¯̀
1

]
,

Φ∗
[
`2 ¯̀

2

`1 ¯̀
1

]
= P

[
`1 ¯̀

1

`2 ¯̀
2

] (
M(`1,¯̀1)−1
S2 ⊗M(`2,¯̀2)−1

S2

)
Φ
[
−`1 −¯̀

1

−`2 −¯̀
2

]
M(`,¯̀)
S2 ,

(3.23)

where P is the permutation operator in the appropriate representations, for instance

P[ 0 m
1 n ] =

∑
~λ,µ

a~λaµ

(
|Pµ〉 ⊗ |~v,~λ〉〉

)(
〈〈~v,~λ| ⊗ 〈Pµ|

)
: (0,m)~v ⊗ (1, n)u → (1, n)u ⊗ (0,m)~v.

(3.24)

Projecting the relations (3.23) on the vertical components, and taking into account that

the matricesMS2 are trivial with our definition of horizontal and vertical representations,

these relations indeed reduce to the following equalities between intertwiners’ components,

which can also be observed directly (similar equalities can be written for Φ∗):

Φ~λ[ 0 m
1 n ] = Φ~λ

[−1 −n
0 −m

]
, Φ~λ

[
0 m
−1 n

]
= Φ~λ

[
1 −n
0 −m

]
,

Φ~λ
[

0 −m
1 n

]
= Φ~λ

[−1 −n
0 m

]
, Φ~λ

[
0 −m
−1 n

]
= Φ~λ

[−1 −n
0 m

]
.

(3.25)

– 20 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
3

This action of S2 on the intertwiners corresponds to a flip of the levels signs (or branes

charges), together with an exchange of the vertical and horizontal representations (i.e. the

two incoming branes in figure 2). Thus, it realizes the 180◦ rotation of the brane web.

Inversion of intertwiners. It is also possible to check the inversion formula (3.6) for

intertwiners, using again the expression (3.5) of ΦS2 involving the matrices MS2 . For

instance, we find for N :

N
[
`1 ¯̀

1

`2 ¯̀
2

]
= Φ

[
`1 ¯̀

1

`2 ¯̀
2

] (
M(`1,¯̀1)−1
S2 ⊗M(`2,¯̀2)−1

S2

)
Φ∗
[
−`1 −¯̀

1

−`2 −¯̀
2

]
M(`,¯̀)
S2 . (3.26)

In the present case, the matrices MS2 are trivial, and

N
[

0 ±m
1 n

]
=
∑
~λ

a~λ(~v)Φ~λ
[

0 ±m
1 n

]
Φ∗~λ

[
0 ∓m
−1 −n

]
, N

[
0 ±m
−1 n

]
=
∑
~λ

a~λ(~v)Φ~λ
[

0 ±m
−1 n

]
Φ∗~λ

[
0 ∓m
1 −n

]
.

(3.27)

Since the product of intertwiners is done in both vertical and horizontal channels, the

weights u, u′ and ~v must be the same for Φ and Φ∗ in these formulas. However, due to

the infinite dimensional nature of representations, it is necessary to introduce a regulator

µ such that u = µu∗ where u is the weight of representations (±1, n) coupled to Φ and u∗

the weight of representations (±1,−n) coupled to Φ∗. Once normal-ordered, the product

of vertical components, which is a priori a vertex operator, reduces to a simple constant.

Observing further cancellations between this constant and the expression of the inverse

norms a~λ, we end up with

N
[

0 ±m
1 n

]
= φ(µ±1)−m

m∏
l,l′=1

G(vl/(q3vl′))
−1, N

[
0 ±m
−1 n

]
= φ(µ∓1)−m

m∏
l,l′=1

G(vl/vl′)
−1

(3.28)

where φ(z) is the Euler function, φ(z)−1 =
∑

λ z
|λ|.

Conjugation. We would like to conclude the analysis of this set of intertwiners with a

short remark. It is possible to relate further the vertical components of intertwiners using

the conjugation operation † defined on Fock space operators by (αk)
† = α−k,

(η±(z))† =: η±(z−1)−1 :, (ϕ±(z))† = ϕ∓(z−1)−1,

Φ∅(v)† =: Φ(q−1
3 v−1)−1 :, Φ∗∅(v)† =: Φ∗(q−1

3 v−1)−1 :,
(3.29)

which implies, for instance,

Φ~λ[ 0 m
1 n ]

†
= Φ~λ

[
0 −m
1 n+m

]
, Φ~λ

[
0 m
−1 n

]†
= Φ~λ

[
0 −m
−1 n+m

]
. (3.30)

In the first identity, we have assumed that the weights transforms as (u′)† = u−1, and

u† = (u′)−1 in the second one. This operation of conjugation exchanges the two horizontal

spaces (±1, n)u ↔ (±1, n+m)u′ , while also flipping the sign of the vertical level (0,m)→
(0,−m). It can be seen as flipping the horizontal (and oblique) arrows associated to the

(D5-dressed) NS5-branes in the representation of figure 2, at the cost of replacing the

vertical representation by its S2-dual.
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3.2.3 New intertwiners H ×H ↔ V

Until now, we have only discussed a certain type of intertwiners that couples a horizontal

representation to the tensor product of a horizontal and a vertical representation. However,

another type of intertwiners appears in the study of Lax matrices presented in the next

section. These intertwiners couple a vertical representation to a tensor product of two

horizontal representations. They can be constructed following two different methods. In

appendix C, they have been obtained by solving directly the intertwining relations (3.1).

Since this method is rather technical, we present here another derivation based on the

reflector state (and its dual) belonging to the tensor product of two Fock modules,

|Ω〉⊗ = exp

(∑
k>0

1

σk
α−k ⊗ α−k

)
(|∅〉 ⊗ |∅〉) , ⊗〈Ω| = (〈∅| ⊗ 〈∅|) exp

(∑
k>0

1

σk
αk ⊗ αk

)
.

(3.31)

Such states were introduced in [21] under the name horizontal reflection states, their es-

sential property is the ‘reflection’ of the action of q-oscillator modes:

(αk ⊗ 1) |Ω〉⊗ =
(

1⊗ (αk)
†
)
|Ω〉⊗, ⊗〈Ω| (αk ⊗ 1) = ⊗〈Ω|

(
1⊗ (αk)

†
)
, (3.32)

where (αk)
† = α−k.

The construction of the dual intertwiner is slightly easier. For definiteness, the first

horizontal representation will carry the levels (−1, n) and weight u, while the second hor-

izontal representation will bear the levels (1,m) and weight u′. They form a vertical

representation of levels (0,m+ n) (with m+ n > 0 for simplicity) and weight ~v such that

uu′ =
∏
l(−γvl),

Φ∗
[−1 n

1 m

]
: (0, n+m)~v → (−1, n)u ⊗ (1,m)u′ . (3.33)

This intertwiner can be obtained as the reflection of a generalized AFS intertwiner acting

in the first and third tensor space,

Φ∗
[−1 n

1 m

]
= Φ

[
0 m+n
1 −n

]
13

(
1⊗|Ω〉⊗

)
, with Φ

[
0 m+n
1 −n

]
: (0,n+m)~v⊗(1,−n)u−1→ (1,m)u′ .

(3.34)

Note that the weight in the left horizontal space for the auxiliary intertwiner has been

inverted, in agreement with the weights conservation relation. Decomposing on the vertical

components, we find

Φ∗
[−1 n

1 m

]
=
∑
~λ

a~λ(~v) |~v,~λ〉⊗〈〈~v,~λ| , with |~v,~λ〉⊗ =
(
1⊗ Φ~λ

[
0 n+m
1 −n

])
|Ω〉⊗. (3.35)

This expression indeed coincides with the one obtained in appendix C, the coefficient

t~λ
[

0 m+n
1 −n

]
reproducing the norm n∗~λ

of the states |~v,~λ〉⊗. Geometrically, the reflector |Ω〉⊗
effectively reverse the arrow on the leg corresponding to the representation (1,−n), and

flip the sign of the levels to produce the representation (−1, n)u.

The same construction holds for the intertwiner

Φ
[−1 n

1 m

]
: (−1, n)u ⊗ (1,m)u′ → (0, n+m)~v, (3.36)
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using the dual reflector and an auxiliary intertwiner Φ∗,

Φ
[−1 n

1 m

]
= (1⊗ ⊗〈Ω|) Φ∗

[
0 m+n
1 −n

]
23
, Φ∗

[
0 m+n
1 −n

]
: (1,m)u′ → (0, n+m)~v ⊗ (1,−n)u−1 .

(3.37)

The vertical decomposition reads

Φ
[−1 n

1 m

]
=
∑
~λ

a~λ |~v,~λ〉〉⊗〈~v,~λ|, with ⊗〈~v,~λ| = ⊗〈Ω|
(

1⊗ Φ∗~λ

[
0 m+n
1 −n

])
, (3.38)

it reproduces the expression found in appendix C with t∗~λ

[
0 m+n
1 −n

]
identified with the

norm n~λ.

4 S-transformation of Lax matrices

4.1 Lax matrices

Coupling intertwiners is simply realized by taking a product, either a product of operators

for horizontal representations, or a scalar product for vertical representations. In effect,

intertwiners Φ and Φ∗ can be coupled in three different ways, depending on the choice of

the common leg/representation, which leads to different algebraic objects. In this section,

we discuss only the case of a coupling along the common representation (`, ¯̀),

Φ∗
[
`∗1

¯̀∗
1

`∗2
¯̀∗
2

]
Φ
[
`1 ¯̀

1

`2 ¯̀
2

]
: (`1, ¯̀

1)v1 ⊗ (`2, ¯̀
2)v2 → (`∗1,

¯̀∗
1)v∗1 ⊗ (`∗2,

¯̀∗
2)v∗2 . (4.1)

Couplings along the other two legs is the subject of the next section. Moreover, for sim-

plicity, we restrict ourselves to the case (`i, ¯̀
i) = (`∗i ,

¯̀∗
i ) (i = 1, 2), and denote

L
[
`1 ¯̀

1

`2 ¯̀
2

]
= Φ∗

[
`1 ¯̀

1

`2 ¯̀
2

]
Φ
[
`1 ¯̀

1

`2 ¯̀
2

]
. (4.2)

Due to the intertwining properties (3.1) of Φ and Φ∗, the operator L intertwines between

the coproduct ∆ and its opposite ∆′,(
ρ

(`1,¯̀1)
v∗1

⊗ ρ(`2,¯̀2)
v∗2

∆′(e)
)
L
[
`1 ¯̀

1

`2 ¯̀
2

]
= L

[
`1 ¯̀

1

`2 ¯̀
2

] (
ρ(`1,¯̀1)
v1

⊗ ρ(`2,¯̀2)
v2

∆(e)
)
. (4.3)

The rotation property of intertwiners (3.12) implies a similar property for L:

L
[
−¯̀

1 `1
−¯̀

2 `2

]
= F̄∗S

[
`1 ¯̀

1

`2 ¯̀
2

]−1
L
[
`1 ¯̀

1

`2 ¯̀
2

]
F̄S
[
`1 ¯̀

1

`2 ¯̀
2

]
. (4.4)

The property (4.3) is also satisfied by the Lax matrix R
[
`1 ¯̀

1

`2 ¯̀
2

]
which is, by definition,

the evaluation of the universal R-matrix in the representations (`1, ¯̀
1)v1 ⊗ (`2, ¯̀

2)v2 . How-

ever, this intertwining property alone does not fully determine the Lax matrix, since the

universal R-matrix is further constraint to obey two extra relations in (2.16). In fact, the

solution of the universal equation ∆′ = R∆R−1 is unique, up to a factor A belonging to

the centralizer of ∆(ADIM) in ADIM ⊗ADIM [55]. In practice, it has been observed that L
is indeed proportional to R, with a factor depending on levels and weights:

L
[
`1 ¯̀

1

`2 ¯̀
2

]
= A

[
`1 ¯̀

1

`2 ¯̀
2

] (
ρ(`1,¯̀1) ⊗ ρ(`2,¯̀2) R

)
. (4.5)
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Φ
(I)
2

Φ
(I∗)
1

(1, 0)u2

(0, 1)v2

(1, 1)u′1=u′2

(0, 1)v1

(1, 0)u1

Φ
(SI)
2

Φ
(SI∗)
1

(−1, 0)ũ2

(0, 1)ṽ2

(−1, 1)ũ′1=ũ′2

(0, 1)ṽ1

(−1, 0)ũ1

Figure 3. Representation of the Lax matrix L(I) and L(SI).

This factor is responsible for the anomaly term observed in [19] for the Yang-Baxter equa-

tion. Its expressions is known in a number of cases, for instance A[ 0 m
1 n ] = Z1-loop(~v)−1

within our conventions [56]. With a slight abuse of terminology, we will also refer to L as

an (ill-normalized) Lax matrix.

The same formulas can be written for the S-twisted coproduct, thus defining the

quantities LS and AS . Using the formula (3.11) to express the S-dual intertwiners in

terms of rotated intertwiners, we find the relation

LS
[
−¯̀

1 `1
−¯̀

2 `2

]
=
(
M(`1,¯̀1)
S ⊗M(`2,¯̀2)

S

)
L
[
`1 ¯̀

1

`2 ¯̀
2

] (
M(`1,¯̀1)−1
S ⊗M(`2,¯̀2)−1

S

)
. (4.6)

Assuming a proper mapping of the vacuum states, this relation, together with the rotation

property (4.4), implies the equality between the vacuum expectation values of the Lax

matrices: 〈
LS
[
−¯̀

1 `1
−¯̀

2 `2

]〉
=
〈
L
[
`1 ¯̀

1

`2 ¯̀
2

]〉
=
〈
L
[
−¯̀

1 `1
−¯̀

2 `2

]〉
. (4.7)

This is the equality that we will check on the two examples below. We shall see that they

reproduce the S-duality relations observed among the instanton partition functions. The

key to show this equality is the study of the vacuum transformation. Unfortunately, this

task turned out too difficult for the transformations F̄S and F̄∗S in (4.4), and we will have

to rely on some indirect arguments.

4.2 Example I: resolved conifold

Our first example is the toric diagram corresponding to the resolved conifold, it is repre-

sented on figure 3. The diagram on the left defines the Lax matrix

L(I) = L[ 0 1
1 0 ] : (0, 1)v2 × (1, 0)u2 → (0, 1)v1 × (1, 0)u1 , (4.8)

which involves the horizontal representation (1, 1)u′ in the intermediate channel. We have

introduced here, and in figure 3, a shortcut notation for the Lax matrix and its intertwiners

Φ(I) = Φ[ 0 1
1 0 ] and Φ(I∗) = Φ∗[ 0 1

1 0 ]. This Lax matrix is related to an S-dual Lax matrix

through the formula (4.6). Since the matrices MS involved map the vertical vacuum to

the horizontal one, and vice-versa, their vacuum expectation values are the same:〈
L(I)

〉
= (〈〈v1, ∅| ⊗ 〈∅|)L(I) (|v2, ∅〉〉 ⊗ |∅〉)

= (〈∅| ⊗ 〈〈ṽ1, ∅|)LS
[−1 0

0 1

]
(|∅〉 ⊗ |ṽ2, ∅〉〉) =

〈
LS
[−1 0

0 1

]〉
.

(4.9)
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In addition, we would like to undo the rotation, using (4.4) and show that
〈
L(I)

〉
is equal

to the v.e.v. of the rotated Lax matrix L(SI) = L
[−1 0

0 1

]
represented on figure 3 (right).

This Lax matrix involves the rotated intertwiners Φ(SI) = Φ
[−1 0

0 1

]
and Φ(SI∗) = Φ∗

[−1 0
0 1

]
.

We will denote the weights of the original Lax matrix L(I) as ui, vi and u′i = −γuivi
with i = 1, 2, and the weights of the rotated matrix L(SI) with a tilde: ũi, ṽi and

ũ′i = −γũiṽi. Using the known expressions for intertwiners, both Lax matrices can be

decomposed over their vertical components,

L(I) =
∑
λ1,λ2

aλ1aλ2L
(I)
λ1,λ2

|v1, λ1〉〉〈〈v2, λ2| , L(SI) =
∑
λ1,λ2

aλ1aλ2L
(SI)
λ1,λ2

|ṽ1, λ1〉〉〈〈ṽ2, λ2| ,

(4.10)

which are, in turn, expressed as vertex operators in the Fock space:

L(I)
λ1,λ2

= (γu1)−|λ1|(−γu2v2)|λ2|N(λ2,λ1|γv2/v1)

G(v2/(γv1))

∏
x∈λ2

χ−1
x : Φ∗∅(v1)Φ∅(v2)

∏
x∈λ1

η−(χx)
∏
x∈λ2

η+(χx) :,

L(SI)
λ1,λ2

= (−ũ1ṽ1)|λ1|(ũ2)−|λ2|N(λ1,λ2|γṽ1/ṽ2)

G(ṽ1/(γṽ2))

∏
x∈λ1

χ−1
x : Φ∗∅(ṽ1)†Φ∅(ṽ2)†

∏
x∈λ1

η−(χx)†
∏
x∈λ2

η+(χx)† : .

(4.11)

The expression for the Nekrasov factors N(λ1, λ2|r) and the function G(z) can be found in

appendix B. Projecting on the vacuum states, we deduce the respective v.e.v.〈
L(I)

〉
= G(v2/(γv1))−1,

〈
L(SI)

〉
= G(ṽ1/(γṽ2))−1. (4.12)

The two v.e.v. are equal, provided that the ratios v2/v1 and ṽ1/ṽ2 coincide. We will see

below that this is indeed the case. Note that the anomaly factor is irrelevant here since

A[ 0 1
1 0 ] = G(q−1

3 )−1 is a weight-independent constant.

Transformation of the vacuum. The Lax matrices L(I) and L(SI) are related through

the formula (4.4), explicitly

L(SI) = F̄ (I∗)−1
S L(I)F̄ (I)

S , with F̄ (I)
S = F̄S [ 0 1

1 0 ], F̄ (I∗)
S = F̄∗S [ 0 1

1 0 ]. (4.13)

Thus, the equality of the v.e.v. would follow if F̄ (I)
S and F̄ (I∗)−1

S map the product of

vacuum states in the representations I to the equivalent product of vacuum states for the

representations SI. Since the treatment of F̄ (I∗)
S is identical, we will focus here only on F̄ (I)

S .

The general expression for the two tensors F̄ is given in (3.13), it reduces in our case to

F̄ (I)
S = N [ 0 1

1 0 ]
−1
∑
λ1,λ2

aλ1aλ2Φ∗λ1

[
0 −1
−1 0

]
M(−1,1)
S Φλ2

[−1 0
0 1

]
|v2, λ1〉〉〈〈ṽ2, λ2| . (4.14)

The factor N [ 0 1
1 0 ] appearing in this formula is independent of the weights and can be ne-

glected. In general, such factors depend only on half of the weights (say u2, v2, . . . but not

u1, v1, . . .), and cannot generate a non-trivial dependence in the gauge theory parameters

that would correspond to ratios of opposite weights (e.g. u1/u2, or v1/v2). Thus, the two
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tensor F̄ (I)
S maps the product of vacuum states in representations (−1, 0)ũ2 ⊗ (0, 1)ṽ2 to

the state

|SI∅〉 = F̄ (I)
S (|∅〉 ⊗ |ṽ2, ∅〉〉) =

∑
λ

aλ |v2, λ〉〉 ⊗ Φ∗λ
[

0 −1
−1 0

]
M(−1,1)
S Φ∅

[−1 0
0 1

]
|∅〉 . (4.15)

We would like to identify this state with |v2, ∅〉〉 ⊗ |∅〉 in the module (0, 1)v2 ⊗ (1, 0)u2 .

Unfortunately, this expression seems too complicated for a direct approach, and we will

rely on an indirect argument.

Our argument follows from the comparison of the states’ transformation properties

under the action of the DIM algebra. To lighten the notations, the index 2 for the weights

will be dropped in this calculation. Taking the coproduct (2.15) of Drinfeld currents in the

proper representations, it is possible to show that10

(
ρ(0,1)
v ⊗ ρ(1,0)

u ∆(x−k≥0)
)

(|v, ∅〉〉 ⊗ |∅〉) = δk,0 u
−1 (|v, ∅〉〉 ⊗ |∅〉) ,(

ρ(0,1)
v ⊗ ρ(1,0)

u ∆(ak>0)
)

(|v, ∅〉〉 ⊗ |∅〉) = −1

k
(γk − γ−k)(vγ1/2)k (|v, ∅〉〉 ⊗ |∅〉) .

(4.16)

We recognize here the transformation properties of the coherent state |v, ∅〉A constructed

in the Fock module in appendix C. In fact, these properties characterize the state uniquely,

up to an overall normalization factor. Indeed, the action of ak>0 corresponds in the module

(1, 1)u′1 to the action of the positive modes αk. This permits to identify states up to a pos-

sible shift of the vacuum state |∅〉 (i.e. the unique state annihilated by all the modes αk>0).

This degree of freedom is further fixed by the action of x−0 , leaving only the possibility

of a different norm. Note that this identification also determines the relation between the

weights, since

ρ
(1,1)
u′ (x−0 )|v, ∅〉A = −γv

u′
|v, ∅〉A, (4.17)

which implies u′ = −γuv as required by the weights conservation relation.11

On the other hand, the characterization of the state |SI∅〉 follows indirectly from the

covariance property (3.15) of F̄ (I)
S . This property implies that, for any element e ∈ ADIM,(

ρ(0,1)
v ⊗ ρ(1,0)

u ∆(S · e)
)
|SI∅〉 = F̄ (I)

S

(
ρ

(−1,0)
ũ ⊗ ρ(0,1)

ṽ ∆(e)
)

(|∅〉 ⊗ |ṽ, ∅〉〉) . (4.18)

As a result, if the state |∅〉 ⊗ |ṽ, ∅〉〉 in the module (−1, 0)ũ × (0, 1)ṽ is annihilated by ∆(e)

for some operator e, the state |SI∅〉 will be annihilated by ∆(S ·e). Similarly, if |∅〉⊗|ṽ, ∅〉〉
is an eigenstate of ∆(e), so is the state |SI∅〉 for ∆(S · e), with the same eigenvalue. Using

the characterization of the state |∅〉 ⊗ |ṽ, ∅〉〉 obtained in appendix D.1, it is possible to

10These relations should be read as follows. In the first line, we examine only the action of positive

modes, they all vanish except for the mode k = 0 that is diagonal with eigenvalue u−1. Similarly, in the

second equation, we examine only the modes strictly positive, they are all diagonal.
11Naively, we could expect that the tensor product of modules (0, 1)v⊗(1, 0)u is isomorphic to the module

(1, 1)u′ . However, the intertwiner Φ(I∗) has only a left inverse and nothing guarantees, a priori, the existence

of this isomorphism.
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show that12 (
ρ(0,1)
v ⊗ ρ(1,0)

u ∆(x−k≥0)
)
|SI∅〉 = δk,0 (−γ3/2ṽ)−1 |SI∅〉 ,(

ρ(0,1)
v ⊗ ρ(1,0)

u ∆(ak>0)
)
|SI∅〉 = −1

k
(γk − γ−k)(−ũγ−1)k |SI∅〉 .

(4.20)

Comparing this result with the characterization (4.16) of |v, ∅〉〉 ⊗ |∅〉, we deduce that the

two states coincide, up to their norm. Unfortunately, the determination of the relative

norm remains difficult, since the projection

(〈〈v, ∅| ⊗ 〈∅|) |SI∅〉 = 〈∅|Φ∗∅
[

0 −1
−1 0

]
M(−1,1)
S Φ∅

[−1 0
0 1

]
|∅〉 (4.21)

is hard to evaluate. Yet, just like the coefficients N , this normalization coefficient can only

depend on the weights u1, v1 and ũ1, ṽ1, and do not produce any dependence on the gauge

theory parameters that correspond to u1/u2 and v1/v2.

Weights. The comparison between actions of DIM algebra on the two states provides

also the relationship between the weights ũi = −γ3/2vi and ṽi = −γ−3/2ui. Surprising, it

does not coincide with the transformation of the weights for vertical (0, 1) and horizontal

(1, 0) representations taken separately, in which case we would have ũi = −γvi and ṽi =

−γ−1ui. It is thus essential to consider the S-transformation of the whole tensor product

(0, 1) ⊗ (1, 0) to find the proper weight mapping.13 Note that in both cases, the weights

of the representation in the intermediate channel u′ = −γuivi becomes ũ′ = −γṽiũi, in

agreement with the S-transformation of module (1, 1)u′ . Physically speaking, it seems

that the presence of the extra branes requires to adjust the position of the branes after

rotation with an extra shift of ±(ε1 + ε2)/4 in order to observe the invariance of the

amplitude. It would be interesting to investigate this phenomenon with more care, for

instance by studying the effect of the branes on the graviphoton field responsible for the

Omega-background.

Eventually, the exact exponent of the factor γ in the weights transformation is not rel-

evant for the gauge theory quantity that depends only on the ratio v2/v1. Since, according

to this transformation, v2/v1 = ũ2/ũ1 = ṽ1/ṽ2, the v.e.v. of the Lax matrices
〈
L(I)

〉
and〈

L(SI)〉 do coincide.

4.3 Example II: pure U(1) gauge theory

We would like to repeat the previous analysis in the case of the brane-web describing the

pure U(1) gauge theory (see figure 4). In fact, this diagram has already been considered

from the algebraic point of view by Awata and Kanno in [40]. In their paper, they in-

vestigated the invariance of the partition function under the choice of preferred direction.

12The action of ak follows from the re-expansion of the current ψ+(z), for which the modes act as(
ρ(0,1)
v ⊗ ρ(1,0)

u ∆(ψ+
k )
)
|SI∅〉 =

(
γδk,0 − (γ − γ−1)(−ũγ−2)k

)
|SI∅〉 . (4.19)

13In fact, Miki’s automorphism is not quite unique (see appendix A), and in this particular case it is

possible to redefine it such that the two weights transformation coincide. However, this will no longer be the

case for the two other examples we will treat, so that we decided to keep the simpler definition (2.11) for S.
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Φ
(II)
2 Φ

(II∗)
1

(0, 1)v2

(1,−1)u2

(0, 1)v1

(1, 0)u′1=u′2

(1,−1)u1

Φ
(SII)
2

Φ
(SII∗)
1

(0, 1)ṽ1=ṽ2

(1, 1)ũ′1

(−1, 0)ũ1

(1, 1)ũ′2

(−1, 0)ũ2

Figure 4. Representation of the S-dual Lax matrices obtained as Φ(II∗)Φ(II) and Φ(SII∗) ·Φ(SII).

Changing the preferred direction effectively rotates the brane-web, although there is an

important difference between their computation and ours: in our case, topological vertices

are also rotated, which requires the use of a different intertwiner.

We introduce again a shortcut notation for the Lax matrices L(II) = L
[

0 1
1 −1

]
,

L(SII) = L
[−1 0

1 1

]
and their associated intertwiners Φ(II) = Φ

[
0 1
1 −1

]
, Φ(II∗) = Φ∗

[
0 1
1 −1

]
and Φ(SII) = Φ

[−1 0
1 1

]
, Φ(SII∗) = Φ∗

[−1 0
1 1

]
. The convention for the labeling of weights can

be seen on figure 4. Since the matrices MS are diagonal, the equality between the v.e.v.

of the Lax matrix L(II) and the S-dual one boils down to an equality between〈
L(II)

〉
= (〈〈v1, ∅| ⊗ 〈∅|)L

[
0 1
1 −1

]
(|v2, ∅〉〉 ⊗ |∅〉)

and
〈
L(SII)

〉
= (〈∅| ⊗ 〈∅|)L

[−1 0
1 1

]
(|∅〉 ⊗ |∅〉) .

(4.22)

Once again, the Lax matrix L(II) can be decomposed over its vertical components,

L(II) =
∑
λ1,λ2

aλ1aλ2L
(II)
λ1,λ2

|v1,λ1〉〉〈〈v2,λ2| : (0,1)v2⊗(1,−1)u2→ (0,1)v1⊗(1,−1)u1

with L(II)
λ1,λ2

= (γu1)−|λ1|(u′2)|λ2|
∏
x∈λ1

χ−1
x

N(λ2,λ1|γv2/v1)

G(v2/(γv1))
: Φ∗∅(v1)Φ∅(v2)

∏
x∈λ1

η−(χx)
∏
x∈λ2

η+(χx) :,

(4.23)

and the weights obey the conservation relations u′i = −γuivi (i = 1, 2) and u′1 = u′2. The

v.e.v. is easily computed from this expression,〈
L(II)

〉
= 〈∅| L(II)

∅,∅ |∅〉 = G(v2/(γv1))−1. (4.24)

On the other hand, the Lax matrix L(SII) is purely horizontal:

L(SII) =
∑
λ

aλ |ṽ,λ〉⊗⊗〈ṽ,λ| : (−1,0)ũ2×(1,1)ũ′2→ (−1,0)ũ1×(1,1)ũ′1 ,

=
∑
λ

aλ(γ−1ũ′1ũ2)|λ|
∏
x∈λ

χ−1
x

(
1⊗ : Φ∅(ṽ)

∏
x∈λ

η+(χx) :

)
|Ω〉⊗⊗〈Ω|

(
1⊗ : Φ∗∅(ṽ)

∏
x∈λ

η−(χx) :

)
,

(4.25)
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with the weights satisfying the relations ṽi = −γ−1ũiũ
′
i and ṽ1 = ṽ2 = ṽ. The computation

of the v.e.v. follows from the normal-ordering of operators,

〈
L(II)

〉
=
∑
λ

(
ũ′1
γũ′2

)|λ|
Zvect.(λ). (4.26)

We will show below that the weights transformation implies that q = ũ′1/(γũ
′
2) = v2/(γv1).

Thus, the equality between the v.e.v. of the Lax matrices becomes

G(q)−1 =
∑
λ

q|λ|Zvect.(λ), (4.27)

which is indeed the identity arising from the application of S-duality to the U(1) gauge

theory. It is derived in [40] using a change of preferred direction, and a proof can be found

in [54, 57] (see also [58]).

Transformation of the vacuum. We have seen previously that, since L(SII) = F̄ (II∗)−1
S

L(II)F̄ (II)
S , the equality between v.e.v. of Lax matrices would follow from the transforma-

tion of the vacua under the two-tensors F̄ (II)
S = F̄S

[
0 1
1 −1

]
and F̄ (II∗)

S = F̄∗S
[

0 1
1 −1

]
. The

treatment of F̄ (II)
S and F̄ (II∗)

S is similar, and we will discuss only the first one. The expres-

sion of this two-tensor follows from (3.13):14

F̄ (II)
S =N

[
0 1
1 −1

]−1
∑
λ,µ

aλaµ
(γ−1ũ)|λ|

(−u)|µ|

×
∏
x∈µ

χ−1
x

(
|v,µ〉〉⊗ : Φ∅(v)−1

∏
x∈µ

η+(χx)−1 : |Pλ〉

)
⊗〈Ω|

(
1⊗ : Φ∗∅(ṽ)

∏
x∈λ

η−(χx) :

)
.

(4.28)

Unfortunately, its action on the vacuum state remains fairly complicated,

|SII∅〉 = F̄ (II)
S (|∅〉 ⊗ |∅〉)

= N
[

0 1
1 −1

]−1
∑
λ,µ

aλaµ
(γ−1ũ)|λ|

(−u)|µ|

∏
x∈µ

χ−1
x

(
|v, µ〉〉⊗ : Φ∅(v)−1

∏
x∈µ

η+(χx)−1 : |Pλ〉

)
,

(4.29)

and we need to employ again an indirect method. Note however that, this time, the

coefficient N can be fixed by computing the overlap

(〈〈v, ∅| ⊗ 〈∅|) |SII∅〉 = N
[

0 1
1 −1

]−1
∑
λ

aλ(γ−1ũ)|λ| 〈∅| e−
∑
k>0

(γ3/2v)−k
σk

αk |Pλ〉 . (4.30)

14In this expression, the products over x = (i, j) ∈ λ involve the variables χx = ṽqi−1
1 qj−1

2 while the

products over x ∈ µ involve χx = vqi−1
1 qj−1

2 . Note also that we have dropped the index ‘2’ for the weights

to lighten the notations.
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Hence, we need to compare the action of the DIM algebra on the states |v, ∅〉〉 ⊗ |∅〉
and |SII∅〉. The characterization of the first one is easily deduced using the coproduct

taken in the appropriate representations:(
ρ(0,1)
v ⊗ ρ(1,−1)

u ∆(x−k>0)
)
|v, ∅〉〉 ⊗ |∅〉 = δk,1 u

−1 |v, ∅〉〉 ⊗ |∅〉 ,(
ρ(0,1)
v ⊗ ρ(1,−1)

u ∆(ak>0)
)
|v, ∅〉〉 ⊗ |∅〉 = −1

k
(γk − γ−k)(γ1/2v)k |v, ∅〉〉 ⊗ |∅〉 .

(4.31)

These transformation properties coincide with those of the coherent state |v, ∅〉A (defined

in appendix C) belonging to the Fock module (1, 0)−γuv. The action of DIM on the state

|SII∅〉 follows again from the property (3.15) obeyed by F̄ (II)
S that implies(

ρ(0,1)
v ⊗ ρ(1,−1)

u ∆(S · e)
)
|SII∅〉 = F̄ (II)

S

(
ρ

(−1,0)
ũ ⊗ ρ(1,1)

ũ′ ∆(e)
)

(|∅〉 ⊗ |∅〉) . (4.32)

The results obtained for the state |∅〉 ⊗ |∅〉 in the appendix D.2 imply(
ρ(0,1)
v ⊗ ρ(1,−1)

u ∆(x−k>0)
)
|SII∅〉 = δk,1 (γ1/2ũ′)−1 |SII∅〉 ,(

ρ(0,1)
v ⊗ ρ(1,−1)

u ∆(ak>0)
)
|SII∅〉 = (1− q3)(−ũγ−1)k |SII∅〉 .

(4.33)

It is readily observed that the states are characterized by the same action for the elements

x−k and ak (with k > 0) of the DIM algebra. The intertwiner is again invertible and defines

an isomorphism between the tensor module (0, 1)v ⊗ (1,−1)u and the module (1, 0)u′ in

the intermediate channel. In this module, states are uniquely characterized by the action

of ak and x−k for k > 0, up to a possible normalization factor. Thus, the vacuum state is

indeed mapped to the vacuum state under F̄ (II)
S . The same is true for F̄ (II)∗

S . Moreover,

comparing the action of DIM, we also deduce the weights transformation ũi = −γ3/2vi
and ũ′i = γ−1/2ui (for i = 1, 2). This transformation still differs by factors γ±1/2 from

the weight transformation of the modules considered individually. However, these factors

disappear in the ratio v2/v1 = ũ′1/ũ
′
2 entering in (4.27).

5 T -operators and the U(2) self-dual diagram

5.1 T -operators

In this section, we discuss yet another type of algebraic object, obtained by coupling the

intertwiner Φ
[
`1 ¯̀

1

`2 ¯̀
2

]
to the dual one Φ∗

[
`∗1

¯̀∗
1

`∗2
¯̀∗
2

]
through the legs bearing the representation

(`i, ¯̀
i) = (`∗i ,

¯̀∗
i ) with either i = 1 or i = 2. We call this type of objects T -operators in

reference to those constructed from linear quiver gauge theories and identified with the

Baxter T -operator of an underlying integrable system [17, 20].15 These operators will be

denoted T (i) = Φ ·i Φ∗ where the index i in the product ·i refers to the coupling channel.

Since the two representations (`1, ¯̀
1) and (`2, ¯̀

2) now play a different role, the co-

variance property under the action of the DIM algebra might seem to be lost. Yet, the

15Actually, this term is slightly abused here, since the underlying integrable system is a chain of length

two, with boundary operators applied on each site. Yet, it makes perfect sense for linear quivers of higher

rank [20].
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co-associativity of the coproduct, namely the property (∆⊗ 1)∆ = (1⊗∆)∆, ensures that

the operators T (i) obey the following properties:(
ρ(`,¯̀) ⊗ ρ(`∗2,

¯̀∗
2) ∆′(e)

)
T (1) = T (1)

(
ρ(`2,¯̀2) ⊗ ρ(`∗,¯̀∗) ∆′(e)

)
,(

ρ(`,¯̀) ⊗ ρ(`∗1,
¯̀∗
1) ∆(e)

)
T (2) = T (2)

(
ρ(`1,¯̀1) ⊗ ρ(`∗,¯̀∗) ∆(e)

)
.

(5.1)

In contrast with the covariance property (4.3) of Lax matrices, here the left and right

hand sides involve the same coproduct (either ∆ or ∆′). For simplicity, we will again

restrict ourselves to the case where levels on both sides coincide, i.e. (`, ¯̀) = (`∗, ¯̀∗) and

(`i, ¯̀
i) = (`∗i ,

¯̀∗
i ), and denote the corresponding operators T (i)

[
`1 ¯̀

1

`2 ¯̀
2

]
.

The same kind of operators can be constructed using the S-dual intertwiners associated

to the twisted coproduct. They obey the covariance properties (5.1) with ∆, ∆′ replaced

by ∆S , ∆′S , and will be denoted T (i)
S . The relation (3.11) between S-dual and rotated

intertwiners extends to T -operators in the form

T (1)
S

[
`1 ¯̀

1

`2 ¯̀
2

]
=
(
M(¯̀,−`)
S ⊗M(¯̀

2,−`2)
S

)
T (1)

[
¯̀
1 −`1

¯̀
2 −`2

] (
M(¯̀

2,−`2)−1
S M(¯̀,−`)−1

S

)
,

T (2)
S

[
`1 ¯̀

1

`2 ¯̀
2

]
=
(
M(¯̀,−`)
S ⊗M(¯̀

1,−`1)
S

)
T (2)

[
¯̀
1 −`1

¯̀
2 −`2

] (
M(¯̀

1,−`1)−1
S M(¯̀,−`)−1

S

)
.

(5.2)

The main difficulty, working with T -operators instead of Lax matrices, is the lack of a

rotation formula like (4.4) relating the rotated T -operators to the original ones by a two-

tensor transformation. Yet, we would like to give here an argument to justify the existence

of such tensors. In the next subsection, we will provide a concrete example for which the

vacuum properties support our proposal. This argument is based on the fact that after,

multiplication by a permutation, the T -operators satisfy the covariance property (4.3) of

a Lax matrix. As a result, we expect that these permuted objects coincide with a Lax

matrix up to a normalization (or anomaly) factor, i.e.

L
[
` ¯̀

`2 ¯̀
2

]
∝ T (1)

[
`1 ¯̀

1

`2 ¯̀
2

]
P
[
` ¯̀

`2 ¯̀
2

]
∝ P

[
`1 ¯̀

1

` ¯̀

]
T (2)

[
`1 ¯̀

1

`2 ¯̀
2

]
. (5.3)

This motivates the introduction of the two-tensors F̄ (i) and F̄ (i)∗, presumably differing

from F̄ and F̄∗ only by a permutation and a normalization, and such that

T (i)
[
−¯̀

1 `1
−¯̀

2 `2

]
= F̄ (i)∗

S

[
`1 ¯̀

1

`2 ¯̀
2

]−1
T (i)

[
`1 ¯̀

1

`2 ¯̀
2

]
F̄ (i)
S

[
`1 ¯̀

1

`2 ¯̀
2

]
. (5.4)

We will not use any explicit formula for these tensors, but only their covariance property

that should follow from the ones obeyed by F̄ and F̄∗ in (3.15). For instance, in the case

of T (1), we expect that16

F̄ (1)
S

[
`1 ¯̀

1

`2 ¯̀
2

](
ρ

(−¯̀
2,`2)

ṽ2
⊗ρ(−¯̀,`)

ṽ ∆′(e)
)

=
(
ρ(`2,¯̀2)
v2

⊗ρ(`,¯̀)
v ∆′(S·e)

)
F̄ (1)
S

[
`1 ¯̀

1

`2 ¯̀
2

]
,(

ρ
(−¯̀,`)
ṽ ⊗ρ(−¯̀

2,`2)
ṽ2

∆′(e)
)
F̄ (1)∗
S

[
`1 ¯̀

1

`2 ¯̀
2

]−1
= F̄ (1)∗

S

[
`1 ¯̀

1

`2 ¯̀
2

]−1(
ρ(`,¯̀)
v ⊗ρ(`2,¯̀2)

v2
∆′(S·e)

)
.

(5.6)

16We have used the Ansatz

F̄ (1)
S

[
`1 ¯̀

1

`2 ¯̀
2

]
∝ P

[
` ¯̀

`2 ¯̀
2

]
F̄S
[
` ¯̀

`2 ¯̀
2

]
P
[
−¯̀

2 `2
−¯̀ `

]
, F̄ (1)∗

S

[
`1 ¯̀

1

`2 ¯̀
2

]
∝ F̄∗S

[
` ¯̀

`2 ¯̀
2

]
. (5.5)
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Φ
(I∗)
3

Φ
(II)
2 Φ

(I)
1

Φ
(II∗)
4

(1, 1)u′3 (1,−1)u4

(1,−1)u2
(1, 1)u′1

(1, 0)u1=u′2

(1, 0)u3=u′4

(0, 1)v2=v3 (0, 1)v1=v4

Φ
(SII)
2

Φ
(SI)
1 Φ

(SII∗)
4

Φ
(SI∗)
3

(1, 1)ũ′2 (−1, 1)ũ′3

(−1, 1)ũ′1 (1, 1)ũ′4

(−1, 0)ũ1=ũ4

(−1, 0)ũ2=ũ3

(0, 1)ṽ1=ṽ2 (0, 1)ṽ3=ṽ4

Figure 5. Representation of the two dual U(2) brane-webs.

These covariance properties are in agreement with the characterization (5.1) of the T -

operator T (1). They imply certain relations between the vacuum and its rotation that will

be checked below by direct computation on a specific example.

5.2 Example: pure U(2) gauge theory

We would like to treat the T -operator associated to the pure U(2) gauge theory as an

example. Including the anomaly factors, this operator is given by

T = A(~v)T (1)
[

0 2
1 −1

]
: (1,−1)u2 × (1, 1)u′3 → (1, 1)u′1 × (1,−1)u4 , (5.7)

where intertwiners are internally coupled through the vertical representation (0, 2)~v (see

figure 6 left). Since we restricted ourselves to levels ±1 in this paper, we need to decompose

the T -operator in terms of four intertwiners instead of two, exploiting in reverse the fusion

method developed in [20]. As a result, the operator T is written in terms of four generalized

AFS intertwiners following the gluing rules of the brane-web for pure U(2) N = 1 SYM,

T =
∑
λ1,λ2

aλ1aλ2 Φ
(I)
λ1

Φ
(II)
λ2
⊗ Φ

(II∗)
λ1

Φ
(I∗)
λ2

. (5.8)

It turns out that these intertwiners coincide with those employed in the two previous

examples, and that we denoted with the shortcut notations Φ(I), Φ(II), . . . The weights

associated to each representation are indicated on the figure 5: each intertwiner Φi depends

on the weights ui, vi and u′i constraint by the conservation relation u′i = −γuivi (for

i = 1 · · · 4). In addition, the two vertical couplings impose the relations v1 = v4 and

v2 = v3, and the two horizontal couplings the relations u1 = u′2 and u3 = u′4. Introducing

the expressions of intertwiners found previously, and normal-ordering the vertex operators

in the two horizontal channels, the T -operator takes the explicit form17

T = G(v2/(q3v1))G(v2/v1)
∑
~λ

(
u′1
q3u′3

)|~λ|
Zvect.(~v,~λ) : Φ∅(v1)Φ∅(v2)

×
∏
x∈~λ

η+(χx) : ⊗ : Φ∗∅(v1)Φ∗∅(v2)
∏
x∈~λ

η−(χx) :,

(5.10)

17We have also used the property

a~λ
aλ1aλ2

=
(−γv1)−|λ2|(−γv2)−|λ1|∏

x∈~λ χx

N(λ1, λ2|v1/v2)N(λ2, λ1|v2/v1)
. (5.9)
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with ~v = (v1, v2) and ~λ = (λ1, λ2). As already mentionned, the v.e.v. of this operator repro-

duces the instanton partition function of the gauge theory. The latter depends on the gauge

coupling q = u′1/u
′
3 and the ratio r = v2/v1 of (exponentiated) Coulomb branch v.e.v.,

〈T 〉 = (〈∅| ⊗ 〈∅|) T (|∅〉 ⊗ |∅〉) = G(r)G(q−1
3 r)

∑
~λ

(q/q3)|
~λ|Zvect.(~v,~λ). (5.11)

The formula (5.2) relates the S-dual T -operators (associated to the S-twisted coprod-

uct) with the rotated ones. Since the matrices M(1,±1)
S involved in this formula map the

vacuum state to itself in the Fock modules, the v.e.v. of the two T -operators should coin-

cide. The rotated brane-web diagram is represented on figure 5 (right), it involves the dual

intertwiners Φ(SI), Φ(SII), . . . studied in the previous examples. The weights labeling has

also been represented on this figure: the intertwiner Φi now depends on the weights ũi, ũ
′
i

and ṽi obeying the conservation relation:

ũ′1 = −γũ1ṽ1, ṽ2 = −γ−1ũ2ũ
′
2, ũ′3 = −γũ3ṽ3, ṽ4 = −γ−1ũ4ũ

′
4. (5.12)

In addition, horizontal and vertical couplings impose ũ1 = ũ4, ũ2 = ũ3, ṽ1 = ṽ2 and

ṽ3 = ṽ4. These coupled intertwiners produce the operator18

T S =
∑
λ1 λ2

aλ1aλ2

(
Φ

(SI)
λ1
⊗ 1
)
|ṽ4, λ2〉⊗⊗〈ṽ2, λ1|

(
Φ

(SI∗)
λ2

⊗ 1
)
P
[

1 1
−1 1

]
. (5.14)

By definition, T S ∝ T (1)
[−2 0

1 1

]
, up to a normalization factor. Using the expression of the

intertwiners obtained previously, and exploiting the reflection property of the state |Ω〉⊗,

this operator writes

T S =G(ṽ1/(q3ṽ3))G(ṽ1/ṽ3)
∑
~λ

(
ũ′3
q3ũ′1

)|~λ|
Zvect.(~̃v,~λ)

1⊗ : Φ∅(ṽ1)Φ∅(ṽ3)
∏
x∈~λ

η+(χx) :

 |Ω〉⊗
⊗〈Ω|

: Φ∗∅(ṽ1)Φ∗∅(ṽ2)
∏
x∈~λ

η−(χx) :⊗1

 ,
(5.15)

with ~̃v = (ṽ1, ṽ3) (the weight ṽ3 being associated to the second Young diagram λ2). Once

again, the v.e.v. reproduces the instanton partition function of the gauge theory,19〈
T S
〉

= (〈∅| ⊗ 〈∅|) T S (|∅〉 ⊗ |∅〉) = G(r̃)G(q−1
3 r̃)

∑
~λ

(q̃/q3)|
~λ|Zvect.(~̃v, ~λ). (5.16)

18Here we have introduced the permutation

P
[

1 1
−1 1

]
=
∑
λ,µ

aλaµ (|Pλ〉 ⊗ |Pµ〉) (〈Pµ| ⊗ 〈Pλ|) , (5.13)

in order to produce an operator T S : (1, 1)ũ′
2
× (−1, 1)ũ′

3
→ (−1, 1)ũ′

1
× (1, 1)ũ′

4
in agreement with the

brane-web diagram and the covariance property of T -operators.
19Note that Zvect.((v1, v2), (λ1, λ2)) = Zvect.((v2, v1), (λ2, λ1)), and the instanton part is invariant under

the replacement r̃→ r̃−1.
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Φ∗
[

0 2
1 −1

]

Φ
[

0 2
1 −1

]

(1, 1)u′3 (1,−1)u4

(1,−1)u2
(1, 1)u′1

(0, 2)~v

Φ
[−1 1

1 1

]

Φ∗
[−1 1

1 1

]

(1, 1)ũ′2 (−1, 1)ũ′3

(−1, 1)ũ′1 (1, 1)ũ′4

(0, 2)~̃v

Figure 6. Folded version of the two dual U(2) diagrams.

However, the gauge coupling now corresponds to q̃ = ũ′3/ũ
′
1 and the ratio of Coulomb

branch v.e.v. is given by r̃ = ṽ1/ṽ3. We will see in the next paragraph that the trans-

formation of weights gives q̃ = q−1 and (presumably) r̃ = qr. The invariance of the U(2)

partition function under this replacement of the parameters (q, r)→ (q−1, qr) is called slic-

ing invariance, it is a consequence of the fiber-base duality for the toric diagram [10, 59].

From the gauge theory point of view, this invariance follows from the Weyl reflection of

the enhanced global E1 symmetry at the UV fixed point. As we have seen here, it arises

in our formalism as the equality between the v.e.v. of T -operators associated to the two

coalgebraic structures.

S-transformation of the vacuum. In the previous subsection, we have assumed that

the rotated T -operator T S can be obtained from T using the two-tensors

T S = F̄ (1)∗
S
[

0 2
1 −1

]−1T F̄ (1)
S
[

0 2
1 −1

]
. (5.17)

If so, the equality between the v.e.v. of T -operators can be seen as a consequence of the

mapping by F̄ (1)
S of the vacuum state |0〉 = |∅〉 ⊗ |∅〉 for T S to the vacuum state for T

which turns out to be also |0〉, and a similar mapping for the dual vacuum 〈0| = 〈∅| ⊗ 〈∅|
under F̄ (1)∗

S . In order to test this hypothesis, we will compare the action of several DIM

algebra elements on the vacuum states and on the transformed states

|S∅〉 = F̄ (1)
S
[

0 2
1 −1

]
|0〉 , 〈S∅| = 〈0| F̄ (1)∗

S
[

0 2
1 −1

]−1
, (5.18)

belonging to the modules (1,−1)u2 ⊗ (1, 1)u′3 and (1, 1)u′1 ⊗ (1,−1)u4 respectively. The

action on the vacuum can be obtained by a direct calculation, it reads(
ρ(1,−1)
u2

⊗ρ(1,1)
u′3

∆′(x+
k>0)

)
|0〉= δk,1u

′
3 |0〉 ,

(
ρ(1,−1)
u2

⊗ρ(1,1)
u′3

∆′(x−k>0)
)
|0〉= δk,1u

−1
2 |0〉 ,

〈0|
(
ρ

(1,1)
u′1
⊗ρ(1,−1)

u4
∆′(x+

k<0)
)

= δk,−1u4 〈0| , 〈0|
(
ρ

(1,1)
u′1
⊗ρ(1,−1)

u4
∆′(x−k<0)

)
= δk,−1(u′1)−1 〈0| ,(

ρ(1,−1)
u2

⊗ρ(1,1)
u′3

∆′(ψ+(z))
)
|0〉= |0〉 , 〈0|

(
ρ

(1,1)
u′1
⊗ρ(1,−1)

u4
∆′(ψ−(z))

)
= 〈0| ,

(5.19)
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On the other hand, the action of these elements on the states (5.18) follows once again

from the covariance property of the two-tensors,(
ρ(1,−1)
u2

⊗ρ(1,1)
u′3

∆′(S·e)
)
|S∅〉= F̄ (1)

S
[

0 2
1 −1

](
ρ

(1,1)
ũ′2
⊗ρ(−1,1)

ũ′3
∆′(e)

)
(|∅〉⊗|∅〉) ,

〈S∅|
(
ρ

(1,1)
u′1
⊗ρ(1,−1)

u4
∆′(S·e)

)
= (〈∅|⊗〈∅|)

(
ρ

(−1,1)
ũ′1

⊗ρ(1,1)
ũ′4

∆′(e)
)
F̄ (1)∗
S
[

0 2
1 −1

]−1
,

(5.20)

for e ∈ ADIM. Using the results obtained in appendix D.3, we find the same action on

the states |S∅〉 and 〈S∅| for the modes x±k>0 and ψ+
k (resp. x±k<0 and ψ−−k) as in (5.19),

provided that we identify the weights as follows:

ũ′1 = γu′1, ũ′2 = γ−1u2, ũ′3 = γu′3, ũ′4 = γ−1u4. (5.21)

This remarkable agreement between the action of DIM on the different states support the

rotation formula for the T -operators. Moreover, the weights identification implies q̃ = q−1,

which is indeed required for the slicing invariance. Unfortunately this identification is not

sufficient to deduce the relation between the two other gauge parameters r and r̃. However,

we expect that the transformation of the module (0, 2)~v in the intermediate channel relates

the vertical and horizontal weights as ũ1 = γαv1 and ũ2 = γαv2 for some power α depending

on the surrounding branes configuration. This unknown factor would cancel in the ratio

r = v2/v1 = ũ2/ũ1, hence reproducing the relation r̃ = qr.

Gaiotto states. We would like to conclude this study of the U(2) gauge theory with a

short remark on Gaitto states. These states were originally defined as Whittaker states for

the Virasoro algebra [60–63], but this definition can be extended to q-Virasoro and q-Wm

algebras [6, 64–67]. In fact, they can also be defined in the vertical modules (0,m) of the

DIM algebra, seen as a product of q-Wm with a q-Heisenberg algebra. Defined in this way,

these states coincide with the horizontal v.e.v. of generalized AFS intertwiners [20]. In the

case m = 2 relevant to U(2) gauge theories and q-Virasoro algebra, they read

|G〉〉 =
∑
λ1,λ2

aλ1aλ2 〈∅|Φ
(II∗)
λ1

Φ
(I∗)
λ2
|∅〉 |v4, λ1〉〉 ⊗ |v3, λ2〉〉,

〈〈G| =
∑
λ1,λ2

aλ1aλ2 〈∅|Φ
(I)
λ1

Φ
(II)
λ2
|∅〉 〈〈v1, λ1| ⊗ 〈〈v2, λ2| .

(5.22)

As can be seen by comparing with expression (5.8) of the T -operator, the scalar product

of two Gaiotto states reproduces the instanton partition function of the underlying gauge

theory, i.e. 〈T 〉 = 〈〈G|G〉〉. In terms of brane-web diagram, these states can be represented

as a cutting of the U(2) diagram in half along a horizontal line, and vacuum states inserted

at the endpoint (see figure 7 left). It was shown in [68] that the q-Virasoro Whittaker

condition follows from the intertwiners covariance properties under the action of the DIM

algebra, that imposes

(
ρ(0,1)
v4
⊗ ρ(0,1)

v3
∆(x−k )

)
|G〉〉 =



· · · (k < −1)

(u′3)−1 |G〉〉 (k = −1)

0 (k = 0)

−γ−2u−1
4 |G〉〉 (k = 1)

· · · (k > 1)

, (5.23)
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and a similar relation for x+
k and 〈〈G|. Incidentally, this condition also implies the following

relations for the S-dual modes y±k = S · x±k and bk = S · ak:(
ρ(0,1)
v4
⊗ ρ(0,1)

v3
∆(y+

k<0)
)
|G〉〉 = −δk,−1(γu′3)−1 |G〉〉,(

ρ(0,1)
v4
⊗ ρ(0,1)

v3
∆(y−k<0)

)
|G〉〉 = −δk,−1(γu4)−1 |G〉〉,(

ρ(0,1)
v4
⊗ ρ(0,1)

v3
∆(bk<0)

)
|G〉〉 = 0.

(5.24)

The 90◦ rotation of the brane-web diagrams associated to Gaiotto states are repre-

sented on figure 7 (right). In the algebraic language, they define the states |GS〉⊗ and

⊗〈GS| belonging to the tensor product of two Fock modules (−1, 0),

|GS〉⊗ = P
[−1 0
−1 0

] (
1⊗

(
(1⊗ 〈∅|) Φ

(SII∗)
4

))
Φ

(SI∗)
3 |∅〉 ,

⊗〈GS| = 〈∅|Φ(SI)
1

(
1⊗

(
Φ

(SII)
2 (1⊗ |∅〉)

))
.

(5.25)

Using the known expression for these intertwiners, and the reflection property of the state

|Ω〉⊗, we can write these states as

|GS〉⊗ =
∑
λ

(
ũ′3
γũ4

)|λ|
Zvect.(λ)

∏
x∈λ

χ−1
x Oλ(ṽ3)† |0〉 ∈ (−1, 0)ũ4 ⊗ (−1, 0)ũ3 ,

⊗〈GS| =
∑
λ

(
ũ2

γũ′1

)|λ|
Zvect.(λ)

∏
x∈λ

χx 〈0| Oλ(ṽ1)† ∈ (−1, 0)ũ1 ⊗ (−1, 0)ũ2 ,

(5.26)

where O†λ is the conjugation of the following operator acting on the tensor product of two

Fock spaces:

Oλ(v) =: Φ∅(v)
∏
x∈λ

η+(χx) : ⊗ : Φ∗∅(v)
∏
x∈λ

η−(χx) : . (5.27)

The scalar product of these states reproduces the v.e.v. of the rotated Lax matrix, namely〈
T S
〉

= ⊗〈GS||GS〉⊗.20

We would like to compare our rotated Gaiotto states with the states introduced by

Kimura and Pestun in their formalism of quiver W-algebra [69, 70]. In fact, our problem

contains two different q-W2 algebra. The first one comes from the vertical module (0, 2),

it is associated to the two D5-branes in the intermediate channel, and is involved in the

q-AGT correspondence [4, 6, 64]. This is the q-W2 algebra acting on the genuine Gaiotto

states |G〉〉 and 〈〈G|. The second q-W2 algebra comes from the horizontal modules (−1, 1)⊗
(1, 1) or (−1, 0)⊗ (−1, 0), it is associated to the two NS5-branes, and acts on the rotated

states |GS〉⊗ and ⊗〈GS|. This is the algebra corresponding to Kimura&Pestun’s quiver

20To show this fact, we can use the normal-ordering property for operators O†λ:

Oλ1(v1)†Oλ2(v2)†= (−q3v1)−|λ2|(−v2)|λ1|

×
∏
x∈λ1

χ−1
x

∏
x∈λ2

χx
G(v1/v2)G(v1/(q3v2))

N(λ1,λ2|v1/v2)N(λ2,λ1|v2/v1)
:Oλ1(v1)†Oλ2(v2)† : .

(5.28)
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Φ
(I∗)
3 Φ

(II∗)
4

(1, 1)u′3 (1,−1)u4

(1, 0)u3=u′4

(0, 1)v3 (0, 1)v4

Φ
(II)
2 Φ

(I)
1

(1,−1)u2
(1, 1)u′1

(1, 0)u1=u′2

(0, 1)v2 (0, 1)v1

Φ
(SII∗)
4

Φ
(SI∗)
3

(−1, 1)ũ′3

(1, 1)ũ′4

(−1, 0)ũ4

(−1, 0)ũ3

(0, 1)ṽ3=ṽ4

Φ
(SII)
2

Φ
(SI)
1

(1, 1)ũ′2

(−1, 1)ũ′1

(−1, 0)ũ1

(−1, 0)ũ2

(0, 1)ṽ1=ṽ2

Figure 7. Representation of the Gaiotto states |G,~v〉〉, 〈〈G,~v| and the S-dual states (the black

squares represent projections on the vacuum state).

W-algebra. Indeed, following [15, 20], we can rewrite the operators acting on the product

of two Fock spaces in terms of the modes

kβk = −(γk−γ−k)
(
γ|k|/2αk ⊗ 1 + γ−|k|/21⊗ αk

)
, ksk =

γ−|k|/2

1− q−k2

αk⊗1− γ|k|2

1− q−k2

1⊗αk.

(5.29)

The modes βk = ρ
(−1,0)
ũ4

⊗ ρ
(−1,0)
ũ3

∆(a−k) describe the Cartan sector of the horizontal

representation (−2, 0). By definition, they form a q-Heisenberg subalgebra. On the other

hand, the modes sk define the q-Virasoro stress energy tensor in [71] (with q = q2 and

t = q−1
1 here), they obey the commutation relations

[sk, sl] = −1

k

1− qk1
1− q−k2

(1 + qk3 )δk+l. (5.30)

Since the modes βk and sk commute, Heisenberg and q-Virasoro components can be decou-

pled. The operators Oλ can be written in terms of the vertex operator S(z) (introduced

in [69]) by exploiting the property

η+(z)⊗ η−(z) =: S(z)−1S(q2z) :, S(z) = exp

∑
k 6=0

zks−k

 , (5.31)

where the normal ordering of the modes αk naturally extends to sk. We have

Oλ(v) =:
∏
x∈λ

S(q2χx)

S(χx)

∏
x∈λ∞

S(χx)

S(q2χx)
:=:

∞∏
i=1

S(vqi−1
1 qλi2 ) : . (5.32)

The Kimura-Pestun construction of the partition function proceeds from another decom-

position, namely Z = 〈0 |Z〉 with

|Z〉 = G(r̃)G(r̃q−1
3 )

∑
λ1,λ2

(q̃q−1
3 )|λ1|+|λ2|Zvect.(~̃v, ~λ) : Oλ1(ṽ1)Oλ2(ṽ3) : |0〉

=
G(r̃q−1

3 )

G(r̃−1)

∑
λ1,λ3

→∏
l=1,3
i=1···∞

S(ṽlq
i−1
1 q

λ
(l)
i

2 ) |0〉 .
(5.33)
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In the second line, the ordered product produces the extra factors of G and Zvect. of

the first line upon normal ordering, provided we introduce also the proper zero modes in

S(z) [69]. Finally, note that since the rotated state |GS〉⊗ is constructed upon the modes

sk, it is annihilated by the positive modes βk>0, i.e. by the action of the Cartan modes

a−k = S−1 · b−k, which can be seen as part of a S-dual Whittaker condition (5.24).

6 Perspectives

As we have seen in the three examples treated in this paper, the S-duality relations be-

tween N = 1 gauge theories can be understood at the algebraic level in terms of twisted

co-algebraic structure. The key ingredient is the equivalence (2.13) between the action of

Miki’s automorphism, and the replacement of representations (`, ¯̀)→ (−¯̀, `) that renders

the rotation of branes. Despite the lack of a general statement, we were able to show this

relation in the cases we needed to treat our three examples. A second important ingredient

was the existence of two-tensors that translates the rotation of topological vertices in the

language of intertwiners. This rotation map by two-tensors was then naturally extended

to Lax matrices, and used to show the equality between their v.e.v. by studying the vac-

uum transformation. Unfortunately, a similar transformation for T-matrices could only be

conjectured, but it was seen to provide the correct vacuum transformation property in the

example of pure U(2) gauge theory. In all these examples, the equality between the v.e.v.

of operators associated to the two coproducts ∆ and ∆S reproduced the known S-duality

relation for the underlying gauge theory. This is a strong indication that the formalism

we introduced here is correct, even though several mathematical development would be

required to make it fully rigorous. Eventually, it seems that a general proof of S-duality

relations could be achieved by this method.

One of the strength of the algebraic engineering of 5D N = 1 gauge theories is the

possibility to extend the results to higher rank gauge groups, and higher rank (linear)

quivers, without much effort. This kind of generalization seems also feasible here, but it

would require a deeper study of horizontal representations (m, 0) with higher level |m| > 1,

supposedly S-dual to vertical representations (0,m). The construction of new intertwiners

coupled to these higher representations would also be needed. This is certainly the next

natural step for this study. Another important, yet relatively easy, application for our

formalism is the treatment of gauge theories with fundamental flavors. In fact, the simplest

examples of U(2) gauge theories with such matter fields can already be treated using the

intertwiners constructed in this paper.

The application of this method to D-type quivers is a more challenging problem. The

algebraic engineering of these gauge theories has been presented in [21], it involves the

introduction of reflection states in vertical modules. By the studying the action of Miki’s

automorphism on these states, one should be able to obtain the algebraic realization of

the S-dual theory, a gauge theory with gauge group of type SO. Very interestingly, this

approach could solve the longstanding problem of finding a expansion formula for the

instanton partition function of these gauge theories with Young diagrams replaced by a

more general combinatorial structure [72–74].
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The S-duality transformation of qq-characters is another interesting open problem.

These objects are generating functions of Wilson loops [75], they encode a set of constraints

on the partition function called non-perturbative Schwinger-Dyson equations [76–80]. These

constraints can be understood in terms of the action of DIM algebra [68, 81], and the

qq-character obtained by insertion of an algebra element in the v.e.v. of T -operators,

i.e. formally χ(z) ∼ 〈(ρ⊗ ρ ∆(x+(z)))T 〉. It seems natural to expect that this object is

transformed into 〈(ρ⊗ ρ ∆S(x+(z)))TS〉 under the action of Miki’s automorphism. Yet,

the proper transformation still remains to be worked out in details. Besides, the S-

transformation of Wilson loops obtained in [82] should also be reproduced. We hope to

address this issue in the near future.

Very recently, the algebraic engineering has been extended to 4D N = 2 quiver gauge

theories in [43]. At first sight, the automorphism S seems to be lost in the degenerate

version of DIM algebra used in the 4D case. However, a more involved realization of S-

duality might still be found. This is actually suggested by the correspondence observed

in [28] between the conformal blocks of the ordinary Virasoro algebra and the d-Virasoro

algebra (a.k.a. a degenerate limit of q-Virasoro). Indeed, the former appears in the vertical

representation of the degenerate DIM algebra (in the case of U(2) gauge groups), while the

former has been identified with the degenerate version of Kimura-Pestun’s quiver W-algebra

(in the A1 case) obtained from the horizontal representation. Thus, a relation seems to

exist between vertical and horizontal representations of the degenerate DIM algebra, but

this problem certainly deserves a deeper study.

Finally, integrable aspects have not been discussed in this paper. Quantum integrable

systems are usually built upon a quantum group symmetry algebra, but this construction

also applies to quantum toroidal algebra (that are affine quantum groups) [48–50]. In

this way, it is possible to build a quantum integrable system using one of the universal

R-matrices, either R or RS , of the DIM algebra. The presence of Miki’s automorphism

is a new feature of these integrable models, it should generate some important dualities

among such systems. Moreover, the R-matrix is interpreted as a scattering factor in 2D

integrable quantum field theories [83], and it would be interesting to develop a similar

interpretation for the two-tensor FS associated to Miki’s automorphism twist. At a general

level, combining S-duality and integrability is an enthralling perspective, and we hope to

be able to push forward this discussion in a near future.
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A More on Miki’s automorphism

This appendix presents a detailed discussion of Miki’s automorphism. Specifically, we first

derive the transformation of the Drinfeld currents’ modes following [23]. Then, we examine

the action of these modes in the vertical representation (0, 1), and observe that their action

defines a horizontal representation, leading to an equivalence between the two. Finally, we

study the action of grading elements, and how they interplay with Miki’s automorphism.

The first step is to introduce some notation. We denote by y±(z) = S · x±(z) and

ξ±(z) = S ·ψ±(z) the image of the Drinfeld currents under Miki’s automorphism. Just like

the original currents in (2.6), the S-dual currents can be decomposed in terms of modes

y±(z) =
∑
k∈Z

z−ky±k , ξ±(z) =
∑
k≥0

z∓kξ±±k = ξ±0 exp

(
±
∑
k>0

z∓kb±k

)
, (A.1)

with y±k = S ·x±k , bk = S ·ak and ξ±±k = S ·ψ±±k. Note also that, due to the property (2.19),

the action of Miki’s automorphism on these modes reads S · y±k = −x∓−k, S · bk = −a−k
and S · ξ±±k = ψ∓∓k. Finally, since S is an automorphism, these new modes satisfy the

q-commutation relations of the DIM algebra, and in particular the relations (2.6) that

reads here

[bk, bl] = −(γkc̄ − γ−kc̄)ckδk+l, [bk, y
±
l ] = ±γ±|k|c̄/2cky±l+k,

[y+
k , y

−
l ] =


κγ−(k−l)c̄/2ξ+

k+l, k + l > 0

κγ−(k−l)c̄/2ξ+
0 − κγ(k−l)c̄/2ξ−0 , k + l = 0

−κγ(k−l)c̄/2ξ−k+l, k + l < 0.

(A.2)

A.1 Derivation of Miki’s transformation

The expression for the S-dual modes y±k , ξ±±k in terms of the original ones can be obtained

from the transformation (2.11) of the four modes a±1, x±0 (and the two central charges c and

c̄) using the algebraic relations (2.6). This construction is based on the observation that

the second commutation relation in (2.6) allows us to reconstruct recursively the modes

x±k from x±0 :

x±k = (±γ±c/2)kc−k1 (ada1)k x±0 , x±−k = (±γ±c/2)kc−k1

(
ada−1

)k
x±0 , (k > 0), (A.3)

where adXY = [X,Y ] denotes the adjoint action, and c1, σ1 are the specialization of the

coefficients ck, σk defined in (2.7) and (2.33) at k = 1. Note that ck/σk = (γk − γ−k)/k2

and κ = σ2
1/c1. Once the modes x±k are known, it is possible to find the modes ψ±±k using

the third relation in (2.6),

ψ±±k = κ−1γ̂±(k−2)/2[x±±1, x
∓
±(k−1)]. (A.4)

We will start by deriving the expression of the modes y±k . Applying Miki’s automor-

phism to the relations (A.3), we find:

y±k = −(±)kγ∓kc̄/2(γ − γ−1)k−1c−k1

(
adx+

0

)k
a∓1,

y±−k = −(±)kγ∓kc̄/2(γ − γ−1)k−1c−k1

(
adx−0

)k
a∓1.

(A.5)
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The modes a±1 can be eliminated using the commutation relation (2.6) once again, and

we end up with

y±k = (±)kγ−(c±kc̄)/2σ
−(k−1)
1

(
adx+

0

)k−1
x+
∓1,

y±−k = −(±)kγ(c∓kc̄)/2σ
−(k−1)
1

(
adx−0

)k−1
x−∓1.

(A.6)

This is indeed the expression given by Miki in [23]. It is readily observed that the generators

y±k have degrees (d̄,−d) = (k,∓1) (for k ∈ Z).

The modes ξ±±k can be obtained by applying Miki’s automorphism to the relation (A.4),

using the expressions of the modes y±k obtained previously (here k > 1),

ξ±±k = −(∓)k(γ − γ−1)σ
−(k−1)
1 γ∓cadx±∓1

(
adx±0

)k−2
x±±1,

ξ±±1 = ±γ∓c(γ − γ−1)x±0 , ξ±0 = γ∓c,
(A.7)

which coincide again with Miki’s expressions [23]. The modes ξ±±k have degrees

(d̄,−d) = (±k, 0).

Remark. An alternative expression for the modes y±k and ξ±±k can be obtained from the

Baker-Campbell-Hausdorff formula,

eadXY = eXY e−X ⇒ (adX)k Y =

k∑
l=0

(−1)l
(
k

l

)
Xk−lY X l. (A.8)

Dictionary with Miki’s notations. In order to compare with the results of Miki [23],

it is necessary to translate the notations as follows (from ‘Miki’→’Ours’):

γ2 → q1, (qγ)−2 → q2, q2 → q3, q → γ, C → γ̂ = γc, C → ψ+
0 = γ−c̄,

(q − q−1)(γk − γ−k)ak → ak, (γ − γ−1)C−k/2X±k → ±x
±
k , Φ±±k → γ±c̄ψ±±k.

(A.9)

A.2 Choice of preferred direction

We consider here a vertical representation of levels (0, 1) and examine the action of the dual

modes bk, y
±
k and ξ±k . First, we observe that the modes bk form an Heisenberg sub-algebra,

[ρ(0,1)
v (bk), ρ

(0,1)
v (bl)] = −(γk − γ−k)ckδk+l. (A.10)

In fact, the commutation relations between the modes y±k and bk reproduce those of the

modes x±k and ak in a horizontal representation (−1, 0). As a consequence, it is possible

to express them in terms of the q-oscillator modes αk satisfying (2.33),

ρ(0,1)
v (y±(z)) = −u∓1 : exp

±∑
k 6=0

zk

k
γ±|k|/2αk

 :,

ρ(0,1)
v (ξ±(z)) = exp

(
∓
∑
k>0

z∓k

k
(γk − γ−k)α∓k

)
.

(A.11)
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Thus, we have found a hidden horizontal representation inside the vertical one, but it

remains to identify the ‘horizontal states’ in the vertical module. Let’s start with the Fock

vacuum |∅〉, by definition it is annihilated by the positive modes αk>0, or, equivalently,

by the modes ρ
(0,1)
v (ξ−−k<0). In Miki’s relations (A.7), these modes are expressed in terms

of x−k , and therefore they annihilate the vertical vacuum |v, ∅〉〉. The same argument

shows that ρ
(0,1)
v (y±−k<0) also annihilates the state |v, ∅〉〉, which is consistent with the Fock

representation of the currents y±(z):

ρ(0,1)
v (y±(z)) |∅〉 = −u∓1 exp

(
∓
∑
k>0

z−k

k
γ±|k|/2α−k

)
|∅〉 . (A.12)

Indeed, the r.h.s. contains only negative powers of z, which implies that the action of

negative modes does vanish. Thus, we can identify the Fock vacuum with the vertical

vacuum, up to a normalization factor that will be fixed later.

In order to identify the other states in the Fock space, we consider the S-duality

relations (2.11), and more precisely a1 = −(γ− γ−1)y−0 and b1 = (γ− γ−1)x+
0 . Comparing

the vertical action of these modes, with the action of oscillators in the Macdonald basis,

ρ(0,1)
v (a1) |v,λ〉〉=−(γ−γ−1)γvEλ |v,λ〉〉, ρ(0,1)

v (x+
0 ) |v,λ〉〉=

∑
x∈A(λ)

Res
z=χx

1

zYλ(z)
|v,λ+x〉〉,

ρ(0,1)
v (y−0 ) |Pλ〉=−uEλ |Pλ〉 , ρ(0,1)

v (b1) |Pλ〉= (γ−γ−1)
∑

x∈A(λ)

Res
z=χx

1

zYλ(z)
|Pλ+x〉 ,

(A.13)

we observe that states can be simply identified as |v, λ〉〉 ∼ |Pλ〉 (since |Pλ〉 is defined as

the non-degenerate eigenbasis of η+
0 ), and that the horizontal weight is given by u = −γv.

The comparison of the actions of b1 and x+
0 further fixes the normalization factor to one.

Generalizing our argument, we establish that the representations (0,±1) and (∓1, 0) are

in fact equivalent, up to a rotation of the generators sending x±(z), ψ±(z) to y±(z), ξ±(z).

Somehow, this choice of the Drinfeld currents can also be seen as a choice of preferred

direction for the topological vertex.

In addition, Fock modules also contain a set of coherent states |~w, ~µ〉A, |~w, ~µ〉B that

will be constructed in appendix C (note that we have labeled these states with the m-tuple

Young diagrams ~µ and the weight vector ~w here to avoid confusions). For instance, the

states |~w, ~µ〉B are characterized by the relation

ρ(0,1)
v (ξ−(γ1/2z)) |~w, ~µ〉B = γ−2m

[
Ψ~µ(z)

]
− |~w, ~µ〉B . (A.14)

In particular, since ξ−−1 ∝ x
−
0 , they are eigenstates of x−0 in the vertical representation,

ρ(0,1)(x−0 ) |~w, ~µ〉B =

γ−1/2σ1

∑
x∈~µ

χ−1
x − γ−3/2

m∑
l=1

w−1
l

 |~w, ~µ〉B . (A.15)

They can be seen as a sort of Gaiotto states for a vertical module of lower level [68].
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A.3 Gradings and uniqueness of Miki’s automorphism

It turns out that Miki’s automorphism is not unique due to the presence of two other auto-

morphisms. These automorphisms, denoted τω and τ̄ω̄, have been defined in (2.9) using the

grading operators d and d̄. Their string theory realization can be understood by examina-

tion of their composition with representations. Indeed, comparing (2.10) with the explicit

form of vertical/horizontal representations, we realize that the composed representations

can be obtained alternatively from a simple shift of the weights: ρ
(0,±m)
~v ◦ τω = ρ

(0,±m)
ω∓1~v

and ρ
(±1,n)
u ◦ τω ' ρ(±1,n)

ω∓nu (up to a rescaling of the q-bosonic modes αk). Since the weights

encode the position of the branes, we deduce that the action of τω corresponds to an overall

translation along the NS5-direction (thus shifting the D5-positions corresponding to ver-

tical weights). Similarly, the composition with τ̄ω̄ leaves vertical representations invariant

(up to a rescaling of the states, i.e. a change of basis) ρ
(0,±m)
~v ◦ τ̄ω̄ ' ρ(0,±m)

~v but shifts the

horizontal weights ρ
(±1,n)
u ◦ τ̄ω̄ = ρ

(±1,n)
ω̄±1u

. We deduce that this automorphism encodes the

translation along the D5-direction, shifting NS5-branes positions. Note also that the two

automorphisms τω and τ̄ω̄ commute, as translations should do.

In this subsection, we investigate the interplay between these translations and the

rotations of the brane-web realized by Miki’s automorphism S. The S-transformation of

the gradings follows from the invariance requirement of the commutation relations (2.8)

defining their action on Drinfeld currents: (d, d̄) → (−d̄, d). As a result, if an element e

has gradings (de, d̄e) under (d, d̄), then the rotated element has the gradings (d̄e,−de). In

fact, we have already observed this behavior for the modes x±k , ψ±k and y±k , ξ±k above. We

also deduce the following properties:

S ◦ τω = τ̄(S·ω)−1 ◦ S, S ◦ τ̄ω̄ = τS·ω̄ ◦ S, ω, ω̄ ∈ C[c, c̄]. (A.16)

We recover here the fact that the translation axis is rotated by S, so that the translation

τ̄ω along the NS5-direction becomes a translation along (minus) the D5-direction τ̄(S·ω)−1 ,

and the translation along the D5-direction becomes a translation along the NS5-direction.

Note that here we consider a case slightly more general, allowing the shift parameters ω

and ω̄ to be functions of the central charges (c, c̄), so that the translation may now depend

on the branes charges. This extra freedom is important in order to explore the possibility

to twist Miki’s automorphism.

We define the twisted Miki’s automorphism by composition with the grading automor-

phisms, Sωω̄ = S ◦ τω ◦ τ̄ω̄. The requirement that Sωω̄ is of order four imposes a restriction

on the parameters ω and ω̄:

ω(S2 · ω)−1 = (S3 · ω̄)(S · ω̄)−1. (A.17)

In order to maintain the property ∆S2 = ∆′, we may further want to require that S2
ωω̄ = S2,

in which case we also have ω = S3 · ω̄ = (S · ω̄)−1. Taking the general Ansatz ω = ω0γ
µc+νc̄,

ω̄ = ω̄0γ
µ̄c+ν̄c̄ with ω0, µ, ν, ω̄0, µ̄, ν̄ ∈ C, the condition S4

ωω̄ = 1 implies µ̄ = ν and ν̄ = −µ.

The extra condition on S2
ωω̄ further requires ω0 = ω̄0 = ±1. Thus, it is possible to choose

another definition for Miki’s automorphism in this paper, taking for instance Sωω̄ with
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ω = ±γµc+νc̄ and ω̄ = ±γνc−µc̄ so that

Sωω̄ : a1 → ±(γ − γ−1)γ−νc+µc̄x+
0 → −a−1 → ∓(γ − γ−1)γνc−µc̄x−0 → a1. (A.18)

The main interest for deforming the definition of Miki’s automorphism lies the possi-

bility to define a different coproduct twist. Indeed, due to the presence of the two terms

c⊗ d and d⊗ c in coproducts of the form

∆(cd) = cd⊗ 1 + 1⊗ cd+ c⊗ d+ d⊗ c, (A.19)

the twisting of ∆ by S and Sωω̄ are different (here we have chosen the sign ω0 = +1 for

simplicity):

∆Sωω̄ =
(
τS·ω̄(2)

τ̄(Sω(2))
−1 ⊗ τS·ω̄(1)

τ̄(Sω(1))
−1

)
∆S , (A.20)

where ω(i) = γµc(i)+νc̄(i) , c(1) = c⊗ 1 and c(2) = 1⊗ c (and the same for c̄(i), ω̄(i), . . .).

B Building blocks of instanton partition functions

We present in this section a short reminder on the various building blocks used to construct

instanton partition functions of 5D N = 1 gauge theories. These building blocks are associ-

ated to the field content of the theory, with contributions coming from (anti)-fundamental

matter fields, Chern-Simons terms, vector gauge multiplets and bifundamental fields:

Zfund.(~v,~λ|~m) =

nf∏
f=1

∏
x∈~λ

(1−χx/(q3mf )), Za.f.(~v,~λ|~m) =

nf∏
f=1

∏
x∈~λ

(1−mf/χx), ZCS(~v,~λ|κ) =
∏
x∈~λ

(χx)κ

Zvect.(~v,~λ) =

m∏
l,l′=1

1

N(vl,λ(l),vl′ ,λ(l′))
, Zbfd.(~v,~λ,~v

′,~λ′|µ) =

m∏
l=1

m′∏
l′=1

N(vl,λ
(l),µv′l′ ,λ

(l′)′).

(B.1)

The last two building blocks are themselves written using the Nekrasov factor

N(v, λ|v′, λ′) =
∏
x∈λ
y∈λ′

S

(
χx
χy

)
×
∏
x∈λ

(
1− χx

q3v′

)
×
∏
x∈λ′

(
1− v

χx

)
, (B.2)

with the function S(z) defined in (2.26). In addition, perturbative (one-loop) contributions

involve the function G(z) defined for |q1|, |q2| < 1 as

G(z) = exp

(
−
∞∑
k=1

1

k

zk

(1− qk1 )(1− qk2 )

)
=

∞∏
i,j=1

(
1− zqi−1

1 qj−1
2

)
. (B.3)

For instance, the one-loop vector contribution writes

Z1-loop(~v) =
m∏

l,l′=1

G(vl/(q3vl′)). (B.4)

Note that the Nekrasov factor is invariant under the rescaling of the weights, and we

can alternatively denote N(λ, λ′|v/v′) = N(v, λ|v′, λ′). Consequently, the rank m = 1
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vector contribution does not depend on the weight, and we will simply denote it Zvect.(λ).

Alternatively, it is also possible to write down

Zvect.(λ) =
∏
x∈λ

(
1− ql(x)+1

1 q
−a(x)
2

)−1 (
1− q−l(x)

1 q
a(x)+1
2

)−1
(B.5)

where a(x) = λi−j and l(x) = λ̃j−i denote the arm and leg length (respectively) associated

to the box x = (i, j) ∈ λ.

C Construction of the intertwiners V ↔ H ×H

In this appendix, we construct the intertwiners Φ = Φ
[−1 n

1 m

]
, and Φ∗ = Φ∗

[−1 n
1 m

]
. By

convention the horizontal representations (−1, n) (resp. (1,m)) have weight u (resp. u′),

and the vertical representations (0, n + m) have the usual vector of weights ~v. These

intertwiners are defined by the equations (3.1) that, in the present case, take the form

ρ
(0,n+m)
~v (e)Φ = Φ

(
ρ(−1,n)
u ⊗ ρ(1,m)

u′ ∆(e)
)
,
(
ρ(−1,n)
u ⊗ ρ(1,m)

u′ ∆′(e)
)

Φ∗ = Φ∗ρ
(0,n+m)
~v (e).

(C.1)

We restrict ourselves to the case n+m > 0.

C.1 New operators in the Cartan

For this construction, it is useful to introduce new operators in the Cartan sector, defined

in terms of the modes ak as follows:

Υ±(z) = exp

(∑
k>0

(γz)∓k

γk − γ−k
a±k

)
⇒ ψ±(z) = ψ±0 Υ±(q−1

3 z)Υ±(z)−1. (C.2)

The vertical and horizontal representations of these operators follows from those of the

modes ak, namely

ρ
(0,m)
~v (Υ+(z))|~v,~λ〉〉=

[
Y~λ(z)

]
+
|~v,~λ〉〉, ρ

(0,m)
~v (Υ−(z))|~v,~λ〉〉=

m∏
l=1

(−z/vl)
[
Y~λ(z)

]
− |~v,~λ〉〉,

ρ(1,n)(Υ±(z)) = υ±(z), ρ(−1,n)(Υ±(z)) = υ∓(q−1
3 z−1)−1,

υ±(z) = exp

(∑
k>0

(γz)∓k

k
α±k

)
. (C.3)

The new vertex operators υ±(z) acting in the horizontal Fock modules satisfy the normal-

ordering property

υ+(z)υ−(w) = S(γw/z) : υ+(z)υ−(w) : . (C.4)

Note also that they can be used to decompose the vertex operators η±(z) and ϕ±(z):

ϕ±(z) = υ±(q−1
3 z)υ±(z)−1, η+(z) = υ−(γ−3/2z)υ+(γ−1/2z)−1,

η−(z) = υ−(γ−1/2z)−1υ+(γ−3/2z).
(C.5)
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C.2 Coherent states in the Fock modules

The main ingredient in the construction of our intertwiners is a set of coherent states

belonging to the Fock modules. These states are parameterized by a vector of weights ~v,

and an m-tuple Young diagram, they are defined as follows:21

|~v,~λ〉A =
∏
x∈~λ

υ−(γ−3/2χx)

m∏
l=1

υ−∅ (vl) |∅〉 , υ−∅ (v) = exp

(
−
∑
k>0

(γ1/2v)k

σk
α−k

)
,

|~v,~λ〉B =
∏
x∈~λ

υ−(γ−3/2χ−1
x )−1

m∏
l=1

υ̃−∅ (vl) |∅〉 , υ̃−∅ (v) = exp

(∑
k>0

(γ3/2v)−k

σk
α−k

)
.

(C.7)

In fact, these states can also be defined using the generalized AFS intertwiners,

|~v,~λ〉A = Φ
[

0 m
1 −m

] (
|~v,~λ〉〉 ⊗ |∅〉

)
= Φ~λ

[
0 m
1 −m

]
|∅〉 ,

|~v,~λ〉B = Φ
[

0 −m
1 0

] (
|~v,~λ〉〉 ⊗ |∅〉

)
= Φ~λ

[
0 −m
1 0

]
|∅〉 ,

(C.8)

where, in order to fix the norms such that to |~v,~λ〉A = |∅〉+ · · · (and |~v,~λ〉B = |∅〉+ · · · ),
the weight u′ (resp. u) have been set to one.

Due to the intertwining property (3.1), DIM’s horizontal action on such states can

be written

ρ
(1,0)
u′=1(e)|~v,~λ〉A = Φ

[
0 m
1 −m

] (
ρ

(0,m)
~v ⊗ ρ(1,−m)

u ∆(e)
)(
|~v,~λ〉〉 ⊗ |∅〉

)
,

ρ
(1,−m)
u′ (e)|~v,~λ〉B = Φ

[
0 −m
1 0

] (
ρ

(0,−m)
~v ⊗ ρ(1,0)

u=1 ∆(e)
)(
|~v,~λ〉〉 ⊗ |∅〉

)
.

(C.9)

Since the action of DIM’s algebra on the r.h.s. is already known, these identities can be

used to characterize the algebraic properties of the coherent states. In particular, if the

r.h.s. is annihilated by the action of an element of DIM algebra, so is the r.h.s. . Similarly,

if the r.h.s. is an eigenstate, then it is also the case of the coherent state. As a result, we

deduce the following properties:

αk>0 |~v,~λ〉A = γ−k/2

σk
k

∑
x∈~λ

χkx −
m∑
l=1

(γvl)
k

 |~v,~λ〉A ,
αk>0 |~v,~λ〉B = −γ−k/2

σk
k

∑
x∈~λ

χ−kx −
m∑
l=1

(γvl)
−k

 |~v,~λ〉B .
(C.10)

Thus, these coherent states are eigenstates of the positive modes αk, these relations char-

acterize them uniquely, up to their norm, and a possible linear shift by the vacuum state.

21Note that

υ+(z)υ−∅ (v) =
[
1−v/(γ1/2z)

]
+

: υ+(z)υ−∅ (v) :, υ+(z−1)υ̃−∅ (v) =
[
(1−z/(γ5/2v))−1

]
−

: υ+(z−1)υ̃−∅ (v) : .

(C.6)
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These relations also imply:

ϕ+(γ−1/2z) |~v,~λ〉A =
[
Ψ~λ

(z)
]
+
|~v,~λ〉A , ϕ+(γ−1/2z−1) |~v,~λ〉B = γ−2m

[
Ψ~λ

(z)
]
− |~v,~λ〉B ,

(C.11)

and further

η+(z) |~v,~λ〉A =
[
Y~λ(z)−1

]
+
υ−(γ−3/2z) |~v,~λ〉A ,

η−(γ−1z) |~v,~λ〉A =
[
Y~λ(q−1

3 z)
]
+
υ−(γ−3/2z)−1 |~v,~λ〉A ,

η+(z−1) |~v,~λ〉B =

n+m∏
l=1

(
−z
q3vl

)[
Y~λ(q−1

3 z)
]
− υ−(γ−3/2z−1) |~v,~λ〉B ,

η−(γ−1z−1) |~v,~λ〉B =
n+m∏
l=1

(
−vl
z

)[
Y~λ(z)−1

]
− υ−(γ−3/2z−1)−1 |~v,~λ〉B .

(C.12)

Note that the action of algebra elements on the states |~v,~λ〉A involves operators expanded

as series in z−1 (in agreement with the radial ordering that assumes |z| > |χx|), so that

the function in the r.h.s. must also be expanded in inverse powers of z, which justifies the

notation [· · · ]+ employed. Similarly, the action on the states |~v,~λ〉A involves operators

expanded as series in z, and the r.h.s. involves [· · · ]− (in agreement with |z−1| > |χ−1
x |).

Dual states can also be introduced,

A〈~v,~λ|= 〈∅|
n+m∏
l=1

υ+
∅ (vl)

∏
x∈~λ

υ+(γ−3/2χx), υ+
∅ (v) = exp

(
−
∑
k>0

(γ1/2v)−k

σk
αk

)
,

B〈~v,~λ|= 〈∅|
n+m∏
l=1

υ̃+
∅ (vl)

∏
x∈~λ

υ+(γ−3/2χ−1
x )−1, υ̃+

∅ (v) = exp

(∑
k>0

(γ3/2v)k

σk
αk

)
,

(C.13)

they obey the relations22

A〈~v,~λ|ϕ−(γ−1/2z) = γ−2(n+m)
[
Ψ~λ

(z)
]
− A〈~v,~λ| ,

A〈~v,~λ| η+(γ−1z) =
n+m∏
l=1

(
z

−q3vl

)[
Y~λ(q−1

3 z)
]
− A〈~v,~λ| υ

+(γ−3/2z)−1,

A〈~v,~λ| η−(z) =

n+m∏
l=1

(
−vl
z

)[
Y~λ(z)−1

]
− A〈~v,~λ| υ

+(γ−3/2z)

B〈~v,~λ|ϕ−(γ−1/2z−1) =
[
Ψ~λ

(z)
]
+ B〈~v,~λ|

B〈~v,~λ| η+(γ−1z−1) =
[
Y~λ(z)−1

]
+ B〈~v,~λ| υ+(γ−3/2z−1)−1,

B〈~v,~λ| η−(z−1) =
[
Y~λ(q−1

3 z)
]
+ B〈~v,~λ| υ+(γ−3/2z−1).

(C.15)

22Note that

υ+
∅ (v)υ−(z) =

[
1− γ1/2z/v

]
−

: υ+
∅ (v)υ−(z) :, υ̃+

∅ (v)υ−(z−1) =
[
(1− γ5/2v/z)−1

]
+

: υ̃+
∅ (v)υ−(z−1) : .

(C.14)

– 47 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
3

Note also the remarkable inner product:

A〈~v1, ~λ1|~v2, ~λ2〉A = B〈~v2, ~λ2|~v1, ~λ1〉B =
Zbfd.(~v2, ~λ2, ~v1, ~λ1|γ−1)∏
l=1

∏
l′=1 G(v

(2)
l′ /γv

(1)
l )

. (C.16)

C.3 Construction of Φ∗

The construction of Φ∗ turns out to be a little easier than Φ. Explicitly, the equation (C.1)

for each generating current of the DIM algebra read:

Φ∗ρ
(0,n+m)
~v (x+(z)) =

[
u′z−m 1⊗η+(z)−u−1γn+mzn η−(γ−1z−1)⊗ϕ−(γ1/2z)

]
Φ∗,

Φ∗ρ
(0,n+m)
~v (x−(z)) =

[
(u′)−1γ−n−mzm ϕ−(γ1/2z−1)⊗η−(γ−1z)−uz−n η+(z−1)⊗1

]
Φ∗,

Φ∗ρ
(0,n+m)
~v (ψ±(z)) = γ∓(n+m)

[
ϕ∓(γ±1/2z−1)⊗ϕ±(γ∓1/2z)

]
Φ∗. (C.17)

In order to solve these equations, we need to define the reflection operators acting on the

tensor product of Fock modules:

U±(z) = exp

(∑
k>0

1

σk
α±k ⊗ α±k

)
. (C.18)

Here, we will employ U−, while U+ will be used in the next subsection in the construction

of ΦS . This reflection operator satisfies the important properties(
1⊗υ+(z)

)
U−=U−

(
υ−(q−1

3 z−1)⊗υ+(z)
)
⇒

(
1⊗ϕ+(z)

)
U−=U−

(
ϕ−(z−1)−1⊗ϕ+(z)

)
,(

υ+(z)⊗1
)
U−=U−

(
υ+(z)⊗υ−(q−1

3 z−1)
)
⇒

(
ϕ+(z)⊗1

)
U−=U−

(
ϕ+(z)⊗ϕ−(z−1)−1

)
.

(C.19)

Applied to the vacuum |∅〉 ⊗ |∅〉, it produces the reflector state defined in (3.31).

The intertwiner Φ∗ is defined as the action of U− on the tensor product of the two

coherent states constructed previously,

|~v,~λ〉⊗ = n∗~λ U−
(
|~v,~λ〉B ⊗ |~v,~λ〉A

)
. (C.20)

We have introduced here the normalization factor n∗~λ
= (〈∅| ⊗ 〈∅|)|~v,~λ〉⊗ that will be

determined later. We observe the property

γ∓(n+m)
(
ϕ∓(γ±1/2z−1)⊗ ϕ±(γ∓1/2z)

)
|~v,~λ〉⊗ = γ−(n+m)

[
Ψ~λ

(z)
]
± |~v,~λ〉⊗, (C.21)

obtained as follows. In the + case, the reflection property (C.19) applied to ϕ+(γ−1/2z)

eliminates ϕ−(γ−1/2z−1) in the first space. This operator ϕ+(γ−1/2z) acting on |~v,~λ〉A
further produces the function Ψ~λ

(z) as a result of the property (C.11). This function has to

be expanded in inverse powers of z, i.e. it corresponds to
[
Ψ~λ

(z)
]
+

. Similarly, in the − case,

one considers ϕ+(γ−1/2z−1), and its action on |~v,~λ〉B produces the function Ψ~λ
(z) expanded

in powers of z. This shows the intertwining property for the Cartan currents ψ±(z).
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Let us now turn to the action of ρ(0,n+m)(x+(z)), and, employing a similar technique,

compute(
1⊗η+(z)

)
|~v,~λ〉⊗=

[
Y~λ(z)−1

]
+
n∗~λU−

(
υ−(γ−3/2z−1)−1⊗υ−(γ−3/2z)

)(
|~v,~λ〉B⊗|~v,~λ〉A

)
zn+m∏
l(−vl)

(
η−(γ−1z−1)⊗ϕ−(γ1/2z)

)
|~v,~λ〉⊗

=
[
Y~λ(z)−1

]
−n
∗
~λ
U−
(
υ−(γ−3/2z−1)−1⊗υ−(γ−3/2z)

)(
|~v,~λ〉B⊗|~v,~λ〉A

)
.

(C.22)

Taking the difference, and using that[
Y~λ(z)−1

]
+
−
[
Y~λ(z)−1

]
− =

∑
x∈A(~λ)

δ(z/χx) Res
z=χx

z−1Y~λ(z)−1, (C.23)

we find (
1⊗ η+(z)− zn+m∏

l(−vl)
η−(γ−1z−1)⊗ ϕ−(γ1/2z)

)
|~v,~λ〉⊗

=
∑

x∈A(~λ)

δ(z/χx) Res
z=χx

z−1Y~λ(z)−1
n∗~λ
n∗~λ+x

|~λ+ x〉⊗.
(C.24)

Finally, from(
ϕ−(γ1/2z−1)⊗ η−(γ−1z)

)
|~v,~λ〉⊗

=
[
Y~λ(q−1

3 z)
]
+
n∗~λU−

(
υ−(γ−3/2z−1)⊗ υ−(γ−3/2z)−1

)(
|~v,~λ〉B ⊗ |~v,~λ〉A

)
z−n−m

∏
l

(−q3vl)
(
η+(z−1)⊗ 1

)
|~v,~λ〉⊗

=
[
Y~λ(q−1

3 z)
]
− n
∗
~λ
U−
(
υ−(γ−3/2z−1)⊗ υ−(γ−3/2z)−1

)(
|~v,~λ〉B ⊗ |~v,~λ〉A

)
,

(C.25)

we get (
ϕ−(γ1/2z−1)⊗ η−(γ−1z)− z−n−m

∏
l

(−q3vl)η
+(z−1)⊗ 1

)
|~v,~λ〉⊗

=
∑

x∈R(~λ)

δ(z/χx) Res
z=χx

z−1Y~λ(q−1
3 z)

n∗~λ
n∗~λ−x

|~λ− x〉⊗.
(C.26)

The three properties (C.21), (C.24) and (C.26) imply that |~v,~λ〉⊗ transforms as the

states |~v,~λ〉〉 in the vertical representation. More precisely, the quantity

Φ∗ =
∑
~λ

a~λ|~v,~λ〉⊗〈〈~v,~λ| ⇒ Φ∗~λ = Φ∗ |~v,~λ〉〉 = |~v,~λ〉⊗, (C.27)

satisfies the equations (C.17), provided that we set

uu′ =
n+m∏
l=1

(−γvl), n∗~λ = (u′)|
~λ|
∏
x∈~λ

χ−mx . (C.28)

This condition upon the weights is in agreement with the weights conservation relation.
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C.4 Construction of Φ

In this case, the constraints (C.1) for Φ take the explicit form

ρ
(0,n+m)
~v (x+(z))Φ = Φ

[
−u−1zn η−(z−1)⊗ 1 + u′γn+mz−m ϕ+(γ1/2z−1)⊗ η+(γ−1z)

]
,

ρ
(0,n+m)
~v (x−(z))Φ = Φ

[
−uγ−n−mz−n η+(γ−1z−1)⊗ ϕ+(γ1/2z) + (u′)−1zm 1⊗ η−(z)

]
,

ρ
(0,n+m)
~v (ψ±(z))Φ = γ∓(n+m)Φ

[
ϕ∓(γ∓1/2z−1)⊗ ϕ±(γ±1/2z)

]
. (C.29)

The intertwiner is obtained from the dual states ⊗〈~v,~λ| defined as the action of U+ on the

tensor product of dual coherent states,

⊗〈~v,~λ| =
(
B〈~v,~λ| ⊗ A〈~v,~λ|

)
U+ n~λ. (C.30)

Using the properties of the reflection operator U+ introduced in (C.18),

U+

(
1⊗υ−(z)

)
=
(
υ+(q−1

3 z−1)⊗υ−(z)
)
U+ ⇒ U+

(
1⊗ϕ−(z)

)
=
(
ϕ+(z−1)−1⊗ϕ−(z)

)
U+,

U+

(
υ−(z)⊗1

)
=
(
υ−(z)⊗υ+(q−1

3 z−1)
)
U+ ⇒ U+

(
ϕ−(z)⊗1

)
=
(
ϕ−(z)⊗ϕ+(z−1)−1

)
U+,

(C.31)

and following the same steps as before, it is possible to show that the intertwiner

Φ =
∑
~λ

a~λ |~v,~λ〉〉⊗〈~v,~λ| (C.32)

obeys the relations (C.29) provided that the weights observe the conservation rela-

tion (C.28), and that the normalization factor takes the form

n~λ = ⊗〈~v,~λ| (|∅〉 ⊗ |∅〉) = u|
~λ|γ−(n+m)|~λ|

∏
x∈~λ

χ−nx . (C.33)

D Vacuum S-transformation

In this appendix, we determine the action on the vacuum of some of the S-dual modes y±k ,

ξ±±k using Miki’s relations (A.6) and (A.7).

D.1 Example I

First, we introduce a shortcut notation for the following states in the tensor product

(−1, 0)⊗ (0, 1):

|0〉 = |∅〉 ⊗ |v, ∅〉〉, |1〉 = α−1 |∅〉 ⊗ |v, ∅〉〉. (D.1)
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Expanding the action of the coproduct of DIM generators, we obtain the following charac-

terizations:(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆(a−k)
)
|0〉 = −γ

k − γ−k

k
(γ3/2v)−k |0〉 , (k > 0),

(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆(x−k )
)
|0〉 =


0 (k < 0)

−uγ−1 |0〉 (k = 0)

−uγ−1(1− q3)v |0〉 − uγ−3/2 |1〉 (k = 1)

· · · (k > 1)

(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆(x−k )
)
|1〉 =


0 (k < −1)

uγ−3/2σ1 |0〉 (k = −1)

uγ−3/2σ1(1− q3)v |0〉 − uγ−1(1− σ1γ
−1) |1〉 (k = 0)

· · · (k > 0)

(D.2)

These properties leads to identify the state |0〉 with the state |v, ∅〉B in the Fock module

with representation (−1, 1)u′=−γuv (up to a norm).

In order to obtain the action of the S-dual modes, we use Miki’s relations (A.6)

and (A.7) to show that:(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆(y+
−k)
)
|0〉 = δk,0(γ3/2v)−1 |0〉 , (k ≥ 0)(

ρ(−1,0)
u ⊗ ρ(0,1)

v ∆(ξ−−k)
)
|0〉 =

(
γδk,0 − (γ − γ−1)(−uγ−2)k

)
|0〉 .

(D.3)

The derivation of the first identity is straightforward, but the second one requires some

extra explanation in the case of modes with index k > 1. Starting from Miki’s formula (A.7)

and noticing that ∆(x−−1) annihilates |0〉, we find(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆(ξ−−k)
)
|0〉

= γ−1(γ − γ−1)σ
−(k−1)
1

(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆

(((
adx−0

)k−2
x−−1

)
x−1

))
|0〉

= −uγ−5/2(γ − γ−1)σ
−(k−1)
1

(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆

((
adx−0

)k−2
x−−1

))
|1〉 .

(D.4)

Then, from (D.2), we get(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆(ezx
−
0 )
)
|0〉 = e−uγ

−1z |0〉 ,(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆(ezx
−
0 )
)
|1〉 = γ1/2(1− q3)v

(
e−uγ

−1(1−σ1γ−1)z − e−uγ−1z
)
|0〉

+ e−uγ
−1(1−σ1γ−1)z |1〉 ,

(D.5)

which gives, using the Baker-Campbell-Hausdorff formula (A.8),

⇒
(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆(ezx
−
0 x−−1e

−zx−0 )
)
|1〉 = uγ−3/2σ1e

−σ1uγ−2z |0〉

⇒
(
ρ(−1,0)
u ⊗ ρ(0,1)

v ∆

((
adx−0

)k
x−−1

))
|1〉 = −γ1/2(−σ1uγ

−2)k+1 |1〉 .
(D.6)

This shows (D.4), and thus the second identity in (D.3). Note that in the application to

the first example, u and v become ũ2 and ṽ2.
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D.2 Example II

We start again by introducing the shortcut notations:

|0〉 = |∅〉 ⊗ |∅〉 , |1〉 = α−1 |∅〉 ⊗ |∅〉 , |1′〉 = |∅〉 ⊗ α−1 |∅〉 . (D.7)

From(
ρ(−1,0)
u ⊗ρ(1,1)

u′ ∆(x−(z))
)
|0〉= (u′)−1 |∅〉⊗zυ−(γ−1/2z)−1 |∅〉−uγ−1 υ−(γ−5/2z−1) |∅〉⊗|∅〉 ,

(D.8)

we deduce by expansion that:

(
ρ(−1,0)
u ⊗ ρ(1,1)

u′ ∆(x−k )
)
|0〉 =



· · · (k < −2)

−(u′)−1γ1/2 |1′〉 (k = −2)

(u′)−1 |0〉 (k = −1)

−uγ−1 |0〉 (k = 0)

−uγ−5/2 |1〉 (k = 1)

· · · (k > 1)

(D.9)

Using the relation (A.6), it implies(
ρ(−1,0)
u ⊗ ρ(1,1)

u′ ∆(y+
−k<0)

)
|0〉 = −δk,1(u′)−1γ−1/2 |0〉 . (D.10)

The action of ξ−−k is more complicated to evaluate. First, we need the action of x−0
and x−−1 on the state |1〉 that can be obtained using a similar method as before:(

ρ(−1,0)
u ⊗ ρ(1,1)

u′ ∆(x−0 )
)
|1〉 = −uγ−1(1− γ−1σ1) |1〉 ,(

ρ(−1,0)
u ⊗ ρ(1,1)

u′ ∆(x−−1)
)
|1〉 = (u′)−1 |1〉+ uγ−1/2σ1 |0〉 .

(D.11)

From these identities, we deduce successively(
ρ(−1,0)
u ⊗ ρ(1,1)

u′ ∆(e
z ad

x−0 x−−1)
)
|0〉 = (u′)−1 |0〉 ,(

ρ(−1,0)
u ⊗ ρ(1,1)

u′ ∆(e
z ad

x−0 x−−1)
)
|1〉 = (u′)−1 |1〉+ uγ−1/2σ1e

−zuγ−2σ1 |0〉 ,(
ρ(−1,0)
u ⊗ ρ(1,1)

u′ ∆(adx−1
e
z ad

x−0 x−−1)
)
|0〉 = u2γ−3σ1e

−zuγ−2σ1 |0〉 ,

(D.12)

and finally, for k > 0,(
ρ(−1,0)
u ⊗ ρ(1,1)

u′ ∆(ξ−−k)
)
|0〉 = (1− q3)(−uγ−2)k |0〉 . (D.13)

Note that the calculation for the mode k = 1 must be performed separately. In the

application to the transformation of the Lax matrix in the second example, u and u′

become ũ2 and ũ′2.
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D.3 Case U(2)

Starting with the state |0〉 = |∅〉 ⊗ |∅〉 ∈ (1, 1)′u × (−1, 1)u, we observe that

(
ρ(1,1)
u ⊗ ρ(−1,1)

u′ ∆′(x−k )
)
|0〉 =



· · · (k < −1)

u−1 |0〉 (k = −1)

0 (k = 0)

−γ−2u′ |0〉 (k = 1)

· · · (k > 1)

(D.14)

Using Miki’s formulas (A.6) and (A.7), we deduce for k > 0:(
ρ(1,1)
u ⊗ ρ(−1,1)

u′ ∆′(y+
−k)
)
|0〉 = −δk,1γ−1u−1 |0〉 ,(

ρ(1,1)
u ⊗ ρ(−1,1)

u′ ∆′(y−−k)
)
|0〉 = −δk,1γ−1u′ |0〉 ,(

ρ(1,1)
u ⊗ ρ(−1,1)

u′ ∆′(ξ−(z))
)
|0〉 = |0〉 .

(D.15)

Here u corresponds to ũ′2 in the main text, and u′ to ũ′3. Similarly, we observe for the dual

state 〈0| = 〈∅| ⊗ 〈∅|,

〈0|
(
ρ(−1,1)
u ⊗ ρ(1,1)

u′ ∆(x+
k )
)

=



· · · (k < −1)

−γ2u−1 〈0| (k = −1)

0 (k = 0)

u′ 〈0| (k = 1)

· · · (k > 1)

(D.16)

and deduce from the same formulas (A.6) and (A.7) that for k > 0:

〈0|
(
ρ(−1,1)
u ⊗ ρ(1,1)

u′ ∆(y+
k )
)

= −δk,1γu−1 〈0| ,

〈0|
(
ρ(−1,1)
u ⊗ ρ(1,1)

u′ ∆(y−k )
)

= −δk,1γu′ 〈0| ,

〈0|
(
ρ(−1,1)
u ⊗ ρ(1,1)

u′ ∆(ξ+(z))
)

= 〈0| .

(D.17)

This time u and u′ denote ũ′1 and ũ′4 respectively in the application to the U(2) theory.
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Equations, Annales Henri Poincaré 18 (2017) 2543 [arXiv:1609.05724].

[51] N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras,

Lett. Math. Phys. 20 (1990) 331 [INSPIRE].

[52] B. Feigin, E. Feigin, M. Jimbo, T. Miwa and E. Mukhin, Quantum continuous gl∞:

Semi-infinite construction of representations, Kyoto J. Math. 51 (2011) 337

[arXiv:1002.3100].

[53] ]B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi and S. Yanagida, A commutative algebra

on degenerate CP 1 and Macdonald polynomials, J. Math. Phys. 50 (2009) 095215

[arXiv:0904.2291].

[54] I.G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford

University Press, Oxford, New York (1979).

[55] V. Chari and A. Pressley, A guide to quantum groups, (1994) [INSPIRE].

[56] J.-E. Bourgine, work in progress.

[57] M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in

the plane, Invent. Math. 149 (2002) 371.

[58] H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., Invent. Math. 162 (2005)

313 [math/0306198].

– 56 –

https://doi.org/10.1016/j.geomphys.2012.10.014
https://doi.org/10.1016/j.geomphys.2012.10.014
https://arxiv.org/abs/0903.5383
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.5383
https://doi.org/10.1088/1751-8121/aae654
https://doi.org/10.1088/1751-8121/aae654
https://arxiv.org/abs/1805.12073
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.12073
https://doi.org/10.1007/JHEP03(2018)192
https://arxiv.org/abs/1712.08016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.08016
https://doi.org/10.1016/j.physletb.2018.11.066
https://arxiv.org/abs/1809.08861
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.08861
https://arxiv.org/abs/1302.6202
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6202
https://arxiv.org/abs/1211.1287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1287
https://doi.org/10.1093/ptep/ptx123
https://arxiv.org/abs/1705.02941
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.02941
https://arxiv.org/abs/hep-th/9404036
https://inspirehep.net/search?p=find+EPRINT+hep-th/9404036
https://doi.org/10.1088/1751-8113/48/24/244001
https://doi.org/10.1088/1751-8113/48/24/244001
https://arxiv.org/abs/1502.07194
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07194
https://doi.org/10.1007/s00220-017-2984-9
https://arxiv.org/abs/1603.02765
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.02765
https://doi.org/10.1007/s00023-017-0577-y
https://arxiv.org/abs/1609.05724
https://doi.org/10.1007/BF00626530
https://inspirehep.net/search?p=find+J+%22Lett.Math.Phys.,20,331%22
https://doi.org/10.1215/21562261-1214375
https://arxiv.org/abs/1002.3100
https://doi.org/10.1063/1.3192773
https://arxiv.org/abs/0904.2291
https://inspirehep.net/search?p=find+IRN+3125289
https://doi.org/10.1007/s002220200219
https://doi.org/10.1007/s00222-005-0444-1
https://doi.org/10.1007/s00222-005-0444-1
https://arxiv.org/abs/math/0306198


J
H
E
P
0
3
(
2
0
1
9
)
0
0
3

[59] K. Ito, Refined Topological Vertex and Duality of Gauge Theories in Generic Omega

Backgrounds, arXiv:1211.6793 [INSPIRE].

[60] D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, J. Phys.

Conf. Ser. 462 (2013) 012014 [arXiv:0908.0307] [INSPIRE].

[61] A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations,

Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [INSPIRE].

[62] H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the chain-saw

quiver, JHEP 06 (2011) 119 [arXiv:1105.0357] [INSPIRE].

[63] H. Kanno and M. Taki, Generalized Whittaker states for instanton counting with

fundamental hypermultiplets, JHEP 05 (2012) 052 [arXiv:1203.1427] [INSPIRE].

[64] H. Awata and Y. Yamada, Five-dimensional AGT Relation and the Deformed beta-ensemble,

Prog. Theor. Phys. 124 (2010) 227 [arXiv:1004.5122] [INSPIRE].

[65] M. Taki, On AGT-W Conjecture and q-Deformed W-Algebra, arXiv:1403.7016 [INSPIRE].

[66] H. Awata, B. Feigin, A. Hoshino, M. Kanai, J. Shiraishi and S. Yanagida, Notes on

Ding-Iohara algebra and AGT conjecture, arXiv:1106.4088 [INSPIRE].

[67] B.L. Feigin and A.I. Tsymbaliuk, Equivariant K-theory of Hilbert schemes via shuffle

algebra, Kyoto J. Math. 51 (2011) 831 [arXiv:0904.1679].

[68] J.-E. Bourgine, M. Fukuda, Y. Matsuo, H. Zhang and R.-D. Zhu, Coherent states in

quantum W1+∞ algebra and qq-character for 5d Super Yang-Mills, PTEP 2016 (2016)

123B05 [arXiv:1606.08020] [INSPIRE].

[69] T. Kimura and V. Pestun, Quiver W-algebras, Lett. Math. Phys. 108 (2018) 1351

[arXiv:1512.08533] [INSPIRE].

[70] T. Kimura and V. Pestun, Quiver elliptic W-algebras, Lett. Math. Phys. 108 (2018) 1383

[arXiv:1608.04651] [INSPIRE].

[71] J. Shiraishi, H. Kubo, H. Awata and S. Odake, A Quantum deformation of the Virasoro

algebra and the Macdonald symmetric functions, Lett. Math. Phys. 38 (1996) 33

[q-alg/9507034] [INSPIRE].

[72] N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359

[hep-th/0404225] [INSPIRE].

[73] S. Nakamura, F. Okazawa and Y. Matsuo, Recursive method for the Nekrasov partition

function for classical Lie groups, PTEP 2015 (2015) 033B01 [arXiv:1411.4222] [INSPIRE].

[74] S. Nakamura, On the Jeffrey-Kirwan residue of BCD-instantons, PTEP 2015 (2015) 073B02

[arXiv:1502.04188] [INSPIRE].

[75] H.-C. Kim, Line defects and 5d instanton partition functions, JHEP 03 (2016) 199

[arXiv:1601.06841] [INSPIRE].

[76] N. Nekrasov, V. Pestun and S. Shatashvili, Quantum geometry and quiver gauge theories,

Commun. Math. Phys. 357 (2018) 519 [arXiv:1312.6689] [INSPIRE].

[77] N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and

qq-characters, JHEP 03 (2016) 181 [arXiv:1512.05388] [INSPIRE].

[78] N. Nekrasov, BPS/CFT Correspondence III: Gauge Origami partition function and

qq-characters, Commun. Math. Phys. 358 (2018) 863 [arXiv:1701.00189] [INSPIRE].

– 57 –

https://arxiv.org/abs/1211.6793
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6793
https://doi.org/10.1088/1742-6596/462/1/012014
https://doi.org/10.1088/1742-6596/462/1/012014
https://arxiv.org/abs/0908.0307
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.0307
https://doi.org/10.1016/j.physletb.2009.10.077
https://arxiv.org/abs/0909.2052
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2052
https://doi.org/10.1007/JHEP06(2011)119
https://arxiv.org/abs/1105.0357
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0357
https://doi.org/10.1007/JHEP05(2012)052
https://arxiv.org/abs/1203.1427
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1427
https://doi.org/10.1143/PTP.124.227
https://arxiv.org/abs/1004.5122
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.5122
https://arxiv.org/abs/1403.7016
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.7016
https://arxiv.org/abs/1106.4088
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4088
https://arxiv.org/abs/0904.1679
https://doi.org/10.1093/ptep/ptw165
https://doi.org/10.1093/ptep/ptw165
https://arxiv.org/abs/1606.08020
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08020
https://doi.org/10.1007/s11005-018-1072-1
https://arxiv.org/abs/1512.08533
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08533
https://doi.org/10.1007/s11005-018-1073-0
https://arxiv.org/abs/1608.04651
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04651
https://doi.org/10.1007/BF00398297
https://arxiv.org/abs/q-alg/9507034
https://inspirehep.net/search?p=find+J+%22Lett.Math.Phys.,38,33%22
https://doi.org/10.1007/s00220-004-1189-1
https://arxiv.org/abs/hep-th/0404225
https://inspirehep.net/search?p=find+EPRINT+hep-th/0404225
https://doi.org/10.1093/ptep/ptv014
https://arxiv.org/abs/1411.4222
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.4222
https://doi.org/10.1093/ptep/ptv085
https://arxiv.org/abs/1502.04188
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.04188
https://doi.org/10.1007/JHEP03(2016)199
https://arxiv.org/abs/1601.06841
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.06841
https://doi.org/10.1007/s00220-017-3071-y
https://arxiv.org/abs/1312.6689
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6689
https://doi.org/10.1007/JHEP03(2016)181
https://arxiv.org/abs/1512.05388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05388
https://doi.org/10.1007/s00220-017-3057-9
https://arxiv.org/abs/1701.00189
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.00189


J
H
E
P
0
3
(
2
0
1
9
)
0
0
3

[79] S. Jeong and X. Zhang, BPZ equations for higher degenerate fields and non-perturbative

Dyson-Schwinger equations, arXiv:1710.06970 [INSPIRE].

[80] S. Jeong and N. Nekrasov, Opers, surface defects and Yang-Yang functional,

arXiv:1806.08270 [INSPIRE].

[81] J.-E. Bourgine, Y. Matsuo and H. Zhang, Holomorphic field realization of SHc and quantum

geometry of quiver gauge theories, JHEP 04 (2016) 167 [arXiv:1512.02492] [INSPIRE].

[82] P. Agarwal, J. Kim, S. Kim and A. Sciarappa, Wilson surfaces in M5-branes, JHEP 08

(2018) 119 [arXiv:1804.09932] [INSPIRE].

[83] A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized s Matrices in Two-Dimensions as

the Exact Solutions of Certain Relativistic Quantum Field Models, Annals Phys. 120 (1979)

253 [INSPIRE].

– 58 –

https://arxiv.org/abs/1710.06970
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.06970
https://arxiv.org/abs/1806.08270
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.08270
https://doi.org/10.1007/JHEP04(2016)167
https://arxiv.org/abs/1512.02492
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.02492
https://doi.org/10.1007/JHEP08(2018)119
https://doi.org/10.1007/JHEP08(2018)119
https://arxiv.org/abs/1804.09932
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.09932
https://doi.org/10.1016/0003-4916(79)90391-9
https://doi.org/10.1016/0003-4916(79)90391-9
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,120,253%22

	Introduction
	Algebra, representations and automorphisms
	Presentation of the Ding-Iohara-Miki algebra
	Miki's automorphism
	Twisted coproducts
	Twist by an automorphism
	Twist by a two-tensor

	Representations
	Vertical representations
	Horizontal representations
	Action of Miki's automorphism on the representations


	S-transformation of intertwiners
	A general approach to S-dual intertwiners
	Definition of intertwiners and twisting
	Action of S**(2) and inversion of intertwiners
	S-transformation of intertwiners

	Example of intertwiners
	Generalized AFS intertwiners
	New intertwiners V x H <–> H
	New intertwiners H x H <–> V


	S-transformation of Lax matrices
	Lax matrices
	Example I: resolved conifold
	Example II: pure U(1) gauge theory

	T-operators and the U(2) self-dual diagram
	T-operators
	Example: pure U(2) gauge theory

	Perspectives
	More on Miki's automorphism
	Derivation of Miki's transformation
	Choice of preferred direction
	Gradings and uniqueness of Miki's automorphism

	Building blocks of instanton partition functions
	Construction of the intertwiners V <–> H x H
	New operators in the Cartan
	Coherent states in the Fock modules
	Construction of Phi*
	Construction of Phi

	Vacuum S-transformation
	Example I
	Example II
	Case U(2)


