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1 Introduction

Quantum field theories with the highest amount of symmetries, namely supersymmetry as

well as conformal symmetry, in the highest possible dimension are 6d superconformal field

theories. The classification of such theories subdivides between two main classes of theories,

namely the N = (2, 0) theories and the N = (1, 0) theories. The former have been studied

intensively for a long time now and there are powerful techniques available for constructing

their partition functions on various manifolds. The subject of N = (1, 0) theories, which

preserve half of the supercharges of the (2, 0) theories, has recently enjoyed a resurgence

due to a proposed classification of such theories in terms of F-theory compactifications on

non-compact elliptic Calabi-Yau three-folds [1, 2].

In this classification, the geometry of the base B of the Calabi-Yau manifold directly

translates into the tensor multiplet sector of the 6d SCFTs where the number of tensor

multiplets is given by the dimension of H1,1(B,Z) and the intersection form on B gives the

couplings of these tensor multiplets to each other. Note that an action is not available as

field strengths of tensor multiplets are constrained to be self-dual. Nevertheless, it is useful

to write down a “formal” action on the tensor branch from which many properties of the

theory and its compactifications can be deduced, see for example [3, 4]. Furthermore, the

base B of the Calabi-Yau is non-compact and all curve classes inside it are required to be

simultaneously shrinkable to zero volume in order to restore conformal invariance of the

resulting 6d theory at its tension-less limit. This gives strong constraints on the geometry

and in particular forces all curves to be P1’s which have negative self-intersection num-

ber. Moreover, for self-intersection numbers −n lower than −2 the elliptic fiber above the

corresponding curve Σ becomes singular with a singularity type determined by Kodaira’s

classification of elliptic fibers [5, 6]. The singularity becomes worse when n increases such

that beyond n = 12 it becomes too bad for a smooth description of the Calabi-Yau three-

fold. The physical interpretation of these singularities is the emergence of a bulk gauge

group (whose Lie Algebra gΣ is determined by the intersection form of the resolved sin-

gularity) in the 6d SCFT on its tensor branch. If we have two curves Σ1 and Σ2 with

non-trivial intersection number and gauge groups, then the corresponding 6d theory will

also have bi-fundamental matter in suitable representations of the arising gauge groups.

In the current paper we want to focus on the cases where the base B contains only one

curve with self-intersection −n, i.e. it is a certain decompactification limit of a Hirzebruch

surface Fn. Then the possible gauge groups which arise as a function of n are as follows:1

n 3 4 5 6 7 8 12

GΣ SU(3) SO(8) F4 E6 E7 E7 E8

These theories are known as the Non-Higgsable Clusters [6].2 Note that the E7 Lie algebra

appears twice, namely for the self-intersections −7 and −8. The difference is that in the −7

1The cases of n = 9, 10, 11 involve points of enhanced singularities on the base curve which must be

resolved giving rise to additional curves in the base.
2The Non-Higgsable Clusters also include three examples of intersecting chains of two or three curves,

which we do not cover here.
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case there is also fundamental matter which is non-Higgsable. These theories are the subject

of the current paper where we focus on the cases n = 3 and n = 4 and aim at testing a novel

method for computing BPS partition functions of the corresponding minimal 6d SCFTs.

Let us describe our procedure for computing such partition functions in the following.

In order to be able to compute a partition function for our 6d theories we first need

to make a choice for a background geometry. As it turns out, an appropriate choice for 6d

SCFTs is the Omega background R4 ×ε1,ε2 T 2 [7]. This background not only regularizes

the infinities arising from non-compactness of R4 but also serves as a building block for

computing partition functions for other backgrounds like superconformal indices and T 2×
S4 partition functions [8, 9]. As was observed in [7], instantons on this background arise

from self-dual strings wrapping the T 2 and localized at a point on R4. From the F-theory

point of view, such strings arise from D3 branes wrapping a curve Σ in the base which in

our case is a (−n)-curve. The bulk gauge group will descend to a flavor symmetry on the

worldvolume theory of these strings which is a 2d N = (0, 4) supersymmetric theory with

R-symmetry SU(2)ε+ × SU(2)R where SU(2)R is the R-symmetry of the 6d SCFT. The

partition function on the tensor branch Z6d, i.e. when the volume tb of the (−n)-curve in

the base is non-zero, is the generating function of the elliptic genera Ek of k strings up to

a prefactor [7, 10, 11].

For 6d theories corresponding to the particular choices n = 3 and n = 4 the worldvol-

ume theory of the strings is known in terms of a quiver gauge theory whose single gauge

node is of rank k [11, 12]. For the other cases, references [13, 14] give some descriptions for

the k = 1 subsector of a single string but a complete description including a computation

scheme for all the Ek is still lacking. In this paper we want to remedy this gap by provid-

ing a novel computation scheme for Z6d which allows us to derive expressions for the Ek
recursively. This is done by using the so-called blow-up equations.

The blowup equations have their origin in the studies of Donaldson invariants [15–18].

But the version we are most interested in is the generalized version proposed and later

proved by Göttsche, Nakajima, and Yoshioka. Nakajima and Yoshioka [19] first considered

the 4d N = 2 SU(N) supersymmetric Yang-Mills theory on the Omega background. The

idea is to view R4 ∼= C2 as the limit of its blow-up at the origin [19], denoted by Ĉ2,

when one sends the size of the exceptional divisor P1 to zero. Then U(1)ε1 × U(1)ε2 has a

natural action on Ĉ2 with two fixed points, one at the north pole and one at the south pole

of the exceptional P1. Computing the partition function on the background Ĉ2 ×ε1,ε2 T 2

through localization then contributes a product of two copies of the partition function on

our original background while one has to sum now over non-trivial fluxes of the B-field

through the exceptional divisor. This idea can be put into functional equations for the

Nekrasov partition function [19] (see also [20]), and they were instrumental for Nakajima

and Yoshioka to prove Nekrasov’s conjecture [21]. Later together with Göttsche they

generalized and then proved the blowup equations for 5d N = 1 SU(N) super-Yang-Mills

theories on the Omega background R4×ε1,ε2 S1 with a possible Chern-Simons term of level

m [22–24]. On the other hand, the Nekrasov partition function of such a 5d theory can be

computed by the refined topological string theory with target space the local toric Calabi-

Yau threefold XN,m, which is the resolution of the cone over the Y N,m singularity [25, 26].

– 2 –
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This is an example of the geometric engineering [27]. Inspired by the consistency study

of the exact quantization program of mirror curves of local Calabi-Yau threefolds [28–32],

the Göttsche-Nakajima-Yoshioka blowup equations were reformulated completely in terms

of the geometric data of the Calabi-Yau threefold XN,m [33]. The reformulation, however,

was not complete, and the complete set of equations were provided in [34].

These geometrically reformulated or generalized blowup equations prove to be very

powerful. First of all, just as in the case of the Göttsche-Nakajima-Yoshioka blowup equa-

tions [35], they can be used to compute the Nekrasov instanton partition functions [34].

Second, the generalized blowup equations open up possibilities for various directions of

generalization. As we will see in the next subsection, the form of the generalized blowup

equations is simple and universal, and it does not put any constraints on the target space of

the topological string except that it has to be non-compact to allow for U(1) isometry cru-

cial for the preservation of supersymmetry in the presence of the Omega background. This

naturally poses the question of the validity of the generalized blowup equations beyond

5d SU(N) SYM engineered by the XN,m geometries. Indeed it was checked in [34] that

the generalized blowup equations are satisfied by some toric Calabi-Yau threefolds which

engineer 5d SU(N) gauge theories with matter. Moreover, what is fascinating is that the

generalized blowup equations may even be valid for 6d SCFTs as the topological string

theory on non-compact elliptic Calabi-Yau threefolds used in F-theory compactifications

computes precisely Z6d of these 6d SCFTs on the Omega background. As a first step it

was checked in [33, 34] that the simplest 6d SCFT, the E-string theory, respects half of

the generalized blowup equations. The verification of the other half is a bit trickier, and it

will be discussed in our upcoming work. In this paper, we demonstrate the validity of the

generalized blowup equations through the already well-studied cases of n = 3 and n = 4

minimal SCFTs in the present paper, and illustrate their power by computing the elliptic

genera as well as the BPS invariants with them. Furthermore, by reducing the n = 4 model

down to the 5d SO(8) SYM, we verify the validity of the generalized blowup equations for

the latter theory as well, which is also new. We will cover all the remaining minimal SCFTs

in companion papers. In the next subsection we give a quick overview of the generalized

blowup equations.

1.1 Overview of geometric blowup equations

Consider putting the refined topological string theory on a non-compact Calabi-Yau three-

fold X. Let H2i(X,Z) be the homology groups of compact 2i-cycles. In particular H2(X,Z)

includes compact curve classes {Σi}, and H4(X,Z) compact divisor classes {Dj}. We de-

note the complexified Kähler moduli of the compact curve classes by ti with Vol(Σi) =

−Re(ti), and the dimensions of the two homology groups by

b := dimH2(X,Z) , g := dimH4(X,Z) . (1.1)

Since X is not compact, these two numbers are not necessarily identical. We encode the

intersection numbers of curve classes and divisor classes in a matrix

C = (Cij) , with Cij = Σi.Dj , Σi ∈ H2(X,Z), Dj ∈ H4(X,Z) . (1.2)
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It is always possible to find b−g independent linear combinations of the curve classes so that

they have zero intersection number with any compact divisor. We call the corresponding

Kähler moduli mass paramters and sometimes denote them by tmi , as they are interpreted

as masses of hypermultiplets or instanton fugacity in 5d or 4d theories.

It was first observed in [36] and later confirmed in many examples that the non-

vanishing BPS invariants Nd
jL,jR

on a noncompact Calabi-Yau threefold respect a checker-

board pattern: there exists a b dimensional vector B with entries in Z2 such that3

2jL + 2jR + 1 ≡ B · d mod 2 (1.3)

holds for any non-vanishing Nd
jL,jR

. Then we could define the twisted refined free energy via

F̂ (t, ε1, ε2) = F pert(t, ε1, ε2) + F inst(t + πiB, ε1, ε2) , (1.4)

where only in the worldsheet instanton contributions are the Kähler moduli t shifted by

the vector B. We call B the B field as it combines into the Kalb-Ramond part of the

complexified t. The twisted free energy appears prominently in the geometric engineering

of Nekrasov partition functions [25, 26, 32] as well as in the program of exact quantum

mirror curves [28, 29]. We also define the twisted partition function

Ẑ(t, ε1, ε2) = exp(F̂ (t, ε1, ε2)) =Zpert(t, ε1, ε2)Ẑ inst(t, ε1, ε2) . (1.5)

Note we do not put hat on Zpert since the Kähler moduli are not shifted there.

In terms of these quantities, the blowup equations can be reformulated in the

following way∑
n∈Zg

(−1)|n|Ẑ (t+ε1R, ε1, ε2−ε1) Ẑ (t+ε2R, ε1−ε2, ε2) = Λ(tm, ε1, ε2,r)Ẑ (t, ε1, ε2) , (1.6)

with |n| =
∑

i ni and

R = C · n + r/2 . (1.7)

Here r = (ri), which we call a r field, is a b dimensional vector with entries in Z satisfying

ri ≡ Bi mod 2 . (1.8)

Two r fields r, r′ are equivalent if

r− r′ = 2C · n′ , n′ ∈ Zg (1.9)

as the corresponding blowup equations can be identified by the shift n → n + n′. The

prefactor Λ is trivial in the sense that it only depends on the mass paramters tm but not

on the true moduli [34]. It also depends on the choice of the r field, thus it gives rise

to different blowup equations with different choices of the r field. For some choices of

the r field, Λ vanishes all together, and we call the corresponding equations the vanishing

blowup equations, while the other equations with non-vanishing Λ are called the unity

3The entries of the B field may be fractional if it is not expanded in integral curve classes.
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blowup equations. Note that since the row vector of the C-matrix corresponding to a mass

parameter is null, a multiplicative factor of Ẑ which depends only on mass parameters but

no other Kähler parameters decouples as its contributions to the blowup equations can be

factored out of the summation in n and be absorbed in Λ. We will thus discard this type

of components in Ẑ.

It was conjectured in [33, 34] that for any non-compact Calabi-Yau threefold there

is a finite but non-empty set of r fields so that the blowup equations (1.6) hold. It was

further conjectured and verified for some toric Calabi-Yaus in [34] that the BPS invariants

could be computed from the blowup equations using classical geometric data of X as

input. Furthermore, Λ is modular invariant with respect to the monodromy group of

the topological string moduli space. In this paper we demonstrate the validity of these

statements for the partition functions of the minimal 6d n = 3, 4 SCFTs.

The partition function of a 6d SCFT on the Omega background R4 ×ε1,ε2 T 2 can be

split to three components

Z(tb, τ, a, ε1, ε2) = Zpert(tb, τ, a, ε1, ε2)Z1-loop(τ,a, ε1, ε2)Zell(tb, τ, a, ε1, ε2) . (1.10)

Here tb, τ and a are tensor modulus, complex structure of T 2, and gauge fugacities (Wilson

lines on T 2) respectively. Zpert contains perturbative contributions. Z1-loop comes from

Kaluza-Klein modes of 6d particle multiplets on T 2. We denote it by the superscript 1-loop

because it descends to 1-loop contributions in 4d when we shrink T 2 to a point. Finally

Zell(tb, τ, a, ε1, ε2) splits by

Zell(tb, τ, a, ε1, ε2) = 1 +

∞∑
k=1

QkellEk(τ,a, ε1, ε2) (1.11)

with Qell = etell the counting parameter, and Ek(τ,a, ε1, ε2) the k string elliptic genus.

By the F-/M-theory duality and the relation of the BPS sector of the M-theory with

the refined topological string theory, the partition function of a 6d SCFT on the tensor

branch is computed by the partition function of the refined topological string theory on the

same Calabi-Yau threefold X encoding the BPS invariants on X, and the moduli tell, τ, a

are identified with linear combinations of the Kähler moduli of compact curve classes in

X. In particular, Zell includes the BPS states of M2 branes wrapping the base curve, while

Z1-loop the BPS states of M2 branes not wrapping the base curve at all. They combine

into the component Z inst that encodes all the BPS invariants. Zpert basically encodes the

intersection numbers of divisors in X. If we further decompactify X along the direction

of the elliptic fiber in the M-theory picture, the 6d (1, 0) SCFT reduces to a 5d N = 1

SYM with the same gauge group on the Omega background, where the tensor modulus tb
becomes the gauge coupling.

The organization of the rest of the paper is as follows. In section 2 we compute the

initial data for blowup equations. These include the curve-divisor intersection C-matrix,

the B-field for the checkerboard pattern, Zpert and Z1-loop. We give explicit expressions

for these initial data for the cases of 6d SCFTs with SU(3) and SO(8) bulk gauge groups.

In section 3 we put everything together and first demonstrate the validity of the blowup

– 5 –
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equations order by order in terms of Qell expansion and then proceed to recursively compute

the elliptic genera of multiple strings as well as the corresponding BPS invariants. In

section 4 we study reductions of the blowup equations in the 5d limit, that is when one of the

circles of the T 2 which is wrapped by the strings shrinks to zero radius. Finally, in section 5

we present our conclusions and give an overview of applications and open problems.

2 Initial data for blowup equations

We explain here how to compute the initial data for the blowup equations: the curve-

divisor intersection C-matrix, the B fields, as well as the perturbative and 1-loop partition

functions Zpert, Z1-loop, for 6d minimal SCFTs with no matter. As we note in subsequent

subsections, these data are necessary if we wish to derive compact formulas of elliptic

genera from the blowup equations, while the piece Z1-loop is not needed if we wish to

directly compute BPS invariants from the blowup equations.

2.1 Curve-divisor intersection matrix

The structures of the elliptic non-compact Calabi-Yau threefolds underlying the 6d minimal

SCFTs are for instance discussed in [37]. Let the gauge group G be of rank r. There are

g = r + 1 compact divisors. They result from the resolution of the singular elliptic fiber

and they intersect with each other like the nodes of the Dynkin diagram of ĝ. One of

the divisors is special as it intersects with the base B and it corresponds to the affine

node in the Dynkin diagram. We label the special divisor by Dr+1 and the subsequent

divisors Dr, Dr−1, . . .. All these divisors are Hirzebruch surfaces Fni . The indices ni of

these divisors in different 6d (1, 0) minimal SCFTs can be found in [37], and we give some

examples in figure 1. The number of irreducible compact curves is b = r+2. Of these r+1

curves are the P1 fibers of the Hirzebruch surfaces Σi, i = 1, . . . , r + 1 and they stretch

in the vertical direction. Their labelling follows the labelling of the underlying divisors.

These curves satisfy ∑
i

ai[Σi] = [δ] , (2.1)

where ai are marks of the affine Lie algebra ĝ, and δ is the elliptic fiber. The last compact

curve Σb is in the horizontal direction, and it projects down to the compact −n curve ΣB

in the base. In accord with topological string calculations we choose it to be a Mori cone

generator. It is always the P1 base of the Hirzebruch surface in the center of the chain of

Fni with the lowest index. It is therefore related to the base curve ΣB by

[Σb] = [ΣB]−
b(n−3)/2c∑

i=0

(n− 2− 2i)[Σr+1−i] . (2.2)

In the case of n = 3, 4, we have

[Σb] = [ΣB]− [Σr+1] . (2.3)

We denote the volumes of these irreducible curves by ti (i = 1, . . . , r + 1) and tr+2 = tb.

– 6 –
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F1 F1

F1

D3

(a) n = 3

F0F2 F2

F2

F2

D5

(b) n = 4

F0F2F4 F2 F4

F2

F4

D7 D6

(c) n = 6

Figure 1. Schematic structure of compact divisors in elliptic fibrations over O(−n)→ P1 as affine

Dynkin diagrams for n = 3, 4, 6. The divisor Dr+1 corresponds to the affine node.

This geometric picture allows us to write down the intersection C-matrix

C = (Σi.Dj) =

(
−A

∗ . . . ∗

)
(2.4)

where the (r + 1) × (r + 1) submatrix −A is minus the Cartan matrix of the affine Lie

algebra ĝ, and the last row depends on the indices of the Hirzebruch surfaces Di = Fni . It

is then easy to see that the only mass parameter is

τ =

r+1∑
i=1

aiti , (2.5)

which is the comlexified volume of the elliptic fiber δ. We will give the concrete expressions

of the C-matrix of the SU(3) and the SO(8) theories in the example subsetions.

Note that in most of the paper we expand Zell in terms of Qb = etb

Zell = 1 +

∞∑
k=1

QkbZk , (2.6)

instead of Qell = etell as the curve associated to tell may not be in an integral class. These

parameters are related by4

tell = tB −
n− 2

2
τ = tb −

n− 2

2
τ +

b(n−3)/2c∑
i=0

(n− 2− 2i)tr+1−i . (2.7)

2.2 The B field

We would like to compute the b dimensional Z2 B field which characterizes the checkerboard

pattern of non-vanishing BPS invariants Nd
jL,jR

with identity

2jL + 2jR + 1 ≡ B · d mod 2 . (2.8)

Since the r.h.s. is linear in the curve class d, we only need to know the entries of the B

field corresponding to each individual irreducible curves. Each irreducible curve can be

4The Kähler modulus tb coincides with the volume of the curve class lb in [38], but only coincides with

the tb defined in [38] for n = 3, 4.
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embedded in an algebraic surface in the Calabi-Yau threefold X. Let us denote the curve

and the surface where it is embedded by C and S respectively. The non-vanishing BPS

invariants associated to this curve must have [33, 39]

2jmax
L =

C2 +KS · C
2

+ 1 , 2jmax
R =

C2 −KS · C
2

, (2.9)

where C2 is the self-intersection number of the curve in the surface S, and KS the canonical

class of S. We have then

2jL + 2jR + 1 = C2 mod 2 . (2.10)

Thus the entry of the B field corresponding to C is its self-intersection number in the

surface S modulo two. On the other hand, the self-intersection number C2 is identified

with the degree of the normal bundle of C perpendicular to S. Recall that the normal

bundle of a curve in a Calabi-Yau threefold has the form

O(n)⊕O(−2 + n)→ C , n ∈ Z . (2.11)

Since the two degrees n and −2 + n are equivalent modulo two, we can take either of

them to be the entry of the B field corresponding to the curve C. Since we have a good

understanding of irreducible curves and surfaces in the Calabi-Yau threefold underlying

the 6d minimal SCFTs as we discussed in the beginning of the section, these numbers can

be easily computed for each irreducible compact curve.

2.3 Perturbative partition function

The perturbative contribution Zpert(t, ε1, ε2) = exp
(
F pert(t, ε1, ε2)

)
has the following form

F pert(ε1, ε2; t) =
1

ε1ε2
F pert

(0,0)(t, ε1, ε2) + F pert
(1,0)(t, ε1, ε2)− (ε1 + ε2)2

ε1ε2
F pert

(0,1)(t, ε1, ε2)

=
1

ε1ε2

1

6

b∑
i,j,k=1

κijktitjtk

+
b∑
i=1

bGV
i ti −

(ε1 + ε2)2

ε1ε2

b∑
i=1

bNS
i ti . (2.12)

The perturbative prepotential F pert,(0,0) is decided5 by the intersection numbers of divisors

Poincaré dual to the curve classes Σi associated to ti. Since the Poincaré duality is only

rigorously defined in a compact manifold, we should compute F
pert,(0,0)
cmp in a compact

Calabi-Yau threefold where the non-compact Calabi-Yau threefold X is embedded and take

an appropriate decompactification limit. Fortunately the compactification of the Calabi-

Yau threefolds underlying the 6d SU(3) and SO(8) gauge theories have been constructed

in [11], and we use the compact models there to compute F
pert,(0,0)
cmp which is subsequently

reduced to F pert,(0,0) in the decompactification limit. On the other hand, once F pert,(0,0)

is computed for the 6d gauge theory, we could obtain F
pert,(0,0)
5d for the 5d gauge theory

by further decompactifying the Calabi-Yau threefold X along the direction of the elliptic

5The perturbative prepotential can also include terms linear in t. But they decouple from the blowup

equations.
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fiber while keeping the volumes of Σi (i = 1, . . . , r) finite.6 The latter is also given by the

perturbative Nekrasov partition function [22]

FNek,pert(a, q, ε1, ε2) = − 1

ε1ε2

∑
α∈∆+

(
〈α,a〉3

6
− log(e−h

∨
Gπiq)

2h∨G
〈α,a〉2

)

− (ε1 + ε2)2 + ε1ε2
ε1ε2

∑
α∈∆+

(
〈α,a〉

12
− log(e−h

∨
Gπiq)

24h∨G

)
(2.13)

where a is the vector of Coulomb moduli, q is the instanton counting parameter, ∆+ is

the set of positive roots of the Lie algebra g, and h∨G the dual Coxeter number of G. 〈•, •〉
is the invariant bilinear form7 in the Lie algebra g. The dictionary between field theory

parameters and geometric Kähler moduli is (see for instance [32]){
ti = 〈αi,a〉

tm = − log(eh
∨
Gπiq)

, (2.14)

where αi are simple roots, and tm the mass parameter whose associated curve, we recall,

that does not intersect with compact divisors. Once we could identify the first line of (2.13)

with F
pert,(0,0)
5d , we could uplift the second line of (2.13) to obtain the perturbative genus

one free energies F ,(1,0), F ,(0,1) for the 6d theories, as we will do in example subsetions. In

particular, we find in the examples of the n = 3, 4 theories

bGV
i + bNS

i = 0 , i = 1, . . . , b . (2.15)

2.4 One-loop partition function

Z1-loop has the contribution of the Kaluza-Klein modes on the 6d S1 of the 6d particle

multiplets. The contribution of a single supermultiplet of various types reads as follows [40]8

Ztensor = PE

[
− qL + qL(

q
1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

) ( Qτ
1−Qτ

)]
,

Zvector = PE

[
− qR + qR(

q
1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

)Q∗G( Qτ
1−Qτ

)]
,

Zhyper = PE

[
+

1(
q

1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

)Q∗GQ∗F ( Qτ
1−Qτ

)]
,

(2.16)

where Qτ = eτ ,9 while QG = ea, QF = emG are gauge and flavor symmetry fugacities,

with powers ∗ appropriate charges of the supermultiplets. The plethystic exponential is

defined as

PE [f(·)] = exp

[ ∞∑
i=1

1

n
f(·n)

]
. (2.17)

6We send the volume of the curve class Σr+1 which intersects with the base to infinity.
7Here we normalize it so that the longest root has norm square 2.
8To be in line with the refined Gopakumar-Vafa formula of topological string theory [41, 42], we suppress

a term of 1/2 in [40].
9Note our convention here differs from the usual convention in the mathematics literature by a factor

of 2πi.
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In the case of 6d minimal SCFTs, there is no contributions from charged hypermultiplets,

while the contributions of tensor multiplets only depend on the mass parameter τ and no

other Kähler moduli and can thus be factored out of the blowup equations. Therefore in

this paper we only consider contributions of 6d vector multiplets to Z1-loop. The spectrum

of vector multiplets and thus their total contribution to Z1-loop can be computed by the

refined topological string theory

Z1-loop(t, ε1, ε2)

=
∏

Σ∈Hvert
2 (X,Z)

jL∏
kL=−jL

jR∏
kR=−jR

∞∏
m1,m2=1

(
1− tkL+kR+m1− 1

2 qkL−kR+m2− 1
2 QΣ

)M(jL,jR)

Σ
(2.18)

where10

q = eε1 , t = e−ε2 , M
(jL,jR)
Σ = (−1)2(jL+jR)NΣ

jL,jR
, (2.19)

with (jL, jR) = (0, 1/2) for vector multiplets. Here Hvert
2 (X,Z) is the homology group of

compact curves in the vertical direction, and it is generated by Σi (i = 1, . . . , r+ 1). Using

NΣ
0,1/2 = 1, we obtain

Z1-loop(t, ε1, ε2) =
∏

α∈∆̂+

∞∏
i,j=0

(
1− tiqj+1Qα

)−1 (
1− ti+1qjQα

)−1

= PE

− qR + q−1
R(

q
1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

) ∑
α∈∆̂+

e〈α,a〉

 (2.20)

where ∆̂+ is the set of positive roots of the affine Lie algebra. By the identification of the

imaginary root with the elliptic fiber and (2.5), the expression for Z1-loop is equivalent to

Z1-loop(t, ε1, ε2) = PE

− qR+q−1
R(

q
1/2
1 −q

−1/2
1

)(
q

1/2
2 −q

−1/2
2

) ∑
α∈∆+

(
e〈α,a〉+Qτe−〈α,a〉

) 1

1−Qτ

 .
(2.21)

2.5 Examples

2.5.1 6d SU(3) theory

The non-compact Calabi-Yau threefold X underlying the 6d SU(3) model on the Omega

background is the elliptic fibration over O(−3) → P1 with the singular fiber resolved. As

explained in [37], there are b = 4 compact irreducible curves and g = 3 compact irreducible

divisors. The latter D1, D2, D3 are three F1 surfaces in the vertical direction intersecting

at a common (−1)-curve Σ4 = Σb, which projects to the (−3)-curve in the base. The other

three curves Σi (i = 1, 2, 3) are the P1 fibers of the Hirzebruch surfaces. This geometry

10Here M
(jL,jR)
Σ differs from that in [42] by 1 in order for the contributions of vector multiplets to be in

the denominator, as they should.
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Figure 2. Compact curves and compact divisors in the elliptic fibration over O(−3)→ P1.

is illustrated in figure 2. The intersection matrix of the curves Σi (i = 1, . . . , 4) and the

divisors Dj (j = 1, . . . , 3) is

C =


−2 1 1

1 −2 1

1 1 −2

−1 −1 −1

 , (2.22)

in accord with the general structure (2.4).

The understanding of the embedding of the curves Σi in surfaces in X allows us to

write down the B field

B = (0, 0, 0, 1) , (2.23)

following the discussion in section 2.2.

To compute the perturbative prepotential F pert,(0,0), we follow [11] and take X as

the decompactification limit of the compact Calabi-Yau threefold X̂, the elliptic fibration

over F3, along the horizontal direction perpendicular to the (−3)-curve in the base. The

compact model X̂ can be realized as a hypersurface in a toric variety. Therefore its triple

intersection numbers and thus the perturbative prepotential can be computed with the

usual techniques in toric geometry (see for instance [43]). Then F pert,(0,0) of the non-

compact model is obtained by integrating over the periods which remain finite in the

decompactification limit [44]. In this way, we find

F
pert,(0,0)
6d,SU(3) (t, ε1, ε2) = − 1

18

(
t31 + t32 + t33

)
− 1

6
tb(t

2
1 + t22 + t23)− 1

6
t2b(t1 + t2 + t3) . (2.24)

Keep in mind we use the convention tb = t4.
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We can further decompactify X along the direction of the elliptic fiber by sending

the volume of one of the curves in the vertical direction to infinity. Let us take the limit11

t3 →∞ and after following the same procedure of integrating over finite periods, we obtain

F
pert,(0,0)
5d,SU(3) (t, ε1, ε2) = − 1

18
(t31 + t32)− 1

6
tb(t

2
1 + t22)− 1

6
t2b(t1 + t2) +

1

18
t3b . (2.25)

This should coincide with the perturbative Nekrasov partition function for 5d N = 1 pure

SYM with G = SU(3). Combining (2.13) and (2.14), the latter reads

F
pert,(0,0),Nek
5d,SU(3) (t, ε1, ε2) = − t

3
1

3
− t21t2

2
− t1t

2
2

2
− t32

3
− tm

(
t21
3

+
t1t2
3

+
t22
3

)
. (2.26)

To identity the mass parameter tm in (2.25), we first write down the curve-divisor inter-

secton C-matrix of the 5d theory

C =

−2 1

1 −2

−1 −1

 , (2.27)

which can be obtained by removing in the 6d C-matrix (2.22) the third row corresponding

to Σ3 and the third column corresponding to the divisor D3 containing Σ3. We find the

curve Σb −Σ1 −Σ2 does not intersect with any compact divisor. The corresponding mass

paramter for the 5d theory should be

tm = tb − t1 − t2 . (2.28)

With this identification, it is easy to see that F
pert,(0,0),Nek
5d,SU(3) indeed coincides with F

pert,(0,0)
5d,SU(3)

from decompactification up to a pure mass parameter term

F
pert,(0,0)
5d,SU(3) (t, ε1, ε2)− F pert,(0,0),Nek

5d,SU(3) (t, ε1, ε2) =
1

18
t3m . (2.29)

We also notice that the 6d and the 5d perturbative prepotentials only differ by

F
(0,0)
6d,SU(3)(t, ε1, ε2)− F (0,0)

5d,SU(3)(t, ε1, ε2) = −(t3 + tb)
3

18
= −(τ + tm)3

18
. (2.30)

This implies that the decompactification limit is really obtained by

t3 + tb = τ + tm → −∞ , QτQm → 0 , tb, tm finite . (2.31)

This observation allow us to write down the perturbative contributions to genus one free

energies of the 6d model. By writing down a generic linear ansatz for F pert,(1,0), F pert,(0,1),

separating out t3 + tb, and demanding the remaining piece coincides with the second line

11Since we wish to obtain the corresponding 5d gauge theory, we should decompactify the vertical curve

which intersects with the base [37]. Nevertheless since the Kähler moduli of the three vertical curves appear

to be on the equal footing in F
pert,(0,0)

6d,SU(3) , we can choose any of them to decompactify, keeping the others intact.
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of (2.13), as well as imposing symmetry between t1, t2, t3, we fix F pert,(1,0), F pert,(0,1) for

the 6d SU(3) model uniquely to be

F
pert,(1,0)
6d,SU(3) (t, ε1, ε2) = −F pert,(0,1)

6d,SU(3) (t, ε1, ε2)

= − t1
8
− t2

8
− t3

8
− tb

6
. (2.32)

The difference from the 5d free energy is

F
(1,0)
6d,SU(3) − F

(1,0),Nek
5d,SU(3) = −

(
F

(0,1)
6d,SU(3) − F

(0,1),Nek
5d,SU(3)

)
= −1

8
(t3 + tb) = −1

8
(τ + tm) . (2.33)

By specializing (2.21), we get the one-loop partition function

Z1-loop
6d,SU(3)

= PE

[
−

q
1/2
R + q

−1/2
R(

q
1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

) 1

1−Qτ
(Q1 +Q2 +Q3 +Q1Q2 +Q1Q3 +Q2Q3)

]
.

(2.34)

2.5.2 6d SO(8) theory

The non-compact Calabi-Yau threefold X underlying the 6d SO(8) model on the Omega

background is the elliptic fibration over O(−4) → P1 with the singular fiber resolved. As

explained in [37] there are b = 6 compact irreducible curves and g = 5 compact irreducible

divisors. The divisors D1, D2, D3, D4, D5 = Dc are Hirzebruch surfaces F2,F2,F2,F2,F0

linking up with each other like the Dynkin diagram of ŝo(8), where Dc plays the role of

the central node, while D4 lays the role of the affine node and intersects with the base.

D1, D2, D3, D4 intersect with Dc by the (−2) curves which are all homologously equivalent

on Dc. We take this curve to be Σ6 = Σb. The remaining irreducible curves Σi (i = 1, . . . , 4)

and Σ5 = Σc are the P1 fibers of Di (i = 1, . . . , 4) and Dc. This geometry is illustrated

in figure 3. The intersection matrix of the curves Σi (i = 1, . . . , 6) and the divisors Dj

(j = 1, . . . , 5) is

C =



−2 0 0 0 1

0 −2 0 0 1

0 0 −2 0 1

0 0 0 −2 1

1 1 1 1 −2

0 0 0 0 −2


, (2.35)

in accord with the general structure (2.4).

Next, with the picture in figure 3 we can write down the B field

B = (0, 0, 0, 0, 0, 0) , (2.36)

following the discussion in section 2.2. As in the case of SU(3) theory, we compute the per-

turbative prepotential F pert,(0,0) by following [11] and taking X as the decompactification

limit of the compact Calabi-Yau threefold X̂, the elliptic fibration over F4, along the hor-

izontal direction perpendicular to the (−4) curve in the base. The compact model X̂ can
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Figure 3. Compact curves and compact divisors in the elliptic fibration over O(−4)→ P1.

also be realized as a hypersurface in a toric variety. Therefore its triple intersection num-

bers and thus the perturbative prepotential are readily computable using usual techniques

in toric geometry. We then obtain F pert,(0,0) of the non-compact model by integrating over

finite periods in the decompactification limit [44] and we get

F
(0,0)
6d,SO(8) = −1

6

(
t31 + t32 + t33 + t34

)
−1

4
tb
(
t21 + t22 + t23 + t24

)
−1

8
t2b(t1+t2+t3+t4+2tc) . (2.37)

Keep in mind we use the convention tb = t6, tc = t5.

We further decompactify X along the direction of the elliptic fiber by sending t4 → −∞.

After following the same procedure of integrating over finite periods, we obtain

F
(0,0)
5d,SO(8)(t, ε1, ε2) =−1

6
(t31+t32+t33)− tb

4
(t21+t22+t23)− t

2
6

8
(t1+t2+t3+2tc)+

t3b
48
. (2.38)

This should coincide with the perturbative Nekrasov partition function for 5d N = 1 pure

SYM with G = SO(8). Combining (2.13) and (2.14), the latter reads

F
(0,0),Nek
5d,SO(8) (t, ε1, ε2)

= −t31 − t32 − t33 −
8t3c
3
− 4t2c(t1 + t2 + t3)− 3tc(t

2
1 + t22 + t23)− 4tc(t1t2 + t1t3 + t2t3)

− 3

2
(t21t2 + t1t

2
2 + t21t3 + t1t

2
3 + t1t

2
3 + t22t3)− 2t1t2t3

− tm
2

(t21 + t22 + t23 + 2t2c + 2tc(t1 + t2 + t3) + t1t2 + t1t3 + t2t3) . (2.39)
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To identity the mass parameter tm in (2.38), we first obtain the curve-divisor intersecton

C-matrix of the 5d theory

C =


−2 0 0 1

0 −2 0 1

0 0 −2 1

1 1 1 −2

0 0 0 −2

 , (2.40)

which is done by removing in the 6d C-matrix (2.35) the fourth row corresponding to Σ4

and the fourth column corresponding to the divisor D4 containing Σ4. We find the curve

Σb−2Σ1−2Σ2−2Σ3−4Σc does not intersect with any compact divisor. The corresponding

mass paramter for the 5d theory should be

tm = tb − 2t1 − 2t2 − 2t3 − 4tc . (2.41)

With this identification, it is easy to see that F
pert,(0,0),Nek
5d,SO(8) indeed coincides with F

pert,(0,0)
5d,SO(8)

from decompactification up to a pure mass parameter term

F
(0,0)
5d,SO(8) − F

(0,0),Nek
5d,SO(8) =

t3m
48

. (2.42)

We also notice that the 6d and the 5d perturbative prepotentials only differ by

F
(0,0)
6d,SO(8)(t, ε1, ε2)− F (0,0)

5d,SO(8)(t, ε1, ε2) = −1

6

(
t4 +

1

2
tb

)3

= −1

6

(
τ +

1

2
tm

)3

. (2.43)

This implies that the decompactification limit is really obtained by

t4 +
1

2
tb = τ +

1

2
tm → −∞ , QτQ

1/2
m → 0 , tb, tm finite . (2.44)

This observation allow us to write down the perturbative contributions to genus one free

energies of the 6d model. By writing down a generic linear ansatz for F pert,(1,0), F pert,(0,1),

separating out t4 + 1/2tb, and demanding the remaining piece coincides with the second

line of (2.13), as well as imposing symmetry between t1, t2, t3, t4, we fix F pert,(1,0), F pert,(0,1)

for the 6d SO(8) model uniquely to be

F
(1,0)
6d,SO(8)(t, ε1, ε2) = −F (0,1)

6d,SO(8)(t, ε1, ε2)

= − t1
3
− t2

3
− t3

3
− t4

3
− tc

2
− tb

4
. (2.45)

The difference from the 5d theory is

F
(1,0)
6d,SO(8) − F

(1,0),Nek
5d,SO(8) = −

(
F

(0,1)
6d,SO(8) − F

(0,1),Nek
5d,SO(8)

)
= −1

3

(
t4 +

1

2
tb

)
= −1

3

(
τ +

1

2
tm

)
.

(2.46)

Finally, by specializing (2.21), we get the 1-loop partition function

Z1-loop
6d,SO(8) = PE

[
−

q
1/2
R +q

−1/2
R(

q
1/2
1 −q

−1/2
1

)(
q

1/2
2 −q

−1/2
2

) 1

1−Qτ

(
Q2
c

∑
1≤i<j<k≤4

QiQjQk

+Qc

(
1+

4∑
i=1

Qi+
∑

1≤i<j≤4

QiQj+
∑

1≤i<j<k≤4

QiQjQk+Q1Q2Q3Q4

)
+

4∑
i=1

Qi

)]
.

(2.47)
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3 Elliptic genera from blowup equations

In this section we put everything together, and demonstrate for the 6d SU(3) and SO(8)

SCFTs the validity of blowup equations order by order in an expansion in Qb with the

help of the well-known results of the elliptic genera of these two theories [12, 38]. Then we

reverse the logic and show that the blowup equations can be used to solve the elliptic genera

and BPS invariants, illustrating the power of blowup equations in the studies of 6d SCFTs.

3.1 Constraint on r fields

We first find a mild condition on the r field and argue that the number of inequivalent and

admissble r fields satisfying this condition is finite.

We first rewrite the blowup equation (1.6) by moving the unshifted partition function

Ẑ(t, ε1, ε2) to the other side of the equation

Ẑ(t, ε1, ε2)−1
∑
n∈Zg

(−1)|n|Ẑ(t + ε1R, ε1, ε2 − ε1)Ẑ(t + ε2R, ε1 − ε2, ε2) = Λ(τ, ε1, ε2) , (3.1)

where the dependence on r is always understood, and

R = C · n + r/2 . (3.2)

We have also used the fact that τ is the only mass parameter. When the l.h.s. of the

blowup equations are expanded in terms of the Kähler moduli Qi = eti (i = 1, . . . , r + 1),

Qr+2 = Qb = etb , the perturbative partition function Zpert determines the leading order

terms. The contributions of Zpert to the l.h.s of (3.1) reads

log
(
Zpert(ε1, ε2 − ε1)Zpert(ε1 − ε2, ε2)/Zpert(ε1, ε2)

)
= (ε1 + ε2)

−1

6

r+2∑
i,j,k=1

κijkRiRjRk +

r+2∑
i=1

(bGV
i − bNS

i )Ri

+

r+2∑
k=1

−1

2

r+2∑
i,j=1

κijkRiRj

 tk

=: f0(n) +

r+2∑
k=1

fk(n)tk , (3.3)

where we have used (2.15). For the blowup equations to hold at the leading order of Qk,

we must have ∑
n∈∩gk=1Ik

(−1)|n|ef0(n)efk(n)tk = Λ(τ, ε1, ε2) . (3.4)

Here Ik is the set of integral vectors n that minimize fk(n) for true Kähler moduli (not

mass parameters). The latter can be written as

fk(n) =−1

2

∑
i,j

κijk

(∑
`

Ci`n`+
1

2
ri

)(∑
m

Cjmnm+
1

2
rj

)

=−1

2

∑
`,m

(∑
i,j

κijkCi`Cjm

)
n`nm−

1

2

∑
`

(∑
i,j

κijkriCj`

)
n`−

1

8

∑
i,j

κijkrirj . (3.5)

Note that the functions fk(n) for k = 1, . . . , r and f0(n) are dependent on the r field as well.
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In order for the blowup equation to make sense, fk(n) as functions of the integral

vector n must have a minimum for any k = 1, . . . , r + 2, which allows us to determine the

valid r fields [34]. We find that in the case of the n = 3, 4 theories, the valid r fields satisfy

r+1∑
i=1

airi = 0 , (3.6)

in other words, the entry of the r field corresponding to τ is zero. With this feature we can

write down the blowup equations as identities of Jacobi forms, as we will see in section 3.2,

and proceed to prove the blowup equations order by order in terms of the Qb expansion

using the modularity argument. We will call the r fields satisfying the constraint (3.6)

admissible.

Interestingly, we notice that (3.6) is equivalent to a slightly stronger condition that

fb(n) = fr+2(n) in particular has a minimum for a real vector n.12 To see this, let us recall

that κijk are intersection numbers of divisors Ki dual to the curve class Σi, satisfying

Ki.Σj = δij . (3.7)

In the elliptic Calabi-Yau threefold underlying a 6d minimal SCFT with a bulk pure gauge

theory, the curves Σi (i = 1, . . . , r+2) have mutual intersection numbers identical to minus

the Cartan matrix of the affine lie algebra

(Σi.Σj)b = −Aij , i, j = 1, . . . , r + 1 , (3.8)

(the subsript b means restriction to Kb) when restricted to the vertical divisor Kb perpen-

dicular to Σb, which is in fact the Poincaré dual13 of Σb. Let Di (i = 1, . . . , r + 1) be the

irreducible compact divisors coming from Σi fibered over the P1 in the base. We should

thus have

Di.Kb = Σi , i = 1, . . . , r + 1 . (3.9)

We note that the two sets of divisors Di and Kj should be related by the C-matrix

Di =

r+2∑
`=1

K`C`i , (3.10)

so that (1.2) still holds.

Let us come back to the discussion of the functions fk(n). Take the direction

k = r + 2 = b. The coefficients can then be explicitly evaluated

r+2∑
i,j=1

κijbCi`Cjm = D`.Dm.Kb = (Σ`.Σm)b = −A`m , (3.11)

r+2∑
i,j=1

κijbriCj` =
r+2∑
i=1

riKi.D`.Kb =
r+2∑
i=1

riKi.Σ` = r` , (3.12)

12This condition is stronger because if a minimal real n exists, a minimal integral n must exist nearby;

on the other hand, if a minimal integral n exists, there can be a non-integral flat direction of fb(n).
13We understand that the Poincaré is only rigorously defined in a compact manifold, while the elliptic

Calabi-Yau threefold here is non-compact. So we are presenting here an argument not a proof. We also

checked the validity of (3.6) for the SU(3), SO(8) as well as some other 6d gauge theories.
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and the function fb(n) reads14

fb(n) =
1

2

r+1∑
`,m=1

A`mn`nm −
1

2

r+1∑
`=1

r`n` −
1

8

r+2∑
i,j=1

κij,brirj . (3.13)

If fb(n) can be minimized for real values of n, its derivatives with respect to components of

n should have a common zero. These equations are encapsulated in a single linear equation

A · n =
1

2
r . (3.14)

For this linear equation to have a solution, the r field must be annihilated by vectors in

the (left) kernel of A. Since A is the Cartan of ĝ, there is only one vector,

l = (ai) , i = 1, . . . , r + 1 , (3.15)

which annihilates A when multiplied from the left. We thus get l · r = 0, which is the

condition (3.6).

Let us now give a counting of inequivalent and admissible r fields. Given the condi-

tion (1.8), we can paramterize r fields by

r = B + 2v , v ∈ Zb , (3.16)

and the equivalence condition (1.9) is translated to

v − v′ = C · n′ . (3.17)

The domain of inequivalent v-vectors, defined to be the lattice Zb modulo the equivalence

relation (3.17), has only a finite number of points along g directions, and extends freely

along the remaining b− g directions. In practise, we can always make linear combinations

of curve classes so that the last b− g rows of the intersection matrix C are empty, i.e.

C =

(
Csub

0

)
, (3.18)

and the g × g submatrix Csub is of full rank. The Kähler moduli of the curve classes

corresponding to the first g rows of C are true moduli, while the Kähler moduli of those

for the remaining rows are mass parameters. Inequivalent v-vectors take the form

v = (v1, . . . , vg, ∗, ∗, . . .) (3.19)

where vi, i = 1, . . . , g can only take a finite number of integral values, while the remaining

entries denoted by ∗ can take any value in Z. The equivalence condition for the truncated

v-vectors defined by

v̄ = (v1, . . . , vg) , (3.20)

14This equation and one below need slight modification if the bulk gauge group is not of the ADE type,

as we will see in the companion paper that discusses more general cases.
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reads

v̄ − v̄′ = Csub · n′ . (3.21)

Clearly the matrix Csub defines a lattice embedding Zg ↪→ Zg. Therefore the number of

inequivalent truncated v-vectors is det Csub.

In the case of 6d minimal SCFT with a pure bulk gauge theory, there is only one

mass parameter τ corresponding to the volume of elliptic fiber, and we have seen that the

corresponding entry of r field must be zero. Therefore, the number of inequivalent and

admissible r fields must be identical with that of inequivalent truncated v-vectors, which

is det Csub. We mentioned in the previous sections that C barring the last row is identified

with the opposite of the affine Cartan matrix. Hence in practice, we can construct the full

rank square submatrix Csub of C by throwing away the row corresponding to the affine

node in the Dynkin diagram.15 Once all the inequivalent truncated v-vectors are found, we

can convert them to r fields with the help of (3.16) and (3.6). In the 6d n = 3, 4 minimal

SCFTs, we find that all admissible r fields give rise to valid blowup equations.

3.2 Recursion relations

Here we derive recursion relations of elliptic genera from the blowup equations. Later

when we discuss individual models in sections 3.3 and 3.4, we will demonstrate the va-

lidity of these recursion relations and then inverse the logic solving elliptic genera from

these relations.

The blowup equations for the partition function of a 6d SCFT can be written as follows∑
n∈Zg

A(t, ε1, ε2; n)Ẑell(t+ε1R, ε1, ε2−ε1)Ẑell(t+ε2R, ε1−ε2, ε2) = Λ(τ, ε1, ε2)Ẑell(t, ε1, ε2) ,

(3.22)

where it is understood that everything depends on the choice of r field. Here Zell is the

generating function of elliptic genera

Zell(t, ε1, ε2) = 1 +

∞∑
k=1

QkbZk(t`, ε1, ε2) , (3.23)

where Zk is proportional to the k-string elliptic genus with a model-dependent prefactor,

and it only depends on Kähler moduli of vertical curves t`, ` = 1, . . . , r + 1. When Zell

is twisted with t shifted to t + πiB, Qb is multiplied with a phase (−1)Bb , while Zk is

unchanged, as t` are volumes of (−2) curves and thus the corresponding entries of B

vanish according to the discussion in section 2.2. The function A is given by

A(t, ε1, ε2; n) = (−1)|n|+(k1+k2−k)BbDpert(t, ε1, ε2; n)D1-loop(t, ε1, ε2; n) (3.24)

15Note the mark associated to the affine node is 1. We can construct another full rank C′sub by throwing

away a different row corresponding to a different node. If the associated mark ai is greater than 1, the

number of truncated v-vectors might be larger. But we cannot recover integral r fields from all integral

truncated v-vectors because of (3.6). In the end the number of integral r fields is still the determinant of

Csub constructed from throwing away the affine node.
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including the perturbative contribution

Dpert(t, ε1, ε2; n) = Q
fb(n)
b exp

[
f0(n)(ε1 + ε2) +

r+1∑
`=1

f`(n)t`

]
, (3.25)

and the one-loop contribution

D1-loop(t`, ε1, ε2; n) =
Z1-loop(t` + ε1R`, ε1, ε2 − ε1)Z1-loop(t` + ε2R`, ε1 − ε2, ε2)

Z1-loop(t`, ε1, ε2)
, (3.26)

with f0, f` defined in (3.3). We don’t have to put hat over Z1-loop because entries of B

associated to t` (` = 1, . . . , r+ 1) are all zero. By comparing the coefficients of Qkb on both

sides of (3.22), we find the recursion relation

Λ(τ,ε1, ε2)Zk(t`, ε1, ε2)

=
∑

fb(n)+k1+k2=k

(−1)|n|+(k1+k2−k)Bbexp

[
f0(n)(ε1+ε2)+

r+1∑
`=1

f`(n)t`+(k1ε1+k2ε2)Rb(n)

]
×D1-loop(t`, ε1, ε2,n)Zk1(t`+ε1R`, ε1, ε2−ε1)Zk2(t`+ε2R`, ε1−ε2, ε2) . (3.27)

The expression above can be simplified due to the following observation. Given the

expression (3.13) of fb(n) and the condition (3.6) on the r field, it is clear that fb(n) is

invariant under the shift

n→ n +ma , m ∈ Z , (3.28)

where a = (ak) the vector of marks. Similarly

Rk =

r+1∑
`=1

Ck,`n` +
1

2
rk = −Ak,`n` +

1

2
rk (3.29)

for k = 1, . . . , r + 1 is also invariant under the integral shift (3.28). Therefore, we could

define representatives n̂ of n by

n = n̂ +ma , m ∈ Z (3.30)

so that no two representatives differ by aZ. Then the summation in (3.27) can be split

into two steps

Λ(τ,ε1, ε2)Zk(t`, ε1, ε2)

=
∑

fb(n̂)+k1+k2=k

(∑
m∈Z

(−1)|n|+(k1+k2−k)Bbexp

[
f0(n)(ε1+ε2)+

r+1∑
`=1

f`(n)t`+(k1ε1+k2ε2)Rb(n)

])
×D1-loop(t`, ε1, ε2, n̂)Zk1(t`+ε1R`(n̂), ε1, ε2−ε1)Zk2(t`+ε2R`(n̂), ε1−ε2, ε2) , (3.31)

where the summation of m gives a theta function. These are the equations whose validity we

will demonstrate order by order through a modularity argument in the following example

sections.
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In the remainder of this section, we illustrate how to derive elliptic genera from the

recursion relation (3.31). We start with k = 0. Given the expression (3.13) for fb(n), its

value is already non-negative since the affine Cartan matrix A`m is positive semi-definite. If

the minimal value of fb(n) is greater than zero, the identity (3.31) could not hold at k = 0

unless Λ = 0. Thus we should have a vanishing blowup equation. If the minimal value of

fb(n) is zero, there is a chance that (3.31) is satisfied at k = 0 and we get a non-vanishing

Λ, which should result in a unity blow up equation. In the latter case, using Z0 = 1, we

find the following expression for Λ

Λ(τ,ε1, ε2) =
∑
n̂∈Îb

D1-loop(t`, ε1, ε2, n̂)
∑
m∈Z

(−1)|n|exp

[
f0(n)(ε1+ε2)+

r+1∑
`=1

f`(n)t`

]
, (3.32)

where Îb is the set of representatives n̂ which minimize fb to zero.

Let us now focus on unity blowup equations. As we will see in example sections, the

associated r fields have zero entries except for rb: r = (0, . . . , 0, rb); besides, one can always

choose the representative n̂ in Îb to be the null vector. As a result, t` are not shifted in

Zk1 , Zk2 if either k1 = k or k2 = k. We can thus put the unity recursion relations for k ≥ 1

in a more explicit form

Zk(t`, ε1, ε2) =Zk(t`, ε1, ε2−ε1)J
(1)
k (τ,ε1, ε2)+Zk(t`, ε1−ε2, ε2)J

(2)
k (τ,ε1, ε2)+Ik(t`, ε1, ε2) .

(3.33)

The coefficients are

J
(1)
k (τ, ε1, ε2) =

Λ
(1)
k (τ, ε1, ε2)

Λ(τ, ε1, ε2)
, J

(2)
k (τ, ε1, ε2) =

Λ
(2)
k (τ, ε1, ε2)

Λ(τ, ε1, ε2)
, (3.34)

with

Λ
(1)
k (τ, ε1, ε2) =

∑
n̂∈Îb

∑
m∈Z

(−1)|n|Qfτ (n)
τ (q1q2)f0(n)q

kRb(n)
1 (3.35)

Λ
(2)
k (τ, ε1, ε2) =

∑
n̂∈Îb

∑
m∈Z

(−1)|n|Qfτ (n)
τ (q1q2)f0(n)q

kRb(n)
2 . (3.36)

Ik is the summation on the r.h.s. of (3.31) with k1, k2 < k, and thus are known data in a

recursive calculation.

The relations (3.33) can be solved to give compact expressions of Zk, following the

procedure in [35] for a similar calculation for 5d gauge theories. The key observation is

that Zk(t`, ε1, ε2), Zk(t`, ε1, ε2−ε1), Zk(t`, ε1−ε2, ε2) do not depend on the choice of r fields.

If there are at least three unity r fields, we can pick three of them, and write down three

equations of the form (3.33), and combine them into the linear system−Λ(r1) Λ
(1)
k (r1) Λ

(2)
k (r1)

−Λ(r2) Λ
(1)
k (r2) Λ

(2)
k (r2)

−Λ(r3) Λ
(1)
k (r3) Λ

(2)
k (r3)

 ·
 Zk(ε1, ε2)

Zk(ε1, ε2 − ε2)

Zk(ε1 − ε2, ε2)

 = −

Λ(r1)Ik(r1)

Λ(r2)Ik(r2)

Λ(r3)Ik(r3)

 . (3.37)
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unity (0, 0, 0,−1) (0, 0, 0, 1) (0, 0, 0, 3)

vanishing
(2,−2, 0, 1) (−2, 0, 2, 1) (0, 2,−2, 1)

(0,−2, 2, 1) (2, 0,−2, 1) (−2, 2, 0, 1)

Table 1. The list of all inequivalent and admissible r fields for 6d SU(3) gauge theory.

Here we only write down the most important parameters each function depends on. If the

matrix MΛk of coefficients Λ,Λ
(1)
k ,Λ

(2)
k on the l.h.s. of the linear system is of full rank, it

can inverted to give us the answer of Zk in terms of Ik and thus lower base degree partition

functions. We will demonsrate that this method also works for 6d theories, except for the

solution of Z1 for the SU(3) model.

3.3 SU(3) theory

3.3.1 Base degree zero

By combining (2.22) and (2.23) and following section 3.1, we find all the inequivalent and

admissible r fields. By analysing the recursion relation (3.31) at k = 0 we can divide the

resulting blowup equations into unity and vanishing equations, as listed in table 1.

For the unity blowup equations, at base degree k = 0 they reduce to the computation

of Λ. For all the three r fields r1, r2, r3 of unity blowup equations in the first row of table 1

there is only one n̂ = (0, 0, 0) which minimize fb(n). Then using (3.32) we find the following

results for Λ

Λ(r1) =
∑
n∈Z

(−1)nQ
3
2
n2+ 1

2
n+ 1

24
τ (q1q2)n+ 1

6 = e−
πi
6 θ

[ 1
6

]

4 (3τ, ε1 + ε2) , (3.38)

Λ(r2) =
∑
n∈Z

(−1)nQ
3
2
n2− 1

2
n+ 1

24
τ (q1q2)n−

1
6 = e

πi
6 θ

[− 1
6

]

4 (3τ, ε1 + ε2) , (3.39)

Λ(r3) =
∑
n∈Z

(−1)nQ
3
2
n2− 3

2
n+ 3

8
τ (q1q2)n−

1
2 = e

πi
2 θ

[− 1
2

]

4 (3τ, ε1 + ε2) . (3.40)

Here and later in this paper we use the following notation of Jacobi theta functions with

characteristics

θ
[α]
3 (τ, z) =

∑
n∈Z

e
1
2
τ(n+α)2+z(n+α) , (3.41)

θ
[α]
4 (τ, z) =

∑
n∈Z

e
1
2
τ(n+α)2+(z+πi)(n+α) . (3.42)

Indeed all the Λ only depend on τ and no other Kähler moduli.16

16We notice that Λ are all Jacobi forms of weight 1/2 with respect to the modular group acting on τ .

This is a subgroup of the monodromy group Γ of the total modular space, and we thus seem to have a

contradiction with the claim [34] that Λ is supposed to have weight zero with respect to Γ. To reconcile

them, we recall that we have thrown away the contribution of the tensor multiplet to Z1-loop. It is not

difficult to verify with the help of the identities in appendix A that if included it contributes to an additional

factor η(τ)−1 to Λ reducing the weight of the latter to zero.
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As for the vanishing blowup equations, we only have to check one of them, as their r

fields are related to each other by S3 symmetry acting on the first three entries. Consider

the r field (−2, 2, 0, 1). There are three sets of n which minimize fb(n) represented by

Îb = {(0, 0, 0), (−1, 0, 0), (0, 1, 0)} . (3.43)

At the lowest base degree with k1 = k2 = 0, the elliptic genera contribute trivially with

Z0 = 1. The recursion relation only takes contributions from perturbative and 1-loop

partition functions from the first line of (3.31). Summing over n̂ in (3.43), the recursion

relation (3.31) at lowest base degree reads

Θ(0,0,0)θ(0,0,0) + Θ(−1,0,0)θ(−1,0,0) + Θ(0,1,0)θ(0,1,0) = 0 , (3.44)

where Θs encapsulate contributions from perturbative partition functions and have the form

Θ(0,0,0) =
∞∑

n=−∞
(−1)nQ

3
2

(n− 1
6

)2

τ Qn1Q
−n+ 1

3
2 = e

πi
6 Q

1
6
1Q

1
6
2 θ

[− 1
6

]

4 (3τ, t1 − t2) ,

Θ(−1,0,0) =

∞∑
n=−∞

(−1)nQ
3
2

(n− 1
6

)2

τ Q−2n+1
1 Q

−n+ 1
3

2 = e
πi
6 Q

2
3
1Q

1
6
2 θ

[− 1
6

]

4 (3τ,−2t1 − t2) ,

Θ(0,1,0) =

∞∑
n=−∞

(−1)nQ
3
2

(n− 1
6

)2

τ Qn1Q
2n+ 1

3
2 = e

πi
6 Q

1
6
1Q

2
3
2 θ

[− 1
6

]

4 (3τ, t1 + 2t2) ,

(3.45)

while θs encapsulate contributions from one-loop partition functions and have the form

θ(0,0,0) = PE

[
(Q1 +Q2 +Q1Q3 +Q2Q3)

1

1−Qτ

]
= −Q

− 1
2

1 Q
− 1

2
2 Q

1
6
τ η(τ)2

θ1(τ, t1)θ1(τ, t2)
,

θ(−1,0,0) = PE

[
(Q1 +Q3 +Q1Q2 +Q2Q3)

1

1−Qτ

]
= − Q−1

1 Q
− 1

2
2 Q

1
6
τ η(τ)2

θ1(τ, t1)θ1(τ, t1 + t2)
,

θ(0,1,0) = PE

[
(Q2 +Q3 +Q1Q2 +Q1Q3)

1

1−Qτ

]
= − Q

− 1
2

1 Q−1
2 Q

1
6
τ η(τ)2

θ1(τ, t2)θ1(τ, t1 + t2)
.

(3.46)

In the derivation of these expressions, the identities in appendix A are very useful. With

the reparametrisation

t1 = v1 − v2 , t2 = v2 − v3 (3.47)

subject to v1 + v2 + v3 = 0, the identity (3.44) can be written as

θ
[− 1

6
]

4 (3τ,−3v1)θ1(τ, v2−v3)+θ
[− 1

6
]

4 (3τ,−3v2)θ1(τ, v3−v1)+θ
[− 1

6
]

4 (3τ,−3v3)θ1(τ, v1−v2) = 0 .

(3.48)

This last identity can be proved by noticing that each term and therefore the total sum is

a Jacobi form17 for Γ(3) of weight 1 and index polynomial

1

2
(v2

1 + v2
2 + v2

3 − 2v1v2 − 2v2v3 − 2v3v1) , (3.49)

and by verifying that the first few terms in the Qτ expansion vanish, which we have checked

up to very high orders.

17Strictly speaking, this is a component of a vector-valued Jacobi form.
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3.3.2 Modularity at generic base degree

Here we given an argument for the validity of the recursion relation (3.31) by demonstrat-

ing that both sides of the equation (3.31) are multivariate meromorphic Jacobi forms of the

same weight and index polynomial at any base degree k. Once this is achieved, after multi-

plying both side of (3.31) with the common denominator, we get an identity of multivariate

weak Jacobi forms of the same weight and index, which can then be proved by plugging in

the expression of Zk given in [12] and comparing the first few terms in the Qτ expansion.

Consider a blowup equation with r = (r1, r2, r3, rb) subject to the condition r1 + r2 +

r3 = 0. The perturbative contribution to the recursion (3.31) is

Dpert,′ := exp

[
f0(n)(ε1 + ε2) +

r+1∑
`=1

f`(n)t` + (k1ε1 + k2ε2)Rb(n)

]

= Q
f1(n)
1 Q

f2(n)
2 Q

f3(n)
3 (q1q2)f0(n)

(
qk1

1 q
k2
2

)Rb(n)
(3.50)

where

f`(n) =
3

2

(
n` −

r` + rb
6

)2

, ` = 1, 2, 3 (3.51)

f0(n) =

∑3
`=1 r

3
`

144
+ rb

(
− 1

6
+

∑3
`=1 r

2
`

48

)
+
n1 + n2 + n3

3
−
∑3

`=1 r
2
`n`

8
− rb

4

3∑
`=1

r`n`

+
3

4

3∑
`=1

r`n
2
` +

rb
2

( 3∑
`=1

n2
` −

∑
1≤`<m≤3

n`nm

)
− 4

3

3∑
`=1

n3
` +

1

2

∑
6̀=m

n2
`nm + n1n2n3 ,

(3.52)

Rb = −n1 − n2 − n3 +
rb
2
. (3.53)

In addition

fb(n) =
1

24

3∑
`=1

r2
` −

1

2

3∑
`=1

r`n` −
∑

1≤`<m≤3

n`nm +

3∑
`=1

n2
` . (3.54)

Following the discussin in section 3.2, we can split n to a representative n̂, which we

uniquely fix by setting n3 = 0, and (m,m,m), i.e.

n = (n1, n2, 0) + (m,m,m) . (3.55)

Then Dpert,′ can be written as

Dpert,′

=Q
3
2

(
m− r3+rb

6

)2

τ

(
Q
n1+

r3−r1
6

1 Q
n2+

r3−r2
6

2

)3
(
m− r3+rb

6

)
(q1q2)

(
m− r3+rb

6

)
(1−3fb(n̂)) (

qk1
1 q

k2
2

)−3
(
m− r3+rb

6

)

×Q
3
2

(
n1+

r3−r1
6

)2

1 Q
3
2

(
n2+

r3−r2
6

)2

2 (q1q2)f0(n̂)+
r3+rb

6
(1−3fb(n̂)) (qk1

1 q
k2
2

)−n1−n2− r32 . (3.56)
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For the contributions from vector multiplets, using the notation (A.7), we have

D1-loop = PE
[
− (Bl(0,1/2,−2n1+n2+

r1
2

)(q1, q2)Q1 +Bl
(0,1/2,2n1−n2+

r2+r3
2

)
(q1, q2)Q2Q3

+Bl(0,1/2,n1−2n2+
r2
2

)(q1, q2)Q2 +Bl
(0,1/2,−n1+2n2+

r1+r3
2

)
(q1, q2)Q1Q3

+Bl(0,1/2,n1+n2+
r3
2

)(q1, q2)Q3 +Bl
(0,1/2,−n1−n2+

r1+r2
2

)
(q1, q2)Q1Q2)/(1−Qτ )

]
,

(3.57)

where we used the property that D1-loop(n) = D1-loop(n̂) and set n3 = 0. Then noticing

Qτ = Q1Q2Q3 and using the notation (A.14), we have

D1-loop = T−2n1+n2+
r1
2

(t1)Tn1−2n2+
r2
2

(t2)T−n1−n2+
r1+r2

2

(t1 + t2)

= (−1)fb(n̂)Q
fb(n̂)

2
τ Q

−fb(n̂)− 3
2

(
n1+

r3−r1
6

)2

1 Q
−fb(n̂)− 3

2

(
n2+

r3−r2
6

)2

2 (q1q2)dR(a2)

× θ̆−2n1+n2+
r1
2

(t1) θ̆n1−2n2+
r2
2

(t2) θ̆−n1−n2+
r1+r2

2

(t1 + t2) , (3.58)

where

dR(a2) =
4n3

1+4n3
2

3
−n1n2(n1+n2)

2
−r1

5n2
1−2n1n2+2n2

2

4
−r2

2n2
1−2n1n2+5n2

2

4

−n1+n2

3
+

3r2
1n1+3r2

2n2

8
+
r1r2(n1+n2)

4
+
r1+r2

6
− r

3
1 +r3

2

24
− r1r2(r1+r2)

16
.

(3.59)

In Appenidx A, we show θ̆R(t) is a meromorphic Jacobi form of weight 0, and thus so is

D1-loop up to the prefactor.

Finally, given the relation between Zk and the k-string elliptic genus Ek for the SU(3)

theory

Zk(t`, ε1, ε2) =

(
Q

1/2
τ

Q1Q2

)k
Ek(t`, ε1, ε2) , (3.60)

we also have

Zk1(t` + ε1R`, ε1, ε2 − ε1) = q
k1

(
n1+n2− r1+r2

2

)
1

(
Q

1/2
τ

Q1Q2

)k1

Ek1(t` + ε1R`, ε1, ε2 − ε1) ,

Zk2(t` + ε2R`, ε1 − ε2, ε2) = q
k2

(
n1+n2− r1+r2

2

)
2

(
Q

1/2
τ

Q1Q2

)k2

Ek2(t` + ε2R`, ε1 − ε2, ε2) ,

(3.61)

for the last two factors.
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Combining (3.56), (3.56) and (3.56) all together, we find the following expression for

the r.h.s. of the recursion relation (3.31) in terms of (meromorphic) Jacobi forms

r.h.s. = e
πi(r3+rb)

6

(
Q

1/2
τ

Q1Q2

)k ∑
fb(n̂)+k1+k2=k

(−1)n1+n2

×θ[−(r3+rb)/6]
4

(
3τ,3

((
n1+

r3−r1

6

)
t1+

(
n2+

r3−r2

6

)
t2

)
+(1−3(k−k2))ε1+(1−3(k−k1))ε2

)
×θ̆−2n1+n2+

r1
2

(t1)θ̆n1−2n2+
r2
2

(t2)θ̆−n1−n2+
r1+r2

2

(t1+t2)

×Ek1(t`+ε1R`, ε1, ε2−ε1)Ek2(t`+ε2R`, ε1−ε2, ε2) . (3.62)

Using the fact that the elliptic genus Ek(t`, ε1, ε2) is a meromorphic Jacobi form of weight

zero and index polynomial [13, 38]

Ind(Ek) = −k
2

(ε21 + ε22) +
3k(k − 1)

2
ε1ε2 −

3k

2
(a,a)a2 , (3.63)

where

(a,a)a2 =
2

3
(t21 + t1t2 + t22) = v2

1 + v2
2 + v2

3 . (3.64)

It is not difficult to show that up to the common prefactor every term in (3.62) is a

meromorphic Jacobi form18 for Γ(3) of weight 1/2 and index polynomial

Ind(r.h.s.) =
3k − 1

6
(ε21 + ε22) +

(3k − 2)(3k − 1)

6
ε1ε2 −

3k

2
(a,a)a2 , (3.65)

which is indepdent of the summation indices n1, n2, k1, k2, and thus so is the total sum.

On the other hand, if the blowup equation is of vanishing type, the l.h.s. of (3.31)

vanish; if the blowup equation is of unity type, we have r = (0, 0, 0, rb), and after plugging

in the expression of Λ, we find the l.h.s. of (3.31) to be

l.h.s. = e
πirb

6

(
Q

1/2
τ

Q1Q2

)k
θ

[− rb
6

]

4 (3τ, ε1 + ε2)Ek(t`, ε1, ε2) , (3.66)

which is also a meromorphic Jacobi form of the same weight and the same index (3.65) up

to the same prefactor. In both cases, after multiplied with a common denominator, the

recursion relations (3.31) can be cast as identities of (weak) Weyl invariant Jacobi forms

of identical weights and indices. As the ring of Jacobi forms is finitely generated, these

identities can be proved by checking that when the correct r (table 1) are plugged in the

first few terms in Qτ expansion are correct. For instance when k = 0 we find (3.62) indeed

reduces to the computation of Λ in the unity cases and the identity (3.48) in the vanishing

cases. When k = 1 and with a unity r plugged in, the recursion relations reduce to

θ
[− rb

6
]

4 (3τ,−2ε1 + ε2)E1(v, ε1, ε2 − ε1) + θ
[− rb

6
]

4 (3τ, ε1 − 2ε2)E1(v, ε1 − ε2, ε2)

− θ[− rb
6

]

4 (3τ, ε1 + ε2)E1(v, ε1, ε2) + I
[− rb

6
]

1 (ε1, ε2) = 0 , (3.67)

18The same as footnote 17.

– 26 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
2

in which

I
[− rb

6
]

1 (ε1, ε2) =−
∑
i 6=j 6=k

θ
[− rb

6
]

4 (3τ,3vij−2ε1−2ε2)η6

θ1(vij)θ1(vij−ε1)θ1(vij−ε2)θ1(vij−ε1−ε2)θ1(vik)θ1(vjk)
. (3.68)

We have used the variables v = (v1, v2, v3) for Kähler moduli defined in (3.47) to make

the Weyl symmetry of SU(3) more transparent, and we define vij = vi − vj . Here and in

the following we suppress the modular parameter of a theta function if it is simply τ . One

can readily verify by using the expression (3.51) of E1 in [12] and by the first few terms in

the Qτ expansion that (3.67) is valid if rb is odd but not if rb is even. Similarly when the

vanishing r = (−2, 2, 0, 1) is plugged in, we find the identity

3∑
i=1

θ
[− 1

6
]

4 (3τ,−3vi − 3ε1) η2∏
j 6=i θ1(vij)

E1(v + ε1R
{i}
v , ε1, ε2 − ε1)

+

3∑
i=1

θ
[− 1

6
]

4 (3τ,−3vi − 3ε2) η2∏
j 6=i θ1(vij)

E1(v + ε2R
{i}
v , ε1 − ε2, ε2)

−
3∑
i=1

θ
[− 1

6
]

4 (3τ, 6vi − 3ε1 − 3ε2) η8∏
j 6=i θ1(vij)θ1(vij − ε1)θ1(vij − ε2)θ1(vij − ε1 − ε2)

= 0, (3.69)

with the R fields

R{1}v =
( 2

3
,−1

3
,−1

3

)
,

R{2}v =
(
− 1

3
,

2

3
,−1

3

)
,

R{3}v =
(
− 1

3
,−1

3
,

2

3

)
,

(3.70)

which can also be explicitly verified. The cases of the other vanishing r fields can be

obtained by permutations of the components r1, r2, r3 of the r field. We have also checked

the cases of k = 2. Identities for k > 2 can be checked in a similar manner.

3.3.3 Recursion formula for elliptic genera

We would like to inverse the logic and illustrate here that it is possible to solve Ek (k ≥ 2)

for the SU(3) theory from the recursion relations (3.33) following the argument at the

end of section 3.2. In the case of 6d SU(3) theory, there are three unity r fields. The

corresponding Λ
(1)
k ,Λ

(2)
k are

• r1 = (0, 0, 0,−1)

Λ
(1)
k (r1) =

∑
n∈Z

(−1)nQ
3
2
n2+ 1

2
n+ 1

24
τ (q−3k+1

1 q2)n+ 1
6 = e−

πi
6 θ

[ 1
6

]

4 (3τ,−(3k−1)ε1+ε2) ,

Λ
(2)
k (r1) =

∑
n∈Z

(−1)nQ
3
2
n2+ 1

2
n+ 1

24
τ (q1q

−3k+1
2 )n+ 1

6 = e−
πi
6 θ

[ 1
6

]

4 (3τ,ε1−(3k−1)ε2) . (3.71)
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• r2 = (0, 0, 0, 1)

Λ
(1)
k (r2) =

∑
n∈Z

(−1)nQ
3
2
n2− 1

2
n+ 1

24
τ (q−3k+1

1 q2)n−
1
6 = e

πi
6 θ

[− 1
6

]

4 (3τ,−(3k−1)ε1+ε2) ,

Λ
(2)
k (r2) =

∑
n∈Z

(−1)nQ
3
2
n2− 1

2
n+ 1

24
τ (q1q

−3k+1
2 )n−

1
6 = e

πi
6 θ

[− 1
6

]

4 (3τ,ε1−(3k−1)ε2) . (3.72)

• r3 = (0, 0, 0, 3)

Λ
(1)
k (r3) =

∑
n∈Z

(−1)nQ
3
2
n2− 3

2
n+ 3

8
τ (q−3k+1

1 q2)n−
1
2 = e

πi
2 θ

[− 1
2

]

4 (3τ,−(3k−1)ε1+ε2) ,

Λ
(2)
k (r3) =

∑
n∈Z

(−1)nQ
3
2
n2− 3

2
n+ 3

8
τ (q1q

−3k+1
2 )n−

1
2 = e

πi
2 θ

[− 1
2

]

4 (3τ,ε1−(3k−1)ε2) . (3.73)

Surprisingly, we find that at base degree one the matrix MΛ1 is actually not of full-rank.

Therefore one cannot invert MΛ1 to solve Z1 from the recursion relation.

That detMΛ1 = 0 may have something to do with the curious coincidence that while

the characteristics of the theta functions enjoy a Z3 symmetry connected to the gauge

group SU(3), the elliptic parameters of theta functions enjoy some S3 symmetry. Note

that the three types of theta functions

θ
[ 1
6

]

4 , θ
[− 1

6
]

4 , θ
[− 1

2
]

4 , (3.74)

are invariant under the shift of the upper characteristic α→ α− 1/3 because θ
[α]
4 = θ

[α+1]
4 .

On the other hand, the three elliptic parameters for each theta function

ε1 + ε2 , −2ε1 + ε2 , ε1 − 2ε2 (3.75)

sum up to zero, and enjoy a S3 symmetry.

On the other hand, detMΛk does not vanish at base degrees k > 1. For instance the

leading order contribution in the Qτ expansion is

detMΛk = −(q1q2)−
3k+1

2

(
(q1q2)

k
2 − (q1q2)

1
2

)(
(q1q2)

k
2 + (q1q2)

1
2

)
×
(
qk1 + qk2 + q2k

1 + q2k
2 + q2k

1 qk2 + qk1q
2k
2

)
Q11/24
τ +O(Q11/24+1

τ ) . (3.76)

We can thus obtain compact expressions of Zk from the linear equation (3.37) by inverting

MΛk . We do not give explicit formulas for Zk here as they are quite lengthy, and the results

of Zk are already well known in the literature [12, 33]. Instead we will compute and list the

BPS invariants in the next subsection, which also serves as another check on the blowup

equations.
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unity (0, 0, 0, 0, 0,−2) (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 2) (0, 0, 0, 0, 0, 4)

vanishing

(−2, 0, 0, 2, 0, 0) (0,−2, 0, 2, 0, 0) (0, 0,−2, 2, 0, 0)

(−2, 2, 0, 0, 0, 0) (−2, 0, 2, 0, 0, 0) (0,−2, 2, 0, 0, 0)

(−2,−2, 0, 0, 2, 2) (−2, 0,−2, 0, 2, 2) (0,−2,−2, 0, 2, 2)

(−2, 0, 0,−2, 2, 2) (0,−2, 0,−2, 2, 2) (0, 0,−2,−2, 2, 2)

Table 2. The list of all inequivalent and admissible r fields for 6d SO(8) gauge theory.

3.3.4 Solving refined BPS invariants

Among the recursion relations those from unity blowup equations (3.33) are most useful

as it is rather easy to solve them and obtain compact formulas of ellptic genera; recursion

relations from vanishing blowup equations are rather complicated and it is difficult to get

headway with them.

Another way to solve the blowup equations (1.6) is to expand them in terms of all

Kähler moduli Qi and extract equations of refined BPS invariants. There are two ad-

vantages to this method: one can equally easily extract equations from vanishing blowup

equations and thus increase the number of available constraint equations; one can in fact

start without the input of Z1-loop but with only the truly perturbative data: the C-matrix,

the B-field, and Zpert.

We have succeeded to exploit this method to great effect. We have used the equations

extracted from the blowup equations associated to the following r fields

(0, 0, 0, 1), (0, 0, 0, 3), (−2, 2, 0, 1) + permutations of r1, r2, r3 , (3.77)

and computed the BPS invariants up to total degree d1 + d2 + d3 + db = 7. They are

listed in table 5. These BPS invariants respect the permuation symmetry of the degrees

d1, d2, d3. Therefore we only list the non-vanishing invariants with d1 ≤ d2 ≤ d3 and

omit the invariants which can be obtained by permuting d1, d2, d3. All the other curve

classes which are not listed have vanishing BPS invariants. These invariants agree with the

results in the existing literature. In this way we have not only demonstrated the validity of

the generalized blowup equations but also shown the power of the blowup equations as a

computational tool. We expect that BPS invariants of higher degrees can also be computed

with enough time.

3.4 SO(8) theory

3.4.1 Base degree zero

Following the same analysis as in the SU(3) theory, we can find all the inequivalent and

admissible r fields and divide the resulting blowup equations into unity and vanishing

equations. The results are listed in table 2.
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For the unity blowup equations, at base degree k = 0 they reduce to the computation

of Λ. We find the following results for the four r fields in the first row of table 2

Λ(r1) =
∑
n∈Z

Q
2n2+n+ 1

8
τ (q1q2)2n+ 1

2 = θ
[ 1
4

]

3 (4τ, 2ε1 + 2ε2) , (3.78)

Λ(r2) =
∑
n∈Z

Q2n2

τ (q1q2)2n = θ
[0]
3 (4τ, 2ε1 + 2ε2) , (3.79)

Λ(r3) =
∑
n∈Z

Q
2n2−n+ 1

8
τ (q1q2)2n− 1

2 = θ
[− 1

4
]

3 (4τ, 2ε1 + 2ε2) , (3.80)

Λ(r4) =
∑
n∈Z

Q
2n2−2n+ 1

2
τ (q1q2)2n−1 = θ

[− 1
2

]

3 (4τ, 2ε1 + 2ε2) . (3.81)

Notice that indeed all the Λ only depend on τ and no other Kähler moduli.

As for the vanishing blowup equations, we check two of them with r fields

(−2, 2, 0, 0, 0, 0) , (−2,−2, 0, 0, 2, 2) (3.82)

while the other r fields could be obtained by acting S4 symmetry on the first four entries.

In the case of r = (−2, 2, 0, 0, 0, 0), there are eight sets of n which minimize fb(n) and

they are represented by

Îb = {(−1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (−1, 1, 0, 0, 0), (0, 0, 0, 0, 0),

(0, 1, 0, 0, 1), (0, 1, 1, 1, 1), (0, 1, 0, 1, 1), (0, 1, 1, 0, 1)} . (3.83)

Summing over them, the lowest order blowup equation is

∑
n̂∈Îb

(−1)|n|Θnθn = 0 (3.84)

where

Θ(−1,0,0,0,0) = Θ(0,1,0,0,0) =
∑
n∈Z

Q2n2

τ Q
2n+ 1

2
1 Q

2n+ 1
2

2 = Q
1
2
1Q

1
2
2 θ3(4τ, 2t1 + 2t2) ,

Θ(−1,1,0,0,0) = Θ(0,0,0,0,0) =
∑
n∈Z

Q2n2

τ Q
2n+ 1

2
1 Q

−2n+ 1
2

2 = Q
1
2
1Q

1
2
2 θ3(4τ, 2t1 − 2t2) ,

Θ(0,1,0,0,1) = Θ(0,1,1,1,1) =
∑
n∈Z

Q
2(n+ 1

2
)2

τ Q
2n+ 3

2
3 Q

2n+ 3
2

4 = Q
1
2
3Q

1
2
4 θ

[ 1
2

]

3 (4τ, 2t3 + 2t4) ,

Θ(0,1,0,1,1) = Θ(0,1,1,0,1) =
∑
n∈Z

Q
2(n+ 1

2
)2

τ Q
2n+ 3

2
3 Q

−2n− 1
2

4 = Q
1
2
3Q

1
2
4 θ

[ 1
2

]

3 (4τ, 2t3 − 2t4) .

(3.85)
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and

θ(−1,0,0,0,0) = θ(0,1,0,0,0)

=− Q
− 1

2
1 Q

− 1
2

2 η6

θ1(t1)θ1(t2)θ4(−t1−t2−t3−t42 )θ4(−t1−t2+t3−t4
2 )θ4(−t1−t2−t3+t4

2 )θ4(+t1+t2−t3−t4
2 )

,

θ(−1,1,0,0,0) = θ(0,0,0,0,0)

=− Q
− 1

2
1 Q

− 1
2

2 η6

θ1(t1)θ1(t2)θ4(+t1−t2−t3−t4
2 )θ4(−t1+t2−t3−t4

2 )θ4(+t1−t2+t3−t4
2 )θ4(+t1−t2−t3+t4

2 )
,

θ(0,1,0,0,1) = θ(0,1,1,1,1)

=− Q
− 1

2
3 Q

− 1
2

4 η6

θ1(t3)θ1(t4)θ4(−t1−t2−t3−t42 )θ4(+t1−t2−t3−t4
2 )θ4(−t1+t2−t3−t4

2 )θ4(+t1+t2−t3−t4
2 )

,

θ(0,1,0,1,1) = θ(0,1,1,0,1)

=− Q
− 1

2
3 Q

− 1
2

4 η6

θ1(t3)θ1(t4)θ4(−t1−t2+t3−t4
2 )θ4(−t1−t2−t3+t4

2 )θ4(+t1−t2+t3−t4
2 )θ4(+t1−t2−t3+t4

2 )
.

(3.86)

It is equivalent to the identity

0 =−θ3(4τ,2t1+2t2)θ1(t3)θ1(t4)

×θ4

(
+t1−t2−t3−t4

2

)
θ4

(−t1+t2−t3−t4
2

)
θ4

(
+t1−t2+t3−t4

2

)
θ4

(
+t1−t2−t3+t4

2

)
+θ3(4τ,2t1−2t2)θ1(t3)θ1(t4)

×θ4

(−t1−t2−t3−t4
2

)
θ4

(−t1−t2+t3−t4
2

)
θ4

(−t1−t2−t3+t4
2

)
θ4

(
+t1+t2−t3−t4

2

)
+θ

[1/2]
3 (4τ,2t3+2t4)θ1(t1)θ1(t2)

×θ4

(−t1−t2+t3−t4
2

)
θ4

(−t1−t2−t3+t4
2

)
θ4

(
+t1−t2+t3−t4

2

)
θ4

(
+t1−t2−t3+t4

2

)
−θ[1/2]

3 (4τ,2t3−2t4)θ1(t1)θ1(t2)

×θ4

(−t1−t2−t3−t4
2

)
θ4

(
+t1−t2−t3−t4

2

)
θ4

(−t1+t2−t3−t4
2

)
θ4

(
+t1+t2−t3−t4

2

)
. (3.87)

It can be proved by noticing that each summand and thus the total sum is a Jacobi form

for Γ(4) of weight 7/2 and index polynomial

t21 + t22 + t23 + t24 , (3.88)

and that the first few terms in Qτ expansion vanish, which we checked up to very high

orders.

In the case of r = (−2,−2, 0, 0, 2, 2), there are eight sets of n which minimize fb(n)

and they are represented by

Îb = {(−1,−1, 0, 0, 0), (0, 0, 0, 0, 0), (−1, 0, 0, 0, 0), (0,−1, 0, 0, 0),

(0, 0, 1, 1, 1), (0, 0, 0, 0, 1), (0, 0, 1, 0, 1), (0, 0, 0, 1, 1)} . (3.89)

Summing over them, we get for the lowest order blowup equation∑
n̂∈Îb

(−1)|n|Θnθn = 0 (3.90)
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where

Θ(−1,−1,0,0,0) =Q
1
2
1Q

1
2
2 θ

[ 1
4

]

3 (4τ,2t1+2t2) , Θ(0,0,0,0,0) =Q
1
2
1Q

1
2
2 θ

[− 1
4

]

3 (4τ,2t1+2t2) ,

Θ(−1,0,0,0,0) =Q
1
2
1Q

1
2
2 θ

[ 1
4

]

3 (4τ,2t1−2t2) , Θ(0,−1,0,0,0) =Q
1
2
1Q

1
2
2 θ

[− 1
4

]

3 (4τ,2t1−2t2) ,

Θ(0,0,1,1,1) =Q
1
2
3Q

1
2
4 θ

[ 1
4

]

3 (4τ,2t3+2t4) , Θ(0,0,0,0,1) =Q
1
2
3Q

1
2
4 θ

[− 1
4

]

3 (4τ,2t3+2t4) ,

Θ(0,0,1,0,1) =Q
1
2
3Q

1
2
4 θ

[ 1
4

]

3 (4τ,2t3−2t4) , Θ(0,0,0,1,1) =Q
1
2
3Q

1
2
4 θ

[− 1
4

]

3 (4τ,2t3−2t4) .

(3.91)

and

θ(−1,−1,0,0,0) = θ(0,0,0,0,0)

=− Q
− 1

2
1 Q

− 1
2

2 η6

θ1(t1)θ1(t2)θ4(−t1−t2−t3−t42 )θ4(−t1−t2+t3−t4
2 )θ4(−t1−t2−t3+t4

2 )θ4(+t1+t2−t3−t4
2 )

,

θ(−1,0,0,0,0) = θ(0,−1,0,0,0)

=− Q
− 1

2
1 Q

− 1
2

2 η6

θ1(t1)θ1(t2)θ4(+t1−t2−t3−t4
2 )θ4(−t1+t2−t3−t4

2 )θ4(+t1−t2−t3+t4
2 )θ4(+t1−t2+t3−t4

2 )
,

θ(0,0,1,1,1) = θ(0,0,0,0,1)

=− Q
− 1

2
3 Q

− 1
2

4 η6

θ1(t3)θ1(t4)θ4(−t1−t2−t3−t42 )θ4(+t1−t2−t3−t4
2 )θ4(−t1+t2−t3−t4

2 )θ4(+t1+t2−t3−t4
2 )

,

θ(0,0,1,0,1) = θ(0,0,0,1,1)

=− Q
− 1

2
3 Q

− 1
2

4 η6

θ1(t3)θ1(t4)θ4(−t1−t2+t3−t4
2 )θ4(−t1−t2−t3+t4

2 )θ4(+t1−t2−t3+t4
2 )θ4(+t1−t2+t3−t4

2 )
.

(3.92)

It is equivalent to

0 =−
(
θ

[ 1
4

]

3 (4τ,2t1+2t2)+θ
[− 1

4
]

3 (4τ,2t1+2t2)

)
θ1(t3)θ1(t4)

×θ4

(
+t1−t2−t3−t4

2

)
θ4

(−t1+t2−t3−t4
2

)
θ4

(
+t1−t2+t3−t4

2

)
θ4

(
+t1−t2−t3+t4

2

)
+

(
θ

[ 1
4

]

3 (4τ,2t1−2t2)+θ
[− 1

4
]

3 (4τ,2t1−2t2)

)
θ1(t3)θ1(t4)

×θ4

(−t1−t2−t3−t4
2

)
θ4

(−t1−t2+t3−t4
2

)
θ4

(−t1−t2−t3+t4
2

)
θ4

(
+t1+t2−t3−t4

2

)
+

(
θ

[ 1
4

]

3 (4τ,2t3+2t4)+θ
[− 1

4
]

3 (4τ,2t3+2t4)

)
θ1(t1)θ1(t2)

×θ4

(−t1−t2+t3−t4
2

)
θ4

(−t1−t2−t3+t4
2

)
θ4

(
+t1−t2+t3−t4

2

)
θ4

(
+t1−t2−t3+t4

2

)
−
(
θ

[ 1
4

]

3 (4τ,2t3−2t4)+θ
[− 1

4
]

3 (4τ,2t3−2t4)

)
θ1(t1)θ1(t2)

×θ4

(−t1−t2−t3−t4
2

)
θ4

(
+t1−t2−t3−t4

2

)
θ4

(−t1+t2−t3−t4
2

)
θ4

(
+t1+t2−t3−t4

2

)
, (3.93)

which can be similarly proved.
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Note that in order to write recursion relations in terms of appropriate Jacobi forms,

we need to absorb one of the five Kähler moduli t1, t2, t3, t4, tc completely into τ . It is

canonical to absorb t4 associated to the affine node as one goes down from the affine Lie

algebra to the simple Lie algebra. Here we choose to absorb tc so that the symmetry

between t1, t2, t3, t4 still survives.

3.4.2 Modularity at generic base degree

Following the example of the SU(3) theory, we show here that both sides of the recursion

relation (3.31) for the SO(8) theory are meromorphic Jacobi forms of the same weight

and index polynomial at any base degree k. When this is established, one can multiply

both sides with the common denominator and obtain an identity of weak Jacobi forms and

proceeds to prove it by comparing the first few terms in the Qτ expansin.

Consider a blowup equation with r = (r1, r2, r3, r4, rc, rb) subject to the condition

r1 + r2 + r3 + r4 + 2rc = 0. The perturbative contribution is

Dpert,′ := exp

[
f0(n)(ε1 + ε2) +

r+1∑
`=1

f`(n)t` + (k1ε1 + k2ε2)Rb(n)

]
= Q

f1(n)
1 Q

f2(n)
2 Q

f3(n)
3 Q

f4(n)
4 Qfc(n)

c (q1q2)f0(n) (qk1
1 q

k2
2

)Rb(n)
, (3.94)

where

f`(n) = 2
(
n` −

r` + rb/2

4

)2
, ` = 1, 2, 3, 4

fc(n) =
(
nc −

rb
4

)2
,

f0(n) = −4

3

5∑
i=1

n3
i + n2

c

4∑
`=1

n` +
4∑
`=1

(
r` +

rb
2

)
n2
` −

rbnc
2

4∑
`=1

n` +
rb + rc

2
n2
c

+

∑5
i=1 ni
3

−
∑4

`=1 r
2
`n`

4
−
rb
∑4

`=1 r`n`
4

− rbrcnc
4

+

∑4
`=1 r

3
`

48
+
rb
∑4

`=1 r
2
`

32
+
r2
b

∑4
`=1 r`

64
+
r2
brc
32

+
rc
6
− rb

4
,

Rb(n) = −2nc +
rb
2
, (3.95)

with the notation r5 = rc. In addition

fb(n) =

∑4
`=1 r

2
`

16
−
∑5

`=1 rini
2

+
5∑
i=1

n2
i − nc

4∑
`=1

n` . (3.96)

We split n to a representative n̂, which we fix uniquely by setting n4 = 0, and (m, m, m,

m, 2m), i.e.

n = (n1, n2, n3, 0, nc) + (m,m,m,m, 2m) . (3.97)
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Then separating m-dependent and -independent parts, Dpert,′ can be written as

Dpert,′ = Q
2
(
m− r4+rb/2

4

)2

τ

3∏
`=1

Q
4(m− r4+rb/2

4
)(n`+

r4−r`
4

)

` Q
4(m− r4+rb/2

4
)(nc+

r4
2

)
c

× (q1q2)(m− r4+rb/2

4
)(2−4fb(n̂)) (qk1

1 q
k2
2

)−4(m− r4+rb/2

4
)

×
3∏
`=1

Q
2(n`+

r4−r`
4

)2

` Q
(nc+

r4
2

)2

c (q1q2)f0(n̂)+ 1
4

(r4+rb/2)(2−4fb(n̂))
(
qk1

1 q
k2
2

)−2nc−r4 .

(3.98)

The contribution of 1-loop partition function is

D1-loop

=T−2n1+nc+
r1
2

(t1)T−2n2+nc+
r2
2

(t2)T−2n3+nc+
r3
2

(t3)Tn1+n2+n3−2nc+
rc
2

(tc)

×T−n1+n2+n3−nc+ r1+rc
2

(t1+tc)Tn1−n2+n3−nc+ r2+rc
2

(t2+tc)Tn1+n2−n3−nc+ r3+rc
2

(t3+tc)

×T−n1−n2+n3+
r1+r2+rc

2

(t1+t2+tc)T−n1+n2−n3+
r1+r3+rc

2

(t1+t3+tc)

×T
n1−n2−n3+

r2+r3+rc
2

(t2+t3+tc)T−n1−n2−n3+nc+
r1+r2+r3+rc

2

(t1+t2+t3+tc)

×T−nc++
r1+r2+r3+2rc

2

(t1+t2+t3+2tc)

=Qfb(n̂)
τ

3∏
`=1

Q
−2fb(n̂)−2

(
n`+

r4−r`
4

)2

` Q
−4fb(n̂)−(nc+ r4

2 )
2

c (q1q2)dR(d4)

×θ̆−2n1+nc+
r1
2

(t1)θ̆−2n2+nc+
r2
2

(t2)θ̆−2n3+nc+
r3
2

(t3)θ̆n1+n2+n3−2nc+
rc
2

(tc)

×θ̆−n1+n2+n3−nc+ r1+rc
2

(t1+tc)θ̆n1−n2+n3−nc+ r2+rc
2

(t2+tc)θ̆n1+n2−n3−nc+ r3+rc
2

(t3+tc)

×θ̆−n1−n2+n3+
r1+r2+rc

2

(t1+t2+tc)θ̆−n1+n2−n3+
r1+r3+rc

2

(t1+t3+tc)

×θ̆
n1−n2−n3+

r2+r3+rc
2

(t2+t3+tc)θ̆−n1−n2−n3+nc+
r1+r2+r3+rc

2

(t1+t2+t3+tc)

×θ̆−nc+ r1+r2+r3+2rc
2

(t1+t2+t3+2tc) , (3.99)

where

dR(d4) =
4

3

3∑
`=1

n3
` − n2

c

3∑
`=1

n` +
4

3
n3
c +

3∑
`=1

(r4 − r`)n2
` − r4nc

3∑
`=1

n` +
(
r4 −

rc
2

)
n2
c

+

3∑
`=1

(
− 1

3
+
r2
`

4
− r4r`

2

)
n` +

(
− 1

3
− r4rc

2

)
nc

− rc
6
− r4

2
−
∑3

`=1 r
3
` − r3

4

16
−
∑3

`=1 r
2
` − r2

4

8
rc −

r2
c

∑3
`=1 r`
4

− r3
c

3
+
r1r2r3

8
.

(3.100)

Here TR(t) and θ̆R(t) are defined in appendix A; in particular, θ̆R(t) is a Jacobi form of

weight 0 and index given by (A.17).
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Finally, Zk is related to the k-string elliptic genus Ek for the SO(8) theory by

Zk(t`, ε1, ε2) =

(
Q

1/2
τ

Q1Q2Q3Q2
c

)2k

Ek(t`, ε1, ε2) , (3.101)

and the latter is a meromorphic Jacobi form of weight 0 and index [13, 38]

Ind(Ek) = −k(ε21 + ε22) + k(2k − 3)ε1ε2 − 2k(a,a)d4 , (3.102)

with the invariant bilinear form normalized as19

(a,a)d4 =t21 + t22 + t23 + t1t2 + t2t3 + t3t1 + 2tc(t1 + t2 + t3) + 2t2c . (3.103)

We also have

Zk1(t` + ε1R`, ε1, ε2 − ε1) = q
k1(2nc+r4)
1

(
Q

1/2
τ

Q1Q2Q3Q2
c

)2k1

Ek1(t` + ε1R`, ε1, ε2 − ε1) ,

Zk2(; t` + ε2R`, ε1 − ε2, ε2) = q
k2(2nc+r4)
2

(
Q

1/2
τ

Q1Q2Q3Q2
c

)2k2

Ek2(t` + ε2R`, ε1 − ε2, ε2) ,

(3.104)

Combining (3.98), (3.99) and (3.104) all together, we get for the r.h.s. of the recursion

relation (3.31)

r.h.s. =

(
Q

1/2
τ

Q1Q2Q3Q2
c

)2k ∑
fb(n̂)+k1+k2=k

(−1)n1+n2+n3+n5

×θ
[
− 2r4+rb

8

]
3

(
4τ,4

3∑
`=1

(
n`+

r4−r`
4

)
t`+4

(
nc+

r4

2

)
tc+(2−4(k−k2))ε1+(2−4(k−k1))ε2

)
×θ̆−2n1+nc+

r1
2

(t1)θ̆−2n2+nc+
r2
2

(t2)θ̆−2n3+nc+
r3
2

(t3)θ̆n1+n2+n3−2nc+
rc
2

(tc)

×θ̆−n1+n2+n3−nc+ r1+rc
2

(t1+tc)θ̆n1−n2+n3−nc+ r2+rc
2

(t2+tc)θ̆n1+n2−n3−nc+ r3+rc
2

(t3+tc)

×θ̆−n1−n2+n3+
r1+r2+rc

2

(t1+t2+tc)

×θ̆−n1+n2−n3+
r1+r3+rc

2

(t1+t3+tc)θ̆n1−n2−n3+
r2+r3+rc

2

(t2+t3+tc)

×θ̆−n1−n2−n3+nc+
r1+r2+r3+rc

2

(t1+t2+t3+tc)θ̆−nc+ r1+r2+r3+2rc
2

(t1+t2+t3+2tc)

×Ek1(t`+ε1R`, ε1, ε2−ε1)Ek2(t`+ε2R`, ε1−ε2, ε2) . (3.105)

Up to the common prefactor, each summand happens to be a meromorphic Jacobi form20

for Γ4 of the same weight 1/2 and index polynomial

Ind(r.h.s.) =
−2k + 1

2
(ε21 + ε22) + (k − 1)(2k − 1)ε1ε2 − 2k(a,a)d4 , (3.106)

which is independent of the summation indices ni, k1, k2 and thus so is the total sum.

19Recall ti = 〈αi,a〉.
20The same as footnote 17.
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On the other hand, if the blowup equation is of vanishing type, the l.h.s. of (3.31)

vanish; if the blowup equation is of unity type, we have r = (0, 0, 0, 0, 0, rb), and after

plugging in the expression of Λ, we find the l.h.s. of (3.31) to be

l.h.s. =

(
Q

1/2
τ

Q1Q2Q3Q2
c

)2k

θ
[− rb8 ]
3 (4τ, 2ε1 + 2ε2)E(t`, ε1, ε2) , (3.107)

which is a meromorphic Jacobi form of the same weight and the same index (3.106). In

both cases, after multiplied with a common denominator, the recursion relations (3.31)

become identities of (weak) Weyl invariant Jacobi forms of identical weights and indices.

As in the case of SU(3) theory, these identities can be proved by checking that when the

correct r (table 2) are plugged in the first few terms in Qτ expansion are correct. For

instance, when k = 0 we find (3.105) indeed reduces to the computation of Λ in the unity

cases, and the identities (3.87), (3.93) in the vanishing cases. When k = 1, let us first

reparametrise the Kähler moduli by

mi = 〈ei,a〉 (3.108)

with the standard basis {ei} of R4, in which the root lattice of SO(8) is embedded, so that

the Weyl symmetry of SO(8) is more transparent. The variables mi are related to ti by

t1 = m1 −m2

t2 = m3 −m4

t3 = m3 +m4

tc = m2 −m3

t4 = τ −m1 −m2

. (3.109)

In the case of unity equations, fb(n̂) can only be 0 or 1. It has one set of solution n̂ =

(0, 0, 0, 0, 0) in the former case, and 24 sets of solutions in the latter case, which are

Î
(1)
b = {(−1, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 0, 0, 0, 1), (1, 0, 0, 0, 1), (1, 1, 0, 0, 1),

(1, 1, 1, 0, 1), (1, 1, 1, 1, 1) + permutations of first four entries} . (3.110)

Then the recursion relations (3.105), (3.107) become

θ
[− rb

8
]

3 (4τ,−2ε1 + 2ε2)E1(v, ε1, ε2 − ε1) + θ
[− rb

8
]

3 (4τ, 2ε1 − 2ε2)E1(v, ε1 − ε2, ε2) + I [− rb
8

]

= θ
[− rb

8
]

3 (4τ, 2ε1 + 2ε2)E1(v, ε1, ε2) , (3.111)

where

I
[− rb

8
]

1 =−
∑
i<j

∑
r=±1
s=±1

θ
[− rb

8
]

3 (4τ,4(rmi+smj)−2ε1−2ε2) η4

θ1(rmi+smj)θ1(rmi+smj−ε1)θ1(rmi+smj−ε2)θ1(rmi+smj−ε1−ε2)

×
∏
k 6=i
k 6=j

η4

θ1(mi±mk)θ1(mj±mk)
. (3.112)
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Here we define θ1(mi ± mk) as θ1(mi + mk)θ1(mi − mk). One can readily verify by the

first terms in the Qτ expansion and using the expression of E1 in (3.24) of [11]21 that the

identity (3.111) holds only when rb is even. The vanishing equations at k = 1 and the cases

of k ≥ 2 can be checked in a similar manner.

3.4.3 Recursion formula for elliptic genera

In the case of 6d SO(8) theory, there are four unity r fields. The corresponding Λ
(1)
k ,Λ

(2)
k are

• r1 = (0, 0, 0, 0, 0,−2)

Λ
(1)
k (r1) =

∑
n∈Z

Q
2n2+n+ 1

8
τ (q−2k+1

1 q2)2n+ 1
2 = θ

[ 1
4

]

3 (4τ,−(4k − 2)ε1 + 2ε2) , (3.113)

Λ
(2)
k (r1) =

∑
n∈Z

Q
2n2+n+ 1

8
τ (q1q

−2k+1
2 )2n+ 1

2 = θ
[ 1
4

]

3 (4τ, 2ε1 − (4k − 2)ε2) . (3.114)

• r2 = (0, 0, 0, 0, 0, 0)

Λ
(1)
k (r2) =

∑
n∈Z

Q2n2

τ (q−2k+1
1 q2)2n = θ3(4τ,−(4k − 2)ε1 + 2ε2) , (3.115)

Λ
(2)
k (r2) =

∑
n∈Z

Q2n2

τ (q1q
−2k+1
2 )2n = θ3(4τ, 2ε1 − (4k − 2)ε2) . (3.116)

• r3 = (0, 0, 0, 0, 0, 2)

Λ
(1)
k (r3) =

∑
n∈Z

Q
2n2−n+ 1

8
τ (q−2k+1

1 q2)2n− 1
2 = θ

[− 1
4

]

3 (4τ,−(4k − 2)ε1 + 2ε2) , (3.117)

Λ
(2)
k (r3) =

∑
n∈Z

Q
2n2−n+ 1

8
τ (q1q

−2k+1
2 )2n− 1

2 = θ
[− 1

4
]

3 (4τ, 2ε1 − (4k − 2)ε2) . (3.118)

• r4 = (0, 0, 0, 0, 0, 4)

Λ
(1)
k (r4) =

∑
n∈Z

Q
2n2−2n+ 1

2
τ (q−2k+1

1 q2)2n−1 = θ
[− 1

2
]

3 (4τ,−(4k − 2)ε1 + 2ε2) , (3.119)

Λ
(2)
k (r4) =

∑
n∈Z

Q
2n2−2n+ 1

2
τ (q1q

−2k+1
2 )2n−1 = θ

[− 1
2

]

3 (4τ, 2ε1 − (4k − 2)ε2) . (3.120)

In this case, the matrix MΛk constructed out of any three of the four unity r fields at any

base degree have non-vanishing determinant and is thus of full rank. For instance when

r1, r2, r3 are used, the leading order contribution to detMΛk is

detMΛk = (q1q2)−k(qk1 + qk2 + q2k
1 + q2k

2 + q2k
1 qk2 + qk1q

2k
2 )Q1/4

τ +O(Q5/4
τ ) . (3.121)

One can therefore invert MΛk to solve for Zk or Ek from the recursion relation.

21We need to multiply the expression in [11] by a factor of two.
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For instance, using the identity (3.111) with the unity r fields (0, 0, 0, 0, 0, 2), (0, 0, 0,

0, 0, 0), and (0, 0, 0, 0, 0,−2), we obtain the following expression for the one string elliptic

genus:

E1 =
∆[− 1

4
]I

[− 1
4

]

1 + ∆[0]I
[0]
1 + ∆[ 1

4
]I

[ 1
4

]

1

∆
, (3.122)

where ∆ is the determinant of the matrix θ
[− 1

4
]

3 (4τ,−2ε1 + 2ε2) θ
[− 1

4
]

3 (4τ, 2ε1 − 2ε2) θ
[− 1

4
]

3 (4τ, 2ε1 + 2ε2)

θ
[0]
3 (4τ,−2ε1 + 2ε2) θ

[0]
3 (4τ, 2ε1 − 2ε2) θ

[0]
3 (4τ, 2ε1 + 2ε2)

θ
[ 1
4

]

3 (4τ,−2ε1 + 2ε2) θ
[ 1
4

]

3 (4τ, 2ε1 − 2ε2) θ
[ 1
4

]

3 (4τ, 2ε1 + 2ε2)

 , (3.123)

and ∆[α] is the minor of θ
[α]
3 (4τ, 2ε1 + 2ε2). Here ∆ only has poles at ε1 = 0, ε2 = 0 and

ε1 − ε2 = 0. It is a Jacobi form of weight 3/2 and index (3ε21 − 2ε1ε2 + 3ε22)/2. The leading

order is Q
9/4
τ . The expressions of the elliptic genera for higher numbers of strings can be

similarly written down, although they are much more lengthy.

Before ending this subsection, let us mention an interesting phenomenon. In the case

of SO(8), the four theta functions

θ
[ 1
4

]

3 , θ
[0]
3 , θ

[− 1
4

]

3 , θ
[− 1

2
]

3 , (3.124)

enjoy a cyclic Z4 symmetry, as they are invariant under the shift of the upper characteristic

α→ α− 1/4. The matrix
θ

[ 1
4

]

3 (τ,z1) θ
[ 1
4

]

3 (τ,z2) θ
[ 1
4

]

3 (τ,z3) θ
[ 1
4

]

3 (τ,z4)

θ3(τ,z1) θ3(τ,z2) θ3(τ,z3) θ3(τ,z4)

θ
[− 1

4
]

3 (τ,z1) θ
[− 1

4
]

3 (τ,z2) θ
[− 1

4
]

3 (τ,z3) θ
[− 1

4
]

3 (τ,z4)

θ
[− 1

2
]

3 (τ,z1) θ
[− 1

2
]

3 (τ,z2) θ
[− 1

2
]

3 (τ,z3) θ
[− 1

2
]

3 (τ,z4)

 , with z1+z2+z3+z4 = 0 , (3.125)

which has S4 symmetry amongst the elliptic parameters and thus is an analogue of the

matrix MΛ1 of SU(3), has a vanishing determinant.

3.4.4 Solving refined BPS invariants

Here we compute the BPS invariants from the equations extracted from the exansion of

the blowup equations with respect to all Kähler moduli. We used the blowup equations

associated with the following r fields

(0, 0, 0, 0, 0, 2), (−2,−2, 0, 0, 2, 2), (−2, 2, 0, 0, 0, 0) + permutations of r1, r2, r3, r4 . (3.126)

We managed to compute all the BPS invariants up to total degree of d1 + d2 + d3 + d4 +

dc + db = 5 and list them in table 6. They satisfy the obvious permutation symmetry of

d1, d2, d3, d4. Therefore we only list the non-vanishing invariants with d1 ≤ d2 ≤ d3 ≤ d4

and omit those which can obtained by permuting these degrees. The other curve classes

that are not listed in the table all have vanishing BPS invariants. These invariants agree

with the results in the literature.
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Note that in addition there seems to be a curious symmetry between dc, db if both are

nonzero

Nd1,d2,d3,d4,dc,db
jL,jR

= Nd1,d2,d3,d4,db,dc
jL,jR

, dc, db 6= 0 . (3.127)

We trace this symmetry to fiber-base duality of D-type theories [45]. This can be under-

stood as follows. Starting with an affine D4 base, the central fiber (i.e. the fiber over the

central node in D̂4) is of affine SU(2) type. Switching the role of fiber and base, one obtains

an affine SU(2) base consisting of a (−4) and a (−1)-curve with the fiber over the (−4)

curve of affine D4 type. Decompactifying the −1 one arrives exactly at our present setup.

Thus what we have effectively done, when switching off all non-central nodes of D̂4 is to

swap the central node with the base curve. This is a remnant of the actual exact duality

where the (−1) curve has finite size.

We believe that BPS invariants of higher degree can be computed similarly given more

computing time and that the same symmetry will hold.

4 Reduction to blowup equations for 5d theories

We demonstrate here that the blowup equations for 6d gauge theories could be dimensinally

reduced to the blowup equations for 5d gauge theories.

We have seen in sections 2.5.1, 2.5.2 that the perturbative free energy of the 6d theory

is reduced to that of the 5d theory through the limit

lim′ : τ + c tm → −∞ , tm finite , (4.1)

with a model-dependent constant c. When applied to Z inst this limit is equivalent to

keeping finite terms in the limit Qτ = eτ → 0. The 6d one-loop partition function given

by (2.21) becomes

Z1-loop → PE

[
−

qR + q−1
R(

q
1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

) ∑
α∈∆+

e−α·a

]

=

∞∏
i,j=1

∏
α∈∆+

(
1− qi+1

1 qj+1
2 e〈α,a〉

)(
1− qi1q

j
2e〈α,a〉

)
. (4.2)

Using the formal identity

∞∏
n=0

(1− xqn) =
∞∏
n=1

(1− xq−n)−1 . (4.3)

The last line of (4.2) could be written as

∞∏
i,j=0

∏
α∈∆+

(
1− qitj+1e〈α,a〉

)−1 (
1− qi+1tje〈α,a〉

)−1
(4.4)

with

q = e−ε1 , t = eε2 (4.5)

which is precisely the 1-loop partition function of a 5d pure SYM theory [46].
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Furthermore, the partition function component Zk of the 6d gauge theory is identified

with the k-string elliptic genus by22

Zk(t, ε1, ε2) =

∏bn−3
2
c

i=0 Qn−2−2i
r+1−i

Q
n−2

2
τ

k

Ek(τ,m, ε1, ε2) . (4.6)

When reduced to 5d gauge theory by sending Qτ to 0, we recover 5d gauge instanton

partiton functions Z5d
k by [12, 38]23


∏bn−3

2
c

i=0 Qn−2−2i
r+1−i

Qn−2
τ

Qb = Q−(n−2)/2
τ Qell → q

Qk(n−2)/2
τ Ek → Z inst

k

(4.7)

such that

1 +

∞∑
k=1

Qkb Zk → 1 +

∞∑
k=1

qk Z inst
k . (4.8)

Here q is the gauge instanton fugacity related to the 5d mass paramter tm by q = etm . The

first line in the dictionary (4.7) is then consistent with the observation (2.28), (2.41).

These observations allow us to conclude that we can obtain the full partition function

of the 5d pure SYM theory from the partition function of the 6d gauge theory throug the

operation

Z5d(t, ε1, ε2) = lim′ Zdec(τ, tm, ε1, ε2)−1Z6d(T, ε1, ε2) , (4.9)

where Zdec(τ, tmε1, ε2) is the component that runs off in the limit (4.1), which is the expo-

nential of the extra piece in the perturbative free energy given by (2.30), (2.33) combined for

SU(3) and (2.43), (2.46) combined for SO(8) theories respectively. Here we use T for Kähler

moduli in 6d instead of t to stress that there is one more Kähler modulus in 6d theories.

We make it explicit that Zdec only depends on τ, tm and no other Kähler moduli. Besides,

we are free to twist the partition functions in the sense of (1.4) and put hats over Z5d, Z6d.

Then by multiplying both sides of the blowup equations for the 6d theory with an

inverse power of Zdec and taking the limit lim′, we get

lim′Λ6d(τ,ε1, ε2)Ẑ5d(t, ε1, ε2)

= lim′
∑

n∈Zr+1

(−1)|n|Bdec(τ, tm, ε1,2;n)Ẑ5d(t+ε1R, ε1, ε2−ε1)Ẑ5d(t+ε2R, ε1−ε2, ε2) (4.10)

where we have defined

Bdec(τ, tm, ε1,2;n) =
Zdec(τ, tm+ε1Rtm , ε1, ε2−ε1)Zdec(τ, tm+ε2Rtm , ε1−ε2, ε2)

Zdec(τ, tm, ε1, ε2)
. (4.11)

22This relation coincides with that in [38] when n = 3, 4. The discrepany for n > 4 is due to that Qb
defined in [38] is no longer the volume of a Mori cone generator.

23The discussion in section 5.4 of [38] is slightly inaccurate.
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As we will illustrate by the examples of SU(3) and SO(8) theories, if we expand Λ6d and

Bdec in terms of Qτ , and keep only the coefficients of the lowest power on both sides

of (4.10), we get the blowup equations for the 5d gauge theory

Λ5d(tm, ε1,2)Ẑ5d(t, ε1,2) =
∑
n∈Zr

(−1)|n|Ẑ5d(t+ε1R, ε1, ε2−ε1)Ẑ5d(t+ε2R, ε1−ε2, ε2) . (4.12)

Note that the dimension of n is reduced by 1 in the 5d blowup equations.

4.1 SU(3) model

In the case of 6d SU(3) model, we have concretely

lim′SU(3) = lim
τ+tm→−∞

= lim
t3+tb→−∞

, tm, tb finite . (4.13)

We take the Nekrasove partition function to be the partition function of the 5d gauge

theory. Zdec should include an extra piece from (2.29), and it reads

Zdec
SU(3)(t, ε1, ε2) = exp

(
−(τ + tm)3 − t3m

18ε1ε2
− (ε21 + ε22 + 3ε1ε2)(τ + tm)

8ε1ε2

)
(4.14)

Then

Bdec
SU(3) = exp

[
τ

(
3

2
n2

3 −
1

2
n3(r3 + r4) +

1

24
(r3 + r4)2

)
+ . . .

]
(4.15)

where the remaining pieces in the ellipses are linear in tm and εR and depend only on n3

but not on n1, n2. Clearing, depending on the value of r3 + r4, there are only one or two

integral values of n3 which minimize the power of Qτ . If we only keep the minimal power

of Qτ in (4.10), although we still sum n1, n2 over all integers, we only sum n3 over one or

two values. This is the reason the dimension of the summation index vector n is reduced

by 1 in the 5d blowup equations. In the case where n3 can take two values (this happens

when r3 + r4 = 6k+ 3, k ∈ Z), one 6d blowup equation splits to two 5d blowup equations.

Note that given the definition of R in (3.2), when we sum n ∈ Z in the blowup

equations, we are effectively summing 2R over all the r fields in the same equivalence

class. Therefore when dimensionally reducing blowup equations, we can get the equivalence

classes of r fields for the 5d theory simply by fixing the value of n3, as we prescribed above,

and deleting the entry r3 associated to t3.

This procedure also gives us immediately a way to compute Λ5d from Λ6d, which are

given in section 3.3.1

Λ
(nmin

3 )
5d (tm) = lim

τ+tm→−∞
Λ6d(τ)Bdec(τ, tm, ε1,2;nmin

3 )−1 , (4.16)

where nmin
3 is a value of n3 that minimizes the power of Qτ .

We list the 5d r fields reduced from 6d r fields as well as the corresponding Λ5d in

table 3. They are consistent with a direct compute with 5d blowup equations. Note that

Λ5d for the 5d unity r fields (2,−2,−3), (2,−2, 3), (−2, 2,−3), (−2, 2, 3) cannot be derived

by (4.16) though, and they are instead computed from 5d blowup equataions. They are also

notably pairwise identical as they should since they descend from the same 6d vanishing

blowup equations pairwise. Note that the last entry of 5d r field is rm related to rb by

rm = rb − r1 − r2 . (4.17)
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(r1, r2, r3, rb) (r1, r2, rm) Λ5d

(0, 0, 0,−1) (0, 0,−1) q
1/12
R

(0, 0, 0, 1) (0, 0, 1) q
−1/12
R

(0, 0, 0, 3) (0, 0,−3), (0, 0, 3) q
1/4
R , q

−1/4
R

(−2, 0, 2, 1) (2,−2,−3), (2,−2, 3) q
−3/4
R Q

1/3
m , q

−3/4
R Q

1/3
m

(0,−2, 2, 1) (−2, 2,−3), (−2, 2, 3) q
3/4
R Q

1/3
m , q

−3/4
R Q

1/3
m

(−2, 2, 0, 1) (−2, 2, 1) 0

(2,−2, 0, 1) (2,−2, 1) 0

(2, 0,−2, 1) (−2, 2,−1) 0

(0, 2,−2, 1) (2,−2,−1) 0

Table 3. Reduction of 6d r fields to 5d r fields and corresponding Λ5d for the SU(3) model. Unity

and vanishing r fields are colored in blue and green respectively.

4.2 SO(8) model

In the case of SO(8) model, we have

lim′SO(8) = lim
τ+ 1

2
tm→−∞

= lim
t4+ 1

2
tb→−∞

, tm, tb finite , (4.18)

as well as

Zdec
SO(8)(t, ε1, ε2) = exp

(
−(2τ + tm)3 − t3m

48ε1ε2
− (ε21 + ε22 + 3ε1ε2)(2τ + tm)

6ε1ε2

)
, (4.19)

which leads to

Bdec
SO(8) = exp

[
τ

(
2n2

4 −
2r4 + r6

2
n4 +

4r2
4 + r2

6 + 4r4r6

32

)
+ . . .

]
. (4.20)

The analysis is completely analogous as in the case of the SU(3) theory. The splitting of 6d

r fields to pairs of 5d r fields happens when 2r4 + r6 = 8k+ 4, k ∈ Z. We list the resulting

5d r fields and the corresponding Λ5d in table 4. Note that the last entry of 5d r field is

rm related to rb by

rm = rb − 2r1 − 2r2 − 2r3 − 4rc . (4.21)

5 Conclusion and discussion

In this paper, we consider the n = 3, 4 minimal 6d SCFTs in the tensor branch. These

theories are obtained by F-theory compactification on non-compact elliptic Calabi-Yau

threefolds. We demonstrate that the elliptic genera of these theories, which encode the

refined BPS invariants of the underlying Calabi-Yau threefolds, satisfy the generalized

blowup equations. Furthermore, we illustrate that the generalized blowup equations can

be used to solve the elliptic genera as well as the refined BPS invariants.
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(r1, r2, r3, r4, rc, rb) (r1, r2, r3, rc, rm) Λ5d

(0, 0, 0, 0, 0,−2) (0, 0, 0, 0,−2) q
1/3
R

(0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0) 1

(0, 0, 0, 0, 0, 2) (0, 0, 0, 0, 2) q
−1/3
R

(0, 0, 0, 0, 0, 4) (0, 0, 0, 0, 4), (0, 0, 0, 2,−4) q
−2/3
R , q

2/3
R

(−2, 0, 0, 2, 0, 0) (−2, 0, 0, 0, 4), (−2, 0, 0, 2,−4) 0, 0

(0,−2, 0, 2, 0, 0) (0,−2, 0, 0, 4), (0,−2, 0, 2,−4) 0, 0

(0, 0,−2, 2, 0, 0) (0, 0,−2, 0, 4), (0, 0,−2, 2,−4) 0, 0

(−2, 2, 0, 0, 0, 0) (−2, 2, 0, 0, 0) 0

(−2, 0, 2, 0, 0, 0) (−2, 0, 2, 0, 0) 0

(0,−2, 2, 0, 0, 0) (0,−2, 2, 0, 0) 0

(−2,−2, 0, 0, 2, 2) (−2,−2, 0, 2, 2) 0

(−2, 0,−2, 0, 2, 2) (−2, 0,−2, 2, 2) 0

(0,−2,−2, 0, 2, 2) (0,−2,−2, 2, 2) 0

(−2, 0, 0,−2, 2, 2) (−2, 0, 0, 2,−2) 0

(0,−2, 0,−2, 2, 2) (0,−2, 0, 2,−2) 0

(0, 0,−2,−2, 2, 2) (0, 0,−2, 2,−2) 0

Table 4. Reduction of 6d r fields to 5d r fields and the corresponding Λ5d for the SO(8) model.

Unity and vanishing r fields are colored in blue and green respectively.

We emphasize here that the generalized blowup equations is an extremely powerful tool

for computing the BPS invariants of non-compact Calabi-Yau threefolds. All the currently

existing techniques for computing BPS invariants in local geometry, being well established

and very powerful, have their limitations in terms of accessible geometries. The topological

vertex [42, 47, 48] is only applicable for toric geometries or generalizations thereof. The

holomorphic anomaly equations [49, 50] and the topological recursion [51–53] are useful

only if the mirror geometry is known, and in particular if the number of compact divisors

g,24 in the original geometry is low (g ≤ 2). The modular bootstrap [13, 33, 38, 54, 55] only

works if the Calabi-Yau is elliptic and is most efficient if there is no singular elliptic fiber

(see also [56]). On the other hand, the generalized blowup equations are more versatile

than any of these individual methods. They have been applied in toric geometries [34],

elliptic geometries (which are non-toric), and the cases where the number of compact

divisors is greater than two (this paper). Up to this moment, there does not seem to be

any restriction on the type of non-compact Calabi-Yau threefolds for which the generalized

blowup equations are applicable.

24If the mirror geometry can be reduced to a curve, this number is equal to the genus of the curve.
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Nevertheless, we have to point out that why the generalized blowup equations work still

remains a mystery. The only case where the blowup equations have a rigorous mathemati-

cal proof is when applied on the XN,m geometries [24]. A better mathematical or physical

understanding of the generalized blowup equations would be extremely desirable. For ex-

ample, what is the relation between blowup equations and refined holomorphic anomaly

equations? To anwser this question requires a non-holomorphic version of blowup equa-

tions. And what is the relation between blowup equations and refined topological vertex?

For 6d SCFTs, this may involves the recently proposed elliptic topological vertex [57].

Furthermore the moduli space of the topological string theory usually contains both geo-

metric and non-geometric phases. In this paper we only work deep in the geometric phase

around the large volume limit. It is an interesting problem to study the blowup equations

in the other phases of the moduli space as in [34]. Finally one could certainly push the

computation of the BPS invariants for an almost infinite range of non-compact Calabi-Yau

threefolds. The easiest targets and the most similar to what are studied here are those for

the remaining cases of minimal 6d SCFTs, the results of which we will report in companion

papers in the near future.
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A Useful identities

We collect some identities which are useful in the main text of the paper.

Using the triple product formula of θ1

θ1(τ, z) = iQ
1
12
τ Q

− 1
2

z η(τ)

∞∏
n=1

(
1−QzQn−1

τ

)(
1− Qnτ

Qz

)
, (A.1)

we can simplify the following plethystic exponentials which often appear in the evaluation

of vector multiplet contributions to the one-loop partition function

PE

[
Q

1−Qτ

]
=

∞∏
n=0

1

1−QQnτ
, (A.2)

and

PE

[(
Qz +

Qτ
Qz

)(
1

1−Qτ

)]
=

iQ
1
12
τ Q

− 1
2

z η(τ)

θ1(τ, z)
. (A.3)

In the following, we would like to present some elementary but useful formulas when

dealing with blowup equations. Denote

f(jL,jR)(q1, q2) =
χjL(qL)χjR(qR)(

q
1/2
1 − q−1/2

1

)(
q

1/2
2 − q−1/2

2

) (A.4)

which is the spin-related prefactor in the contribution to the one-loop partition function of

a multiplet with spin (jL, jR) (see for instance (2.16)). It satisfies the relations

f(jL,jR)(q
−1
1 , q−1

2 ) = f(jL,jR)(q1, q2) = f(jL,jR)(q2, q1) , (A.5)

f(jL,jR)(q
−1
1 , q2) = f(jL,jR)(q1, q

−1
2 ) = f(jR,jL)(q1, q2) . (A.6)

In the blowup equation this prefactor contributes by

Bl(jL,jR,R)(q1, q2) = f(jL,jR)(q1, q2/q1)qR1 + f(jL,jR)(q1/q2, q2)qR2 − f(jL,jR)(q1, q2) , (A.7)

where R = R · d ∈ 1
2Z is the entry of R associated to the Kähler modulus Qd multiplying

this prefactor. The checkerboard pattern (1.3) translates to the condition

2jL + 2jR + 1 ≡ 2R (mod 2) . (A.8)

It has been argued from the ε1, ε2 expansion of refined free energy and blowup equations [34]

that under this condition the apparent denominator of Bl(jL,jR,R)(q1, q2) can always be

factored out so that

Bl(jL,jR,R)(q1, q2) = finite series in q1, q2 . (A.9)

We call (A.9) fundamental identities. Note that since

Bl(jL,jR,−R)(q1, q2) = Bl(jL,jR,R)(q
−1
1 , q−1

2 ) , (A.10)

we only need to consider the cases with R ≥ 0.
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In the following, we present some frequently used instances of the fundamental identi-

ties for small spins.

• For (jL, jR) = (0, 0), R should be half integers. Then

Bl(0,0,R)(q1, q2) = −
∑
m,n≥0

m+n≤R−3/2

q
m+1/2
1 q

n+1/2
2 , R ≥ 1/2 . (A.11)

• For (jL, jR) = (1/2, 0), R should be integers. Then

Bl(1/2,0,R)(q1, q2) =


−

∑
m,n≥0

1≤m+n≤R

qm1 q
n
2 −

∑
m,n≥0

m+n≤R−3

qm+1
1 qn+1

2 , R ≥ 1 ,

−1 , R = 0 .

(A.12)

• For (jL, jR) = (0, 1/2), R should be integers. Then

Bl(0,1/2,R)(q1, q2) = −
∑
m,n≥0

m+n≤R−1

qm1 q
n
2 −

∑
m,n≥0

m+n≤R−2

qm+1
1 qn+1

2 , R ≥ 0 . (A.13)

As we have seen in the main text, the contribution of vector multiplets can always be

factorized as products of

TR(z) = PE

[
−
(
Bl(0,1/2,R)(q1, q2)Qz +Bl(0,1/2,−R)(q1, q2)

Qτ
Qz

)(
1

1−Qτ

)]
. (A.14)

Using (A.13) and (A.3) and assuming R ≥ 0, it can be written as

TR(z) =
∏

m,n≥0
m+n≤R−1

iQ
1/12
τ η (Qzq

m
1 q

n
2 )−1/2

θ1(z +mε1 + nε2)

∏
m,n≥0

m+n≤R−2

iQ
1/12
τ η

(
Qzq

m+1
1 qn+1

2

)−1/2

θ1(z + (m+ 1)ε1 + (n+ 1)ε2)

=
(
iQ1/12

τ Q−1/2
z

)R2

(q1q2)−
(R−1)R(R+1)

6 θ̆R(z) , (A.15)

where

θ̆R(z) =
∏

m,n≥0
m+n≤R−1

η

θ1(z +mε1 + nε2)

∏
m,n≥0

m+n≤R−2

η

θ1(z + (m+ 1)ε1 + (n+ 1)ε2)
. (A.16)

In the case of R < 0 we can use the above expression for −R with ε1,2 replaced by −ε1,2
or equivalently q1,2 replaced by 1/q1,2. In both cases, θ̆R(z) is a multivariate Jacobi form

of weight zero and index quadratic form

IndR
θ̆

(z) =−R
2z2

2
− (R−1)R(R+1)

3
z(ε1+ε2)− (R−1)R2(R+1)

12
(ε21+ε1ε2+ε22) . (A.17)
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B Refined BPS invariants

d= (d1,d2,d3,db) ⊕Nd
jL,jR

(jL, jR)

(0, 0, 1, 0) (0,1/2)

(0, 1, 1, 0) (0,1/2)

(1, 1, 2, 0) (0,1/2)

(1, 2, 2, 0) (0,1/2)

(2, 2, 3, 0) (0,1/2)

(0, 0, 0, 1) (0,0)

(0, 0, 1, 1) (0,1)

(0, 1, 1, 1) (0,0)⊕(0,1)

(0, 0, 2, 1) (0,2)

(1, 1, 1, 1) 3(0,0)⊕3(0,1)⊕(1/2,1/2)

(0, 1, 2, 1) (0,1)⊕(0,2)

(0, 0, 3, 1) (0,3)

(1, 1, 2, 1) 2(0,0)⊕4(0,1)⊕2(0,2)⊕(1/2,1/2)⊕(1/2,3/2)

(0, 2, 2, 1) (0,0)⊕(0,1)⊕(0,2)

(0, 1, 3, 1) (0,2)⊕(0,3)

(0, 0, 4, 1) (0,4)

(1, 2, 2, 1) 4(0,0)⊕7(0,1)⊕3(0,2)⊕2(1/2,1/2)⊕(1/2,3/2)

(1, 1, 3, 1) 2(0,1)⊕4(0,2)⊕2(0,3)⊕(1/2,3/2)⊕(1/2,5/2)

(0, 2, 3, 1) (0,1)⊕(0,2)⊕(0,3)

(0, 1, 4, 1) (0,3)⊕(0,4)

(0, 0, 5, 1) (0,5)

(2, 2, 2, 1) 13(0,0)⊕15(0,1)⊕6(0,2)⊕7(1/2,1/2)⊕3(1/2,3/2)⊕(1,1)

(1, 2, 3, 1) 2(0,0)⊕6(0,1)⊕6(0,2)⊕2(0,3)⊕(1/2,1/2)⊕2(1/2,3/2)⊕(1/2,5/2)

(1, 1, 4, 1) 2(0,2)⊕4(0,3)⊕2(0,4)⊕(1/2,5/2)⊕(1/2,7/2)

(0, 3, 3, 1) (0,0)⊕(0,1)⊕(0,2)⊕(0,3)

(0, 2, 4, 1) (0,2)⊕(0,3)⊕(0,4)

(0, 1, 5, 1) (0,4)⊕(0,5)

(0, 0, 6, 1) (0,6)

(0, 0, 2, 2) (0,5/2)

(1, 1, 1, 2) 2(0,1/2)⊕(0,3/2)

(0, 1, 2, 2) (0,3/2)⊕(0,5/2)

(0, 0, 3, 2) (0,5/2)⊕(0,7/2)⊕(1/2,4)

(1, 1, 2, 2) 3(0,1/2)⊕5(0,3/2)⊕3(0,5/2)⊕(1/2,1)⊕(1/2,2)

(0, 2, 2, 2) 2(0,1/2)⊕2(0,3/2)⊕2(0,5/2)⊕(0,7/2)

(0, 1, 3, 2) (0,3/2)⊕3(0,5/2)⊕2(0,7/2)⊕(1/2,3)⊕(1/2,4)

(0, 0, 4, 2) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕(1/2,4)⊕(1/2,5)⊕(1,11/2)

(1, 2, 2, 2) 12(0,1/2)⊕14(0,3/2)⊕8(0,5/2)⊕2(0,7/2)⊕2(1/2,0)⊕4(1/2,1)⊕3(1/2,2)⊕(1/2,3)

(1, 1, 3, 2) 2(0,1/2)⊕9(0,3/2)⊕13(0,5/2)⊕6(0,7/2)⊕(1/2,1)⊕4(1/2,2)⊕5(1/2,3)⊕2(1/2,4)⊕(1,5/2)⊕(1,7/2)

(0, 2, 3, 2) 2(0,1/2)⊕4(0,3/2)⊕5(0,5/2)⊕3(0,7/2)⊕(0,9/2)⊕(1/2,2)⊕(1/2,3)⊕(1/2,4)

(0, 1, 4, 2) (0,3/2)⊕3(0,5/2)⊕5(0,7/2)⊕3(0,9/2)⊕(1/2,3)⊕3(1/2,4)⊕2(1/2,5)⊕(1,9/2)⊕(1,11/2)

(0, 0, 5, 2) (0,5/2)⊕(0,7/2)⊕2(0,9/2)⊕2(0,11/2)⊕(1/2,4)⊕(1/2,5)⊕2(1/2,6)⊕(1,11/2)⊕(1,13/2)⊕(3/2,7)

(0, 0, 3, 3) (0,3)⊕(1/2,9/2)

(1, 1, 2, 3) (0,1)⊕2(0,2)⊕(0,3)

(0, 2, 2, 3) (0,0)⊕(0,1)⊕(0,2)⊕(0,3)⊕(0,4)

(0, 1, 3, 3) (0,2)⊕2(0,3)⊕(0,4)⊕(1/2,7/2)⊕(1/2,9/2)

(0, 0, 4, 3) (0,2)⊕(0,3)⊕2(0,4)⊕(0,5)⊕(0,6)⊕(1/2,7/2)⊕2(1/2,9/2)⊕2(1/2,11/2)⊕(1,5)⊕(1,6)⊕(3/2,13/2)

Table 5. BPS invariants of 6d n= 3 minimal model.
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d = (d1, d2, d3, d4, dc, db) ⊕Nd
jL,jR

(jL, jR)

(0, 0, 0, 1, 0, 0) (0, 1/2)

(0, 0, 0, 0, 1, 0) (0, 1/2)

(0, 0, 0, 1, 1, 0) (0, 1/2)

(0, 0, 1, 1, 1, 0) (0, 1/2)

(0, 1, 1, 1, 1, 0) (0, 1/2)

(1, 1, 1, 1, 1, 0) (0, 1/2)

(0, 1, 1, 1, 2, 0) (0, 1/2)

(0, 0, 0, 0, 0, 1) (0, 1/2)

(0, 0, 0, 1, 0, 1) (0, 1/2)

(0, 0, 0, 2, 0, 1) (0, 3/2)

(0, 0, 0, 3, 0, 1) (0, 5/2)

(0, 0, 0, 4, 0, 1) (0, 7/2)

(0, 0, 0, 0, 1, 1) (0, 3/2)

(0, 0, 0, 1, 1, 1) (0, 1/2)⊕ (0, 3/2)

(0, 0, 1, 1, 1, 1) 2(0, 1/2)⊕ (0, 3/2)

(0, 0, 0, 2, 1, 1) (0, 1/2)⊕ (0, 3/2)

(0, 1, 1, 1, 1, 1) 3(0, 1/2)⊕ (0, 3/2)

(0, 0, 1, 2, 1, 1) (0, 1/2)⊕ (0, 3/2)

(0, 0, 0, 3, 1, 1) (0, 3/2)⊕ (0, 5/2)

(0, 0, 0, 0, 2, 1) (0, 5/2)

(0, 0, 0, 1, 2, 1) (0, 3/2)⊕ (0, 5/2)

(0, 0, 1, 1, 2, 1) (0, 1/2)⊕ 2(0, 3/2)⊕ (0, 5/2)

(0, 0, 0, 2, 2, 1) (0, 1/2)⊕ (0, 3/2)⊕ (0, 5/2)

(0, 0, 0, 0, 3, 1) (0, 7/2)

(0, 0, 0, 1, 3, 1) (0, 5/2)⊕ (0, 7/2)

(0, 0, 0, 0, 4, 1) (0, 9/2)

(0, 0, 0, 3, 0, 2) (0, 5/2)

(0, 0, 0, 0, 1, 2) (0, 5/2)

(0, 0, 0, 1, 1, 2) (0, 3/2)⊕ (0, 5/2)

(0, 0, 1, 1, 1, 2) (0, 1/2)⊕ 2(0, 3/2)⊕ (0, 5/2)

(0, 0, 0, 2, 1, 2) (0, 1/2)⊕ (0, 3/2)⊕ (0, 5/2)

(0, 0, 0, 0, 2, 2) (0, 5/2)⊕ (0, 7/2)⊕ (1/2, 4)

(0, 0, 0, 1, 2, 2) (0, 3/2)⊕ 3(0, 5/2)⊕ 2(0, 7/2)⊕ (1/2, 3)⊕ (1/2, 4)

(0, 0, 0, 0, 3, 2) (0, 5/2)⊕ (0, 7/2)⊕ 2(0, 9/2)⊕ (1/2, 4)⊕ (1/2, 5)⊕ (1, 11/2)

(0, 0, 0, 0, 1, 3) (0, 7/2)

(0, 0, 0, 1, 1, 3) (0, 5/2)⊕ (0, 7/2)

(0, 0, 0, 0, 2, 3) (0, 5/2)⊕ (0, 7/2)⊕ 2(0, 9/2)⊕ (1/2, 4)⊕ (1/2, 5)⊕ (1, 11/2)

(0, 0, 0, 0, 1, 4) (0, 9/2)

Table 6. BPS invariants of 6d n = 4 minimal model.
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