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Universitat de Barcelona,

Mart́ı i Franquès 1, E-08028 Barcelona, Spain
cShanghai Center for Complex Physics, Department of Physics and Astronomy,

Shanghai Jiao Tong University,

Shanghai 200240, China
dTCM Group, Cavendish Laboratory, University of Cambridge,

JJ Thomson Avenue, Cambridge, CB3 0HE, U.K.

E-mail: tomas.andrade@physics.ox.ac.uk, amgg@sjtu.edu.cn,

bl360@cam.ac.uk

Abstract: We investigate the holographic dual of a probe scalar in an asymptotically

Anti-de-Sitter (AdS) disordered background which is an exact solution of Einstein’s equa-

tions in three bulk dimensions. Unlike other approaches to model disorder in holography,

we are able to explore quantum wave-like interference effects between an oscillating or

random source and the geometry. In the weak-disorder limit, we compute analytically

and numerically the one-point correlation function of the dual field theory for different

choices of sources and backgrounds. The most interesting feature is the suppression of the

one-point function in the presence of an oscillating source and weak random background.

We have also computed analytically and numerically the two-point function in the weak

disorder limit. We have found that, in general, the perturbative contribution induces an

additional power-law decay whose exponent depends on the distribution of disorder. For

certain choices of the gravity background, this contribution becomes dominant for large

separations which indicates breaking of perturbation theory and the possible existence of

a phase transition induced by disorder.

Keywords: AdS-CFT Correspondence, Duality in Gauge Field Theories, Holography and

condensed matter physics (AdS/CMT), Random Systems

ArXiv ePrint: 1711.10953

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2018)187

mailto:tomas.andrade@physics.ox.ac.uk
mailto:amgg@sjtu.edu.cn
mailto:bl360@cam.ac.uk
https://arxiv.org/abs/1711.10953
https://doi.org/10.1007/JHEP03(2018)187


J
H
E
P
0
3
(
2
0
1
8
)
1
8
7

Contents

1 Introduction 1

2 Setup 4

2.1 Geometry 4

2.2 Scalar field and equations of motion 5

3 Perturbative analytical calculation of one-point and two-point scalar cor-

relation functions 5

3.1 Zeroth order 5

3.2 Second order 7

3.2.1 Constant geometry 7

3.2.2 Oscillating geometries 9

3.2.3 Disordered geometries 15

3.2.4 Comments on other masses and correlated disorder 18

4 Numerical analysis 20

4.1 One-point correlation function 21

4.2 Two-point correlation function 23

5 Comparison with previous results in the literature 24

6 Conclusions and outlook 25

A Notes on random fields 27

A.1 Implementation 27

A.2 Cutoffs 28

A.3 Discrete 28

B Holographic renormalisation 29

C Boundary-to-bulk propagator and boundary two-point function 30

1 Introduction

Holographic dualities, that relate classical theories of gravity to strongly-coupled quantum

field theories, are now a forefront research area not only in high energy physics but also

in quantum information and condensed matter physics. In the latter, it is emerging as a

powerful tool to describe universal properties of strongly-correlated quantum systems. One

of the main challenges for the application of holographic techniques in this context is the
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description of disorder, which is ubiquitous in realistic systems and directly responsible for

a broad variety of phenomena ranging from momentum relaxation to quantum interference

leading to different forms of localization [1–5]. The introduction of disorder in gravity

backgrounds with a negative cosmological constant relevant for holography requires the

solution of spatially inhomogeneous Einstein’s equations, in general a difficult task.

Different approximation schemes have been proposed to make the problem technically

tractable while keeping some of the expected phenomenology related to the introduction

of disorder. For instance, momentum relaxation, a rather general consequence of any form

of disorder, can be achieved by adding a massless scalar [6–9] that depends linearly on the

boundary coordinates. Since the scalar field only couples to gravity through its derivatives,

translation invariance is broken by the background but the equations of motion are still

independent of the spatial coordinates which facilitates substantially the calculation, in

many cases analytical, of transport properties.

As was expected, the electrical conductivity is always finite and depends directly on

the strength of the translational symmetry breaking characterized by the slope, with re-

spect to the spatial coordinates, of the scalar field in the boundary. For weak momentum

relaxation, the electrical conductivity reproduces the expected phenomenology of Drude’s

model, which includes a peak at low frequencies, remnant of the broken translational sym-

metry, followed by a decay for higher frequencies. For stronger relaxation the Drude peak

is suppressed, leading to an incoherent ’bad-metal’ behaviour [10–13]. However even in

the limit of infinite relaxation no insulating behaviour is observed. Recently, models that

consider the coupling of the scalar field to the gravity and the Maxwell term managed

to reproduce a vanishing conductivity in the limit of infinite relaxation [14–16]. Yet, in

this limit the effective charge in these models vanish, so strictly speaking they cannot be

considered insulators. Other effective models of momentum relaxation in holography in-

clude the memory matrix formalism [17–20], helical and Q-lattices [21–23] and massive

gravity [24–27]. Similar results [28–34] have been obtained even for Maxwell fields with

a spatially oscillating chemical potentials in the boundary leading to inhomogeneous Ein-

stein’s equations. We note that effects such as localization are precluded by design since

a random but homogeneously distributed, and therefore delocalized, chemical potential is

an input in this approach.

Disorder has also been introduced at the level of the action by a random source coupled

to the dual conformal field theory operator [35, 36]. By using the replica trick, it is

possible to integrate out the random coupling resulting in a double trace deformation of

the non-disordered theory. For marginal perturbations, renormalization group techniques

suggest the existence of logarithmic corrections in the two-point correlation function that

spoils conformal symmetry. Interestingly, this is in agreement with the expected behavior

of certain two dimensional conformal field theories perturbed by disorder (see [37] and

references therein).

Another popular approach is to consider a random field in the boundary, in most cases a

random chemical potential (source) for gauge (scalar) fields, but neglecting the backreaction

in the gravity background (probe limit) [38–46]. Analytical attempts to go beyond this

probe limit have found logarithmic infra-red (IR) divergences in the gravity background,
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signaling the breakdown of perturbation theory [47, 48]. A resummation scheme for the

divergent expansion was proposed in [49–52] resulting in an averaged gravity background

with an emerging Lifshitz scaling symmetry, which was shown to be a generic feature

of marginal disordered deformations [53, 54]. For geometries with a horizon, the most

general result in this context is that of Gauntlett, Donos and collaborators [29, 55–59] who

found closed expressions for the dc conductivity and other averaged transport coefficients

in generic inhomogeneous backgrounds. As a direct consequence, bounds on the electric

and thermal conductivity were proposed [60–63].

The conclusion of this more direct approach is similar to the one from the phenomeno-

logical models of momentum relaxation discussed previously, namely, it is not possible to

reach an insulating state which is believed to be a distinctive feature of strong disorder in

condensed matter systems. Even simpler coherence effects such as weak-localization [64],

which are precursors of a metal-insulator transition, have not yet been clearly identified.

In this manuscript we propose a new approach to model disorder in holography which

has the potential to reproduce some of these coherent effects. We switch perspectives

and consider the effect of a disordered geometry with no horizon on a probe scalar field.

This is accomplished by considering a family of three dimensional random geometries that

solve Einstein’s equations exactly1 and neglecting the backreaction of the scalar in the

geometry. This family is indexed by a parameter which we take to be a random function of

the boundary coordinates. The scalar field feels the geometry as an effective inhomogeneous

coefficient in the equations of motion. This is reminiscent, though we cannot establish a

precise mapping, of a one-dimensional wave equation with a random refractive index [4, 5]

plus additional terms that control the evolution in the radial direction which are related

to interactions in the boundary.

According to the holographic dictionary, the geometry is dual to a strongly-coupled

disordered plasma living at the boundary, and the scalar field sources a boundary dual

operator. We investigate numerically and analytically the properties of this disordered

plasma by looking at one and two-point functions of this scalar operator. For the one-

point function our main result is the observation of coherence effects, due to interference

between an oscillating source and the random geometry, that, in some cases, leads to the

strong suppression of oscillations even for weak disorder. The contribution to the two-point

function for a weak random Gaussian geometry is still a power-law decay for large distances

with an exponent that depends on both the scalar mass and disorder correlations modeled

by a non-trivial power spectrum. In some cases, this correction becomes dominant for large

distances which suggests the breaking of perturbation theory and the possible transit of

the system to a new disorder-driven fixed point.

The manuscript is organized as follows. In the next section we introduce the geometry

we will be studying and discuss the equation of motion for the probe scalar. In section 3

we solve these equations analytically in the limit of a weak-disordered background. The

one and two-point functions of the dual operator are computed for different choices of

1The fact that we can find an exact solution of Einstein’s equations involving a free function is due to

the fact that all vacuum solutions are pure diffeomorphisms in three dimensions. The generalization to

higher dimensions would involve solving the equations numerically.
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both sources and inhomogeneous geometries. In section 4, we solve the equation of motion

by numerical techniques and compute in certain cases the one and two-point correlation

function of dual scalar. Section 5 is devoted to a comparison of our results with previous

approaches to disorder in holography. We conclude in section 6 with a summary of results

and ideas for future work. The appendices offer a wider discussion of technical points which

are used throughout the main body of the paper.

2 Setup

In this section we introduce our objects of study. First, we introduce a family of geometries

in d + 1 = 3 spacetime dimensions. This family is characterised by an arbitrary function

which we can take to be random. We next introduce a minimally coupled scalar field and

discuss its equation of motion and associated boundary conditions. The aim is to use this

field to probe the properties of the inhomogeneous geometry, which holographically can be

interpreted as a strongly-coupled disordered field theory.

2.1 Geometry

Solutions of the vacuum d+1-dimensional Einstein’s Equations with a negative cosmological

constant have been classified in the pioneering work of Fefferham and Graham [65, 66].

For d > 2, we can integrate Einstein’s Equations in a neighborhood of the boundary by

requiring that the Weyl tensor vanish. This condition constrains the boundary metric to be

conformally flat. However, in d = 2 the Weyl tensor vanishes exactly, leaving the conformal

class of the boundary metric arbitrary [67].

In this manuscript we will be mainly interested in the following family of metrics

defined by a global coordinate patch xa = (ρ, t, x) as

ds2 =
dρ2

4ρ2
+

1

ρ

(
−dt2 + dx2 + 2gtx(x)dtdx

)
, (2.1)

where gtx(x) is an arbitrary function of the boundary coordinate x. In line with our

discussion above, it is easy to check that this family satisfies Einstein’s Equations in d = 2

dimension with a negative cosmological constant for any gtx. In these coordinates, the

conformal boundary is located at ρ = 0 and the induced conformal metric g(0) is given by

ρds2|ρ=0 = −dt2 + dx2 + 2gtx(x)dtdx. The Poincare horizon is parametrized by ρ =∞.

From a holographic perspective, this space-time encodes the degrees of freedom of a

strongly-coupled field theory living on the boundary metric described above. However,

the dual stress tensor vanishes since this change in the boundary metric does not induce

sub-leading terms in the bulk metric. This resembles the situation we encounter in the

axion model of [7], where the marginal, spatially dependent, scalar sources do not excite

a vev. In the next sections we will be interested in studying the family of geometries

in eq. (2.1) for different choices of gtx. In particular, we will be interested in the case

where gtx(x) is a random Gaussian process, as introduced in appendix A. We will study

the dynamics of a minimally coupled scalar field as a way of probing the effects of the

disordered geometry. The aim is to get an insight into the nature of the strongly-coupled

disordered dual field theory.
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2.2 Scalar field and equations of motion

We consider a probe scalar field ψ of mass m minimally coupled to the geometry in eq. (2.1).

The equation of motion is given by (∆g −m2)ψ = 0, where the curved Laplacian can be

written in a chart xa as ∆g = 1√
−g∂a

(√
−g gab∂b

)
. Since ∂t is a killing vector for eq. (2.1),

we can restrict our attention to static configurations ψ = ψ(ρ, x). The equation of motion

thus reads

4ρ2∂2
ρψ − ρ

gtx∂xgtx
(1 + g2

tx)2
∂xψ + ρ

1

1 + g2
tx

∂2
xψ −m2ψ = 0. (2.2)

We are interested in solutions satisfying the following boundary conditions,

lim
ρ→∞

ψ(ρ, x) <∞, (2.3)

lim
ρ→0

ρ
ν−1
2 ψ(ρ, x) = s(x), (2.4)

where we have defined ν =
√

1 +m2. The first boundary condition assures regularity of the

solution at the Poincaré horizon ρ =∞. As discussed in appendix B, the second boundary

condition defines a field s(x) living in the boundary ρ = 0 with conformal dimension

∆− = 1 − ν. This field sources a dual boundary operator O(x) ∼ ρ−
ν+1
2 ψ of conformal

dimension ∆+ = 1 + ν.

Even for simple choices of gtx, eq. (2.2) remains largely intractable analytically. How-

ever when gtx is small we can compute perturbative corrections to the plain AdS3 result

analytically, helping us to build an intuition of the effects of the weakly disordered ge-

ometry. We will recur to numerical methods to test the analytical prediction and also to

explore the region of stronger disorder not accessible to an analytical treatment.

3 Perturbative analytical calculation of one-point and two-point scalar

correlation functions

In this section we study eq. (2.2) perturbatively for different choices of gtx. For convenience,

we will set m2 = −3
4 throughout this section, which is equivalent to choosing ν = 1

2 . Note

this choice respects the Breitenlohner-Freedman bound, m2 ≥ −1 in d = 2, [68, 69]. We

will divide our discussion by order in perturbation theory, and focus in two observables: the

expectation value of the dual boundary operator (one-point function) and the two-point

function. We can obtain both these quantities by solving the perturbative equations with

the appropriate boundary conditions.

3.1 Zeroth order

To set up the perturbative analysis, let gtx(x) = ε g(x) for a parameter ε � 1 measuring

the amplitude of gtx fluctuations. For ε = 0, eq. (2.2) reduces to the equation of a massive

scalar field in AdS3 given by

4ρ2∂2
ρψ(0) + ρ∂2

xψ(0) +
3

4
ψ(0) = 0. (3.1)
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Letting ψ(0)(ρ, x) =
∫
R

dk
2πe

ikxfk(ρ), the equation above reduces to

4ρ2f ′′k −
(
ρk2 − 3

4

)
fk = 0, (3.2)

which has general solution

fk(ρ, x) = akρ
1/4e−k

√
ρ + bkρ

1/4ek
√
ρ. (3.3)

Regularity at the Poincaré horizon eq. (2.3) requires that ak = 0 for k < 0 and bk = 0 for

k > 0, which can be written compactly as fk(ρ) = akρ
1/4e−|k|

√
ρ for a different constant ak.

Now letting s(x) =
∫
R

dk
2πe

ikxsk, boundary condition eq. (2.4) can be imposed coefficient

wise to yield ak = sk. The full solution therefore reads

ψ(0)(ρ, x) = ρ1/4

∫
R

dk

2π
eikxe−|k|

√
ρsk. (3.4)

Note that this depends directly on the Fourier components of the source. We are interested

in a few particular cases that we outline below.

Constant source If s(x) = s =
∫
R

dk
2πe

ikx2πδ(k)s is constant, we have ψ(0)(ρ, x) =

ρ1/4s. This sources a dual boundary operator with expectation value 〈O(x)〉 =

2ν lim
ρ→0

ρ−
ν+1
2 ψ(0) = 0.

Oscillating source If s(x) = s cos qx = s
∫
R

dk
2πe

ikxπ [δ(k − q) + δ(k + q)] for q ∈ R, we

have ψ(0)(ρ, x) = sρ1/4e−|q|
√
ρ cos qx. This sources a dual boundary operator with

expectation value given by 〈O(x)〉 = −s|q| cos qx.

Superposition of oscillations Consider now a source given by a superposition of N

oscillating modes s(x) =
N∑
n=1

sn cos(qnx + γn), where sn, qn and γn can be freely

chosen. Noting that the finite sum can be exchanged with the integral and following

the same steps as above mode-wise we find ψ(0)(ρ, x) = ρ1/4
N∑
n=1

sne
−|qn|

√
ρ cos(qnx+

γn). The one-point function thus reads 〈O(x)〉 = −
N∑
n=1

sn|qn| cos(qnx+ γn).

Delta source and two-point function As discussed in appendix C, the boundary-to-

bulk propagator is given by solving the equations of motion with a delta source,

s(x) = δ(x) =
∫
R

dk
2πe

ikx. We thus have,

K(0)(ρ, x− y) = ρ1/4

∫
R

dk

2π
eik(x−y)e−|k|

√
ρ =

1

π

ρ3/4

(x− y)2 + ρ
. (3.5)

which follows the shape of a Lorentzian (or Cauchy) distribution. Following the

discussion in appendix B, the boundary two-point function can be obtained by

〈O(x)O(y)〉 = 2ν lim
ρ→0

ρ−
1+ν
2 K(0)(ρ;x− y) =

1

π

1

(x− y)2
. (3.6)
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Note this is not the expected result for an operator of conformal dimension 2∆+ =

3 but rather for an operator of conformal dimension 2∆+ = 2. This is because,

by considering a static field, we effectively reduce the conformal dimension of the

problem. Since we will be interested in static inhomogeneous configurations in what

follows, this is the object we will be computing corrections for.

3.2 Second order

Note that since gtx appears only quadratically in eq. (2.2), there are no non-trivial order

one corrections to ψ(0). It is thus sufficient to consider ψ = ψ(0) + ε2ψ(2) +O(ε4). Inserting

into eq. (2.2) and expanding up to second order leads to

4ρ2∂2
ρψ(2) + ρ ∂2

xψ(2) +
3

4
ψ(2) = ρ g(x)2∂2

xψ(0) + ρ g(x)∂xg(x)∂xψ(0). (3.7)

Note that the zeroth order solution act as a source for the perturbative correction. Since

the full solution has to satisfy the boundary conditions, we have to apply them order by

order. For instance every term in the ε-expansion has to be regular at the Poincaré horizon.

However since we have enforced boundary condition eq. (2.4) at zeroth order, we have to

set lim
ρ→0

ρ
ν−1
2 ψ(2) = 0 for the inhomogeneous geometry not to correct the fixed boundary

source s(x). Summarizing, we have to solve eq. (3.7) subjected to

lim
ρ→∞

ψ(2)(ρ, x) <∞, (3.8)

lim
ρ→0

ρ
ν−1
2 ψ(2)(ρ, x) = 0. (3.9)

If gtx is of Schwarz class, we can attempt to solve eq. (3.7) in Fourier space as we did for

the zeroth-order result. Letting ψ(2)(ρ, x) =
∫
R

dk
2πe

ikxfk(ρ) and g(x) =
∫
R

dk
2πe

ikxgk, we can

rewrite eq. (3.7) in Fourier space as

4ρ2f ′′k −
(
ρk2 − 3

4

)
fk = −ρ

5/4

2

∫
R

dl

∫
R

dq (k − l)(2k − l)e−|k−l|
√
ρgl−qgqsk−l (3.10)

where the right-hand side has been evaluated applying the convolution theorem with the

zeroth order solution eq. (3.4).2 This integral-differential equation cannot be solved in a

closed form. In the following subsections we discuss solutions for specific inhomogeneous

configurations. For each choice of g, we can consider different choices of source and study

the interplay between the source, the geometry and the resulting expectation value and

two-point function of the dual boundary operator.

3.2.1 Constant geometry

The simplest example is given by taking g(x) = 2π g to be a constant. In this case

gk = gδ(k) and for generic source

4ρ2f ′′k −
(
ρk2 − 3

4

)
fk = −ρ5/4k2e−|k|

√
ρskg

2. (3.11)

2Note that the convolution representation is not unique, but all representations are equivalent up to a

translation in the momentum integration.
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Note that the linear differential operator on the left-hand side is exactly the same as for

the zeroth-order equation. This is generic and hold at all orders in perturbation theory.

The only difference is the source term on the right-hand side. By linearity, the general

solution will be a linear combination of the solution for the homogeneous equation plus a

particular solution. As before, the homogeneous solution has one exponentially diverging

piece which should be set to zero by regularity at the Poincaré horizon. This leads to

fk(ρ) = akρ
1/4e−|k|

√
ρ +

g2

4
ρ1/4e−|k|

√
ρ (1 + 2|k|√ρ) sk, (3.12)

where ak is an integration constant. Close to the boundary ρ = 0, the solution behaves as

fk(ρ) ∼
ρ=0

(
ak +

g2

4
sk

)
ρ1/4 +O

(
ρ3/4

)
, (3.13)

and therefore boundary condition eq. (3.9) imposes ak = −g2

4 sk. Finally, we can write

ψ(2)(ρ, x) =
1

2
ρ3/4g2

∫
R

dk

2π
eikx|k|e−|k|

√
ρsk. (3.14)

As in the zeroth-order solution, we discuss below a few cases of interest.

Constant source Let s(x) = s be a constant. Inserting in the above leads trivially to

ψ(2)(ρ, x) = 0. Therefore the off-diagonal constant metric does not affect the zeroth

order boundary one-point function.

Oscillating source Let s(x) = s cos qx. Inserting in the above leads to

ψ(2)(ρ, x) =
ρ3/4g2

2
|q|e−|q|

√
ρs cos qx.

At the boundary ρ = 0 this induces a correction to the zeroth-order one-point function

which is proportional to g,

〈O(x)〉 = −|q|
(

1− ε2

2
g2 +O(ε4)

)
s cos qx. (3.15)

Superposition of oscillations Let s(x) =
N∑
n=1

sk cos (qnx+ γn). This case is similar to

the above, since we can integrate term by term in the sum to give,

ψ(2)(ρ, x) = ρ3/4 g
2

2

N∑
n=1

|qn|e−|qn|
√
ρsn cos(qnx+ γn).

The correction to the boundary one-point reads

〈O(x)〉 = −
N∑
n=1

|qn|
(

1− ε2

2
g2 +O(ε4)

)
sn cos(qnx+ γn). (3.16)

Again, it represents just a renormalization of the amplitude of the zeroth one-point

function.
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Delta source and two-point function Recall that, as discussed in the previous sec-

tion and in the appendix C that the boundary-to-bulk propagator K(ρ;x, y) can

be computed by solving the equations of motion with s(x) = δ(x). We thus have

K(2)(ρ;x) = g2

2πρ
3/4 x2−ρ

(ρ+x2)2
. Evaluating at the boundary leads to a correction to the

first zeroth-order two-point function,

〈O(x)O(y)〉 =

(
1− ε2

2
g2 +O(ε4)

)
1

π

1

|x− y|2
. (3.17)

Note that for all the cases above the constant off-diagonal metric element perturba-

tively decreases the amplitude of the boundary one-point function and two-point function.

Since in perturbation theory the equations are linear this case can be interpreted as the

mean result for a inhomogeneous geometry. The amplitude damping raises the question on

whether in a non-perturbative setup the geometry can effectively suppress the boundary

correlation functions.

3.2.2 Oscillating geometries

We now consider a generic superposition of N oscillating modes, g(x) =
N∑
n=1

Ane
iωnx for

ωn ∈ R. For example, an interesting particular case is ω1 = −ω2 = ω, A1 = A2 = g
2 and

An = 0 for n > 2 which correspond to g(x) = g cosωx. The Fourier modes are given by

a Dirac comb gk =
N∑
n=1

Anδ(k − ωn) and for a generic source the equations of motion in

Fourier space read,

4ρ2f ′′k −
(
ρk2 − 3

4

)
fk =− ρ5/4

N∑
n=1

N∑
m=1

AnAm(k − ωn − ωm)(2k − ωn − ωm)×

× e−|k−ωn−ωm|
√
ρsk−ωn−ωn . (3.18)

By linearity, we can solve the equation above term by term. The regular solution at the

Poincaré horizon is given by the homogeneous solution eq. (3.3) plus the sum of each

individual particular solution

fk(ρ) =
ρ1/4

2

N∑
n=1

N∑
m=1

AnAm
k − ωn − ωm
ωn + ωm

[
e−|k−ωn−ωm|

√
ρ − e−|k|

√
ρ
]
sk−ωn−ωm . (3.19)

Taking the Fourier transform, we arrive at an implicit solution for the generic source

ψ(2)(ρ, x) =
ρ1/4

2

N∑
n=1

N∑
m=1

AnAm
ωn + ωm

∫
R

dk

2π
eikx(k − ωn − ωm)

[
e−|k−ωn−ωm|

√
ρ − e−|k|

√
ρ
]
×

× sk−ωn−ωm . (3.20)

As before, we now analyse some interesting particular cases where the above integral can

be done explicitly.
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0 ω 2ω
+ − −

Figure 1. Sign of the relative correction ∆(x) for different q ≥ 0 and fixed ω.

Constant source Let s(x) = s be a constant, i.e. sk = δ(k). As before, the above integral

trivially gives ψ(2) = 0. There are no corrections to the boundary dual operator.

Plane wave source Let s(x) = seiqx, i.e. sk = sδ(k − q). The Fourier transform is

given by

ψ(2)(ρ, x) = ρ1/4seiqx
q

2

N∑
n=1

N∑
m=1

AnAm
ωn + ωm

ei(ωn+ωm)x
[
e−|q|

√
ρ − e−|ωn+ωm+q|√ρ

]
.

(3.21)

Close to the boundary, this gives a correction to the dual one-point function

δ〈O(x)〉 = seiqx
q

2

N∑
n=1

N∑
m=1

AnAm
ωn + ωm

ei(ωn+ωm)x (|ωn + ωm + q| − |q|) . (3.22)

There are a couple of particular cases of special interest,

• g(x) = ge−iωx (A1 = g, ω1 = −ω, all other zero):

〈O(x)〉 = −q
(

1− ε2

4ω
(|q − 2ω| − |q|) g2e−2iωx

)
seiqx,

= −q
(

1− ε2

4ω
(|q − 2ω| − |q|) g(x)2

)
s(x). (3.23)

Consider q, ω ≥ 0 and define the relative correction ∆(x) = δ〈O〉
〈O〉(0)

, where 〈O〉(0)

is the zeroth order one-point result. We can identify three distinct regimes.

For q > 2ω, the relative correction to the one-point function is positive and

simply proportional to the geometry ∆(x)q≥2ω = − ε2

2 g(x)2 = −1
2gtx(x)2, while

for q < 2ω the result depends explicitly on the relative strength of the modes,

∆(x)q<2ω = − ε2

2

( q
ω − 1

)
g(x)2 = −1

2( qω−1)g2
tx. For q < ω the relative correction

will be positive, while in the window ω < q < 2ω it becomes negative. Therefore

the inhomogeneous geometry can either suppress (q > ω) or enhance (q < ω)

the expectation value of the dual operator, depending on the coherence between

the modes. The discussion is summarized in figure 1.

• g(x) = g cosωx (A1 = A2 = 1
2g, ω1 = −ω2 = ω, all other zero):

By linearity, this case can be obtained by summing the above with the reversed

q → −q. The relative correction ∆(x) = δ〈O〉
〈O〉(0)

is given by

∆(x) = −ε2 g
2

8

[
|q + 2ω| − |q|

2ω
e2iωx − |q − 2ω| − |q|

2ω
e−2iωx + 2

]
. (3.24)
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Note that, different from the above in general it is not possible to rewrite the

relative correction as an explicit function of the geometry. First, lets consider

the case q, ω ≥ 0. Then q + 2ω ≥ 0 and we have two subcases: q ≥ 2ω and

q < 2ω. These are given by

∆(x)q≥2ω = −ε
2

4
g2 (cos 2ωx+ 1) = −ε

2

4
g2 cos2 ωx = −1

2
g2
tx (3.25)

∆(x)q<2ω = −ε
2

8
g2
[
e2iωx +

( q
ω
− 1
)
e−2iωx + 2

]
(3.26)

The two modes e2iω and e−2iω can interfere constructively or destructively de-

pending on the relative sign of q and ω. Note that the correction is symmetric

under ω → −ω as expected. The q, ω < 0 case is similar up to a change of sign.

Oscillating source We now build on the previous results to analyze more intricate cases.

Let s(x) = s cos qx. Linearity of eq. (3.20) together with the example above can be

used to get the following correction,

δ〈O(x)〉 = ε2s
q

4

N∑
n=1

N∑
m=1

AnAm
ωn + ωm

[
ei(ωn+ωm+q)x (|ωn + ωm + q| − |q|) +

− ei(ωn+ωm−q)x (|ωn + ωm − q| − |q|)
]
. (3.27)

Consider the particular subcases:

• g(x) = g cosωx (A1 = A2 = 1
2g, ω1 = −ω2 = ω, all other zero). The correction

can be conveniently rearranged to give

δ〈O(x)〉 = ε2q
g2s

4

[
|q + 2ω| − |q|

2ω
cos ((2ω + q)x)

− |q − 2ω| − |q|
2ω

cos ((q − 2ω)x) + cos qx

]
, (3.28)

which is, as expected, a real result. However note that the source modes are

now coupled with the geometry. We can still write the relative correction ∆(x)

by dividing by the source, and being careful to take into account that when the

source vanishes the result is zero and not divergent.

∆(x) = −ε2 g
2

4

[
|q+2ω| − |q|

2ω

cos ((2ω+q)x)

cos qx
− |q−2ω|−|q|

2ω

cos ((q−2ω)x)

cos qx
+1

]
.

(3.29)

This can be analyzed as before, giving

∆(x)q≥2ω = −ε2 g
2

4

[
cos ((2ω + q)x)

cos qx
+

cos ((q − 2ω)x)

cos qx
+ 2

]
= ε2

g2

4
[cos 2ωx+ 1] =

1

2
g2
tx, (3.30)

∆(x)q<2ω = −ε2 g
2

4

[
cos ((2ω + q)x)

cos qx
+
( q
ω
− 1
) cos ((2ω − q)x)

cos qx
+ 1

]
. (3.31)
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Interestingly, as with all the examples we considered above, the relative cor-

rection for the case q > 2ω factors into a contribution that only depends on

the underlying geometry. This can be interpreted intuitively as follows. If the

wavelength of the source (∝ q−1) is much smaller than the wavelength of the

geometry, the dual operator will not ’feel’ the inhomogeneity, leading to a cou-

pling similar to the constant geometry case discussed in section 3.2.1. In figure 2

we plot the correction for different configurations of (ω, q) and inhomogeneity

strength ε.

• g(x) =
N∑
n=1

An cosωnx. This polychromatic case is a direct extension of the

above. It can be obtained by taking N → 2N and taking An → 1
2An for

n = 1, . . . , 2N , ωn → ωn for n = 1, . . . , N and finally ωn → −ωn for n =

N + 1, . . . , 2N . By carefully splitting the sum and rearranging the terms, we

get ∆(x) = ∆>(x) + ∆<(x) with

∆>(x) =− ε2

8

N∑
n=1

N∑
m=1

AnAm

[
|ωn + ωm + q| − |q|

ωn + ωm

cos ((ωn + ωm + q)x)

cos qx

−|ωn + ωm − q| − |q|
ωn + ωm

cos ((ωn + ωm − q)x)

cos qx

]
,

∆<(x) =− ε2

8

N∑
n=1

N∑
m=1

AnAm

[
|ωn − ωm + q| − |q|

ωn − ωm
cos ((ωn − ωm + q)x)

cos qx

−|ωn − ωm − q| − |q|
ωn − ωm

cos ((ωn − ωm − q)x)

cos qx

]
. (3.32)

Note that since both terms are symmetric under the exchange n ↔ m,

we can split the sum into a diagonal and an upper diagonal part,
∑
n,m

=∑
1≤n≤N

+2
∑

1≤m<n≤N
. The expressions can suggest that the diagonal part in ∆<

diverges. However this is not the case, since the denominators also vanish, and

we have to take the limit carefully.

This polychromatic case is of particular interest since it can be used to simulate

a discrete representation of disorder, as discussed in appendix A. Defining ∆ω =
π
Na for some constant lattice spacing a > 0 and letting An =

√
∆ω, ωn = n∆ω

for n = 1, . . . , N and adding random phases i.i.d. uniformly γ ∈ [0, 2π) in the

cosine arguments, g(x) become a discrete representation of the Gaussian random

process for large N � 1. As we will discuss in the next section, continuous

disorder is more subtle, and we have to take the average at an early stage to

make progress. Moreover, it is harder to implement it numerically since it can

usually have discontinuous derivatives. For these reasons, this implementation

is a useful representation and is specially suited for holography calculations,

having been used in many previous works in the literature [42, 49, 54]. In this

case all modes ωn are positive, and we can assume without loss of generality

that q > 0. For convenience, we separate the sum in the correction in a diagonal
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Figure 2. Expectation value of the boundary operator O eq. (3.30) for source s(x) = cos qx and

inhomogeneous geometry g(x) = cosωx with different configurations of (q, ω).

and a non-diagonal part, ∆ = ∆d + ∆nd with

∆d(x) =− ε2

4

N∑
n=1

A2
n

[
2− |2ωn − q| − |q|

2ωn

cos ((2ωn − q)x+ 2γn)

cos qx
+

+
cos ((2ωn + q)x+ 2γn)

cos qx

]
(3.33)

∆nd =− ε2

4

∑
1≤m<n≤N

AnAm
cos qx

[
cos
(
(ω−nm + q)x+ γn − γm

)
+

+ cos
(
(ω+
nm + q)x+ γn + γm

)
+

− |ω
+
nm − q| − |q|

ω+
nm

cos
(
(ω+
nm − q)x+ γn + γm

)
+

− |ω
−
nm − q| − |q|

ω−nm
cos
(
(ω−nm − q)x+ γn − γm

) ]
. (3.34)

where for convenience we abbreviated ω±nm = ωn ± ωm. Note that only the

constant term in the diagonal part survives averaging over the i.i.d. phases γn
as discussed following eq. (A.5) in appendix A. As expected, we reproduce the

results for the constant geometry in section 3.2.1 on average. In figure 3 we plot

the expectation value of the dual operator for N = 10 modes and fixed source

q =
√

2 for a fixed realization of phases.

Delta source and two-point function We now consider the case sk = 1 that leads to

the corrections to the boundary-to-bulk propagator K. The integral eq. (3.20) can

– 13 –
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Figure 3. Expectation value of the boundary operator O eq. (3.33) for source s(x) = cos
√

2x

and discrete implementation of a disordered geometry g(x) =
N∑
n=1

An cos (ωnx+ γn) for different

amplitudes of disorder.

be done explicitly,

K(2)(ρ;x) =
ρ1/4

2

N∑
n,m=1

AnAm
ωn + ωm

∫
R

dk

2π
(k − ωn − ωm)

(
e−|k−ωn−ωm|

√
ρ − e−|k|

√
ρ
)
eikx,

=
1

2π

ρ3/4

x2 + ρ

N∑
n,m=1

AnAm

[
1−

4ei
(ωn+ωm)x

2 sin (ωn+ωm)x
2

ωn + ωm

x

x2 + ρ

]
. (3.35)

Recall that the two-point function of the dual boundary operator is obtained by

evaluating the boundary-to-bulk propagator at the boundary. Recalling that the

zeroth order result is given by 1
πx2

, this yields to a relative correction to two-point

function given by

δ〈O(x)O(0)〉
〈O(x)O(0)〉(0)

=
ε2

2

N∑
n,m=1

AnAm

[
1−

4ei
(ωn+ωm)x

2 sin (ωn+ωm)x
2

(ωn + ωm)x

]
. (3.36)

Note that both terms are symmetric over n↔ m. Thus we can split the sum into a

diagonal term and a term where n < m,

δ〈O(x)O(0)〉
〈O(x)O(0)〉(0)

=
ε2

2

N∑
n=1

A2
n

(
1− 2eiωnx sinωnx

ωnx

)
+

+ ε2
∑

1≤n<m≤N
AnAm

(
1−

4ei
(ωn+ωm)x

2 sin (ωn+ωm)x
2

(ωn + ωm)x

)
. (3.37)

Consider the following interesting examples,

• g(x) = g cosωx.

In this case we simply have

δ〈O(x)O(0)〉
〈O(x)O(0)〉(0)

= −ε2 g
2

2

sin 2ωx

2ωx
, (3.38)
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Figure 4. Two-point function 〈O(x)O(0)〉 = 〈O(x)O(0)〉(0) + ε2δ〈O(x)O(0)〉 for the oscillating

geometry gtx = ε cosωx, from eq. (3.38). On the left, we fix the frequency and plot different

amplitudes of ε, on the right we fix ε and plot different frequencies, in a log-log scale.

which is proportional to a sinc function. Recall that we are looking at cor-

relations of the point x with the origin. Thus the correction induced by the

oscillating geometry suppress correlations of points closer to the origin. Note

that for ω � 1, the peak is sharper, while for ω � 1 it is broader. Thus the

bigger the wavelength of the inhomogeneous geometry, the less is the correction

localized at x = 0, see figure 4. We can check that the limit ω → 0 reduces to

the constant case discussed in section 3.2.1.

• g(x) =
N∑
n=1

An cos (ωnx+ γn).

The result above can be easily generalized for many modes. Following the dis-

cussion in for the single cosine source, we have:

δ〈O(x)O(0)〉
〈O(x)O(0)〉(0)

=
ε2

4

N∑
n=1

N∑
m=1

AnAm

[
1− sin (ω+

nmx+ γn − γm)

ω+
nmx

− sin (ω−nmx+ γn − γm)

ω−nmx

]
,

=
ε2

4

N∑
n=1

A2
n

[
1− sin(2ωnx+ 2γn)

2ωnx

]
(3.39)

+
ε2

2

∑
1≤m<n≤N

AnAm

[
1− sin (ω+

nmx+γn−γm)

ω+
nmx

− sin (ω−nmx+γn−γm)

ω−nmx

]
.

Interestingly this discrete random process has mean zero.

3.2.3 Disordered geometries

We now study the case where g(x) is a centered random Gaussian field. As discussed in

appendix A, we can decompose g in its spectral modes g(x) =
∫
R

dk
2πgke

ikx, with gk also given

by a centered Gaussian process with E[gk] = 0 and E[gkgl] = g2δ(k − l). Equation (3.10)

becomes a stochastic integro-differential equation, and is still intractable. However since

it depends on the square of the geometry we can consider its non-trivial average. Defining
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f̄k = E[fk] and averaging over g yield

4ρ2f̄ ′′k −
(
ρk2 − 3

4

)
f̄k = −ρ5/4g2

∫
R

dq (k − 2q)(k − q)e−|k−2q|√ρsk−2q,

= −ρ
5/4g2

4

∫
R

dl l(k + l)e−|l|
√
ρsl. (3.40)

As before, the constant source case give a trivial result. We now analyze non-trivial settings.

Plane wave source Let s(x) = seiqx with q > 0. Integrating eq. (3.40) gives

4ρ2f̄ ′′k −
(
ρk2 − 3

4

)
f̄k = −1

4
ρ5/4g2sq(k + q)e−|q|

√
ρ. (3.41)

The solution satisfying boundary conditions eq. (3.8) and (3.9) is given by

f̄k(ρ) =
1

4
ρ1/4g2s

q

k − q

[
e−|q|

√
ρ − e−|k|

√
ρ
]
. (3.42)

Note that the case k = q can be treated by taking the limit of the above. Fourier

transforming back,

ψ̄(2)(ρ, x) =

∫
R

dk

2π
eikxf̄k(ρ)

=
1

4
ρ1/4g2seiqx

[
e−|q|

√
ρE1 (iqx− q√ρ)− e|q|

√
ρE1 (iqx+ q

√
ρ)
]
. (3.43)

The correction to the one-point function is given by

∆(x) =
δ〈O〉
〈O〉0

=
ε2

2
g2

[
ie−iqx

qx
+ E1(iqx)

]
. (3.44)

Oscillating source Let s(x) = s cos qx. As before, by linearity of eq. (3.40), we can build

the oscillating case by summing two plane waves. Using that E1(z) = E1(z̄) we can

simplify E1(iqx) + E1(−iqx) = 2Re [E1(iqx)] = −2Ci(iqx), where Ci(x) is the cosine

exponential function.3 This leads to

∆(x) = −ε2g2

[
sin qx

qx
+ Ci(qx)

]
. (3.45)

Delta source and two-point function Consider sk = 1. Integrating the right-hand

side of eq. (3.40),

4ρ2f̄ ′′k − ρk2f̄k +
3

4
f̄k = −ρ−1/4g2. (3.46)

The regular solution at ρ =∞ for the above is given by

fk(ρ) = akρ
1/4e−|k|

√
ρ − g2

2ρ1/4
+
g2

4
ρ1/4ke−k

√
ρEi(k

√
ρ)− g2

4
ρ1/4kek

√
ρEi(−k√ρ),

(3.47)

3Note that here the bars refer to the complex conjugate, and not to the average.
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where Ei(x) =
∫∞
−x t

−1e−tdt is the exponential integral functions. Close to the bound-

ary ρ = 0 we have

fk ∼
ρ=0
− g2

2ρ1/4
+ akρ

1/4 +
g2

2
(γ − 1− log k

√
ρ) ρ3/4 + . . . . (3.48)

Therefore in order to preserve the zeroth order boundary condition we need to set

ak = 0. Note the appearance of two divergences: one proportional to ρ−1/4 and the

other proportional to log k
√
ρ. As we will see next, they recombine when taking the

Fourier transform and lead to a finite result.

Using the following Fourier transform that can be calculated from the definition

of Ei(x), ∫ ∞
−∞

dk

2π
e−akEi(ak)eikx = −1

2

|x| − ia sgn(x)

x2 + a2
, a > 0 (3.49)

we can deduce that∫ ∞
−∞

dk

2π

[
e−akEi(ak)− eakEi(−ak)

]
eikx =

ia sgn(x)

x2 + a2
. (3.50)

Now using that F [ikfk] = ∂xf(x),∫ ∞
−∞

dk

2π

k

4

[
e−akEi(ak)− eakEi(−ak)

]
eikx = −1

2

a2|x|
(a2 + x2)2

+
1

2
δ(x). (3.51)

Letting a =
√
ρ > 0 and taking into account the constant term leads to

K(2)(ρ;x) =

∫
R

dk

2π
fk(ρ)eikx = −g

2

2

ρ3/4|x|
(ρ+ x2)2

. (3.52)

Note that the first term in eq. (3.47) leads to a delta function with opposite sign that

exactly cancels the one coming from the derivative of the sign function. As discussed

in appendix C, this result is finite close to the boundary

K(2)(ρ;x) ∼
ρ=0
−g

2

2

1

|x|3
+ . . . . (3.53)

Therefore the correction to the two-point function can be written as

〈O(x)O(0)〉 =

(
1− ε2

2

π

|x|

)
1

π

1

x2
, (3.54)

The effect of disorder is similar to the inhomogeneous case discussed in section 3.2.2.

For points which are close together (x = 0) we have | δ〈O(x)O(0)〉
〈O(x)O(0)〉(0)

| � 1 which indicates

the breaking of the perturbative analysis. The minus sign of the correction indicates a

suppression of the zeroth order result, see figure 5. We shall see that the exponent for

which the correction blows up as x→ 0 depends on both the mass of the scalar field

(here fixed to m2 = −3/4) and on the type of disorder. In the following subsection,

we will relax these conditions and explore the dependence of our results on these

parameters.
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Figure 5. Averaged two-point function eq. (3.54) for oscillating geometry disordered Gaussian

geometry for different disorder strength ε. The plot on the right is the same as the one in the left,

but in log-log scale.

3.2.4 Comments on other masses and correlated disorder

In this subsection we discuss how the results for the averaged two-point function generalize

to different masses and correlated disorder.

We start by considering different masses. It is easy to check that for a generic mass

parametrized by ν2 = m2 + 1 the zeroth order solution of eq. (3.2) that satisfies the

boundary conditions eqs.(2.3), (2.4) is given by,

fk(ρ) =
|k|ν

2ν−1Γ(ν)
Kν (|k|√ρ) sk. (3.55)

The boundary-to-bulk propagator is, as before, obtained by setting sk = 1 and computing

the Fourier transform, giving

K(0)(ρ, x) =
ρ1/2

2ν−1Γ(ν)

∫
R

dk

2π
eikx|k|νKν (|k|√ρ) =

Γ
(
ν + 1

2

)
√
πΓ(ν)

ρ
ν+1
2

(x2 + ρ)ν+ 1
2

. (3.56)

Taking the near boundary limit, we obtain the expected dual two-point function,

〈O(x)O(0)〉(0) = lim
ρ→0

ρ−
1+ν
2 K(0)(ρ, x) =

Γ
(
ν + 1

2

)
√
πΓ(ν)

1

|x|2ν+1
=

Γ
(
ν + 1

2

)
√
πΓ(ν)

1

|x|2∆+−1
, (3.57)

which the the expected result for the two-point function of a conformal operator with mass

dimension ∆+. The minus one factor is, as before, due to the time dimensional reduction.

The calculation of corrections induced by the disordered geometry are exactly as before,

with the only difference that we use the general solution above as a source in eq. (3.7).

Averaging the right-hand side, we get the general equation

4ρ2f̄ ′′k −
(
ρk2 + ν2 − 1

)
f̄k = −

√
πΓ
(
ν + 3

2

)
Γ(ν)

ρ−ν/2, (3.58)

which reduces to eq. (3.46) for ν = 1/2. The general solution for the above is a combination

of hypergeometric functions. So next we consider other values of ν for which the calculations

are less cumbersome. Take for instance ν = 3/2. In this case the solution satisfying the

– 18 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
7

boundary conditions is given by

fk(ρ) = − 1

ρ3/4
+

k

4ρ1/4

[
e−k
√
ρ (1 + k

√
ρ) Ei (k

√
ρ)− ek

√
ρ (1− k√ρ) Ei (−k√ρ)

]
. (3.59)

The Fourier transform of the above can be computed exactly in the same way as in sec-

tion 3.2.3 and is given by

K(2) = −ρ5/4 2|x|
(ρ+ x2)3

, ν = 3/2. (3.60)

Noting that for ν= 3/2 we have ∆+ = 1 + ν= 5/2, the dual two-point function is given by

〈O(x)O(0)〉 =
2

π

(
1− ε2

2

π

|x|

)
1

|x|4
, ν = 3/2. (3.61)

This result follow exactly the one for ν = 1/2, with the only difference that now the zeroth

order result has a different mass dimension. It is not hard to check that the same is true

for ν = 5/2, where the averaged two-point function is given by

〈O(x)O(0)〉 =
8

3π

(
1− ε2

2

3π

|x|

)
1

|x|6
, ν = 5/2, (3.62)

and now 2∆+− 1 = 6. Although we have not manage to prove the general result, it seems

that white noise always induce the same relative corrections in the two-point function. As

we will discuss next, this is not completely surprising. For higher masses the dual operator

is a more relevant deformation, but we are not changing the mass dimension of disorder.

To see this explicitly, note that the metric element gtx should be dimensionless. Since

we are imposing gtx = ε
∫

dk
2πe

ikxfk, we must have [ε] = −1− [fk]. On the other hand, for

Gaussian white noise E[fkfl] = δ(k−l) and thus 2[fk] = −1. Therefore in this case we must

have [ε] = −1 + 1/2 = −1/2, i.e. Gaussian white noise is irrelevant. To change the effective

mass dimension of disorder, we can consider correlated disorder E[fkfl] = σ2
kδ(k − l) with

σ2
k = |k|α, α ∈ R. Note that since σ2

k is a variance, it needs to be a positive definite

function. Generalising the previous discussion, this gives

[ε] = −α+ 1

2
. (3.63)

This is precisely what we found in the previous section: corrections to the two-point func-

tion decay faster in the IR limit |x| → ∞ than the leading order result. Choosing α > 0 will

only make disorder more irrelevant. It is easy to check that for α > 0, we get subleading

powers of ρ which do not contribute to the two-point function.

We now explore the case α = −2, when disorder becomes relevant. For simplicity, lets

consider again ν = 1/2. In this case, the integral in the right-hand side of eq. (3.40) can

be written as∫
dq

(k − 2q)(k − q)
q2

e−|k−2q|√ρ = (2k
√
ρ+ 1)ek

√
ρE2(kρ)− (2k

√
ρ− 1)ek

√
ρE2(kρ)− 4,

= 2ρ−1/2 + k
[
(2k
√
ρ+ 3)ek

√
ρEi(−k√ρ)+

+ (2k
√
ρ− 3)e−k

√
ρEi(−k√ρ)

]
, (3.64)

– 19 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
7

where Eα(z) = zα−1
∫∞
z dt t−αe−t is the generalised exponential integral function, which in

the last line we related to the exponential integral through the following recursive relation

p Ep+1(z) + z Ep(z) = e−z. (3.65)

together with E1(z) = −Ei(−z). The regular solution at the Poincaré horizon which does

not modify the source will be given by

fk(ρ) = −ρ3/4 − 1

2
ρ5/4

[
(k
√
ρ+ 2)ek

√
ρEi(−k√ρ)− (k

√
ρ− 2)e−k

√
ρEi(k

√
ρ)
]
,

= −ρ3/4 − ρ3/4F+(k
√
ρ) +

ρ5/4k

2
F−(k

√
ρ), (3.66)

= −ρ3/4
[
1 + F+(ω)− ω

2
F−(ω)

]
, (3.67)

where in the last equality we defined ω = k
√
ρ. We can compute the Fourier transform

of the above in following the same recipes as discussed above. The boundary-to-bulk

propagator is given by

K(2)(ρ, x) = −ρ3/4 x2|x|
(ρ+ x2)2

, (3.68)

and the correction to the boundary two-point function thus given by

〈O(x)O(0)〉 =
1

π

1

|x|2
− ε2

|x|
=

1

π

(
1− ε2π|x|

) 1

|x|2
. (3.69)

Note that different from the results in the previous section, the correction induced by the

correlated Gaussian disorder dominates the decay of the propagator at the IR, |x| → ∞.

For any fixed amplitude ε > 0 and for |x| > 1
ε2π

the correction becomes more important

than the zero order result, which signals a breakdown of perturbation theory.

4 Numerical analysis

We have also performed a numerical analysis which allows us to confirm and extend our

previous results beyond perturbation theory. Our first step is to compactify the interval of

the radial coordinate. Following [49], we define y via

ρ =
y2

(1− y)2
(4.1)

In this new coordinate, the boundary is located at y = 0 and the Poincaré horizon at y = 1.

We redefine the scalar as

ψ =
y1/2

(1− y)1/2
χ (4.2)

We can check that the near boundary behavior can be expressed in terms of χ as

χ ≈ χ(0) + y〈O〉+ . . . (4.3)
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Here χ(0) and 〈O〉 correspond to the source and vev of the dual operator. Comparing with

the pure AdS solution given in (3.3), we see that, at least for gtx = 0 modes with non-zero

momentum decay or grow exponentially at the horizon. After turning on gtx, the near

horizon asymptotics become harder to analyze, but by continuity with the pure AdS case

we demand that the field vanishes there.

We solve the equation of motion by discretizing it on a homogeneous grid along both

the radial coordinate y and the boundary coordinate x, and solving the resulting matrix

equation in Mathematica. Since most of the variability occurs along x, we use Nx = 450

grid points along this direction, and Ny = 50 for the radial direction. After solving the wave

equation, we extract the vev by taking a radial derivative of the solution at the boundary,

as seen in (4.3).

We compute approximations to the one and two-point functions, concentrating on

the case of disordered geometries. We do so by employing the spectral representation of

disorder discussed in appendix A.3. More specifically, we take gtx to be given Gaussian by

using (A.4) with σ(kn) = 1 with suitable modifications described in more detail below.

4.1 One-point correlation function

We consider one-point function of the scalar in the presence of the source

χ(0) = cos(k0x). (4.4)

As explained above, the vev corresponds to the derivative of the field at the boundary,

as given by (4.3). Since the periodicities of the source and geometry need to fit in the

same computational domain, the expansion of the disordered geometry will contain terms

cos(2nk0x+ γ) with integer n, see eq. (A.4). As seen in section 3.2.2, these are potentially

problematic since the commensurability of the source with the geometry induces extra near

horizon divergences. To avoid this undesirable behaviour, we only consider cosines of odd

momentum in the sum eq. (A.4). We shall see that with this modification we can still

obtain some generic features of disorder which match well with the perturbation theory

results for small disorder amplitude, and extend them to higher values.

We extract the one-point function for k0 = 5, and N = 20 for varying values of the

disorder amplitude V̄ as defined in appendix A.3. For every V̄ , we generate a random

geometry by providing random phases in eq. (A.4). Once we have obtained a large number

of them, we take the arithmetic average at each point x. We write the average vev as

a suppression factor η(V̄ , x) times the translational invariant result, given by 〈O〉0 :=

〈O〉|V̄=0 = −k0 cos(k0x). Hence, we define η by

〈O〉(x) = −η(V̄ , x)k0 cos(k0x) (4.5)

For small disorder amplitudes the x-dependence of η(V̄ , x) is very mild. However, at larger

amplitudes the x-dependence of η becomes important. We show this in figure 6 where we

plot the average of δ〈O〉 := 〈O〉0 − 〈O〉, normalized by 〈O〉0, as a function of x.

In order to estimate the overall suppression, we track the value at the peak η(V̄ , x = 0).

We show our results in figure 7. For small V̄ , we observe that the averaged one-point
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Figure 6. Change of the one-point function due to the presence of disorder as a function of x for

different disorder amplitudes. We plot δ〈O〉/〈O〉0 = 1− η, where η is defined in (4.5).

0.1 0.2 0.3 0.4 0.5 0.6
V

0.05

0.10

0.15

0.20

0.25

0.30

0.35
η(x=0)

Figure 7. Dependence of the suppression of the peak of the vev, η, defined in (4.5), as a function

of disorder. The solid red line is a fit we do for small V̄ , obtaining η(x = 0) ≈ aV̄ γ with a = 2.05,

γ = 1.94. At higher V̄ the exponent of the power law decreases.

-0.24 -0.23 -0.22 -0.21 -0.20 -0.19
<O(x=0)>

10

20

30

40

50

Counts

Figure 8. Distribution of the value of the vev at the peak, 〈O〉(x = 0) , for V̄ = 0.3 for 150 runs.

We fit this to a Gaussian, f(x) = A exp
(
−(x− µ)2/(2σ2)

)
, with parameters A = 53.3, µ = −0.21,

σ = 8× 10−3.

function displays the quadratic behavior obtained in perturbation theory, although with

different proportionality constant. At larger amplitudes, the power-law behavior becomes

milder. Moreover, we are able to fit the distribution of values of the vev at the peak with

a Gaussian centred at the average value, see figure 8.
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4.2 Two-point correlation function

We now obtain an approximation to the two-point function in the presence of a disordered

geometry. In principle, this entails a highly expensive calculation which requires inserting

arbitrary sources at different points and taking the variation of the action with respect to

them in the presence of a spatially dependent geometry. In order to gain some insight on

the behavior, we consider the more tractable calculation corresponding to the two-point

function G(x, 0), which as explained above can be obtained by inserting a delta function

source at y = 0. In order to regularize the delta function, we follow the strategy of [70], i.e.

we take as a source the boundary-to-bulk propagator evaluated at a small cutoff. We stress

that we need to take into account the fact that in our numerics the x coordinate is periodic,

which changes the form of the boundary-to-bulk propagator even in the absence of disorder

V̄ = 0. In fact, it is easy to show that for a box of length 2π/k0 the boundary-to-bulk

propagator is given by

K(x, 0; y) =
sinh

(
− y

1−y

)
cos(k0x)− cosh

(
− y

1−y

) (4.6)

Note that here y refers to the radial variable introduced in eq. (4.1).

Therefore, we approximate the two-point function G(x, 0) by the one-point function

obtained in the presence of the source

χ(0)(x) = K(x, 0; δ) (4.7)

at small δ. To test our approximation scheme, we first derive the results for pure AdS3,

V̄ = 0. As expected, this approximation fails for x ≈ 0. In particular, the so-obtained vevs

become very large and negative for small enough x. However, the results near the edge

of the computational domain x = π are well-behaved, and match well with the analytic

result, see figure 9. Therefore, we will be able to extract meaningful results away from the

cores in this region.4

The quantity of interest will be the ensemble average value of the one-point function

in the presence of the source eq. (4.7), 〈O〉(x)|V̄ . Normalizing this by the corresponding

one-point function at V̄ = 0, we define

σ(V̄ , x) =
〈O〉(x)|V̄
〈O〉|V̄=0

(4.8)

In order to capture the behavior away from the core, we take the spatial average in

the interval (2π/3, π), which we denote by

σ̃(V̄ ) =
3

π

∫ π

2π/3
dx σ(V̄ , x) (4.9)

This gives an estimate of the suppression of the two-point function in the presence of

disorder.
4Note that since we are using periodic boundary conditions, we cannot go infinitely far away from the

cores of the delta functions.
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1/O(x)
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-0.01
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0.03

0.04

0.05

0.06

Figure 9. We show our numerical result for the inverse of the two-point function G(x, 0) evaluated

as the one-point function in the presence of the source eq. (4.7) for δ = 0.01 and V̄ = 0. The blue

dots represent the numerical data. The behavior away from the core deviates only by a multiplicative

factor ∼ 1.09 from the analytic result obtained without cutoff 〈O(x)〉−1 = k0(1−cosx). To illustrate

this, we plot with the black dashed line the function 1.09k0(1−cosx) showing good agreement with

the numerics. The inset shows the behaviour near x = 0. Here, the solid line shows interpolation

of the numerical data, which indicates that two-point function acquires large, negative values near

the core. The red dot marks the point where the numerics diverge.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
V
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1.15

1.20

1.25
σ
˜
(V)

Figure 10. Behavior of σ̃ defined in eq. (4.9) as a function of V̄ . The solid line corresponds to a

fit with a model of the form a+ bV̄ γ with a = 0.99, b = 1.98, γ = 1.98.

We plot our results for this quantity with k0 = 5, N = 20, δ = 0.01 and varying V̄

in figure 10. Once again, we obtain a quadratic dependence of the suppression with the

disorder amplitude.

5 Comparison with previous results in the literature

In the introduction, we reviewed different approaches to introduce disorder or spatial in-

homogeneities in the holography literature. Now we discuss similarities and differences

with the one introduced in this paper. A direct comparison is in general not possible in

most cases. For instance the prediction for transport coefficients of [29, 55–59] requires the

existence of a horizon and therefore are not applicable to our case. Even with no horizon, a

comparison could be problematic because the assumption of a random chemical potential

prevents, at least for a non-random background, any coherence effect. The addition of a
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random source, investigated in [35, 36], is, to the best of our knowledge, not clearly con-

nected to our approach. Instead of turning a source for the charge density, in our model

we introduce a source for the stress energy tensor. From the gravitational perspective, we

expect this to have a more significant effect because all fields couple to gravity. The equiva-

lent field theory statement is that all operators propagate on the fixed boundary geometry.

Moreover the geometry in this approach is not random, so no coherence effects are expected

to be observed. It is an open question whether the observation of non-perturbative log-

arithmic corrections for marginal disorder in the two-point function, reported in [35, 36],

could occur in our setting. In order clarify these issues it would be necessary to carry out a

full renormalization group analysis, beyond the scope of the paper, for the parameters for

which the perturbative contribution from the disordered background becomes marginal.

The result of such calculation would not only shed light on the existence of logarithmic

corrections but also on the possible existence of a metal-insulator transition.

The approach closer to the one studied in the paper is maybe that of [47, 49, 53, 54]

where a spatially random chemical potential, or scalar, in the boundary, backreacts in the

gravity background that becomes inhomogeneous as well. However there are still important

differences. At least perturbatively, interesting coherence effects are strongly suppressed,

even if no horizon is present, because the only independent source of randomness comes

from the scalar or chemical potential whose profile in the boundary is fixed by boundary

conditions.

6 Conclusions and outlook

In this manuscript we have proposed a new approach to study disordered holographic field

theories. We have computed numerically and analytically corrections due to a weakly dis-

ordered gravity background in the one and two-point function of the scalar dual boundary

operator for different choices of source and random component of the geometry gtx (con-

stant, a superposition of plane waves and finally a Gaussian random function). The main

results can be summarized as follows:

• A constant geometry induces a negative constant correction that decreases the overall

amplitude of the scalar one and two-point functions.

• The corrections induced by an oscillating geometry have a richer behaviour, and

depend on the interaction with the source. In the simple case where the source is

also an oscillating function, the perturbative correction to the one-point function can

be positive or negative, depending on the relative sign of the geometry and source

frequencies. For instance, if the source frequency is much bigger than the geometry’s,

the correction is similar in form to the constant case outlined above. However if the

source frequency is smaller than the geometry’s, the correction flips sign, adding

constructively to the zeroth order one-point function.

– 25 –



J
H
E
P
0
3
(
2
0
1
8
)
1
8
7

• An oscillating sinusoidal geometry induces an oscillating but decaying correction to

the two-point function, with an envelope ∼ |x|−α that depends on the scalar mass.

• The case in which the geometry is a superposition of oscillating modes is given, by

linearity, by the sum of the single frequency results mentioned above.

• We have identified coherence effects between a sinusoidal source and the weakly ran-

dom geometry introduced by a spectral decomposition. In certain region of parame-

ters, the one-point function, which is sinusoidal, in the absence of disorder, becomes

completely random even in the limit in which perturbation theory applies.

• The averaged corrections to the two-point function in the presence of a delta source

and a weakly random, Gaussian distributed, gravity background, is negative and, for

large distances, decays as a power-law with an exponent that depends on the type

of disorder and the scalar mass. We have identified a range or parameters for which

perturbation theory breaks down, as the power-law decay is slower than in the non-

random case. This suggest an instability to a novel disorder driven fixed point which

could eventually lead to a metal-insulator transition in the system.

Finally we mention some ideas for future research. First, we have only studied one

instance of random geometry. Asymptotic AdS3 solutions of Einstein’s Equations have

been classified in [67], and there are other families in which disorder could be introduced in

a similar fashion. It would be interesting investigate whether introducing disorder in other

metric components would lead to a similar universal behavior, and if not so, to identify the

physics behind these differences. Second, since temperature tends to suppress coherence

effects in disordered systems, in this work we have only studied holographic field theories

at strictly zero temperature. But finite temperature solutions in three dimensions have

also been classified [71], and therefore our work could be also generalized in this direction.

In particular, it would be interesting to study the low temperature regime and compare it

with our results. Third, we have only considered Gaussian distributed disorder with delta-

like correlations. However our formalism is easily generalizable to more general forms of

disorder where correlations between points becomes important. Fourth, a renormalization

group treatment, feasible for marginal random perturbations, would shed light on the

existence, or not, of a novel non-trivial disordered driven fixed point which signals an

instability toward a metal-insulator transition in the system.
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A Notes on random fields

A.1 Implementation

Consider a random function f : Rd → R. A useful trick to parametrise the randomness in

f is to work in the spectral representation (a.k.a. Fourier space)

f(~x) =

∫
Rd

d[d]k

(2π)d
f(~k)ei

~k·~x, (A.1)

where f(~k) are random Fourier coefficients. In other words: we exchanged randomness in

real space for randomness in Fourier space. Without loss of generality we can parametrise

the Fourier coefficients f(~k) = a~k + ib~k where a−~k = a~k and b−~k = −b~k for reality of f(~x).

We say f is a Gaussian random field when the Fourier coefficients (a~k, b~k) are drawn from

a Gaussian distribution

P [f(~k)] = P [a~k, b~k] =
1

πσ~k
e
−
a2~k

+b2~k
σ2
~k =

1

πσ~k
e
− |f(

~k)|2

σ2
~k , (A.2)

where σ~k is the standard deviation, and for simplicity we centred the distribution at zero.

In other words, we have E[f(~k)] = 0 and E[f(~k)f(~q)] = σ2
~k
δ(~k + ~q). It is important for the

distribution to be normalised:∫
Df(~k) P [f(~k)] =

∫ ∞
−∞

da~k

∫ ∞
−∞

db~k P [a~k, b~k] = 1, ∀~k. (A.3)

Moments of any functional Q[f(~k)] of the random field can be easily computed using the

characterisation above:

E[Q[f(~k)]] =

∫
Df(~k) P [f(~k)] Q[f(~k)] =

∫ ∞
−∞

da~k

∫ ∞
−∞

db~k
Q[a~k, b~k]

πσ2
~k

e
−
a2~k

+b2~k
σ2
~k .

This can then be Fourier transformed to real space. As a simple example, lets compute a

two-point function of the random field,

E[f(~x)f(~y)] =

∫
d[d]k

(2π)d

∫
d[d]q

(2π)d
ei
~k·~xei~q·~yE[f(~k)f(~q)]

=

∫
d[d]k

(2π)d

∫
d[d]q

(2π)d
ei
~k·~xei~q·~yσ2

~k
δ(~k + ~q)

=

∫
d[d]k

(2π)d
ei
~k·(~x−~y)

σ2
~k

(2π)d
,

where (2π)−dσ2
~k

is commonly known as the power spectrum of the random field. For the

simple case where the power spectrum is a constant σ2
~k

= (2π)dV̄ 2, we have E[f(~x)f(~y)] =

V̄ 2δ(x−y) which means the distribution of f(~x) in real space is also Gaussian. Conversely,

considering a non-trivial power spectrum lead to non-trivial correlations for the random

field. Therefore the spectral representation of a random field is a convenient way of gener-

ating non-gaussian distributions while still working with Gaussian objects in Fourier space.
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A.2 Cutoffs

However this construction is not very useful for actual applications. For instance, note

that as ~x approaches ~y we get an ultra-violet divergence. This for instance can be very

inconvenient in the case we are treating, since in our equations we have a lot of terms that

go as ’disorder squared’ at the same point. To remediate this problem, we will resolve this

long wavelength divergence by introducing an ultra-violet (UV) cutoff λ and integrate only

over modes |~k| < λ. A pictorial way to interpret this cutoff is to say that λ introduce a

length scale a = π/λ that corresponds to an underlying lattice. Modes with frequencies

below this scale are then ignored. This would imply for instance that E[f(~x)2] = V̄ 2/a. As

we take the lattice spacing a→ 0 we recover the expected UV divergence.

While UV divergences are a consequence of the way we introduce disorder, there can be

IR divergences that are emergent in the problem, and indicate a change of behaviour in the

system. Or in terms of the renormalisation group: the system flows towards a disordered

fixed point. To resolve these divergences one usually introduce a box of size L, and in

the end of calculation one aims to study how the system behaves as L is increased. IR

singularities in the thermodynamic limit L→∞ indicate a flow towards a new phase.

A.3 Discrete

Although the continuum implementation simplifies analytical calculations, numerically one

needs a discretisation that takes into account the aforementioned observations. From now

on we restrict ourselves to the case of interest, namely d = 1. Note that according to

eq. (A.2) the norm of |f(~k)| is drawn from a Gaussian distribution, while the phase is

drawn from the uniform distribution on [0, 2π]. This remark leads to a useful discrete

representation of the continuous spectral decomposition. We start by discretising uniformly

our box of size L in N intervals of size a, i.e. L = Na. This implies the quantisation of the

modes kn = n∆k with ∆k = π
Na = λ

N . The thermodynamic limit then becomes N → ∞.

The spectral decomposition eq. (A.1) becomes,

f(x) =
N∑

n=−N
fne

iknx =
N∑
n=1

An cos(knx+ γn), (A.4)

where An ∈ R>0 corresponds to the amplitude of the Fourier modes and γn ∈ [0, 2π]

the phase. As we remarked above, in this representation each An is a random variable

taking values in a Gaussian distribution, while each γn is a random variable taking values

uniformly in [0, 2π). However a useful simplification is to make An deterministic and only

keep the phases random. One can then check that taking An = V̄
√
σ(kn)∆k and averaging

uniformly in [0, 2π),

E[· · · ] = lim
N→∞

∫ 2π

0

N∏
n=1

dγn
2π

(· · · ), (A.5)

imply that for σ(kn) = 1 in the thermodynamic limit E[f(x)f(y)] = V̄ 2δ(x − y). In

other words, we reproduce the Gaussian behaviour with a simpler setup in which only

the phases fluctuate. Similarly, we can obtain non-Gaussianity by choosing a non-trivial

function σ(kn).
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B Holographic renormalisation

In this appendix we discuss the details of holographic renormalisation in our inhomogeneous

geometry. Let M be the underlying manifold defined by the geometry in eq. (2.1). The

action for the probe scalar is given by

S[ψ] =
1

2

∫
M

d[3]x
(
dψ ∧ ?dψ +m2ψ2

)
= −1

2

∫
M

d[3]x ψ
(
d ? dψ −m2ψ

)
+

1

2

∫
∂M

d[2]x ψ ? dψ. (B.1)

Thus on-shell we have

Son-shell[ψ] =
1

2

∫
∂M

d[2]x
√
−γ ψna∂aψ, (B.2)

where n is the normal unit vector pointing outwards of the boundary ∂M and γ is the

respective induced metric. Note that strictly at the conformal boundary ρ = 0 eq. (B.2) is

divergent. To regularise this divergence, we evaluate the on-shell action at a slice ρ = λ� 1

which we later take to zero. The normal unit vector pointing outward the fixed ρ = λ

surface is then given by n = −2ρ ∂ρ|ρ=λ, while the induced metric is

ds2 = λ−1g(0)(x)dxµdxν = λ−1
(
−dt2 + dx2 + 2gtx(x)dtdx

)
(B.3)

and thus
√
−γ = λ−1√−g(0) with

√
−g(0) =

√
1 + g2

tx. Note that g(0) is interpreted

holographically as the metric where the dual boundary field theory lives. Inserting in the

on-shell action,

Son-shell[ψ] = −
∫

dtdx
√
−g(0) ψ∂ρψ|ρ=λ. (B.4)

As with the pure AdS case, the above on-shell action needs to be renormalised. Solutions

to eq. (2.2) satisfy the following near-boundary expansion

ψ(ρ, x) = ρ
1−ν
2 s(x) + ρ

1+ν
2 A(x) + . . . , (B.5)

where all higher order terms have positive exponents. Thus we have

Son-shell[ψ] =−
∫

dtdx
√
−g(0)

(
λ

1−ν
2 s(x) + λ

1+ν
2 A(x) + . . .

)
×

×
(

1− ν
2

λ−
1+ν
2 s(x) +

1 + ν

2
λ
ν−1
2 A(x) + . . .

)
,

=−
∫

dtdx
√
−g(0)

(
1− ν

2
λ−νs(x)2 + s(x)A(x) + . . .

)
. (B.6)

Note that the highest diverging is in the term ∝ s2. To remediate this particular divergence,

we add the following boundary counter-term to the action

S
(0)
ct =

1−ν
2

∫
∂M

d[2]x
√
−γ ψ2|ρ=λ =

1−ν
2

∫
dtdx

√
−g(0)

(
λ−νs(x)2 + 2s(x)A(x) + . . .

)
.

(B.7)
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In most of the manuscript we work with ν = 1/2, for which other divergences are not

present, and therefore the only counter term required is the above. However, for larger

values of ν there is a finite tower of higher divergences between the leading term ∝
∫
s(x)2

and the term ∝
∫
s(x)A(x) which we have omitted in the ellipsis, and which should also

be taken into account in order to obtain a finite one-point function. For instance, the

next order divergence would be of order O
(
λ−(ν−1)

)
, which can be remediated by adding a

derivative term S
(1)
ct = 1

2ν−2

∫
∂M d2√−γφ ∆γφ|ρ=λ. Higher order terms can be treated in

the same way, adding higher derivative terms S
(k)
ct accordingly (for a complete discussion,

see [72]). However note these derivative terms do not contribute to the coefficient of the

one-point function ∝
∫
s(x)A(x). Accounting for all the divergences, the renormalised

action reads

Sren = lim
λ→0

(Son-shell + Sct) = −1

2

∫
dtdx

√
−g(0) 2ν s(x)A(x). (B.8)

The expression above makes clear that the leading coefficient s(x) in the expansion of ψ

acts as a source for a dual operator 〈O(x)〉 = 2ν A(x). The expectation value of the dual

is then simply given by

〈O(x)〉 =
1√
−g(0)

δ (−Sren)

δs(x)
= 2ν A(x) (B.9)

C Boundary-to-bulk propagator and boundary two-point function

Consider a probe scalar field ψ living in an asymptotically AdSd+1 geometry with met-

ric tensor g. As previously discussed, the equation of motion for the scalar is given by(
∆g −m2

)
ψ = 0. We define the bulk-to-bulk propagator G(x, y) as the Green’s function

for this equation. In other words, it is the solution of

(∆g −m2)G(x, y) =
i√
−g

δd+1(x− y). (C.1)

Note that if we couple the scalar field with a source by adding a term (∆g −m2)ψ = J ,

then knowing bulk-to-bulk propagator we can build a solution

ψ(x) =

∫
d[d+ 1]y

√
−g G(x, y)J(y). (C.2)

In a neighbourhood of the boundary, by the Fefferman-Graham theorem we can write the

asymptotically AdS metric in a coordinate chart xa = (ρ, xµ) as

ds2 =
dρ2

4ρ2
+

1

ρ
gµν(ρ, xµ)dxµdxν ,

g(ρ, xµ) ∼
ρ=0

g(0)(x
µ) + ρg(1)(x

µ) +O(ρ2), (C.3)
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where g(0)(x
µ) defines the metric at the conformal boundary located at ρ = 0. At a slice

close to the boundary ρ = λ� 1, we have

√
−g =

√
−g(0)

2λ1+d/2
. (C.4)

And therefore evaluating eq. (C.1) at ρ = 0 for one of the arguments make the right-hand

side zero. This defines the so called Boundary-to-bulk propagator

(∆g −m2)K(ρ;xµ, yµ) = 0 (C.5)

which depends only on one radial variable. As we will see next, it propagates solutions from

the boundary to the bulk. Recall that according to the holographic dictionary solutions of

the bulk equations of motion define a dual source at the boundary according to

lim
ρ→0

ρ−∆−/2ψ(ρ, xµ) = s(xµ), (C.6)

where ∆± = d
2 ± ν with ν =

√
d2

4 +m2. Thus by imposing boundary conditions

lim
ρ→0

ρ−∆−/2K(ρ;xµ, yµ) = δd(xµ − yµ), (C.7)

we find that the K satisfies

ψ(ρ, xµ) =

∫
d[d]y K(ρ;xµ, yµ)s(yµ). (C.8)

This justifies the terminology boundary-to-bulk propagator, since it propagates the source

s(xµ) living in the boundary into a scalar field satisfying the Bulk equations of motion.

From this relation it is also possible to see that the bulk-to-bulk and boundary-to-bulk

propagators are related to the boundary tree-level boundary two-point function. Since

we have

〈O(xµ)〉 = (2ν) lim
ρ→0

ρ−∆+/2ψ(ρ, xµ) (C.9)

we see that if we define the boundary tree-level two-point function

G(0)(x
µ, yµ) = 〈O(xµ)O(yµ)〉 = (2ν) lim

ρ→0
ρ−∆+/2K(ρ;xµ, yµ) (C.10)

it satisfies the usual linear-response relation

〈O(xµ)〉 =

∫
d[d]y G(0)(x

µ, yµ)s(yµ) (C.11)

between the source and the expected value.
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