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1 Introduction

The original idea of the Quark-Gluon Plasma phase [1–3] was that it would consist of

weakly-interacting, nearly-free quarks and gluons (this assumption is implicit, for instance,

in treatments of the cosmological QCD phase transition [4]). This picture was naive, since

the QCD coupling varies only logarithmically with scale [5, 6], so the coupling is in fact

quite large at any achievable temperature. Although thermodynamical quantities approach

the expected weak-coupling values rather quickly [7–10], this does not necessarily indicate

weak coupling; even in the limit of infinite coupling, analogue theories display 3/4 of the

free theory value for the pressure, for instance [11].

Weak coupling would imply large transport coefficients, characterized for instance by

a large ratio of the shear viscosity to the entropy density, η/s � 1. In fact, leading-order

(LO) perturbative calculations of η [12, 13] find η/s ∼ 0.5 for coupling values of physical

relevance for achievable temperatures. Unfortunately, the presentation in ref. [13] has led

to frequent misinterpretation of the results, such as using the next-to-leading-log (NLL)

pocket formulae in regimes where the paper cautions that they are not applicable.

But in any case, experimental results at RHIC [14, 15] and the LHC [16–19] indicate

that the shear viscosity is even smaller: numerous authors have found that the experimen-

tal data on angular correlations and other experimental measurables are fit very well by

relativistic, viscous hydrodynamics, but only if the shear viscosity to entropy ratio is quite

small, η/s ∼ 0.1–0.3 (see [20, 21] for reviews). This would indicate that η/s is quite close

to the value in extremely strongly coupled theories with holographic duals [22–24]. First

attempts at non-perturbative QCD determinations from the lattice, which require a highly

non-trivial analytical continuation, also point towards small values [25–31]. So do FRG

analyses, which also require analytical continuation and other truncations [32, 33].

So how should we understand this discrepancy with the weak-coupling calculations?

The best way to address this question is to compute the next-to-leading order (NLO)

corrections to the shear viscosity. We finally have the technology to do so. One key

breakthrough, due to Caron-Huot, was the development of a technique to understand how

particles are “kicked” transversely as they move through the plasma, at next-to-leading

order [34]. Then there was the development of sum-rule tools for next-to-leading order

longitudinal momentum diffusion, identity change, and collinear emission, developed to

study photon production [35, 36] and recently extended to treat jet energy modification at

subleading order [37, 38]. With rather modest modifications, we can apply this technol-

ogy to perform an “almost” next-to-leading order calculation of η, and of quark number

diffusion Dq, in a hot QCD plasma.

In the following sections, we will give a rather detailed explanation of how one computes

η/s perturbatively in QCD, and of what is and is not included in our “almost” NLO

calculation. But for the impatient reader, we will give a short summary of the procedure,

of what is included and what is missing, why we think the remaining “missing” parts should

give only a small correction, and of our final results.

Shear viscosity describes the persistence of any anisotropy in the stress tensor Tµν .

When a fluid flows in a nonuniform way, such anisotropy constantly develops from the fluid
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flow, and constantly disappears due to dissipative physics. Shear viscosity measures the

inefficiency of that dissipation. It can also be studied by using random thermal fluctuations,

through which Tµν accidentally becomes anisotropic. The fluctuation-dissipation theorem

says that the persistence of these fluctuations also determines the shear viscosity. These

concepts are well defined in any theory with well defined thermodynamics, whether or not

the stress tensor can be understood in terms of some “particle” degrees of freedom.

The perturbative picture is that the plasma is made up primarily of quasiparticle ex-

citations with momenta of the order of the temperature, and these are responsible for

carrying the stress tensor Tµν of the plasma. An anisotropic Tµν arises when the quasi-

particles are distributed anisotropically in momentum space. Their scattering relaxes Tµν
towards its equilibrium value. This description is sufficient at both leading order and O(g)

NLO order. The challenge is to determine the exact form of the collision operator which

relaxes the particles towards equilibrium. The LO calculation [13] requires two sorts of

scattering process, the 2↔ 2 scatterings with all hard (O(T )) external particles and 1↔ 2

effective splitting processes between hard participants. There are two features in the calcu-

lation. First, there is the momentum a particle carries into a scattering and the momentum

it carries out. Second, there is the effect of the momentum which it “dumps” into the other

particle in the scattering process. While the first effect always makes the momentum dis-

tribution more isotropic, the second effect can make it more or less isotropic, depending

on the relative angles of the participants.

To treat the problem at NLO, we need to find all new scattering processes, and cor-

rections to the already-considered processes, which are suppressed by a single power of g.

No other corrections are needed because the quasiparticle picture first needs amending at

O(g2) or higher. As we shall show in detail, there are only a few such O(g) subleading

effects. First, the rate of soft 2↔ 2 scattering is modified; this can be described as an

additional momentum-diffusion coefficient δq̂. This modification, and an O(g) correction

to the medium corrections to dispersion, also provide an O(g) shift in the 1↔ 2 splitting

rate. Next, the 1↔ 2 splitting rate must be corrected wherever one participant becomes

“soft” (p ∼ gT ) or when the opening angle becomes less collinear. And finally, the nu-

merical implementation of the LO scattering kernel [13] already resums a small amount of

these NLO effects, requiring a subtraction (or “counterterm”) to δq̂ and δq̂L (longitudinal

momentum diffusion).

We are able to give a relatively simple determination of these effects by the use of light-

cone techniques. Unfortunately, these methods typically keep track of the incoming and

outgoing momentum of a particle, but lose track of the momentum which it transfers to the

other participants. This momentum transfer also affects the departure from equilibrium of

the other particle or particles which receive the momentum, an effect which we will fail to

account for at NLO. Therefore our treatment is only “almost” NLO. However we compute

the importance of this effect in the leading-order case and use it to make an estimate for this

incomplete treatment. The associated errors turn out to be small, much smaller than the

difference between LO and NLO, and therefore presumably smaller than still-uncomputed

NNLO effects.
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Figure 1. (a) The shear viscosity to entropy density ratio and (b) baryon number diffusion co-

efficient as a function of temperature, at leading-order (LO) and at next-to-leading order (NLO)

for different choices of the running coupling. The solid band fixes the coupling using the two-loop

EQCD value with µEQCD = (2.7 ↔ 4π)T , while the shaded band uses the standard MS two-loop

coupling with µMS = (π ↔ 4π)T ; the corresponding values of αs(T ) are presented in figure 8. The

dominant NLO correction arises from NLO modifications of q̂ as is illustrated figure 6. The uncer-

tainty arising from gain terms which are only estimated (and not computed) is shown in figure 9.

Our main results are presented in section 5, but we will present one “summary” result

right away in figure 1. The figure shows the ratio of the shear viscosity to the entropy

density, computed at LO and NLO. The temperature enters in the choice of renormalized

coupling and the number of quark species (there are slight discontinuities where we cross

quark-number “thresholds”). The solid thinner band represents our “best estimate” based

on 2-loop renormalization group flow from the Z-pole and the coupling fixed via the EQCD

choice of Laine and Schröder [39]. The renormalization uncertainty is estimated by varying

the scale µEQCD over the range µEQCD = (2.7↔ 4π)T . The wider bands represent fixing

g2 from the scale πT to 4πT with the standard MS approach, to indicate the importance

of the renormalization uncertainty. The plot shows that next-to-leading order corrections

lower the shear viscosity by a factor of two at high temperatures T ∼ 1000 GeV, and by

a factor of four for physically relevant temperatures, T ∼ 250 MeV. This large change is

suggestive that the true value of η/s is smaller than the leading-order perturbative estimate,

but it also signals severe convergence problems in the perturbative expansion, even for

surprisingly large temperatures or, equivalently, small values of g. The figure also shows

the analogous result for the (light) quark diffusion coefficient, which displays very similar

coupling dependence. We present more results and discussion in later sections, but we point

out now that the largest NLO correction arises from NLO modifications of q̂ — see figure 6.

Accurate fits of or NLO results for η/s as a function of coupling are provided in an appendix.

Having finished a quick summary of the problem, our approach, and our main con-

clusions, we now summarize the content of the remainder of the paper. In section 2 we
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review the definition of transport coefficients and their calculation within the kinetic the-

ory of Arnold, Moore, and Yaffe [40]. In section 3 we show how to interpret parts of the

leading-order calculation in terms of transverse and longitudinal momentum diffusion and

of identity-changing processes. The NLO effects take the form of these three effects, plus

a shift in the rate of 1↔ 2 splittings, and can therefore be efficiently included once we ex-

press the problem in terms of these pieces. We do this in section 4, with special attention

to the “overlap” regions between these processes. With all pieces available, we present the

main results in section 5. We also decompose the NLO correction into the respective pieces

to see which are most influential. Some technical details, together with fits for our NLO

results as a function of the coupling, are postponed to the appendices.

2 Ingredients

Let us start by briefly summarizing how the transport coefficients we investigate are de-

fined and how they have been computed to leading order in the Effective Kinetic Theory

(EKT). Transport coefficients characterize a system’s response to weak, slowly varying in-

homogeneities or external forces. In the case of the viscosity, if the flow velocity of the

plasma is nonuniform, then the stress-energy tensor (which defines the flux of momentum

density) departs from its perfect fluid form. In the local (Landau-Lifshitz) fluid rest frame

at a point x, the stress tensor, to first order in the velocity gradient, has the form

〈Tij(x)〉 = δij 〈P〉 − ησij − ζ δij ∇l ul , σij ≡ ∇i uj +∇j ui −
2

3
δij ∇l ul , (2.1)

where the metric is the “mostly-plus” one, P is the equilibrium pressure associated with

the energy density 〈T00(x)〉 = ε, and the coefficients η and ζ are known as the shear and

bulk viscosities, respectively. The flow velocity u equals the momentum density divided by

the enthalpy density ε+P = sT . We will only be concerned with the shear viscosity in this

paper; the bulk viscosity requires a more complicated analysis, which has been carried out

at leading order in [41, 42] for a scalar theory and in [43] for a gauge theory with massless

quarks. The charm contribution has been computed in [44]. Additional coefficients such

as τπ would appear at higher order in the gradient expansion [45–48], but we leave their

evaluation for a future investigation.

In the presence of further conserved global charges beyond four-momentum, such as

baryon or lepton number, the associated charge density n ≡ j0 and current density j satisfy

a diffusion equation,

〈j〉 = −D∇〈n〉 , (2.2)

in the local (Landau-Lifshitz) rest frame of the medium. The coefficient D is called the

diffusion constant.

When (some of) the diffusing species of excitations carry electric charge, as is the case

for baryon and lepton number, the diffusion constants for these charged species determine

the electric conductivity σ through an Einstein relation (see refs. [12, 13]). If the net

number of each species of charge carriers is conserved, then

σ =
∑
a

e2
aDa

∂na
∂µa

, (2.3)
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where the sum runs over the different species or flavors of excitations with ea, Da and µa
the corresponding electric charge, diffusion constant and chemical potential, respectively.

These transport coefficients all find a field-theoretical definition through Kubo-type

formulae relating them to the zero-frequency (transport) limit of the spectral functions

of two-point correlators of the appropriate operators (the stress-energy tensor or other

conserved currents). However, for a leading- and next-to-leading-order perturbative eval-

uation, the diagrammatic approach that would result from a direct application of these

Kubo formulae would require cumbersome resummations to all orders of many classes of

sub-diagrams. It is thus more convenient to use the linearized version [13] of the EKT

developed in [40]. Solving the linearized theory automatically accounts for the needed

resummations. The leading-order equivalence between the diagrammatic and kinetic ap-

proaches has been proven in [41] for a scalar theory and in [49–53] for gauge theories.

The leading-order EKT introduced in [40] is given by this Boltzmann equation[
∂

∂t
+ vp ·

∂

∂x
+ F a

ext ·
∂

∂p

]
fa(p,x, t) = −Ca[f ]

LO
= −

(
C2↔2
a [f ] + C1↔2

a [f ]

)
, (2.4)

where fa(p,x, t) = dNa/d3xd3p is the phase space distribution function for the excitation

(gluon, quark, antiquark ) of index a. The leading-order collision operator encodes the

contribution of tree-level 2↔ 2 scattering processes, with Hard-Loop resummed propaga-

tors in the soft-sensitive channels, as well as collinear, effective 1 ↔ 2 processes resumming

the effect of an infinite number of soft scatterings. Both processes contribute to order g4T

to the collision operator; a subset of C2↔2
a [f ] is logarithmically enhanced, g4T ln(1/g), due

to the aforementioned sensitivity to the soft scale gT . C2↔2
a [f ] and C1↔2

a [f ] are described

in detail in [13, 40].

We now proceed to the gradient expansion of eq. (2.4), following the notation of [12].

Schematically, fa = fa0 +f0(1±f0)[fa1 +fa2 + . . .], where fa0 is the equilibrium distribution,1

fa0 = (exp(−βuµPµ− qaαβµ)∓ 1)−1, which is determined by the Boltzmann equation at ze-

roth order in the gradients, Ca[f0] = 0. The inverse temperature β, the chemical potential

µ, and the flow velocity uµ are functions of (t,x) and obey the equations of ideal hydro-

dynamics. We will consider ui(t,x) and µ(t,x) to be small perturbations on top of an ap-

proximately homogeneous background. The charge of species a under conserved charge Qα
is qaα, where α is a label for the flavor symmetry of interest (i.e. quark number in our case).

Substituting fa0 into the lefthand side of the Boltzmann equation, eq. (2.4), yields a

source for the first dissipative correction, which (after using the hydrodynamic equations

of motion) is proportional to the strains [54]

Xi···j ≡

 ∇i µα , (diffusion),
1√
6

(
∇iuj +∇jui − 2

3 δij∇ · u
)
, (shear viscosity),

(2.5)

1We use capital letters for four-vectors, bold lowercase ones for three-vectors and italic lowercase for the

modulus of the latter. We work in the “mostly plus” metric, so that P 2 = −p2
0 + p2. The upper sign is for

bosons, and the lower sign is for fermions. The full collision operator is Ca; the collision operator linearized

in the departure from equilibrium is Ca.
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depending on whether we are considering chemical potential fluctuations (diffusion) or

velocity fluctuations (shear viscosity). The source takes the form

Sa(p) ≡ β2Sai···j(p)Xi···j ,

= −βqafa0 (p)[1±fa0 (p)] Ii···j(p̂)Xi···j . (2.6)

Here qa denotes the relevant conserved charge carried by species a associated with the

transport coefficient of interest,

qa ≡
{
qaα , (diffusion),

|p| , (shear viscosity).
(2.7)

Ii···j is the unique ` = 1 or ` = 2 rotationally covariant tensor depending only on p̂,

Ii···j(p̂) ≡

 p̂i , ` = 1 (conductivity/diffusion),√
3
2 (p̂ip̂j − 1

3δij) , ` = 2 (shear viscosity).
(2.8)

The normalization on Ii···j was chosen so that

Ii···j(p̂) Ii···j(p̂) = 1, (2.9)

and more generally,

Ii···j(p̂) Ii···j(k̂) = P`(p̂ · k̂), (2.10)

where P`(x) is the `’th Legendre polynomial.

The linearized kinetic equation may be written compactly as

Sa(p) = (Cf1)a(p) , (2.11)

where C is a linearized collision operator defined below. To linear order the first dissi-

pative correction must be proportional to the driving term X, allowing us to define the

proportionality coefficient χi···j(p),

fa1 (p) ≡ β2Xi···j χai···j(p) ≡ β2Xi···j Ii···j(p̂) χa(p) , (2.12)

where we have also used rotational invariance of the collision operator (in the rest frame)

to define a scalar proportionality coefficient χ(p), which describes how the departure from

equilibrium varies as a function of the magnitude of the momentum.

The first-order transport coefficients are then obtained from the kinetic-theory expres-

sions for Tµν and for the conserved current Jµα associated to the conserved charge Qα, i.e.,

Tµν(x, t) =

∫
d3p

(2π)3

pµpν

p

∑
a

νaf
a(p,x, t), Jµα(x, t) =

∫
d3p

(2π)3

pµ

p

∑
a

νaq
a
αf

a(p,x, t),

(2.13)

where νa is the spin and color degeneracy of the excitation a (2Nc for quarks and antiquarks,

2(N2
c − 1) for gluons). Upon inserting the first-order deviation f1 in these equations, the
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first-order coefficients are easily recovered. Hence, the solution of the first-order, linear

eq. (2.11) yields η and D.

As in [12, 13], we will solve eq. (2.11) and its NLO extension by means of a variational

method. To this end, we introduce the inner product(
f, g
)
≡ β3

∑
a

νa

∫
d3p

(2π)3
fa(p) ga(p) . (2.14)

The linearized collision operator C is symmetric with respect to this inner product, and is

given by variation of the quadratic form

(Cf1)a(p) =
(2π)3

β3νa

δ

δfa1 (p)

1

2
(f1, Cf1) . (2.15)

C is a positive semi-definite operator, and is strictly positive definite in the `=1 and `=2

channels relevant for diffusion or shear viscosity. As we will show, some NLO contributions

are negative, so some care will be needed in defining a positive definite CNLO. Once that

is taken care of, the linearized Boltzmann equation (2.11) at LO and NLO is precisely the

condition for maximizing the functional

β4Q[χ] ≡
(
f1,S

)
− 1

2

(
f1, C f1

)
. (2.16)

Note that the maximized Q determines the rate per volume at which work is dissipated

into heat; βQ then gives the rate per volume of entropy production. This structure is valid

at LO and NLO, so we have not explicitly labeled C and f1 in that respect. The strains

Xi···j may be pulled out of the integrals, and then rotational invariance of the measure and

collision operator guarantees that

T 4
(
f1, Cf1

)
=

X2

2`+ 1

(
χi···j , C χi···j

)
, (2.17)

T 4
(
f1,S

)
=

X2

2`+ 1

(
χi···j , Si···j

)
, (2.18)

where X2 = Xi···j Xi···j .
The explicit forms of the source and LO collision parts of this quadratic functional are

T 4
(
f1,S

)
=

X2

2`+ 1

∑
a

β2νa

∫
d3p

(2π)3
f0(p) [1± f0(p)] qa χa(p) , (2.19)

and (
f1, CLO f1

)
=
(
f1, C2↔2 f1

)
+
(
f1, C1↔2 f1

)
. (2.20)

The 2↔ 2 contribution reads, after symmetrization of the departures from equilibrium [13]

(
f1, C2↔2 f1

)
≡ β3

8

∑
abcd

∫
pkp′k′

∣∣Mab
cd(p,k;p′,k′)

∣∣2
(2p)(2k)(2p′)(2k′)

(2π)4 δ(4)(P+K−P ′−K ′) (2.21)

× fa0 (p) f b0(k) [1±f c0(p′)] [1±fd0 (k′)]
[
fa1 (p) + f b1(k)− f c1(p′)− fd1 (k′)

]2
,

– 8 –
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where
∫
p is shorthand for

∫
d3p/(2π)3 and

∣∣Mab
cd(p,k;p′,k′)

∣∣2 is the matrix element squared

for the ab↔ cd process, summed over all spins polarizations and colors and Hard Thermal

Loop (HTL) resummed [55, 56] in the IR-sensitive cases. A complete list of these matrix

elements appears in [13, 40]. The 1↔ 2 contribution reads instead [13](
f1, C1↔2 f1

)
≡ β3

2

∑
abc

∫
dΩn̂

∫ ∞
0

dp

∫ p

0
dk γabc(p; p− k, k) (2.22)

× fa0 (p) [1±f b0(p− k)] [1±f c0(k)]
[
fa1 (pn̂)− f b1((p− k)n̂)− f c1(kn̂)

]2
.

The splitting rate is given by

γabc(p; p− k, k) =
g2dRbCRb

64π4


p4+k4+(p−k)4

p3k3(p−k)3 g ↔ gg
p2+(p−k)2

p2(p−k)2k3 q ↔ qg
(p−k)2+k2

(p−k)2k2p3 g ↔ qq̄

∫
d2h

(2π)2
2h · Re Fb(h) , (2.23)

where h = p× k is a transverse, two-dimensional vector related to the transverse momen-

tum picked up during the splitting process. dRb and CRb are the dimension and quadratic

Casimir operator of the representation R of the particle b. A complete leading-order treat-

ment of collinear radiation must consistently resum the effect of the many soft, transverse

collisions to account for the Landau-Pomeranchuk-Migdal (LPM) effect [57–61]. This is

achieved through the following integral equation for Fb(h):

2h = iδE(h)Fb(h) +

∫
d2q⊥
(2π)2

C̄(q⊥)

{(
CRb −

CA
2

)
[Fb(h)− Fb(h− kq⊥)]

+
CA
2

[Fb(h)− Fb(h + pq⊥)] +
CA
2

[Fb(h)− Fb(h− (p− k)q⊥)]

}
. (2.24)

For the case of g → qq̄, CRb − CA/2 = CF − CA/2 multiplies the term with Fb(h − pq⊥)

rather than Fb(h − kq⊥). The equation depends on two inputs, C̄(q⊥) and δE(h, p, k).

The former is the leading-order transverse scattering kernel C(q⊥) in units of the Casimir

factor, [62, 63]

C̄(q⊥) ≡ CR(q⊥)

CR
=

g2Tm2
D

q2
⊥(q2
⊥ +m2

D)
. (2.25)

δE is the energy difference between the initial and final collinear particles. It reads

δE(h) =
h2

2pk(p− k)
+
m2
∞ c

2k
+

m2
∞ b

2(p− k)
− m2

∞ a

2p
, (2.26)

where m2
∞ a is the asymptotic mass of the particle a. For gluons m2

∞ g ≡ M2
∞ = m2

D/2

(with m2
D = g2T 2/3(TA + TFNf )), for quarks m2

∞ q ≡ m2
∞ = CF g

2T 2/4.

The maximization of the functional (2.16) is then carried out using a variational Ansatz

of form

χ(p) =
K∑
m=1

cmφ
(m)(p) , φ(m)(p) =

p`−1(p/T )m−1

(1 + p/T )K−3/2
, (2.27)
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which, when substituted into eq. (2.16), transforms its extremization into a matrix algebra

problem [12]. Our choice of functional basis is motivated by the need [13] to allow infrared

behavior of form ∝ p`−1 and ultraviolet behavior of form ∝ p`−1/2. The variational pro-

cedure is only guaranteed to converge to the right answer as the functional basis becomes

complete, but in practice we see good convergence above 4 functions. Later, in our numer-

ical results, we will use 6 basis functions, but our results shift by less than 10−4 when we

make the basis still larger.

3 Reorganization of the LO quadratic functional

The effective kinetic theory introduced in [40] has been extended to next-to-leading order

in [38] for the case where one follows the evolution of a dilute set of high-energy particles

of typical energy E interacting with an equilibrated medium at a temperature T such that

exp(−E/T )� 1, which is a sensible approximation for the evolution of the leading partons

in a jet. There, we found that a reorganization of the form of the LO collision operator was

necessary to systematically compute NLO corrections. Specifically, O(g) NLO corrections

can only occur where one or more lines carry a soft O(gT ) momentum, because only there

do statistical functions give rise to a 1/g enhancement of loop level effects. But transport

coefficients are only sensitive to hard O(T ) momenta. So NLO corrections only occur when

there is a momentum hierarchy within a diagram. In such cases one can always re-express

the diagram as an effective process. When the soft particle is a gluon and does not change

particle identity, the process can be understood as giving rise to momentum diffusion;

when the exchanged particle is a quark and therefore changes quantum numbers, it is a

conversion process. One can already isolate such processes at the leading order. Doing so

will make it easier to see how to incorporate NLO processes.

In the diffusion case, the action of the soft gluon exchange is to randomize (diffuse) the

momentum of the hard particles by small, O(g) amounts that can be described by a Fokker-

Planck equation. The drag, longitudinal and transverse momentum diffusion coefficients

appearing in the Fokker-Planck equation can be defined field-theoretically in terms of

Wilson-line operators supported on light fronts, which can in turn be evaluated in analytical

form using the light-cone techniques mentioned in the introduction. In the conversion case,

the soft quark exchange converts a hard quark (gluon) into a gluon (quark) of the same

momentum, up to O(gT ). Again, a light-front Wilson line definition for the conversion rate

was introduced in [38], leading to a simple closed form expression. At NLO, the diffusion

and conversion rates receive O(g) corrections, which were computed in [34, 35, 38]. These,

together with corrections to the collinear 1↔ 2 rate and a new, semi-collinear process

(which only contributes starting from NLO), constitute the entirety of the NLO corrections

to the EKT in the “dilute-hard” approximation appropriate for energy loss.

For computing the transport coefficients we will first show (again) how the effect of

soft-gluon exchange can be reorganized into a Fokker-Planck equation in section 3.1. How-

ever, in order to conserve energy and momentum, the Fokker-Planck equation must be

supplemented by gain terms, which describe precisely how the momentum lost by a parton

in the bath is redistributed. This redistribution of energy and momentum is unimportant
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Q Q

P

K K ′

P ′

Figure 2. Diagrammatic representation of the diffusion and gain terms in soft gluon exchange

processes. Double lines are hard quarks or gluons and the intermediate gluon is soft. The blobs

represent the insertion of the deviation from equilibrium f1(p). The diagram on the left is a

diffusion term, entering in (fg1 (p)− fg1 (p′))2, whereas the one on the right is a gain term recording

the correlations between momentum p and k.

for determining the energy loss, but plays an essential role in determining the transport

coefficients. The computation of these gain terms is not amenable to an evaluation using

light-cone techniques since more than one light-like particle is involved, and therefore com-

puting the gain terms constitutes a major obstacle to computing transport coefficients at

NLO. We will use the LO analysis in this section to motivate a NLO Ansatz for the gain

terms in section 4. The treatment of soft fermion exchange and conversions is analogous

and will be discussed in section 3.2.

3.1 Soft gluon exchange

We will now analyze soft gluon exchange shown in figure 2. Intuitively, the effect of soft

gluon exchange on the evolution of the system can be summarized by a Fokker-Planck

equation. Anticipating the results of this section, the Fokker-Planck collision kernel can be

written

(C2↔2
diff f1)a(p) = −1

2

∂

∂pi
q̂ija f

a
0 (p)(1±fa0 (p))

∂fa1 (p)

∂pj
+ gain-terms , (3.1)

where

q̂ija = q̂a,Lp̂
ip̂j +

1

2
q̂a
(
δij − p̂ip̂j

)
(3.2)

records the momentum diffusion parallel and perpendicular to the particle’s momentum

through q̂L and q̂ respectively. The gain terms are necessary to conserve energy an mo-

mentum, and record how the energy lost by a parton with momentum k is redistributed

to particles with momentum p. The gain terms will take the following form:

gain-terms =
1

2

∂

∂pi

(
fa0 (p)(1±fa0 (p))

∑
b

νb

∫
k
Cijab(p̂ · k̂) f b0(k)(1± f b0(k))

∂f b1(k)

∂kj

)
. (3.3)

Here the angular function Cijab(p̂ · k̂) determines q̂ija

q̂ija =
∑
b

νb

∫
k
f b0(k)(1± f b0(k)) Cijab(p̂ · k̂) , (3.4)
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and its explicit form given in eq. (3.11). It is easily verified that energy and momentum

are conserved under the time evolution (∂t+ vp∂x)f(p) = −(Cf1,diff)(p). A simulation and

discussion of a similar Fokker-Planck equation (with the gain terms) is given in [64].

Now we will derive these equations by analyzing the 2↔ 2 collision integral with soft

gluon exchange recorded in eq. (2.21) and illustrated figure 2. The relevant processes are

gg ↔ gg, q1q2 ↔ q1q2 (and similar ones where q1 and/or q2 are replaced by their anti-

quarks), q1q1 ↔ q1q1 and q̄1q̄1 ↔ q̄1q̄1, q1q̄1 ↔ q1q̄1 and finally q1g ↔ q1g and q̄1g ↔ q̄1g.

The LO contribution from soft gluon exchange is obtained by expanding eq. (2.21) for ω, q ∼
gT , p, k ∼ T , where Q = (ω, q) = P ′−P is the momentum exchange shown in figure 2. In

more detail, the phase space integration in eq. (2.21) is approximated by (see appendix B.1)∫
PS
≡
∫
pkp′k′

(2π)4δ(P +K − P ′ −K ′) '
∫
pk

∫
d4Q

(2π)4
2πδ(vp ·Q) 2πδ(vk ·Q) , (3.5)

where vµp = (1, p̂) and vµk = (1, k̂) are light-like vectors in the direction of p̂ and k̂. The

t-channel matrix element in the soft approximation reads [13, 40]

|Mab
ab|2soft g t

(2p)2(2k)2
=
νaCRaνbCRbg

4

dA

∣∣GRµν(Q)vµpv
ν
k

∣∣2 . (3.6)

GRµν(Q) is the retarded, HTL-resummed propagator [55, 56] in Coulomb gauge (see ap-

pendix A). For process with identical particles in the initial or final state, the u-channel

exchange is equivalent in the soft limit. Finally, in a soft (or diffusive) expansion we may

approximate the departures from equilibrium appearing in eq. (2.21)

[
fa1 (p) + f b1(k)− fa1 (p′)− f b1(k′)

]2
=

[
qi
∂fa1 (p)

∂pi
− qj ∂f

b
1(k)

∂kj

]2

. (3.7)

With these approximations the 2↔ 2 collision operator in a diffusive approximation takes

the form

(f1, C2→2
diff f1) ≡ (f1, C2→2

diff f1)
∣∣
loss

+ (f1, C2→2
diff f1)

∣∣
gain

, (3.8)

where

(f1, C2→2
diff f1)

∣∣
loss

=
1

2
β3
∑
a

νa

∫
p
fa0 (p)(1± fa0 (p)) q̂ija

∂fa1 (p)

∂pi
∂fa1 (p)

∂pj
, (3.9)

and the gain terms take the form

(f1, C2↔2
diff f1)

∣∣
gain

= −β
3

2

∑
ab

νaνb

∫
pk
fa0 (p)(1±fa0 (p))f b0(k)(1±f b0(k)) Cijab(p̂·k̂)

∂fa1 (p)

∂pi
∂f b1(k)

∂kj
,

(3.10)

where the angular function is

Cijab(p̂ · k̂) =
g4CRaCRb

dA

∫
d4Q

(2π)4
|GRµν(Q)vµpv

ν
k|2 2πδ(vp ·Q)2πδ(vk ·Q)qiqj , (3.11)

and q̂ija is given by eq. (3.4). Varying the quadratic functional (f1, Cdifff1) according to

eq. (2.15) we see the Fokker-Planck evolution equations, eqs. (3.1) and (3.3), emerge.
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At a technical level, the loss terms arise when the deviations from equilibrium are

on the same side of the gluon exchange diagram, and their contribution to the quadratic

functional therefore involves (f1(p) − f1(p′))2 ∼ q2(f ′1(p))2. This is illustrated by the

black dots in figure 2 (left). The gain terms describe the correlation between the momenta

across the exchange diagram (illustrated by the dots in figure 2 (right)), and the quadratic

functional involves (f1(p)−f1(p′))(f1(k′)−f1(k)) ∼ q2f ′1(p)f ′1(k). From the point of view

of the Fokker-Planck equations this term gives rise to a gain term. But from the point of

view of the original Boltzmann equation, this is a cross-correlation between the departures

from equilibrium of the two particles. Therefore we will refer to these contributions both

a gain terms and as cross terms, depending on the context.

Examining the expression for (f1, C2↔2
diff f1)

∣∣
loss

, we see that it involves one light-like

vector, vp. Indeed, the expression for q̂ij can be rewritten as the Wightman correlator

of soft thermal gauge fields along this light-like direction. Using the causality and KMS

properties of such light-like correlators [34], these soft contributions to q̂ and q̂L can be

evaluated in closed form [37, 38, 63],

q̂a
∣∣∣∣
soft

=
g2CRaTm

2
D

2π
ln
µ⊥
mD

, q̂aL

∣∣∣∣
soft

=
g2CRaTm

2
D

4π
ln

√
2µ⊥
mD

. (3.12)

Here gT � µ⊥ � T is a cutoff on the q⊥ ≡
√
q2 − ω2 integration separating the soft from

the hard scale.2 The dependence on this cutoff cancels against the region where ω, q & T ,

where the bare matrix elements can be used to evaluate the hard contribution to C2↔2.

The simple form of q̂ and q̂L is a consequence of the fact that light-like separated points

are effectively causally disconnected as far as the soft gauge fields are concerned. Using

the explicit form of the angular dependence of fa1 (p) = β2χi···j(p)Xi···j and eq. (2.17),

straightforward analysis shows that the loss term reduces to

(
χi···j , C2↔2

diff χi···j
)∣∣∣

loss
=
β3

2

∑
a

νa

∫
p
fa0 (p)(1± fa0 (p))

×
[
(χa(p)′)2q̂aL

∣∣∣∣
soft

+
`(`+ 1)χa(p)2

2p2
q̂a
∣∣∣∣
soft

]
, (3.13)

which is the most useful form for evaluating the transport coefficients numerically.

The gain terms (eq. (3.10)) intrinsically involve two light-like momenta vp and vk
associated with f1(p) and f1(k). The points on these two light-like rays are causally

connected by soft gauge fields, thus the analyticity techniques used for q̂ cannot be expected

to work. All attempts to extend these techniques to two light-like rays have met with

frustration, and Cijab(p̂ · k̂) and its moments must be computed numerically. To this end,

using eq. (2.17) and the angular dependence of f1(p) = β2χ(p) Ii···j(p̂)Xi···j , we may rewrite

2We have performed the change of integration variables
∫∞

0
dq

∫ +q

−q dω →
∫ µ⊥

0
dq⊥

∫ +∞
−∞ dωq⊥/q.
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the gain terms as

(
χi···j , C2↔2

diff χi···j
)∣∣∣

gain
= −

∑
ab

g4νaCRaνbCRb
8π2dAT 3

∫
p

∫ ∞
0

dk k2 fa0 (p)(1±fa0 (p))f b0(k)(1±f b0(k))

×
[
c1χ

a(p)′χb(k)′ + c2

(
χa(p)′

χb(k)

k
+ χb(k)′

χa(p)

p

)
+ c3

χa(p)

p

χb(k)

k

]
, (3.14)

where

c1≡
∫
dΩk

4π

∫
d4Q

(2π)4
|GRµν(Q)vµpv

ν
k|2 2πδ(vp ·Q)2πδ(vk ·Q)ω2P`(p̂ · k̂) , (3.15a)

c2≡
∫
dΩk

4π

∫
d4Q

(2π)4
|GRµν(Q)vµpv

ν
k|2 2πδ(vp ·Q)2πδ(vk ·Q)ω2(1− p̂ · k̂)P ′`(p̂ · k̂) , (3.15b)

c3≡
∫
dΩk

4π

∫
d4Q

(2π)4
|GRµν(Q)vµpv

ν
k|2 2πδ(vp ·Q)2πδ(vk ·Q)

×
[
q2
⊥P
′
`(p̂ · k̂)+ω2(1− p̂ · k̂)

(
(1− p̂ · k̂)P ′`(p̂ · k̂)

)′]
(3.15c)

are coefficients which must be evaluated numerically. The complicated weights involving

P`(p̂·k̂) multiplying the matrix elements reflect the angular structure of the collision kernel.

When computing the diffusion coefficient (` = 1), the gluon-mediated gain terms de-

scribed by eq. (3.14) actually vanish. This is because the gluons carry no charge and

quarks and antiquarks have opposite charges, so that χg(p) = 0, χq(p) = −χq̄(p). Thus,

the only processes that can give rise to gluon-mediated gain terms are qq ↔ qq, q̄q̄ ↔ q̄q̄

and qq̄ ↔ qq̄. However, due to their opposite signs, the quark and antiquark contributions

end up canceling in the sum of these processes in eq. (3.14) (see [64] for further discussion).

When computing the shear viscosity (` = 2), these integrals are convergent, and

(c1, c2, c3) may be evaluated directly (see appendix B.2 for further details). The UV finite-

ness of the gain terms was discussed previously in [12, 64] where it was noted that in a

leading-log approximation (where the HTL propagator in eq. (3.15) is replaced with the

bare propagator) the coefficients c1, c2, c3 vanish for ` ≥ 2.

As discussed in section 4, we expect that the functional form of the gain terms in

eq. (3.14) will remain valid at NLO but the coefficients c1, c2 and c3 will be modified

by order g corrections. We will only be able to estimate these modifications and their

associated (numerically small) contributions to the NLO shear viscosity.

3.2 Soft quark exchange

We will now analyze soft fermion exchange shown in figure 3, which parallels the soft gluon

exchange described in the previous section. In this case, a hard quark with momentum p

is converted into a hard gluon with approximately the same momentum through the soft

fermion exchange. (The reverse process is also possible, and the set of matrix elements

involved in this process are qq̄ ↔ gg, qg ↔ qg, and q̄g ↔ q̄g.)
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Q Q

Figure 3. Diagrammatic representation of the conversion and gain terms in soft quark exchange

processes. The graphical notation is the same as in figure 2 and the intermediate quark is soft

(single line). The diagram on the left is a conversion term, entering in (fq1 (p) − fg1 (p))2, whereas

the one on the right is a gain term.

The dynamics of the conversion process are summarized by a set of rate equations [38,

64]

(∂t + vp · ∂x) f q(p) = −Γconv
q→g(p) f

q
0 (p)(1 + fg0 (p)) [f q1 (p)− fg1 (p)] + gain-term , (3.16a)

(∂t + vp · ∂x) f q̄(p) = −Γconv
q→g(p) f

q
0 (p)(1 + fg0 (p))

[
f q̄1 (p)− fg1 (p)

]
− gain-term , (3.16b)

(∂t + vp · ∂x) fg(p) = −
∑
q

Γconv
g→q(p) f

g
0 (p)(1− f q0 (p)) [fg1 (p)− f q1 (p)] (3.16c)

−
∑
q̄

Γconv
g→q̄(p) f

g
0 (p)(1− f q0 (p))

[
fg1 (p)− f q̄1 (p)

]
.

The conversion rates Γconv
q→g(p) at leading and next-to-leading order are given by eq. (3.29)

and eq. (4.3) respectively [38], and the gluon conversion rate is

Γconv
g→q =

νq
νg

Γconv
q→g . (3.17)

The gain term is necessary to conserve baryon number under time evolution. Indeed,

the gain term records how the baryon charge associated with conversion of a quark of

momentum k to a gluon is balanced by an increase of quarks (or decrease of anti-quarks)

of momentum p. We will show that the gain term takes the form

gain-term =
f q0 (p)(1 + fg0 (p))

2p

∫
k

f q0 (k)(1 + fg0 (k))

k
Cconv
q→g (p̂ · k̂)

(
f q1 (k)− f q̄1 (k)

)
, (3.18)

where Cconv
q→g (p̂ · k̂) (which is given explicitly below in eq. (3.28)) is a squared matrix element

which specifies the angular structure of the conversion process. The angular average of

Cconv
q→g (p̂ · k̂) determines the conversion coefficient Γconv

q→g ,

pΓconv
q→g(p) =

∫
k

f q0 (k)(1 + fg0 (k))

k
Cconv
q→g (p̂ · k̂) . (3.19)

It is straightforward to show that with the gain and loss terms the total baryon number is

conserved under the evolution specified by eq. (3.16).

To derive these results we return to the 2↔ 2 collision integrals with soft fermion

exchange. The phase space integral and soft approximations are given in the previous
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section, eq. (3.5). The relevant processes are Compton scattering and pair annihilation,

qg ↔ gq, q̄g ↔ qg, and gg ↔ qq̄. The HTL-resummed matrix elements are [13, 40]∣∣Mqq̄
gg

∣∣2
soft q t

(2p)(2k)(2p′)(2k′)
=

4dFC
2
F g

4

16pp′kk′
Tr[i /PSR(Q)i /KSA(Q)] , (3.20)

|Mqg
qg|2soft q

(2p)(2k)(2p′)(2k′)
=

4dFC
2
F g

4

16pp′kk′
Tr[i /PSR(Q)i /K ′SA(Q)] , (3.21)

where SR(Q) is the retarded HTL-resummed quark propagator (see appendix A). At leading

order in the soft approximation the two become equal:∣∣Mqq̄
gg

∣∣2
soft q t

(2p)2(2k)2
=
|Mqg

qg|2soft q

(2p)2(2k)2
=
dFC

2
F g

4

4pk
Tr[i/vpSR(Q)i/vkSA(Q)]

=
dFC

2
F g

4

2pk

[(
1− ω

q

)2 ∣∣S+
R (Q)

∣∣2 +

(
1 +

ω

q

)2 ∣∣S−R (Q)
∣∣2

−q
2
⊥
q2

cosφ
(
S+
R (Q)S−A (Q) + S−R (Q)S+

A (Q)
)]
. (3.22)

Neglecting the small momentum exchange in evaluating the statistical functions, the con-

tributions to the quadratic functional from these two processes are, for each light flavor3

(
f1, C2↔2

Compton f1

)
soft
≡ β3

2

∫
PS

|Mqg
qg|2soft q

(2p)2(2k)2
f q0 (p) fg0 (k) [1 + fg0 (p)] [1− f q0 (k)]

×
[
(f q1 (p) + fg1 (k)− fg1 (p)− f q1 (k))2 + (q → q̄)

]
, (3.23)

(
f1, C2↔2

annihilation f1

)
soft
≡ β3

2

∫
PS

2

∣∣Mqq̄
gg

∣∣2
soft q t

(2p)2(2k)2
f q0 (p) f q0 (k) [1 + fg0 (p)] [1 + fg0 (k)]

× (f q1 (p) + f q̄1 (k)− fg1 (p)− fg1 (k))2 . (3.24)

The quadratic functional for the conversion process is obtained by adding the Compton

and pair annihilation contributions, and sorting the terms into direct (e.g. (f q1 (p)−fg1 (p))2)

and gain terms (e.g. (f q1 (p)−fg1 (p))(f q1 (k)−fg1 (k))). Minor manipulations lead to the final

form of the conversion functional4

(f1, C2↔2
convf1) ≡ (f1, C2↔2

convf1)
∣∣
loss

+ (f1, C2↔2
convf1)

∣∣
gain

. (3.25)

Here the loss part stems from the direct terms

(f1, C2↔2
convf1)

∣∣
loss
≡ β3

f∑
q

νq

∫
p

Γconv
q→g(p) f

q
0 (p)(1+fg0 (p))

[
(f q1 (p)− fg1 (p))2 + (q → q̄)

]
,

(3.26)

3Both processes occur four times for each light fermion flavor in the sum over species
∑
abcd. The pair

annihilation process receives an extra factor of 2 (which we place just in front of |M|2) to account for soft

u-channel exchange [12].
4These manipulations include employing the identity fq0 (p)[1 + fg0 (p)] = fg0 (p)[1− fq0 (p)], symmetrizing

the integrand over p,k, and using the definition νq ≡ 2dF .
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while the gain part stems from the cross terms

(f1, C2↔2
convf1)

∣∣
gain
≡ − β

3

2

f∑
q

νq

∫
pk

f q0 (p)(1 + fg0 (p))

p

f q0 (k)(1 + fg0 (k))

k
Cconv
q→g (p̂ · k̂)

× (f q1 (p)− f q̄1 (p))(f q1 (k)− f q̄1 (k)) . (3.27)

The conversion coefficient Γconv
q→g is given by eq. (3.19), and the conversion kernel Cconv

q→g (p̂ · k̂)

is given by

Cconv
q→g (p̂ · k̂) =

1

4
g4C2

F

∫
d4Q

(2π)4
2πδ(vk ·Q) 2πδ(vp ·Q) Tr

[
i/vpSR(Q)i/vkSA(Q)

]
. (3.28)

Varying the conversion functional according to eq. (2.15) yields the kinetic equations given

by eq. (3.16).

At a technical level, the loss terms arises when the deviations from equilibrium are

on the same side of the fermion exchange diagram, (f q1 (p)− fg1 (p))2, as illustrated by the

black dots on figure 3 (left). The gain term, which records the correlations between the

scattered particles, arises through an exchange of quantum numbers across the fermion

exchange diagram, figure 3 (right).

Examining the expression for (f1, C
2↔2
convf1)

∣∣
loss

, we see it involves one light-like vector

vµp. Indeed, the conversion coefficient, Γconv
q→g , can be rewritten as a light-like Wightman

correlator of soft fermion fields [37, 38]. As shown in [38], this correlator can also be

evaluated in closed form using light-cone techniques (see appendix D.2 in [38]), yielding

Γconv
q→g(p) =

g2CFm
2
∞

8πp
ln

µ⊥
m∞

. (3.29)

As in the previous section, the dependence on the cutoff µ⊥ cancels against the hard region,

ω, q ∼ T , where bare matrix elements may be used.

In practice, for the shear viscosity (` = 2) we solve for the fermion sum (f q1 + f q̄1 )/2

and set the fermion difference (f q1 − f q̄1 )/2 to zero, while for the diffusion coefficient (` = 1)

we solve for the difference and set the sum to zero. Thus, the fermion gain term only

enters when calculating the diffusion coefficient. For the numerical evaluation of the loss

term, we substitute the angular form fa1 (p) = β2χai···j(p)Xi···j into the quadratic functional

(eq. (3.26)), use eq. (2.17), and sum over flavors to find(
χi···j , C2↔2

conv χi···j
)∣∣∣

loss
=

2dFNf

T 3

∫
p

Γconv
q→g(p)f

q
0 (p)[1 + fg0 (p)]

×
[
(χq(p)− χg(p))2 + (χq̄(p)− χg(p))2

]
. (3.30)

For the gain terms (which are only relevant for ` = 1), we substitute fa1 (p) = β2χai (p)Xi

into eq. (3.27) and find(
χi, C2↔2

conv χi

)∣∣∣
gain

= − dFNf

4π4T 3

∫ ∞
0

dp p

∫ ∞
0

dk kf q0 (p) [1 + fg0 (p)] fg0 (k) [1− f q0 (k)]

× c1 (χq(p)− χq̄(p))(χq(k)− χq̄(k)) , (3.31)
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where

c1 ≡
∫
dΩk

4π
Cconv
q→g (p̂ · k̂)P1(p̂ · k̂). (3.32)

Similarly to the momentum diffusion case, the gain coefficient must be evaluated numeri-

cally as worked out in appendix B.2.

At NLO we expect the form of the quadratic functional (eq. (3.30) and eq. (3.31)) to

remain valid, but we have been unable to evaluate the gain coefficient c1 beyond leading

order. We will estimate the NLO modifications of this coefficient in the next section, and

evaluate its (numerically small) contribution to the NLO diffusion coefficient.

3.3 Diffusion and identity in collinear processes

Consider the collinear process introduced in eq. (2.22). Although it is unnecessary to do

so in a leading-order calculation, one can interpret the k � p and (p − k) � p parts

of the integration in eq. (2.22) as representing diffusion and identity-changing processes

respectively for the case q → qg, as each representing identity changing processes for the

case g → qq̄, and as each representing diffusion processes for the case g → gg. Specifically,

for the case of q → qg, one can estimate eq. (2.23) with eqs. (2.24)–(2.26) for k � p or

(p− k)� p as [38] (see appendix C.1 for details)

γqqg(p; p− k, k) ∼ g4p2

k
. (3.33)

Therefore the small (p− k) ≡ p′ region of the integration in eq. (2.22) is parametrically of

form(
f1, C1↔2f1

)
∼ β3g4

∫
dΩn̂

∫
p dp f q0 (p)(1+fg0 (p))

∫
0
dp′
[
f q1 (pn̂)− fg1 (pn̂)− f q1 (p′n̂)

]2
.

(3.34)

The (f q1 −fgq )2 piece represents an identity-changing process. There is also a gain term due

to f q1 (p′) in the ` = 1 case (see the considerations on the IR behavior of f1 in appendix C.1).

So the small p′ region of the integral can be understood as identity-change. However it is

not necessary to do so, since there is no dp′/p′ enhancement of this region, so p′ � T gives

rise to a suppressed contribution.

Similarly, for k � p, the integral is approximated by(
f1, C1↔2f1

)
∼ β3g4

∫
dΩn̂

∫
p2dpf q0 (p)(1−f q0 (p))

∫
0
dk
fg0 (k)

k

[
f q1 (pn̂)−f q1 ([p−k]n̂)−fg1 (kn̂)

]2
.

(3.35)

We can approximate (f q1 (p) − f q1 (p − k))2 ' k2(f q1 (p)′)2, canceling the f0(k)/k ∼ T/k2

behavior to give a nonzero contribution to the longitudinal diffusion coefficient. But again,

because the integration is then only
∫

0 dk, the k � T region is suppressed. In particular,

if we take k (or p′) to be O(gT ), in each case we find a contribution which is O(g) sup-

pressed. Therefore we do not technically need to consider these regions as identity change

or longitudinal momentum diffusion in a leading-order treatment. But it will be important

in an NLO investigation that these limiting regions can be described in this way.
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4 NLO corrections

Here we show how to incorporate next-to-leading order corrections into the leading-order

treatment discussed in the previous section. We begin by showing how to do so in a strict

expansion in g. Then we show the problem with this method; the resulting collision integral

is not manifestly positive. Arnold, Moore, and Yaffe already encountered this problem

in their leading-order treatment [13], which they then avoided by not using momentum

cutoffs, instead applying screening corrections at all momentum transfer scales. This led

to a manifestly positive collision operator which agreed to O(g) corrections with the strict

leading-order form when g is held small. We show how to make a similar treatment of the

O(g) corrections, which leads to a stable numerical treatment.

4.1 Strict NLO treatment

In the last section we saw how to reorganize the leading-order treatment of Arnold Moore

and Yaffe [13] into a contribution from generic momenta without screening, cut off at a

transverse scale µ⊥, and effective diffusion and identity changing processes. The scale µ⊥
cancels when summing the two contributions, providing that we choose this scale to be

sufficiently small. This leads to a self-consistent definition of the leading-order scattering

operator. Furthermore, under this definition the linearized collision operator C is struc-

tured strictly as a g4 object times a log plus constant, and therefore contains no formally

subleading in g content. Our goal in this subsection is to extend this treatment, capturing

all O(g) corrections.

The only way O(g) corrections can arise is if the physics of q ∼ gT degrees of freedom

features in a calculation. These are highly occupied, and loop corrections are of order

g2f0(q) ∼ g when bosons propagate at this energy scale. Furthermore, the HTL effects

which are essential at this momentum receive the first non-HTL corrections at O(g).

Among 2↔ 2 processes, the gT scale appears only when the exchange momentum be-

comes small — in which case the process degenerates into a diffusion or identity change pro-

cess — or when an external particle becomes soft, p ∼ O(gT ). In the latter case the other

states are nearly collinear, and this possibility will be part of what we call semi-collinear

processes below. Among 1↔ 2 processes, the gT scale appears in the transverse exchange

momentum q⊥ and the screening mass m∞ appearing in eq. (2.24) and eq. (2.26). Each will

receive anO(g) correction [35]. Furthermore, our treatment in eq. (2.22) involved a collinear

approximation which breaks down when one of the splitting daughters becomes soft, k ∼
gT , p−k ∼ gT , or when the transverse momentum becomes larger, h ∼ √gT 2. We already

showed that the case of a soft splitting daughter can be treated as a correction to the diffu-

sion and identity change rates. The large-h region is what we call semi-collinear processes.

We showed in [38] how to handle each sort of O(g) correction, except for the gain

terms which we discussed above. In summary, to perform an almost-NLO treatment (in

the sense of only missing these gain terms), we include the following:

• We shift the transverse momentum diffusion coefficient q̂a by [34]

δq̂a =
g4CRaCAmDT

2

32π2

(
3π2 + 10− 4 ln 2

)
. (4.1)
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• We shift the longitudinal momentum diffusion coefficient q̂aL by [38]

δq̂aL = −g
4CRaCAmDT

2

4π2

[
ln

(
µNLO
⊥
M∞

)
− 1

2

]
, (4.2)

where µNLO
⊥ is a new separation scale between NLO soft and hard (semi-collinear)

processes.

• We correct the conversion process rate Γconv
q→g to [38]

δΓconv
q→g(p) = −g

4C2
FmDT

16π2p

[
ln

(
µNLO
⊥
m∞

)
− 1

2

]
. (4.3)

• We correct collinear 1↔ 2 processes via the incorporation of O(g) corrections to

C̄(q⊥) and m∞, appearing in eq. (2.25) and eq. (2.26). The procedure is to modify

the splitting rate γabc(p; p− k, k) precisely as is described in appendix E of ref. [38]:

γabc,NLO(p; p−k, k) ≡ γabc(p; p−k, k) + δγabc(p; p−k, k) of ref. [38] appendix E. (4.4)

• We include corrections to the collinear approximation in C1↔2 by incorporating the

first non-collinear corrections. We postpone the details to subsection 4.3. The short

version is that, in eq. (2.24), we have made approximations which only hold when h is

sufficiently small, h ∼ gT 2. When it becomes larger, h ∼ T 2√g, the approximations

break down and we must be more careful. In treating this region we need an IR cutoff

on h, which exactly compensates the (UV) cutoff µNLO
⊥ we need for the longitudinal

momentum diffusion and identity change processes at NLO.

Adding these contributions to the strict leading-order contributions of the previous section

produces a collision operator which is fully NLO except for NLO contributions to the gain

terms. Furthermore, it again exists strictly as an O(g4) piece and an O(g5) piece, each

containing logs of the coupling, but with no formally higher order content.

4.2 Problem with strict order-by-order

Except for quite small coupling, the approach of the last subsection fails in practice. We

already see why by considering its application at leading order. How small does the sepa-

ration scale µ⊥ need to be to find a result which is µ⊥-independent? The answer is that

we need µ⊥ � T , since T is the natural scale for f0(p) and χ(p) to vary. However, once

µ⊥ < mD, the momentum diffusion and identity change contributions of eq. (3.12) and

eq. (3.29) become negative. But when q̂ and q̂L are negative, the collision operator is not

strictly positive. Within a finite basis of relatively smooth functions, this nonpositivity

may not manifest itself, if the strictly positive contributions from C2↔2 and C1↔2 are large

enough. But as we consider functions with large p-derivatives, the importance of q̂L grows

relative to other terms. So too does q̂ for functions which peak at very small p. So for

a sufficiently large basis of test functions in eq. (2.27), the collision operator will operate

nonpositively within our Ansatz subspace.
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This problem was already recognized in ref. [13]. The solution there was to abandon the

strict leading-order methodology. Rather than introducing a separation scale and replacing

the screened IR piece with a differential operator, they incorporated screening corrections

into the scattering matrix elements responsible for diffusion and number change, at finite

momentum exchange. At weak coupling this procedure is equivalent to the strict leading-

order treatment up to corrections which begin at O(g), and which are dependent on the ex-

act methodology used for incorporating the screening corrections (see [13] section IIIB and

figure 4). Here we will adopt the precise prescription detailed in appendix A of the reference.

We can certainly use this methodology for the leading-order collision term C2↔2. How-

ever, we must check whether the resulting leading-order collision operators then already

incorporate formally O(g) subleading corrections, and if so, we must make a subtraction

to avoid a double counting.

To see how each approach works in practice, and to illustrate how nonpositivity arises

in the strict case and O(g) corrections arise in the AMY procedure, we will delve a little

into the details of the soft region at leading order. The most convenient choice of phase

space integration variables for evaluating the leading-order 2 ↔ 2 process in the t chan-

nel (suppressing particle-species labels and an overall factor of 1/(28π5)) is [13] (see also

appendix B.1 for details)(
χi···j , C2↔2χi···j

)
=

∫ ∞
0

dq

∫ q

−q
dω

∫ ∞
q−ω

2

dp

∫ ∞
q+ω

2

dk
|M|2

16pkp′k′
f0(p)f0(k)[1±f0(p′)][1±f0(k′)]

×
(
χi···j(p) + χi···j(k)− χi···j(p′)− χi···j(k′)

)2
. (4.5)

Here (p, k) are the incoming particle energies, (p′ = p+ω, k′ = k−ω) are the outgoing ener-

gies, and we frequently reorganize the first two integrals,
∫

0 dq
∫ q
−q dω =

∫
dω
∫

0 dq⊥(q⊥/q),
with q2 = q2

⊥+ω2. Reducing the final line to a scalar expression requires evaluating the an-

gles between the momenta p,k,p′,k′; the relevant angles are listed in eq. (A21) of ref. [13].

For small q⊥ one must modify the matrix element to reflect (HTL) screening effects.

The strict leading-order procedure is to introduce an intermediate scale µ⊥. Above this

scale we neglect changes to the matrix element. Below this scale, we systematically expand

in (ω, q⊥)� (p, k) to obtain the diffusion and conversion expressions of the previous section.

This affects the integration limits, with the (p, k) integrals extending to 0, and it affects the

matrix element and the departures from equilibrium, which can be expanded in gradients

for gluon exchange or replaced with their p = p′, k = k′ limits for quark exchange:(
χi···j , C2↔2

strictχi···j
)

=

∫
dω

∫
µ⊥

q⊥ dq⊥
q

(
eq. (4.5), M =Mfree

)
+

∫
dω

∫ µ⊥

0

q⊥ dq⊥
q

∫
0
dp

∫
0
dk
|M|2HTL

16p2k2

× f0(p)[1±f0(p)]f0(k)[1±f0(k)]
[
χ(p)− χ(k) or. . .

]2
, (4.6)

where the last square bracket means either the last line of eq. (3.13) and eq. (3.14) or of

eq. (3.30) and eq. (3.31). In the second and third lines the q⊥, ω integrals and p, k integrals
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factorize separately. The ω, q⊥ integrals are computed using sum rules, giving rise to a log-

arithm ln(µ⊥/mD). In practice when mD is not small this is where lack of positivity enters.

On the other hand, the AMY procedure [13] is to retain the integration measure and

distribution functions of eq. (4.5), and to replace the tree level |M|2 with an HTL form,

detailed at some length in the reference, at all q, ω values. The p, k integration limits are

not changed and the statistical functions are not simplified. That is,(
χi···j , C2↔2

AMY
χi···j

)
=

∫ ∞
0
dq

∫ q

−q
dω

∫ ∞
q−ω

2

dp

∫ ∞
q+ω

2

dk
|MAMY |2
16pkp′k′

f0(p)f0(k)[1±f0(p′)][1±f0(k′)]

×
(
χi···j(p) + χi···j(k)− χi···j(p′)− χi···j(k′)

)2
. (4.7)

To identify O(g) differences between these procedures, we must understand where the

differences occur when g is genuinely small (so mD/T � 1). For generic p, k ∼ T , the regime

q⊥ ∼ T differs by an O(g2) amount, because MAMY =Mfree +O(g2) in this regime. For

q⊥ ∼ gT , we haveMAMY =MHTL +O(g2) and the small-ω, q approximations to statistical

functions and angles are O(g2) after we symmetrize over positive and negative ω.

On the other hand, there is the region where one external particle becomes soft and

the exchanged four-momentum is soft. (The region where both external particles are soft is

highly suppressed.) When k ∼ gT , the two treatments differ in several respects. Clearly the

phase space treatment is different; eq. (4.6) integrates to k = 0, while eq. (4.5) integrates

to 2k = q+ω, an important difference if k ∼ gT . Also the approximations to the statistical

functions and matrix element are no longer reliable. Therefore the two approaches have

O(1) differences in this region. Provided that k is a gluon, this region is only suppressed

by O(g). Therefore this region represents a source of O(g) differences between the strict

and AMY methodologies.

Fortunately, when p is hard but k is soft, the process is well described by either momen-

tum diffusion or identity change from the point of view of the high-energy particle. There-

fore the treatments differ at O(g), but only because of the region where one external particle

is soft, and this region can be captured in terms of diffusion and identity change processes.

In a leading-order calculation we are free to use either approach. The AMY approach

is preferred because it gives a positive collision operator. In an NLO treatment, we have

calculated the NLO corrections to diffusion and identity changing processes assuming that

the strict leading-order treatment is to be used. If we use instead the AMY approach,

as we do, we need a calculation at O(g) of the difference between the two leading-order

approaches, written in terms of diffusion and identity-change rates. These can then be

included as “counterterms” in our NLO treatment. We compute these counterterms in

detail in appendix B.3.

4.3 Semi-collinear contributions and reorganization

Returning to the NLO corrections we introduced in eq. (4.1), eq. (4.2), and eq. (4.3), we see

a similar problem. Two of these depend on an introduced intermediate scale µNLO
⊥ . This

scale must again be chosen in such a way that its influence is small. Furthermore, even

at small g, the δq̂L and δΓconv corrections and the semi-collinear ones tend to represent a
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⊥
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gT
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µLO
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Diff./Conv.

coll.

Collinear

Semi-

Figure 4. Left: kinematic regions, in terms of exchanged transverse momentum and exchanged

light-cone momentum q+, which are relevant at leading order. Right: the same regions (yellow) plus

regions which are relevant at next-to-leading order (pink) and where subtractions of leading-order

effects are needed (blue).

negative contribution to the NLO collision operator, as the proper O(g) evaluation of these

regions is smaller than the naive one included at LO in e.g. eq. (3.34) and eq. (3.35). We

will thus lose positivity of the collision operator when we incorporate these corrections at

not-so-small values of g. So again we need to find a reorganization which reproduces these

contributions in the sense of a strict NLO expansion in g. To do this we need to return to

the semi-collinear process in more detail.

The relevant kinematics are summarized in figure 4. Collinear processes correspond to

a particle making a large change in energy but a small change in transverse momentum.

Elastic scattering is a large change in both — or, for soft processes, a small change in both.

The semi-collinear region is where the exchanged transverse momentum is intermediate

between these two cases. Therefore it requires subtractions from each. It also requires a

subtraction of its soft-exchange tail. We implement this as a cutoff on q⊥ at the scale µNLO
⊥ ,

but physically one could also see this as a way to cut off small energy (really q+) exchanges.

To understand this region better, consider eq. (2.23) and eq. (2.24). In deriving the

equation we assumed that p, k ∼ T and h ∼ gT 2. This allowed a collinear expansion;

in particular we could equate q‖ = ω in exchange processes (q− = 0). But this breaks

down as we consider larger h values. Fortunately in this regime there is a new simplifying

approximation; the integral equation, eq. (2.24), can be solved iteratively in large δE:

Fb1(h) = 2h/iδE(h) , (4.8)

Fb2(h) =
i

δE(h)

∫
d2q⊥
(2π)2

C̄(q⊥)

{(
CRb −

CA
2

)
[Fb1(h)− Fb1(h− kq⊥)]

+
CA
2

[Fb1(h)− Fb1(h + pq⊥)] +
CA
2

[Fb1(h)− Fb1(h− (p−k)q⊥)]

}
.

This is the same as treating the emission in the Bethe-Heitler limit, ignoring LPM correc-

tions. We will make this approximation in the following. We can also assume that the h2

term dominates in the expression for δE, eq. (2.26), so δE(h) = h2/(2pk(p−k)).
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Figure 5. Diagrams for typical semi-collinear processes. The exchange of momentum h/p and

energy with the plasma can be due to elastic scattering or absorption of a soft quasiparticle, leading

to the semi-collinear splitting process.

However, as noted above, it is no longer sufficient to neglect q− relative to q⊥, because

q− = δE ∼ gT ∼ q⊥. Therefore the kinematics of scattering is changed and C̄(q⊥) must be

recomputed. A more accurate form for C̄(q⊥) in this regime, replacing eq. (2.25), is [35, 38]5

C̄NLO(q⊥, δE) =
g2Tm2

D

(q2
⊥ + δE2)(q2

⊥ + δE2 +m2
D)

+
2g2TδE2

q2
⊥(q2
⊥ + δE2)

. (4.9)

Physically this arises from two types of processes, in which the splitting is either induced

by an elastic scattering or by the absorption of a soft on-shell particle, see figure 5. There-

fore we need to make two subtractions, corresponding to the already-computed LO 1 ↔ 2

contribution (the small δE limit), and the already-included LO 2↔ 2 contribution (the

small mD limit) [35]:

δC̄(q⊥, δE) =
g2Tm2

D

(q2
⊥ + δE2)(q2

⊥ + δE2 +m2
D)
− g2Tm2

D

q2
⊥(q2
⊥ +m2

D)
. (4.10)

The second term is the LO collinear form for C̄ (the small δE limit of eq. (4.9)). The other

subtraction, of the mD → 0 limit, precisely removed the second term appearing in eq. (4.9).

The semi-collinear contribution is found by substituting eq. (4.10) into eq. (4.8) and

using it to evaluate eq. (2.23) and hence eq. (2.22). But one further simplification can be

made. For generic p, k ∼ T , we have δE ∼ h2/T 3. The two terms in eq. (4.10) cancel up

to small corrections unless δE ∼ mD ∼ gT , which then requires the semi-collinear value

h ∼ T 2√g. On the other hand, q⊥ ∼ gT ; for larger values, q2
⊥ � δE2 and the two terms

again cancel. Therefore, we can make a systematic expansion in pq⊥ � h in eq. (4.8).

And to get a strict NLO result, we also need to make such an expansion. Averaging over

directions for q⊥, we have

Fb1(h)− Fb1(h− pq⊥) ' −p
2q2
⊥

4
∇2

hFb1(h) , (4.11)

which we combine with the definition (see footnote 5)

δ ¯̂q(δE) ≡
∫

d2q⊥
(2π)2

q2
⊥ δC̄(q⊥, δE) (4.12)

5These references introduce q̂(δE). Here we take ¯̂q(δE) =
∫
d2q⊥/(2π)2 q2

⊥ C̄NLO(q⊥, δE) and use this

to infer C̄NLO(q⊥, δE).
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to get an explicit expression for Fb2(h), leading to [38]6

γabc

∣∣∣∣strict

semi

(p; p−k, k) =
g2

8π4


2dAC

2
A

(p2+k2−pk)3

pk(p−k) g ↔ gg

dFCF
p2+(p−k)2

k [CFk
2 + CAp(p− k)] q ↔ qg

dFCF
(p−k)2+k2

p [CF p
2 − CAk(p− k)] g ↔ qq̄


×
∫

d2h

(2π)2

δ ¯̂q(δEs)

h4
. (4.13)

When this result is inserted into eq. (2.22) it leads to logarithmic small k and (p−k)

divergences unless we impose an IR cutoff on the allowed value of h, namely h ≥ pµNLO
⊥ .

The cutoff dependence cancels that in the NLO longitudinal momentum and identity change

rates [38].

The problem with this procedure is the same as the problem with the strict LO rate. We

need to insert a regulator scale which separates regions with finite k-momentum exchange

from regions which are treated diffusively. Neither side is necessarily positive and the

collision operator can have serious positivity problems when the coupling is not small.

This necessitates a rewriting of the NLO contributions along the lines of the AMY method

at LO. The problem arises because we made a strict h � pq⊥ expansion in eq. (4.11).

Without this approximation, that is, by using the full expression for δC̄, eq. (4.10), in

eq. (4.8), we obtain instead the manifestly finite result

γabc

∣∣∣∣
semi

(p; p− k, k) =
g2

32π4


dACA

p4+k4+(p−k)4

p3k3(p−k)3 g ↔ gg

dFCF
p2+(p−k)2

p2(p−k)2k3 q ↔ qg

dFCF
(p−k)2+k2

(p−k)2k2p3 g ↔ qq̄

∫
d2h

(2π)2

∫
d2q⊥
(2π)2

δC̄(q⊥, δE)

×
[(

CR −
CA
2

)(
h

δE(h)
− h− kq⊥
δE(h− kq⊥)

)2

+
CA
2

(
h

δE(h)
− h + pq⊥
δE(h + pq⊥)

)2

+
CA
2

(
h

δE(h)
− h− (p− k)q⊥
δE(h− (p− k)q⊥)

)2
]
, (4.14)

with (CR − CA/2) appearing on the h + pq⊥ term for g ↔ qq̄ processes. This is then

inserted into eq. (2.22), resulting in(
f1, Csemif1

)
≡ 2π

T 3

∑
abc

∫ ∞
0
dp

∫ p

0
dk γabc

∣∣∣∣
semi

(p; p− k, k)fa0 (p)[1± f b0(k)][1± f c0(p− k)]

×
[
fa1 (p)− f b1(kp̂)− f c1((p− k)p̂)

]2
. (4.15)

In the small g limit, this single expression reduces to the sum of the previous NLO semi-

collinear, δq̂L, and δΓconv contributions, as we show at some length in appendix C. The

appendix also explains how this result is related to the light-cone sum rules.

We conclude the illustration of this region with a remark. Currently, we treat the

collinear region with eq. (2.22) and the semi-collinear region, including a subtraction due

6There is an unfortunate misprint in the g ↔ qq̄ rate in eq. (8.8) of [38]. The term proportional to CA
should be negative, as it is in eq. (4.13) here.
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to the collinear one, using eq. (4.15). But we could combine them into a single calcula-

tion by adding δC̄(q⊥, δE) to C̄(q⊥) in eq. (2.24). In this way one would perform LPM

resummation with the δE-dependent kernel and thus would no longer need to subtract the

strictly collinear one. The contribution would also be manifestly positive. However, this

would be extremely impractical. Because C̄(q⊥) is quite simple, we can Fourier transform it

analytically and solve eq. (2.24) in impact-parameter space as a differential equation. But

δC̄ does not have a simple Fourier expression, so eq. (2.24) would need to be solved as an in-

tegral equation in q⊥ space, making a numerical solution very intricate. Treating the parts

separately as we do, with the expansion eq. (4.8) used for the semi-collinear but not the

collinear case, does not lead to a manifestly positive result. But the sum nevertheless tends

to remain positive, even for large mD/T , because δC̄(q⊥, δE) becomes smaller in that limit.

4.4 Estimate of NLO gain terms

We have now presented the NLO contributions except for possible gain terms, as explained

in section 3. Although we will not be able to compute these, we can at least estimate their

size, which allows us to assign a systematic error budget for their exclusion. NLO effects

arise from soft momenta and from corrections to collinear and semi-collinear physics. For

the latter, a small momentum exchange induces a large change in the particle which splits,

and since we capture all aspects of this large change, only the soft exchange partner is

mistreated. This is a subleading effect. Therefore we only need concern ourselves about

NLO gain terms due to momentum diffusion and identity change.

To get an estimate for their magnitude, we compute the soft contribution from gain

terms in the LO calculation, where we know how to compute and include them. Then

we estimate that the missing NLO gain terms are of order the same size, times a factor

reflecting how much smaller NLO effects are relative to the leading order. In the ` = 2

case, where, as we’ve seen in the previous section, gain terms are only mediated by soft

gluon exchange, we shall use

(
χij , Cδgain χij

)
= C`=2

mD

T

(
χij , C2↔2

diff χij

)∣∣∣
gain

, (4.16)

where C`=2 is a constant that we vary to incorporate our ignorance of the actual size (and

sign!) of the NLO gain terms. We are thus making the Ansatz that the NLO corrections

to the gain terms take the exact same form as at leading order, but rescaled by mD/T ∼ g
times an arbitrary constant. Similarly, for the ` = 1 case, where only fermionic gain terms

contribute, we assume

(
χi, Cδgain χi

)
= C`=1

mD

T

(
χi, C2↔2

conv χi

)∣∣∣
gain

. (4.17)

We evaluate each expression, as given in eqs. (3.14) and (3.31), in appendix B.2. Our

results will show that the impact of these gain terms is very modest.
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4.5 Summary

We conclude this section by summarizing the form of the collisional part of the quadratic

functional. At LO it is given by eq. (2.20). At NLO we have(
f1, CNLO f1

)
=
(
f1, CLO f1

)
+
(
f1, δC f1

)
, (4.18)

where (
f1, δC f1

)
≡
(
f1, Cδq̂ f1

)
−
(
f1, C2↔2

O(g) finite f1

)
+
(
f1, Cδgain f1

)
(4.19)

+
(
f1, Csemi f1

)
+
(
f1, δC1↔2 f1

)
. (4.20)

Here the first contribution is found by inserting δq̂a from eq. (4.1) in place of q̂a in eq. (3.13).

In the form most suited for numerical evaluation it reads(
χi···j , Cδq̂ χi···j

)
=
β3

2

∑
a

νa δq̂
a

∫
p
fa0 (p)[1± fa0 (p)]

`(`+ 1)χa(p)2

2p2
. (4.21)

The second term in eq. (4.19) is the “counterterms” discussed in subsection 4.2 and com-

puted in appendix B.3, the third is the estimate in eq. (4.16) or eq. (4.17), the fourth is from

eq. (4.15), and the last is the result of the modification of eq. (4.4), inserted in eq. (2.22).

5 Results

As we have mentioned in section 2, we obtain the leading-order transport coefficients by

maximizing the functional Q[χ], as given by eq. (2.16), with the source term given in

eq. (2.19) and the LO collision operator given in eq. (2.20), with modifications described

in subsection 4.2, especially eq. (4.7). In the previous section we have derived the NLO

collision operator, as summarized in eq. (4.18). This operator is the sum of the LO one

and of its O(g) corrections. In principle, one could treat the latter as a perturbation. One

extremizes eq. (2.16) by series expanding 1/(C + δC) as a geometric series,

β4Qmax =

(
S, 1

C + δC S
)

=⇒
(
S, 1

C S
)
−
(
S, 1

C δC
1

C S
)

+ . . . . (5.1)

We have however chosen not to pursue this avenue because δC can be large and positive,

and the above expression becomes negative for intermediate g values. Hence, we instead

define the NLO transport coefficients as the expression before the =⇒ in eq. (5.1), rather

than the expression after the arrow. One way to think of this is that we are computing

1/η at NLO and then inverting it, similar to resumming self-energy insertions into a Dyson

sum so they appear linearly in the denominator of the propagator.

We will plot the ratio η/s using the leading-order, Stephan-Boltzmann value for the

entropy density with Nf massless quarks, since the first perturbative corrections to the

partition function, from which all thermodynamic observables are obtained, are of order g2.

This is self-consistent within our kinetic approach, and to do otherwise would be treating

particles’ contribution to the entropy and to the stress tensor differently and inconsistently.

We will start by presenting results in full QCD with fermions. Later on, in section 5.2,

we will also present results for the pure Yang-Mills theory and in section 5.3 for QED.

Accurate fits for the NLO results will be presented in appendix D.
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Figure 6. (a) The shear viscosity to entropy ratio η/s, and (b) the baryon number diffusion

coefficient Dq (times temperature) normalized by the leading 1/g4 as a function of mD/T for QCD

with Nf = 3 light flavors. (The corresponding value of αs is shown on the upper horizontal axis.)

The LO result is from [13]. The uncertainty from the unknown gain terms is shown by the bands;

it is estimated from the leading-order gain terms (which have the same structure as their NLO

counterparts) by changing an unknown coefficient C` through the range [−2, 2] as specified by

eq. (4.16) and eq. (4.17). The dashed lines represent an estimate in which we include only the NLO

q̂ to the LO collision operator — see eq. (5.2) and surrounding text.

5.1 Results in full QCD

In figure 6 we show our results for the shear viscosity over entropy η/s and quark number

diffusion Dq as a function of mD/T for QCD with Nf = 3 flavors. We plot the LO

results [13] in solid blue, and for NLO we plot our result in solid green (for η/s) and

red (for Dq). To estimate the uncertainty from the undetermined NLO gain terms we

provide bands in the same color around these central C` = 0 NLO values. The bands

are obtained from taking C` in the range [−2, 2]. This apparently arbitrary choice is

motivated by comparing LO and NLO momentum diffusion rates; the NLO q̂ to LO q̂ ratio

is δq̂a/(q̂amD/T/ ln(µ⊥/mD)), which we can read off from eqs. (3.12) and (4.1); it ranges

from ∼ 1 for Nf = 6 to ∼ 2.2 in the pure Yang-Mills case. Therefore |C`| = 2 appears to

be a conservative value in estimating resulting errors. As we point out in appendix B.2,

we have made another conservative choice there in the evaluation of the gain terms. The

uncertainty arising from the gain terms is smaller for Dq than for the shear viscosity; in the

former case we are dealing with the soft-fermion, ` = 1 term given by eq. (4.17), whose LO

value (eqs. (3.31) and (B.8)) is numerically smaller than its ` = 2 counterpart (eqs. (3.14)

and (3.15)).

In both cases the main difference between LO and NLO results arises from δq̂. This

is reinforced by the dashed lines in figure 6, which shows results obtained from a collision

operator containing, beyond leading order, only the NLO corrections to q̂:(
f1, Cδq̂only f1

)
≡
(
f1, CLO f1

)
+
(
f1, Cδq̂ f1

)
−
(
f1, C2↔2

O(g) finite q̂ f1

)
, (5.2)
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Figure 7. The NLO/LO ratio for the shear viscosity and diffusion constant for QCD with Nf = 3.

The uncertainty bands from the unknown gain terms are described in figure 6.

with the pertinent “counterterm” (f1, C2↔2
O(g) finite q̂ f1) given by eq. (B.18). We see that this

curve lies quite close to the (C` = 0) full NLO result, indicating that other corrections

are small or largely cancel each other. But the δq̂ contribution is so large that it starts

to overtake the leading-order collision operator before mD = 1T and represents a factor-5

modification for αs = 0.3. We present an accurate fit for the NLO curves (at C` = 0) in

appendix D, namely in eqs. (D.5) and (D.6) for η/s and in eqs. (D.8) and (D.9) for Dq.

In order to study more quantitatively the observed similar trend between the NLO η

and Dq, compared to their respective leading orders, we plot the NLO/LO ratios in figure 7,

complete with gain uncertainty bands, as a function of mD/T for QCD with Nf = 3. As

the plot shows, the two central values fall within the uncertainty bands. Each transport

coefficient is dominated by elastic scattering and in each case the ratio of δq̂ to the leading-

order elastic effect is about the same; therefore the trend with coupling is very similar.

True vacuum renormalization effects will first arrive at NNLO (at O(g2)), so we do

not yet see effects of coupling renormalization. This makes it difficult to use any internal

consistency to set the scale in our calculations. Nevertheless, we are clearly very interested

in plotting the temperature dependence of the LO and NLO transport coefficients, which

requires picking a prescription for g(T ) and for the quark mass thresholds, with the under-

standing that the different choices might differ starting parametrically from NNLO. Various

choices are commonly employed in the literature. One widely used prescription is to simply

take the MS coupling at n loops, with threshold matching at n − 1 loops, and choose the

renormalization scale µ to be a multiple of the Matsubara frequency 2πT (usually a set of

values such as µ = {0.5, 1, 2, 4}πT is employed to estimate the scale setting uncertainty).
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Figure 8. The different choices for the coupling as a function of the temperature adopted in this

work. The green band (and bounding line) is obtained from a two-loop QCD MS running with

one-loop threshold matching (and hence is continuous at the thresholds) with µMS = (π ↔ 4π)T .

The green bounding line is for the smallest scale µMS = πT . The corresponding red band and

bounding line are obtained from the EQCD effective coupling with µEQCD = (2.7 ↔ 4π)T [39],

which is discontinuous at the quark thresholds.

Another choice is to use the “effective QCD coupling”, introduced in [39] as the matching

coefficient appearing in the dimensionally reduced effective theory EQCD (Electrostatic

QCD, [65–69]). The two-loop expression for this matching coefficient, as computed in [39],

is better suited to describe the coupling in settings where contributions from the soft scales

play a major role, as the computation of the spatial string tension and comparison with

lattice data in [39] display. Since the LO results are dominated by the logarithmically

enhanced diffusion and conversion processes [13], which are very sensitive to the soft scale,

and the NLO results are dominated by the large corrections to q̂, which are in turn deter-

mined from EQCD, we argue that the EQCD coupling is the best choice for these transport

coefficients. Hence we will mostly use the EQCD coupling from [39] in our plots.

We start by plotting the coupling itself, as shown in figure 8. The detailed definitions

for the two choices of the coupling are given in appendix E. The green line and band

represent the QCD MS coupling as given by eq. (E.1), obtained from a numerical two-

loop evolution from αs(Mz) = 0.1185, with the MS renormalization scale µ in the range

[πT, 4πT ] and with one-loop quark threshold matching at µ = mq, hence the continuity.

The red line and band are instead obtained from the effective EQCD coupling, as given by

eq. (E.4), with threshold matching at µ = mq and with renormalization scale µ in the range

[2.7T, 4πT ]. The lower bound (µ = 2.7T ) is at the quark mass value (mq = 2.7T ) where a

quark contributes half as much (Stephan-Boltzmann) entropy as a massless quark, which
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Figure 9. (a) The QCD shear viscosity to entropy density ratio η/s, and (b) diffusion coefficient

Dq as a function of T . All curves in this plot are obtained using the effective EQCD coupling with

µEQCD = 2.7T . The uncertainty due to the gain terms which are estimated (and not computed)

is shown by the shaded green and red bands respectively. This uncertainty estimate is described in

figure 6.

we therefore pick as our criterion for the quark’s decoupling temperature (for instance, the

b quark decouples at Tb ≈ 1.55 GeV under this choice). As we remark in appendix E, the

matching to the EQCD coupling cancels the leading renormalization point dependence,

which is why the EQCD curves are nearly identical.

Figure 9 shows the LO (blue) and NLO results for η/s (green) and Dq (red) with the

effective EQCD coupling, set at the entropy-motivated prescription µ = 2.7T . At the quark

mass thresholds we switch from describing a system with Nf + 1 massless quark flavors to

describing a system with Nf massless flavors, leading to a discontinuity in the coupling, the

entropy density and the transport coefficients, and therefore in each curve. Our treatment

is insufficient near each threshold because we have not developed an η (or Dq) calculation

which correctly treats massive quarks. We show the uncertainty bands corresponding to

the previous values for the arbitrary constant in eq. (4.16): C` = ±2. As the plot shows,

in the η/s case the uncertainty band due to missing NLO (gain) contributions grows larger

as Nf increases with increasing temperature. This is because the LO gain term, which

multiplies C`=2 in eq. (4.16), has terms proportional to Nf and to N2
f , as can be inferred

from eq. (3.14). We remark that, as expected from figure 6, the NLO results are much

smaller than the leading order: at temperatures of the order of the QCD transition the

NLO η/s is smaller by a factor of 5, which becomes a factor of two for T ∼ 1 TeV.7 The

gain uncertainty band, on the other hand, represents a +30%, −20% correction to the

NLO result. In terms of the strong-coupling results [22, 70, 71], the NLO results for η/s

7We present these high-temperature results only to analyze the convergence of the perturbative series.

They do not apply to the early universe at these temperatures, where electroweak and leptonic degrees of

freedom, absent from this calculation, would play a major role. In fact, for early universe applications,

electroweak degrees of freedom will always play a dominant role.
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Figure 10. The η/s ratio in units of 1/g4 as a function of mD/T for Nc = 3 Yang-Mills theory.

The uncertainty band is due to the unknown gain terms described in figure 6. A fit for the solid

green curve is available in eqs. (D.5) and (D.7). The dashed line shows a partial NLO result with

only the NLO modifications to q̂.

(Dq) can get smaller than 2/(4π) (2/(2πT )) at the lowest temperatures, corresponding to

couplings of the order of αs ∼ 0.35.

In figure 1 we analyzed another source of theoretical uncertainty, arising from a different

scheme for the running coupling. Besides the LO and NLO results with the EQCD effective

coupling, already presented in figure 9, we also show results obtained from the two-loop

QCD MS coupling discussed above. As the plot shows, the LO and NLO uncertainty bands

introduced by the different choices adopted for the renormalization scale are well separated

(except at the lowest temperatures, where, as figure 8 shows, the MS coupling for µ = πT

is O(1)). This is consistent with the expectation that the running coupling is an NNLO

effect and should thus be smaller than NLO corrections.

5.2 Results in pure Yang-Mills

Pure Yang-Mills theory is only of interest for academic reasons. Nevertheless, since it is

straightforward, and since most lattice results for the viscosity [25–31], as well as analytical

studies [72], are actually for pure Yang-Mills theory and not full QCD, we will present

results for this case. In figure 10 we show the η/s ratio in pure Yang Mills for Nc = 3.

The general trends are the same as in full QCD but, interestingly, the NLO/LO ratio is

smaller as a function of mD/T than it is for full QCD. When examined in terms of g (see

the upper scale in αs) they are however similar. It is also worth noting that the absolute

values for η/s are larger than for Nf = 3.
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Figure 11. The η/s ratio as a function of the temperature for Nc = 3, Nf = 0 pure Yang-Mills

theory. The thin darker bands and the thicker lighter bands respectively show the EQCD and MS

renormalization schemes with µ = (π ↔ 4π)T .

In figure 11 we plot the η/s ratio in Nc = 3 Yang-Mills theory as a function of the

temperature. The coupling is fixed as follows:

• At a sufficiently high scale we impose the two-loop asymptotics αs(µ)/π = −8/(β0t)−
16β1 ln(t)/(β3

0t
2), with t = ln(µ2/Λ2

MS
), βi as given by eq. (E.3) and ΛMS =

1.24Tc [73], with Tc the critical temperature.

• For the two-loop QCD MS coupling, this asymptotic value is then evolved down to

lower scales using the two-loop β-function in eq. (E.1). We present LO and NLO

results as wide blue and green bands respectively, reflecting the renormalization scale

uncertainty. Uncertainties arising from the ΛMS/Tc ratio or from the two-loop trun-

cation of the β-function should be smaller than the large bands arising from the

variation of the renormalization scale.

• For the effective EQCD coupling we use eq. (E.4) as before. The displayed darker

blue (LO) and green (NLO) bands, for the same µ interval as in the MS case, are

much narrower, given that the dependence on µ is very small in the absence of the

discontinuities at the quark mass thresholds.

In this case one observes again two non-overlapping bands for the LO and NLO shear

viscosity. Due to the smaller values of the couplings8 the shear viscosity over entropy

density is larger than in full QCD in the transition region.

8For comparison, in pure glue and for µ = πT , the effective EQCD coupling is αsEQCD(T = Tc) =

0.1945, corresponding to mD/T = 1.563, while in QCD for µ = 2.7T αsEQCD(T = 177 MeV) = 0.3244,

corresponding to mD/T = 2.473. (The EQCD coupling in QCD with fermions for µ = 2.7T breaks down

shortly below T = 177 MeV.)
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5.3 Results in QED

We have also obtained the shear viscosity for QED. In this theory the large NLO q̂ con-

tribution is absent, due to its non-abelian nature, and the coupling is small. We have

taken α = 0.0072973525664 and one massless Dirac fermion, so as to describe an electron-

positron-photon plasma at mµ � T � me. In QEDm2
D = e2T 2/3 and hencemD/T ≈ 0.17.

At leading order we obtain

η

s

∣∣∣∣LO

QED

= 2779.2, (5.3)

whereas our next-to-leading order results, for three values of the gain constant C`=2, are

η

s

∣∣∣∣NLO,C`=2=0

QED

= 2818.5,
η

s

∣∣∣∣NLO,C`=2=+2

QED

= 2836.1,
η

s

∣∣∣∣NLO,C`=2=−2

QED

= 2801.2.

(5.4)

Hence, the NLO central value (C`=2 = 0) corresponds to a 1.4% increase over the LO

shear viscosity, while the upper and lower values correspond to a 2% and a 0.8% increase

respectively. We can thus conclude that the abelian NLO corrections tend to decrease the

collision operator and that in the case of QED perturbation theory works very well.

6 Conclusions

The main aim of this paper has been to compute the shear viscosity and quark diffusion

coefficient of QCD at “almost” NLO in g. This involved partially resumming some O(g)

effects in the leading-order treatment, and some O(g2) effects in the NLO treatment, in

order to maintain positivity of the collision operator. Also we invert the full C+δC (leading

plus next-to-leading order) collision operator, rather than expanding in δC as suggested in

eq. (5.1). It also involved neglecting gain terms9 which we could not compute at NLO, but

which proved to be small at leading order. We have estimated the possible effects of these

missing contributions and found they are likely quite small. From a technical standpoint,

the most important result of this paper is the methodology introduced in section 4.3,

where we introduce a 1↔ 2 rate, eq. (4.14), which smoothly extends into regions of soft or

semi-collinear (less collinear) radiation, without the need for intermediate regulators. In

this paper we have only needed to treat this new equation in the single-scattering (Bethe-

Heitler) regime, but it would be interesting to try to solve it as an integral equation, thereby

incorporating LPM interference when needed. We leave this, together with applications of

this approach to thermalization or jet quenching, to future studies.

The qualitative trend observed for the shear viscosity and the light quark diffusion

coefficients as a function of the coupling mD/T , both in QCD with three light fermions

and in the pure gauge theory, is as follows (see figures 6, 7, 10): the NLO curves in green

(η/s) or red (Dq) start to diverge significantly from the LO ones in blue for mD/T ∼ 0.5,

with the NLO transport coefficients becoming as small as one fifth of the LO for values

of mD/T corresponding to αs ∼ 0.3. Furthermore, the uncertainty band introduced by

9We emphasize again that despite the name, these terms are not manifestly positive and it is unclear

whether their correct inclusion would increase or decrease η.
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considering a rather large value for the gain terms at NLO only modify the NLO transport

coefficients by 30% at most. In figures 1, 9 and 11, we plot instead the transport coefficients

as functions of the temperature, which requires picking a prescription for the coupling as

a function of the temperature and for the decoupling of heavy quarks. The LO and NLO

curves do not overlap, even accounting for the uncertainties arising from the choice of the

running prescription, renormalization scale and decoupling point. Therefore the limitations

of perturbation theory are much more severe than simply the question of what to choose

for the renormalization point. Indeed, even at temperatures of order one TeV, where

perturbation theory would be expected to work well, the NLO transport coefficients are

smaller than the LO value by about a factor of 2.

The dashed curves in figures 6 and 10 show that by far the dominant NLO effect is

the large NLO correction to q̂, first derived in ref. [34]. This should perhaps not be too

surprising. The corrections to splitting rates are not small, but they tend to be compensated

by the semi-collinear ones [35]. And as emphasized in [13], elastic scattering is the principal

contributor to shear viscosity and number diffusion, with splitting processes amounting to

10–20% effects. Further, the NLO contributions to q̂ represent new physical processes

not included at leading order; the inclusion of additional soft emissions in the course

of scattering and interference between different scattering processes. Unfortunately the

Euclidean methods used to compute δq̂ do not allow us to evaluate these contributions

separately. In order to test a theory that is not sensitive to this large δq̂ contribution, we

examined QED in section 5.3, finding that the remaining abelian NLO contributions are a

percent-level correction.

One important question to be addressed is what should we make of a perturbative

expansion that does not converge above mD/T ∼ 0.5, or equivalently below temperatures

well above the TeV scale. Taken at face value, the results plotted in section 5 would perhaps

suggest a grim answer to this question. However, one could optimistically think that, if we

were to correctly identify the physics responsible for these large corrections, and rearrange

the perturbative expansion by resumming it, possibly in the form of an Effective Field

Theory, then the outlook on convergence would be quite different; a redefined LO somehow

incorporating most of the NLO corrections to q̂ would not look so different from the dashed

lines in figure 6, so that the deviation from the NLO in solid green/red would be much

less pronounced. Of course, much action is needed to move this scenario from the realm

of wishful thinking into physically motivated perturbative schemes. One possible direction

would be to treat the problematic soft sector non-perturbatively. The mapping to the

Euclidean 3D theory makes a lattice determination of the soft contribution to C(q⊥) and q̂

possible, with first results reported in [74]. Refinements of this measurement, together with

calculations of the shift in the dispersion relation δm2
∞ and of q̂(δE), seem within reach,

due to their Euclidean nature. We also need a better understanding of how such Euclidean

measurements can be systematically included into transport calculations within a rigorous

Effective Field Theory framework. Other needed ingredients, such as the longitudinal

momentum broadening, conversion rates and gain terms, on the other hand, cannot be

mapped to the 3D Euclidean theory and cannot thus be currently determined on the lattice.

Therefore we should view it as good news that these effects appear to be much smaller
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than δq̂. One might hope that, with enough nonperturbative Euclidean contributions, the

perturbative approach might work down closer to experimentally realizable temperatures.
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A Hard thermal loop propagators

In the next appendices we will look at matrix elements with soft exchange momenta in

more detail. Therefore we need to specify the hard thermal loops, which appear in the

expressions for these soft, screened matrix elements. We start with the fermionic HTLs,

which are most easily written in terms of components with positive and negative chirality-

to-helicity ratio. The retarded fermion propagator reads

SR(P ) = h+
pS

+
R (P ) + h−pS

−
R (P ) , (A.1)

where

S±R (P ) =
i

p0 ∓ (p+ Σ±(p0/p))
=

i

p0 ∓
[
p+

m2
∞

2p

(
1− p0 ∓ p

2p
ln

(
p0 + p

p0 − p

))]
∣∣∣∣∣∣∣∣
p0=p0+iε

,

(A.2)

where the upper (lower) sign refers to the positive (negative) chirality-to-helicity compo-

nent. The projectors are h±p ≡ (γ0 ∓ ~γ · p̂)/2. Here m2
∞ is the fermionic asymptotic mass

squared, defined such that the large-momentum dispersion relation for helicity=chirality

fermions is p2
0 = p2+m2

∞. We similarly define the asymptotic gluonic mass M2
∞. At leading

order, their values are

M2
∞ =

m2
D

2
=
g2T 2

6

(
Nc +

Nf

2

)
, m2

∞ = 2m2
q = CF

g2T 2

4
, (A.3)

where we have also shown the relations to the more commonly used Debye mass mD and

quark “mass” mq.

Gluons are described in the strict Coulomb gauge by

G00
R (Q) =

i

q2 +m2
D

(
1− ω

2q
ln
ω + q + iε

ω − q + iε

) , (A.4)

GijR(Q) = (δij − q̂iq̂j)GTR(Q) =
i(δij − q̂iq̂j)

ω2 − q2 −M2
∞

(
ω2

q2
−
(
ω2

q2
− 1

)
ω

2q
ln
ω+q

ω−q

)
∣∣∣∣∣∣∣∣
ω=ω+iε

.

(A.5)
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B Gain terms and finite order-g subtractions in 2 to 2 processes

In this section we first provide some details on the phase space integration coordinates in

section B.1. We then evaluate numerically the gain terms at leading order in section B.2.

In section B.3 we will instead address the O(g) contributions in the 2↔ 2 collision operator

that need to be subtracted, i.e. (χi···j , C2↔2
O(g) finite χi···j) in eq. (4.19).

B.1 Phase space

In section 3.1 we provided the phase space integration in the soft approximation in eq. (3.5).

We now set out to briefly justify that equation and provide more elements for the evalua-

tions that will be performed in section B.2 and B.3. One starts by eliminating a variable

through the three-momentum δ-function,∫
PS
≡
∫
pkp′k′

(2π)4δ(P +K − P ′ −K ′) =

∫
pkp′

2πδ(p+ k − p′ − k′) . (B.1)

In the t channel, p′ can then be shifted to q = p′−p and an extra ω integral is introduced,

i.e.∫
PS

=

∫
pkq

∫
dω 2πδ(p−p′+ω) δ(k−k′−ω) '

∫
pk

∫
d4Q

(2π)4
2πδ(vp ·Q) 2πδ(vk ·Q) , (B.2)

where we have introduced the four-vector Q = (ω, q) and expanded the arguments of the δ-

functions for ω, q ∼ gT � p, k, recovering eq. (3.5). Using the coordinate parameterization

of [13], eq. (B.2) becomes∫
PS

∣∣∣∣
soft

=
1

32π6

∫ ∞
0

dp p2

∫ ∞
0

dk k2

∫
0
dq

∫ q

−q
dω

∫ 2π

0
dφ

=
1

32π6

∫ ∞
0

dp p2

∫ ∞
0

dk k2

∫
0
dq⊥ q⊥

∫ ∞
−∞

dω

q

∫ 2π

0
dφ , (B.3)

where φ is the angle between the p, q and k, q planes and in going from the first to the sec-

ond line we have used the change of variables discussed in footnote 2, with q =
√
ω2 + q2

⊥.

For future convenience we recall that in these coordinates and in the soft approximation

p̂ · k̂ =
ω2

q2
+

(
1− ω2

q2

)
cosφ . (B.4)

B.2 LO gain terms

Let us begin with the gluon exchange contribution at leading order. We recall that it

only contributes for ` = 2. Starting from eq. (3.14) and eq. (3.15), using the results in

section B.1 for the phase space and the p̂ · k̂ angle, as well as the explicit form of the

propagators in appendix A, we have for c1

c1 =

∫
dΩk

4π

∫
d4Q

(2π)4
|GRµν(Q)vµpv

ν
k|2 2πδ(vp ·Q) 2πδ(vk ·Q)ω2P2(p̂ · k̂) (B.5)

=
1

8π2

∫ ∞
0

dq⊥ q⊥

∫ ∞
−∞

dω

q

∫ 2π

0
dφ

∣∣∣∣GRL(Q) +
q2
⊥ cosφ

q2
GRT (Q)

∣∣∣∣2 ω2P2(p̂ · k̂) =
0.3066

4π
,
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where the q⊥ integration has been extended to infinity,10 and has been performed numeri-

cally, together with the ω integration. The other coefficients in eq. (3.15) can be computed

analogously, yielding

4π c2 = 0.1360 , 4π c3 = 0.1833 . (B.7)

The fermion exchange contribution only arises at ` = 1. Starting with eq. (3.32) and

using eqs. (3.28) and (3.22), together with the same techniques as the gluonic case, we have

c1 =

∫
dΩk

4π
Cconv
q→g (p̂ · k̂)P1(p̂ · k̂)

=
g4C2

F

16π2

∫ ∞
0

dq⊥ q⊥

∫ ∞
−∞

dω

q

∫ 2π

0
dφ

[(
1− ω

q

)2 ∣∣S+
R (Q)

∣∣2 +

(
1 +

ω

q

)2 ∣∣S−R (Q)
∣∣2

−q
2
⊥
q2

cosφ
(
S+
R (Q)S−A (Q) + S−R (Q)S+

A (Q)
)]
P1(p̂ · k̂)

= 0.9283
g4C2

F

8π
, (B.8)

where again the ω and q⊥ integrations have been carried out numerically.

B.3 Order-g terms

In eq. (4.19) we have introduced (f1, C2↔2
O(g) finite f1) as the O(g) region of the 2↔ 2 processes

that needs to be subtracted. As we have argued, both gluon and quark exchange processes

contribute to it. Let us then write it in terms of χi···j as

(
χi···j , C2↔2

O(g) finite χi···j
)

=
(
χi···j , C2↔2

O(g) finite g χi···j
)

+
(
χi···j , C2↔2

O(g) finite q χi···j
)
, (B.9)

where the g and q labels stand for gluon and quark (and antiquark) exchange contributions.

Let us then begin by evaluating the gluon exchange contribution. As we have stated

in section 4.2, we need to consider the region where ω and q and an external gluon line (p

10The integral converges without q⊥ cutoff because the result of the ω integration vanishes faster than

1/q2
⊥. However, this happens due to cancellations; the absolute convergence of the ω integral is slower.

Therefore the result is actually dependent on our integration choice (like many convergent but not absolutely

convergent integrals). If we integrate
∫ µ

0
dq

∫ q
−q dω then we also get a valid µ→∞ limit but with a different

answer. The difference between integration choices is the integral over a region lying between a sphere and

the superscribed cylinder; for instance, for c1 and ` = 2, and performing the integrals from innermost to

outermost, we find∫ ∞
0

q⊥dq⊥

∫
dω

q

∫ 2π

0

dφΘ(q2
⊥ + ω2 − µ2

⊥)
(1− cosφ)2

q4
ω2P2(p̂ · k̂) =

27π

70
, (B.6)

where we have used bare matrix elements for this UV integral. This is an ambiguity in the soft part of the

leading-order gain term, which is canceled by a matching ambiguity in the hard part. The gain term found

with the q⊥ coordinates is larger, leading to a more conservative estimate for the gain-term uncertainty.
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or k) are soft. Let us then take these assumptions in eq. (4.5) and simplify accordingly:(
χi···j , C2↔2 χi···j

)
soft g k

=
β

(4π)6

∑
a

∫ +∞

−∞
dω

∫ µ⊥

0
dq⊥

q⊥
q

∫ ∞
0

dp

∫ µk

q+ω
2

dk

k(k − ω)

∫ 2π

0
dφ

× 2(2− δag)
∣∣Mag

ag

∣∣2
soft g t k

fa0 (p) [1± fa0 (p)]

×
[
χai···j(p) + χgi···j(k)− χai···j(p′)− χgi···j(k′)

]2
. (B.10)

We have already switched to ω, q⊥ coordinates; µ⊥ and µk are cutoffs separating the soft and

hard scales. The three soft integrations in q⊥, ω and k contribute to a factor of g3, the soft

expansion of the Bose-Einstein distributions contributes a factor of 1/g2, which is compen-

sated by the g2 behavior of the matrix element squared (see eq. (3.6)) and finally the depar-

ture from equilibrium contributes another g2, bringing the total to g5. The last line becomes[
χai···j(p) + χgi···j(k)− χai···j(p′)− χgi···j(k′)

]2

soft k
= ω2

[
(χa(p)′)2 + (χg(0)′)2

]
(B.11)

+
`(`+ 1)

2
q2
⊥

(
χa(p)

p

)2

− 2k(k − ω)

[
P`

(
1− q2

⊥
2k(k − ω)

)
− 1

]
(χg(0)′)2 +O(g3),

where the (χg(0)′)2 arises due to the infrared nature of the ` = 2 departure from equilib-

rium, as illustrated in appendix C.1. We have not included gain terms, where contributions

proportional to χ(p)χ′(0) or χ′(p)χ′(0) would arise. Since we do not know the NLO correc-

tions to the gain terms, it makes little sense to subtract this contribution: in our current

Ansatz, eq. (4.16), it just amounts to picking a different arbitrary constant C`=2. Finally, as

we argue in section 4.2, the matrix element in this scaling can be obtained from appendix A

of [13]. It reads

∣∣Mag
ag

∣∣2
soft g t k

= 16dACATRag
4p2

∣∣∣∣(2k − ω)GLR(Q) +
q2
⊥
q2

cos(φ)
√

4k(k − ω)− q2
⊥G

T
R(Q)

∣∣∣∣2 ,
(B.12)

which correctly reduces to eq. (3.6) for k � ω, q. For what concerns the symmetry factors,

the gg ↔ gg process receives a factor of 2 from the identical u-channel contribution and a

factor of 2 from the p ∼ gT , k ∼ T region. The qg ↔ qg process receives a factor of 4 from

the initial and final state symmetries, so that the full contribution is(
χi···j , C2↔2

O(g) g χi···j
)

=
dACAg

4

32π5T

∫ +∞

−∞
dω

∫ ∞
0

dq⊥
q⊥
q

∫ ∞
0

dp p2

∫ µk

q+ω
2

dk

k(k − ω)
(B.13)

×
[
(2k − ω)2

∣∣GLR(Q)
∣∣2 +

q4
⊥

2q4
(4k(k − ω)− q2

⊥)
∣∣GTR(Q)

∣∣2 ]
×
∑
a

TRaf
a
0 (p) [1± fa0 (p)]

[
ω2
[
(χa(p)′)2 + (χg(0)′)2

]
+
`(`+ 1)

2

q2
⊥
p2

[χa(p)]2 − 2k(k − ω)

[
P`

(
1− q2

⊥
2k(k − ω)

)
− 1

]
(χg(0)′)2

]
,

where we have not used the “finite” label, as this equation contains also power-law UV

divergences. Indeed, performing the k integral with µk � gT yields a linear-in-µk divergent

– 39 –



J
H
E
P
0
3
(
2
0
1
8
)
1
7
9

term plus a finite part, the latter responsible for the genuine, double-counted O(g) con-

tribution. Keeping only the aforementioned finite contribution and dropping the odd-in-ω

terms we have

(
χi···j , C2↔2

O(g) g χi···j
)

=
dACAg

4

32π5T

∫ ∞
0

dq⊥ q⊥

∫ ∞
−∞

dω

∫ ∞
0

dp p2
∑
a

TRaf
a
0 (p) [1± fa0 (p)]

×
{[
− 2

∣∣GLR(Q)
∣∣2 − q4

⊥
q4

∣∣GTR(Q)
∣∣2 +

1

2ωq

(
2ω2

∣∣GLR(Q)
∣∣2 − q6

⊥
q4

∣∣GTR(Q)
∣∣2) ln

q + ω

q − ω

]
×
[
ω2
[
(χa(p)′)2 + (χg(0)′)2

]
+
`(`+ 1)

2

q2
⊥
p2

[
(χa(p))2 + (pχg(0)′)2

]]
− δ`2

3q2
⊥

2ω2

[
q2
⊥

2ωq

(
2ω2

∣∣GLR(Q)
∣∣2 +

q4
⊥(q2
⊥ + 2ω2)

q4

∣∣GTR(Q)
∣∣2) ln

q + ω

q − ω

+2ω2
∣∣GLR(Q)

∣∣2 − q6
⊥
q4

∣∣GTR(Q)
∣∣2] (χg(0)′)2

}
. (B.14)

The terms on the second and third line contribute to both ` = 1 and ` = 2 (and to any `

in general), whereas those on the final two lines, are specific for the ` = 2 case. We recall

that in the diffusion case gluons are in equilibrium, so that χg(p) = 0. This expression

is moreover still not UV finite. Indeed, by using the bare propagators G
L(0)
R (Q) = i/q2,

G
T (0)
R (Q) = −i/q2

⊥ and performing the ω integrations we obtain

(
χi···j , C2↔2

O(g) UV g χi···j
)

= −dACAg
4µ⊥

64π3T

∑
a

TRa

∫ ∞
0

dp fa0 (p)[1± fa0 (p)]

{
`(`+ 1)

2
[χa(p)]2

+

(
`(`+ 1)

2
+

9

4
δ`2

)
[pχg(0)′]2

}
. (B.15)

As a consistency check, let us remark that the form of δq̂ we have written in eq. (4.1) in-

cludes the finite part only. In its evaluation [34], Caron-Huot found also a linearly-divergent

part in µ⊥, which cancels against a corresponding term in the IR expansion of the hard

gluon exchange at NLO. Including such a term, eq. (4.1) turns into

δq̂ =
g4CRCAT

2

32π

[
−µ⊥ +mD

3π2 + 10− 4 ln 2

π

]
. (B.16)

When plugging its UV-divergent part in eq. (4.21) this agrees with the transverse diffusion

part of eq. (B.15). The calculation of δq̂L in [38], on the other hand, does not contain linear

divergences in µ⊥, which also agrees with eq. (B.15).11

We can then subtract the bare, UV-divergent contribution eq. (B.15) from (B.14). The

resulting dω integrations do not seem doable by means of analyticity techniques.12 Upon

11That calculation contains a linear divergence in an analogue of µk. These are related to the discussion

of appendix C.
12It is possible to do some manipulations so that some terms become amenable to analytical methods,

but others remain non-analytical due to branch cuts on the imaginary axis starting at ω = ±iq⊥.
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numerical integration13 we obtain

(
χi···j , C2↔2

O(g) finite g χi···j
)

=
dACAg

4mD

32π5T

∑
a

TRa

∫ ∞
0

dp p2 fa0 (p)[1± fa0 (p)]

×
{

4.2695
[
(χa(p)′)2 + (χg(0)′)2

]
+ 7.1769

`(`+ 1)

2p2

[
(χa(p))2 + (pχg(0)′)2

]
+18.0669 δ`2[χg(0)′]2

}
. (B.17)

In section 5 we needed the (χ(p))2 part of eq. (B.17), i.e.

(
χi···j , C2↔2

O(g) finite q̂ χi···j
)

=
dACAg

4mD

32π5T
7.1769

∑
a

TRa

∫ ∞
0

dp fa0 (p)[1± fa0 (p)]

× `(`+ 1)
[
(χa(p))2

]
2

, (B.18)

Upon comparing with eq. (4.21) we see that (χi···j , C2↔2
O(g) finite q̂ χi···j) is approximately 1/8

of (χi···j , Cδq̂ χi···j).
Let us now look at the fermion exchange processes, i.e. Compton scattering and qq̄

annihilation. We start again from eq. (4.5) and we need to expand for ω, q, p ∼ gT , k ∼ T .

In both cases there will also be an equivalent contribution for p ∼ T , k ∼ gT . The deviation

from equilibrium for Compton processes becomes

[
χqi···j(p) + χgi···j(k)− χgi···j(p′)− χ

q
i···j(k

′)
]2

soft p
= (χg(k)− χq(k))2 + (χq(0))2 +O(g).

(B.19)

The annihilation case is equivalent. As we shall see in appendix C.1, in the ` = 1 case the

quark departure from equilibrium approaches a constant at LO in the IR, due to the action

of the 1↔ 2 processes, while it vanishes for ` = 2, so that the (χq(0))2 term needs to be con-

sidered only when computing quark number diffusion. We have also neglected gain terms

of the form χq(k)χq(0). Given the p̂ · k̂- (and hence φ-) independence of that expression,

we can directly compute the φ-averaged expansion of eqs. (3.21) and (3.20), which is

∫ 2π

0

dφ

2π

∣∣Mqg
qg

∣∣2
soft q t

=

∫ 2π

0

dφ

2π

∣∣Mqg
qg

∣∣2
soft q

= −8dFC
2
F g

4k

q2

{
(p+ ω)

[
(ω − q)2S+

R (Q)S+
A (Q)

+(ω + q)2S−R (Q)S−A (Q)
]
− 1

2

[
(ω − q)3S+

R (Q)S+
A (Q) + (ω + q)3S−R (Q)S−A (Q)

]}
, (B.20)

so that the O(g) contribution from soft p becomes, summing the Compton and annihilation

13In this case there is no coordinate ambiguity, contrary to what was encountered in footnote 10.
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contributions(
χi···j , C2↔2

O(g) soft p χi···j
)

= −dFC
2
FNfg

4

16π5T 2

∫ ∞
0

dq⊥ q⊥
q3

∫ ∞
−∞

dω

∫ ∞
0

dk k

∫ µp

q−ω
2

dp

2(p+ ω)

×
{

(p+ ω)
[
(ω − q)2S+

R (Q)S+
A (Q) + (ω + q)2S−R (Q)S−A (Q)

]
−1

2

[
(ω − q)3S+

R (Q)S+
A (Q) + (ω + q)3S−R (Q)S−A (Q)

]}
×f q0 (k)[1 + fg0 (k)]

[
(χq(k)− χg(k))2 + (χq(0))2

]
, (B.21)

where we have included the factor of 8Nf to account for the initial and final state symme-

tries, the antiquark contribution in the Compton case and the u-channel contribution in

the annihilation case. In the ` = 2 case we have used the fact that χq = χq̄, whereas in the

` = 1 case we have used the fact that χg = 0 to sum the quark and antiquark contributions.

We can perform the dp integration with a UV cutoff and discard linearly divergent terms

as in the gluon exchange case. Keeping only the terms that are even in ω we get to(
χi···j ,C2↔2

O(g)softpχi···j
)

=
dFC

2
FNfg

4

64π5T 2

∫ ∞
0

dkkf q0 (k)[1+fg0 (k)]
[
(χq(k)−χg(k))2+(χq(0))2

]
×
∫ ∞
−∞

dω

∫ ∞
0

dq⊥ q⊥
q3

{
q
[
(ω−q)2S+

R (Q)S+
A (Q)+(ω+q)2S−R (Q)S−A (Q)

]
−tanh−1

(
ω

q

)[
(ω−q)3S+

R (Q)S+
A (Q)+(ω+q)3S−R (Q)S−A (Q)

]}
. (B.22)

The two-dimensional ω, q⊥ integration is finite, as expected, since there would be nothing to

absorb UV divergences otherwise, given that the O(g) correction to the conversion rates is

free of linear UV divergences in the transverse integrals.14 The numerical integration yields(
χi···j , C2↔2

O(g) soft p χi···j
)

=
dFC

2
FNfg

4m∞
64π5T 2

9.95268

∫ ∞
0

dk k f q0 (k)[1 + fg0 (k)]

×
[
(χq(k)− χg(k))2 + (χq(0))2

]
. (B.23)

This was just the contribution from having p soft and k hard. The opposite case gives the

same contribution, as can be inferred from the symmetries of the integrand, so that the

total double-counted contribution amounts to 2 times eq. (B.23), i.e.(
χi···j , C2↔2

O(g) finite q χi···j
)

=
dFC

2
FNfg

4m∞
32π5T 2

9.95268

∫ ∞
0

dk k f q0 (k)[1 + fg0 (k)]

×
[
(χq(k)− χg(k))2 + (χq(0))2

]
. (B.24)

C Equivalence of semi-collinear implementations

In subsection 4.3 we argued that the semi-collinear regions and NLO contributions to

longitudinal diffusion and identity change could all be treated simultaneously by evaluating

the semi-collinear corrections without approximating pq � h and without IR regulation.

Here we verify this claim. We also analyze in greater detail the IR form of the 1 ↔ 2

processes and its consequences on the departures from equilibrium in section C.1.

14It has UV divergences similar to those discussed in footnote 11.

– 42 –



J
H
E
P
0
3
(
2
0
1
8
)
1
7
9

C.1 IR limits

Let us start from examining the IR behavior of the 1↔ 2 rate given by eq. (2.23), which

determines the IR tail of the departures from equilibrium. To do so, let us start from the

single soft scattering (Bethe-Heitler) limit of the 1 ↔ 2 rate. It can be easily obtained by

solving eq. (2.24) by substitution, as shown in eq. (4.8), under the assumption that δE is

much larger than the effect of collisions. We then have

γabc

∣∣∣∣
BH

(p; p− k, k) =
g2

32π4


dACA

p4+k4+(p−k)4

p3k3(p−k)3 g ↔ gg

dFCF
p2+(p−k)2

p2(p−k)2k3 q ↔ qg

dFCF
(p−k)2+k2

(p−k)2k2p3 g ↔ qq̄

∫
d2h

(2π)2

∫
d2q⊥
(2π)2

C̄(q⊥)

×
[(

CRb −
CA
2

)(
h

δE(h)
− h− kq⊥
δE(h− kq⊥)

)2

+
CA
2

(
h

δE(h)
− h + pq⊥
δE(h + pq⊥)

)2

+
CA
2

(
h

δE(h)
− h− (p− k)q⊥
δE(h− (p− k)q⊥)

)2
]
, (C.1)

where we remind that the g ↔ qq̄ process has CF − CA/2 multiplying the second, rather

than the first, term in square brackets. Let us first remark that for generic p, k, p− k ∼ T
eq. (C.1) is not, parametrically, a good approximation to eq. (2.23), since it is missing the

relative O(1) effect of LPM suppression. On the other hand, in the region of interest, i.e.

when the final states k or p − k become soft, it becomes accurate, as LPM suppression

becomes negligible. (It is easy to see that, in that limit, the effect of δE in eq. (2.24) does

become much larger.) Hence, in the soft gluon radiation limit for k → 0 we can reduce

eq. (C.1) to leading order in k as

γaag

∣∣∣∣
BH

(p; p, k) =
g2dACATRap

2

64π8k

∫
d2h′d2q⊥C̄(q⊥)

(
h′

h′2 +M2∞
− h′ + q⊥

(h′ + q⊥)2 +M2∞

)2

=
g4dACATRap

2T

32π6k
ln

(
e2

2

)
, (C.2)

where h′ ≡ h/p and the two transverse integrations are finite, as shown. When plugged in

the relevant corners of eq. (2.22), it turns it into

(
χi···j , C1↔2

soft gχi···j
)

=
g4dACA

8π5T
ln

(
e2

2

)∑
a

TRa

∫ ∞
0

dp

∫ µk

0
dk p2 fa0 (p)[1± fa0 (p)]

×
[
χa(p)′ − χg(0)′

]2
, (C.3)

where we have introduced a factor of 2 to accounts for the k ∼ gT and p − k ∼ gT

corners in the g ↔ gg process and for the final state symmetry in the q ↔ qg process.

We have furthermore assumed χg(k → 0) = kχg(0)′. That is because, even though the

k integration (with gT � µk � T ) might seem finite, since the soft k expansion of the

departures from equilibrium in eq. (2.22) yields a factor of k2 which compensates the 1/k in

the rate and the 1/k from the Bose distribution, one should however recall that in writing

the quadratic functional in the form of eq. (2.22) we have performed a symmetrization by
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shifting some integrations, which is allowed only as long as these integrations are finite.

If one were to work with (C1↔2χij)
a(p), entering in eq. (2.11), in the soft gluon limit, i.e.

(C1↔2χij)
g(p→ 0), one would see a fixed point arising, enforcing∑

a

TRa

∫ ∞
0

dk k2 fa0 (k)[1± fa0 (k)]
[
χa(k)′ − χg(0)′

]
= 0 , (C.4)

i.e. giving rise to a boundary term which indeed forces a linear behavior for the gluonic

departure from equilibrium in the IR (see also [64]). The variational solution of the LO

quadratic functional (eqs. (2.16) and (2.20)) is sensitive to this effect: with an Ansatz

that allows a single test function with a linear IR behavior, one sees that its coefficient

approximately satisfies eq. (C.4).

For what concerns the quark departure from equilibrium, one has for a soft quark

γaqc

∣∣∣∣
BH

(p; p− k, p) =
g2dFC

2
F p

64π8

∫
d2h′d2q⊥C̄(q⊥)

(
h′

h′2 +m2∞
− h′ − q⊥

(h′ − q⊥)2 +m2∞

)2

.

(C.5)

The analysis of (C1↔2χi···j)q(p→ 0) then shows that in the ` = 2 case∫ ∞
0

dk k f q0 (k)[1 + fg0 (k)]
[
χg(k)′ + χq(k)′ − 2χq(0)′

]
= 0 , (C.6)

so that a linear behavior is enforced for χq(p→ 0). In the ` = 1 case one has instead∫ ∞
0

dk k f q0 (k)[1 + fg0 (k)] [χq(k)− χq(0)] = 0 , (C.7)

which enforces a constant behavior. Again, these constraints are approximately satisfied

by the LO variational solution.

Let us now look at the semi-collinear implementation in eq. (4.14). In the soft gluon

radiation limit one has to replace C̄(q⊥) with δC̄(q⊥, δE) in eq. (C.2), yielding15

γaag

∣∣∣∣
semi

(p; p, k) = −γaag
∣∣∣∣
BH

(p; p, k) +
g4dACATRakp

2T

24π6m2
D

+O(k3), (C.8)

where the negative 1/k contribution arises from the subtracted collinear limit in δC̄(q⊥, δE).

It would seem that, once eq. (C.8) is plugged into the quadratic functional, it would generate

a contribution opposite to eq. (C.3), canceling it and removing the linear behavior for the

(` = 2) infrared gluonic departure from equilibrium. However, eq. (C.8) is valid when

k ∼ g2T . It is easy to see from eqs. (2.13) that the LO contribution comes from k ∼ T ,

χa(p ∼ T ) ∼ T `−1/g4. The soft region (k . gT ) has a large phase-space suppression, so

that, even accounting for the Bose enhancement of soft gluons and the linear or constant LO

form of χa(p → 0), it always contributes beyond NLO for all transport coefficients under

consideration. Hence, we only need to know the functional form of the deviations from

equilibrium no further down than T � k � gT , and one can show that the semi-collinear

15The leading region for k → 0 for the C̄NLO part in δC̄(q⊥, δE) in the two transverse integrations is

δE ∼ q⊥.
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implementation in eq. (4.14) does not alter the linear behavior found at NLO in that region,

so that we may keep the functional form given in eq. (2.27) for the test functions.

For quarks one has instead

γaqc

∣∣∣∣
semi

(p; p− k, p) = −γaqc
∣∣∣∣
BH

(p; p− k, p) +O((p− k)2), (C.9)

which is equally valid only for k ∼ g2T . The behavior at the interface T � k � gT remains

unaltered in this case too.

C.2 Equivalence

Let’s look at eq. (4.15). The leading-order contribution to it would naively come from the

strictly collinear scaling, i.e. q⊥ ∼ gT , h ∼ gT 2, p, k, (p − k) ∼ T . This however implies

that δE(h) ∼ g2T and that it can thus safely be dropped from the denominators in the

collision kernel in eq. (4.10), as we have argued in section 4.3, i.e.

δ̄C(q⊥, δE) = g2T

[
m2
D

(q2
⊥ + δE2)(q2

⊥ + δE2 +m2
D)
− m2

D

q2
⊥(q2
⊥ +m2

D)

]
δE∼g2T

= O
(
g2

T

)
,

(C.10)

which, when plugged into eq. (4.14), makes it of order g6 and hence beyond NLO.

At relative O(g), three regions contribute. These are

1. The diffusion region, where a final-state gluon becomes soft. There, assuming k is

the gluon’s momentum, p ∼ T , k ∼ gT and h/T ∼ q⊥ ∼ gT .

2. The analogous conversion region, where a final-state quark (or antiquark) becomes

soft. Assuming now p−k is the quark’s momentum, the scaling is the same: p, k ∼ T ,

p− k ∼ gT and h/T ∼ q⊥ ∼ gT .

3. The semi-collinear region, where p, k, (p− k) ∼ T , h ∼ √gT 2 and q⊥ ∼ gT .

g ↔ gg and q ↔ qg processes contribute to the diffusion region. Upon accounting for the

k and p− k soft regions in the all-glue case and for the final state symmetry in the q ↔ qg

case we have(
χi···j , Csemi

diff χi···j
)

=
dACAg

2

π3T 2

∑
a

TRa

∫ ∞
0

dp

∫ µk

0
dk p2 fa0 (p)[1± fa0 (p)]

[
χa(p)′ − χg(0)′

]2
×
∫

d2h′

(2π)2

∫
d2q⊥
(2π)2

δC̄(q⊥, δEd(h
′))
(

h′

h′2 +M2∞
− h′ − q⊥

(h′ − q⊥)2 +M2∞

)2

, (C.11)

where we have again rescaled h = h′p and δEd(h
′) ≡ (h′2 +M2

∞)/(2k) is the diffusion (soft

gluon) limit of eq. (2.26). Following the arguments of the previous section, we have kept a

linear χg(k < µk) ≈ kχg(0)′ term in the square brackets on the first line. The k integration

to the cutoff gT � µk � T yields cutoff-linear and cutoff-independent terms, i.e.∫ µk

0
dk δC̄(q⊥, δEd(h

′)) = g2T

[
µkm

2
D

q2
⊥(q2
⊥ +m2

D)
+ π

h′2 +M2
∞

4

(
1

(q2
⊥ +m2

D)3/2
+

1

q3
⊥

)
− µkm

2
D

q2
⊥(q2
⊥ +m2

D)
− πh

′2 +M2
∞

2q3
⊥

]
, (C.12)
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where the terms on the first line arise from the C̄NLO terms in eq. (4.10), whereas those on

the second line result from the subtracted collinear and hard pieces of eq. (4.10) respectively.

Hence, the linearly divergent piece cancels out and

(
χi···j , Csemi

diff χi···j
)

=
dACAg

4

4π2T

∑
a

TRa

∫ ∞
0

dp p2 fa0 (p)[1± fa0 (p)]
[
χa(p)′ − χg(0)′

]2
(C.13)

×
∫

d2h′

(2π)2

∫
d2q⊥
(2π)2

(
h′2+M2

∞
)( 1

(q2
⊥+m2

D)3/2
− 1

q3
⊥

)(
h′

h′2+M2∞
− h′ − q⊥

(h′ − q⊥)2+M2∞

)2

.

This can be further simplified with a few manipulations in the h′ integral. By shifting it to

h′ → h′ + q⊥, many terms in the final round brackets either cancel one another or vanish

in the azimuthal integration, leaving us with

(
χi···j ,Csemi

diff χi···j
)

=
dACAg

4

4π2T

∑
a

TRa

∫ ∞
0

dpp2 fa0 (p)[1±fa0 (p)]
[
χa(p)′−χg(0)′

]2
(C.14)

×
∫

d2h′

(2π)2

∫
d2q⊥
(2π)2

h′2q2
⊥

(h′2 +M2∞)2

(
1

(q2
⊥+m2

D)3/2
− 1

q3
⊥

)
=
dACAg

4mD

4π2T
ln

[√
eM∞
µNLO
⊥

]∑
a

TRa

∫
p
fa0 (p)[1±fa0 (p)]

[
χa(p)′−χg(0)′

]2
,

where the d2h′ integration has been regulated with a gT � µNLO
⊥ � √gT UV cutoff.16

Upon accounting for the factor of 2Nf from the sum over a in the q ↔ qg, the [χa(p)′]2-

proportional part of eq. (C.14) agrees with the contribution one would obtain by plugging

δq̂L, as given by eq. (4.2), into eq. (3.13). For what concerns the terms proportional to χg(0)′

in the ` = 2 case, it can be shown that the coefficient c1 in eq. (3.14) contains a term propor-

tional to q̂L (just rewrite P`(p̂ · k̂) as 1+(P`(p̂ · k̂)−1) and compare with eq. (3.4)). It reads

(χi···j , Cdiffχi···j)|gain,q̂L
= −β4

∑
ab

q̂aL
g2νaνbCRb

2m2
DdA

∫
p

∫ ∞
0

dk k2 fa0 (p)(1± fa0 (p))

× f b0(k)(1± f b0(k))χa(p)′χb(k)′ . (C.15)

When substituting q̂L with δq̂L, as given by eq. (4.2), and using eq. (C.4), this can be

brought into agreement with the terms proportional to χg(0)′ in eq. (C.14).

In the conversion region the relevant processes are the q ↔ qg and g ↔ qq̄ ones. In the

latter one there is an identical contribution from k ∼ gT . It is easy to see that the resulting

contribution is altogether similar to what we just found for the diffusion limit, yielding

(
χi···j , Csemi

convχi···j
)

=
NfdFC

2
F g

2

8π3T 3

∫ ∞
0

dp

∫ µ

0
dk

p

k2
f q0 (p)[1 + fg0 (p)] [χq(p)− χg(p)− χq(0)]2

×
∫

d2h′

(2π)2

∫
d2q⊥
(2π)2

δC̄(q⊥, δEc(h
′))
(

h′

δEc(h′)
− h′ − q⊥
δEc(h′ − q⊥)

)2

, (C.16)

16This might seem to be conflicting with our previous shift. However, let us point out that the transverse

integrations in eq. (4.14) are finite and that, if the shift were performed there, no effect would be observed.
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where we have relabeled k to be the soft quark’s momentum and δEc(h
′) ≡ (h′2+m2

∞)/(2k)

is the conversion limit of eq. (2.26). This then results in(
χi···j , Csemi

convχi···j
)

=
NfdFC

2
F g

4mD

2T 2
ln

(√
em∞
µNLO
⊥

)∫
p

f q0 (p)[1 + fg0 (p)]

p
[χq(p)− χg(p)

−χq(0)]2 , (C.17)

which agrees with the contribution that would arise form inserting δΓconv, as given by

eq. (4.3), in eq. (3.30). For what concerns the terms proportional to χq(0) in the ` = 1

case, they match those obtained from eq. (3.31) through eq. (C.7): as in the case of

eq. (C.15), we can rewrite P1(p̂ · k̂) as 1 + (P1(p̂ · k̂)− 1) in eq. (3.32).

Finally, as we mentioned in section 4.3 in the main text, in the semi-collinear region,

where p, k, (p− k) ∼ T , q⊥ ∼ gT and h ∼ √gT 2, eq. (4.14) can be expanded back yielding,

at O(g5), eq. (4.13). Subleading terms in the expansion contribute at higher orders. This

completes the proof of equivalence of the two approaches.

We conclude by commenting on the relation of this new approach with the contour sum

rules used to obtain δq̂L and δΓconv in [35, 38]. Take for instance the computation of δq̂L
described in appendix F of [38]. There we used the analytical properties of the light-cone

amplitudes to deform the contour of the k integration (it is called q+ there). In doing so,

we encounter poles in the q− variable (called k− there) that can be pinched or not, of the

form 1/(k− − δE) (see for instance (F.6) in [38]). Upon deforming the integration contour

and expanding for large, complex k (q+), the non-pinched poles contribute (see (F.7)) to

a δ(k−) + δE/(k−)2 structure (in the variables of [38]). The first term is responsible for

the linear-in-µk term on the first line of eq. (C.12), whereas the second gives rise to the

µk independent term (recall that δE ∝ 1/q+ in the variables of [38]). The same reasoning

applies to the subtracted terms on the second line of eq. (C.12). In obtaining eq. (C.12)

we have essentially inverted the order of the q− (k− in [38]) and k (q+) integrations. As a

consequence, it is important to note that, between the new and old approaches, the rates

themselves are different as functions of p and k (in the coordinates of this paper), it is only

their integral, the collision operator, which agrees (at LO and NLO).

D Fits of the NLO results

In this section we will present fits that reproduce the NLO results by smoothly interpolating

between the NLL behavior at small values of mD/T and the δq̂-dominated one at the

opposite end. The former is given by [13]

g4

T 3
ηNLL =

η1

ln(µ∗/mD)
, g4TDqNLL =

D1

ln(µ∗/mD)
, (D.1)

where η1 and D1 are the leading-log coefficients [12] and µ∗ is the next-to-leading-log

one [13].

To obtain the δq̂-dominated behavior at large mD/T we first briefly show that the col-

lision operator composed uniquely by eq. (4.21) can be inverted analytically. Let us define

Qδq̂[χ] ≡
(
χi···j ,Si···j

)
− 1

2

(
χi···j , Cδq̂ χi···j

)
, (D.2)
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which is simply the limiting form of eq. (2.16) under the assumption that at large enough

values of mD/T it becomes dominated by eq. (4.21). Figures 6 and 10 already provide a

motivation for this assumption, which will be reinforced later on.

The maximization of Qδq̂[χ] can be done by functional differentiation with respect to

the χg(p) and χq(p) (see eq. (2.15)), which, since the source term is linear in these (see

eq. (2.19)) and the collision operator is quadratic, leads to a simple solution:

χa(p) =
4p`+1T

`(`+ 1)δq̂a
, (D.3)

where δq̂a, the O(g) correction to q̂, is given by eq. (4.1). Upon plugging this in eq. (D.2)

and recalling that η = 2Qmax/15, Dq = 2Qmax/(NcT
2), we obtain

ηδq̂ =
16π4T 6

945

(
2dA
δq̂g

+
31

32

4NfdF
δq̂q

)
, Dδq̂

q =
14π2T 2

15 δq̂q
, (D.4)

where the factor of 31/32 arises from the fermionic, rather than bosonic, integrations, simi-

larly to the factor of 7/8 in the Stephan-Boltzmann contribution of fermions to the pressure.

With these ingredients we can obtain simple fits for the NLO curves of figures 6 and 10

at C` = 0. We fit the shear viscosity as

g4

T 3
ηfit

NLO =
η1

b−1 ln

(
a+

(
µ∗
mD

)b)
+ T 3η1

g4ηδq̂
mD/T
c+mD/T

+ d
(1+mD/T )3

, (D.5)

where a, b, c and d are fit parameters. As one can see, for small mD/T the curve approaches

the NLL approximation (D.1), while at large mD/T they approach eq. (D.4). Using the

latter, the numerical values for η1 and µ∗ from [13] and fitting the parameters we obtain,

for Nc = 3

Nf = 3 (figure 6) : η1 = 106.66, µ∗/T = 2.957, a = 4.45096, b = 1.2732, c = 1.91568,

d = −0.0777985, (D.6)

Nf = 0 (figure 10) : η1 = 27.126, µ∗/T = 2.765, a = 8.5176, b = 1.38936, c = 1.66144,

d = −0.100421. (D.7)

The fits are accurate to below 0.5% for mD/T < 5. We have tested that they remain below

2% up to mD/T < 10.

With the same philosophy we can fit the NLO curve for Dq (figure 6) as

g4T Dfit
qNLO =

D1

b−1 ln

(
a+

(
µ∗
mD

)b)
+ D1

g4TDδq̂q

mD/T
c+mD/T

+ d
1+mD/T

, (D.8)

with

Nf = 3 (figure 6) : D1 = 11.869, µ∗/T = 2.949, a = 1.33534, b = 1.28963, c = 0.0378486,

d = −0.0769937. (D.9)

The fit is accurate to 0.5% for mD/T < 4. We have tested that it remains below 4% up to

mD/T < 10.
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E Running coupling prescriptions

The two-loop QCD MS coupling is defined as the solution of

µ
d

dµ
g2

QCD (Nf )(µ) =
β

(Nf )
0

(4π)2
g4

QCD (Nf )(µ) +
β

(Nf )
1

(4π)4
g6

QCD (Nf )(µ) , m
(Nf )
q ≤ µ ≤ m(Nf+1)

q ,

(E.1)

g2
QCD (Nf )

(
m

(Nf+1)
q

)
= g2

QCD (Nf+1)

(
m

(Nf+1)
q

)
, (E.2)

where β
(Nf )
i are the coefficients of the QCD β-function with Nf massless flavors. Thus,

eq. (E.1) evolves the coupling with Nf massless flavors from the mass scale of the heaviest

of these, m
(Nf )
q , up to the mass scale of the first heavier quark, m

(Nf+1)
q , where the one-loop

threshold matching eq. (E.2) imposes continuity. For reference and to fix conventions

β0 =
−22CA + 4Nf

3
, β1 =

−68C2
A + 20CANf + 12CFNf

3
. (E.3)

The effective EQCD coupling reads instead [39]

g2
EQCD (Nf )(µ) = g2

QCD (Nf )(µ) + α
(Nf )
E7

g4
QCD (Nf )(µ)

(4π)2
+ γ

(Nf )
E1

g6
QCD (Nf )(µ)

(4π)4
, (E.4)

where [39, 68, 75]

αE7 = −β0 ln

(
µeγE

4πT

)
+
CA
3
− 8

3
Nf ln 2 ,

γE1 = −β1 ln

(
µeγE

4πT

)
+ α2

E7 −
1

18

{
C2
A

[
− 341 + 20ζ(3)

]
+ 2CANf

[
43 + 24 ln 2 + 5ζ(3)

]
+ 3CFNf

[
23 + 80 ln 2− 14ζ(3)

]}
. (E.5)

Eq. (E.4) holds for m
(Nf )
q ≤ µ ≤ m

(Nf+1)
q . At the fermion thresholds we switch to the

values of the coefficients in eq. (E.5) with Nf ± 1. Hence, the EQCD coupling is not

continuous at the thresholds. Corrections to eqs. (E.1) and (E.4) are of order g8.

We conclude by noting that it is easy to see how, in the one-loop approximation, i.e.

neglecting β1 and γE1 in eqs. (E.1) and (E.4), the µ dependence drops out of the EQCD

coupling at order g4.

Open Access. This article is distributed under the terms of the Creative Commons
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QCD, PoS(LATTICE2014)232 [INSPIRE].
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