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1 Introduction

The total top-quark cross section at hadron colliders is a key observable of the standard

model that serves both as a probe of the heaviest known elementary particle as well as

a benchmark process of perturbative Quantum Chromodynamics (QCD). Comparison of

measurements at the Tevatron and LHC with precise theoretical predictions allows to

measure the top mass in a well-defined scheme, where recent measurements have reached

an accuracy of below 2 GeV [1, 2]. Further applications include determinations of the strong

coupling constant αs [3, 4] and global PDF fits, see e.g. [5–7]. The experimental results

from the LHC experiments have now reached an impressive accuracy, with an uncertainty

of better than ±4% (see [8] for a recent review), challenging the best theoretical predictions

based on next-to-next-to-leading order (NNLO) QCD [9–12] supplemented with next-to-

next-to-leading logarithmic (NNLL) soft-gluon resummation [13–18].

Since a full computation of top-quark pair production at N3LO accuracy in QCD is

currently out of reach, attempts to reduce the perturbative uncertainties further rely on

resummation methods. In this article we explore prospects for a combined resummation

of soft-gluon and Coulomb gluon effects at N3LL accuracy in the framework of [13, 19]

and provide expressions for the total cross section at N3LO in the partonic threshold limit

β =
√

1− 4m2
t /ŝ → 0. Coulomb corrections arise from the exchange of gluons between

the slowly moving top quarks and lead to corrections of the form (αs/β)k, which can be

resummed to all orders using Green-function methods in non-relativistic QCD (NRQCD).

Counting both the logarithmic soft-gluon corrections αs lnβ and the Coulomb corrections

αs/β arising at each order in perturbation theory as quantities of order one, a combined

resummation of these effects rearranges the perturbative series of the partonic cross section

into the schematic form [13]

σ̂ ∝ σ̂(0)
∑
k=0

(
αs
β

)k
exp

[
lnβ g0(αs lnβ)︸ ︷︷ ︸

(LL)

+ g1(αs lnβ)︸ ︷︷ ︸
(NLL)

+αsg2(αs lnβ)︸ ︷︷ ︸
(NNLL)

+α2
sg3(αs lnβ)︸ ︷︷ ︸
(N3LL)

+ . . .
]

×
{

1 (LL,NLL);αs, β (NLL’,NNLL);α2
s, αsβ, β

2 (NNLL’,N3LL); . . .
}
. (1.1)

We also indicated a modified counting NnLL’, where the fixed-order corrections in the sec-

ond line are included at one order higher than in the “unprimed” counting. The combined

resummation of soft and Coulomb corrections at NNLL accuracy [15] was implemented

in the program topixs [18], whose current version includes the matching to the com-

plete NNLO corrections [9–12]. NNLO+NNLL soft-gluon resummation with the Mellin-

transform method [16] with a fixed-order treatment of Coulomb corrections was imple-

mented in the program top++ [17], which further includes the O(α2
s) constant terms in

the resummation that are part of the NNLL’ corrections in (1.1). Other NNLL resumma-

tions based on pair-invariant mass or single-particle-inclusive observables [20–22] also do

not include the Coulomb corrections. In contrast, a combination of resummed Coulomb

corrections with fixed-order soft corrections was performed in [23–25].

Top quarks are not dominantly produced at threshold at the LHC, so threshold-

enhanced corrections do not necessarily require resummation and fixed-order perturbation

– 2 –
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theory is expected to be adequate for the total cross section.1 To the extent that these terms

nevertheless constitute a significant part of the full higher-order corrections, it is therefore

justified to expand a resummed prediction to a fixed order. In this way, NnLL resummation

predicts all NnLO terms that become singular for β → 0, while a constant correction rela-

tive to the Born cross section σ̂(0) is further included at NnLL’. Experience at NNLO [26–29]

indicates that the singular terms provide a feasible approximation to the full result if correc-

tions due to possibly sizeable non-singular terms are estimated in a sufficiently conservative

way. For instance, the prediction σ
NNLOapp

tt̄
(7 TeV) = 161.1+11.4

−10.9
+4.7
−4.7 pb was obtained in [15]

using the partonic cross sections calculated in [27], where the first error refers to the scale

uncertainty and the second one estimates terms beyond the threshold approximation. This

result is consistent with the full NNLO calculation σNNLO
tt̄ (7 TeV) = 167.0+6.7

−10.7 pb [12]

and improves the accuracy compared to the NLO prediction σNLO
tt̄ (7 TeV) = 158.0+19.5

−21.2 pb.

This motivates the construction of approximate N3LO corrections, which should be based

on N3LL accuracy to obtain all threshold-enhanced terms.

At present, a complete N3LL resummation for top-quark production is not feasible,

since some three- and four-loop coefficients in the resummation function g3 are not known

for the colour-octet case. In addition, starting from NNLL logarithmic corrections arise

also from Coulomb corrections, which are governed by renormalization-group equations in

NRQCD [30, 31], with anomalous dimensions only fully known for colour-singlet states.2

Furthermore, the power corrections ∼ β2 in the curly brackets in (1.1) must be controlled in

order to achieve N3LL accuracy according to the counting αs ∼ β. This makes a complete

resummation at this accuracy conceptually and technically challenging.

In this paper, we construct a partial N3LL approximation by including all currently

known ingredients of N3LL soft-gluon resummation [32–34] and the Coulomb corrections

from a recent calculation of e−e+ → tt̄ at N3LO in potential NRQCD [35–37]. We further

include several sources of power-suppressed corrections, i.e. contributions of P-wave produc-

tion channels and the combination of Coulomb corrections and a so-called next-to-eikonal

logarithm. In this way we obtain all threshold enhanced N3LO terms for the colour-singlet

state and are in a position to estimate the uncertainty due to missing ingredients for colour-

octet states. We also include an O(α3
s) contribution to the Coulomb corrections that does

not follow from the straightforward expansion of the well-known Sommerfeld factor for

stable particles [38].

We compare our results to other recent works on N3LO effects in top-quark pair pro-

duction. In [15] the expansion of the NNLL cross section was used, which is not sufficient

to predict terms of the form α3
s{ln2,1 β, 1/β} exactly. In the momentum-space resumma-

tion approach [32, 39, 40] used in [15], this incomplete knowledge manifests itself in a

residual dependence on unphysical hard and soft scales which results in a sizeable uncer-

tainty. A prediction based on NNLL resummation in one-particle inclusive kinematics was

made in [41]. No attempt is made to estimate the systematic uncertainties of this approx-

1This holds up to N4LO where the presence of a α4
s/β

4 correction renders the convolution with the

parton luminosity unintegrable, so resummation of Coulomb corrections may be required despite a small

numerical effect.
2In the NNLL calculation of [15, 18] these terms are included at fixed order.
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imation. In [42] threshold resummation for the invariant-mass distribution is combined

with information about the large-x limit. However, only the gluon-initiated subprocess is

considered.

This paper is organized as follows: in section 2 we outline the framework of our cal-

culation and discuss consequences of collinear factorization and renormalization-group in-

variance for N3LO corrections. In section 3 we discuss in detail the inputs of the partial

N3LL resummation while the approximate N3LO results for partonic cross sections and

predictions for the LHC are presented in section 4. Explicit results for the renormalization

group evolution of the two-loop soft and hard functions are given in appendix A. The gener-

alization of some contributions to the potential corrections to the required spin and colour

states are discussed in appendix B. Explicit results for the factorization-scale dependent

contributions to the partonic cross sections are collected in appendix C.

2 Factorization and resummation framework

In this section we collect results for the factorization and renormalization scale depen-

dence of N3LO corrections, discuss the colour and spin states of top-quark production near

threshold, and outline the resummation formalism used for the combined soft and Coulomb

gluon resummation at NNLL [13, 15, 18, 19].

2.1 Setup of the perturbative calculation

The total hadronic cross section for the production of a tt̄ + X final state in collisions of

hadrons N1,2 with centre-of-mass energy s is obtained from the convolution of the partonic

cross section with the parton luminosity,

σN1N2→tt̄X(s) =
∑

p,p′=q,q̄,g

∫ 1

4m2
t /s
dτ Lpp′(τ, µf ) σ̂pp′(sτ, µf , µr) , (2.1)

where the latter is defined in terms of the parton distributions functions (PDFs)

Lpp′(τ, µ) =

∫ 1

0
dx1dx2 δ(x1x2 − τ) fp/N1

(x1, µ)fp′/N2
(x2, µ) . (2.2)

The perturbative expansion of the partonic cross section in the strong coupling constant

is conveniently expressed in terms of corrections relative to the Born cross section,

σ̂pp′(ŝ,mt, µf , µr) = σ̂
(0)
pp′(ŝ,mt, µr)

{
1 +

∞∑
n=1

(
αs(µr)

4π

)n
σ̂

(n)
pp′ (ŝ,mt µf , µr)

}
. (2.3)

Up to O(α2
s), the corrections σ̂

(n)
pp′ are known exactly for all partonic channels [9–12]. The

numerical predictions have been parameterized by fitting functions and implemented in the

most recent versions of the programs top++ [17], HATHOR [43], and topixs [18]. The goal

of this paper is to predict the partonic cross sections in the leading production channels

pp′ = gg, qq̄ up to O(α3
s) in the threshold limit ŝ→ 4m2

t .
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The dependence of the cross section (2.3) on the renormalization scale µr can be recon-

structed from a calculation of the corrections σ̂
(n)
pp′ (ŝ,mt µf ) for µf = µr by re-expressing

the result as an expansion in αs(µr). In this way, the renormalization-scale dependence of

the N3LO cross section is obtained as

σ̂
(3)
pp′(ŝ,mt µf , µr) = σ̂

(3)
pp′(ŝ,mt µf )− 8β0 ln

(
µf
µr

)
σ̂

(2)
pp′(ŝ,mt µf )

+ 6

[
4β2

0 ln2

(
µf
µr

)
− β1 ln

(
µf
µr

)]
σ̂

(1)
pp′(ŝ,mt µf )

− 4

[
8β3

0 ln3

(
µf
µr

)
− 7β0β1 ln2

(
µf
µr

)
+ β2 ln

(
µf
µr

)]
. (2.4)

In a strict threshold expansion, the limit ŝ → 4m2
t of the partonic cross sections on the

right-hand side is used and the terms in the last line are dropped, since they contribute to

the terms O(β0) relative to the Born cross section.

The factorization-scale dependence of the cross section can be obtained from results

at lower perturbative order by exploiting the known factorization-scale dependence of the

PDFs, which implies the evolution equation of the partonic cross section

d

d lnµ
σ̂pp′(ŝ,mt, µ) = −

∑
p̃,p̃′

∫ 1

4m2
t /ŝ

dx

x

(
Pp/p̃(x) + Pp′/p̃′(x)

)
σ̂p̃p̃′(xŝ, µ), (2.5)

where Pp/p̃ (x) are the Altarelli-Parisi splitting functions for the splitting of a parton p into

a parton p̃. In the threshold limit it is consistent to use the x → 1 limit of the splitting

functions for a parton p in the colour representation r,3 which is given in terms of the

light-like cusp-anomalous dimension Γrcusp and a subleading anomalous dimension γφ,r

Pp/p̃ (x) =

(
2Γrcusp(αs)

1

[1− x]+
+ 2γφ,r(αs)δ(1− x)

)
δpp̃ +O(1− x) . (2.6)

The anomalous dimensions are all known at least up to three-loop level [44] and summarized

in the conventions used here in [32, 45].

In the higher-order corrections to the cross section, the dependence on the factorization

scale can be made explicit by the decomposition

σ̂
(n)
pp′ (ŝ,mt µf ) =

n∑
m=0

f
(n,m)
pp′ (ρ) lnm

(
µf
mt

)
, (2.7)

with the so-called scaling functions f
(n,m)
pp′ and the variable ρ =

4m2
t

ŝ . For S-wave production

channels with σ̂(0) ∝ α2
s(µf )β it is useful to define modified scaling functions4

g
(n,m)
pp′ (ρ) = βf

(n,m)
pp′ (ρ). (2.8)

3Here some care has to be taken since subleading terms in the x → 1 limit can be enhanced by the

Coulomb corrections. In can be checked, however, that the leading correction to the N3LO cross section

from the O(1− x) term in (2.6) is of order α3
sβ

2, and therefore beyond N3LL.
4These definitions are related to [27] by g

(n,m)

pp′ = 2n+ms
(n,m)

pp′ while our convention for the splitting

function P (n) is 2n+2 times the one used there.
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In the threshold limit ρ→ 1 we obtain the results for the N3LO scaling functions

g(3,3)
pp =

1

3

[
8β0 g

(2,2)
pp − 2g(2,2)

pp ⊗ P (0)
p/p

]
, (2.9)

g(3,2)
pp = 4β0 g

(2,1)
pp + 3β1 g

(1,1)
pp − g(2,1)

pp ⊗ P (0)
p/p − g

(1,1)
pp ⊗ P (1)

p/p, (2.10)

g(3,1)
pp = 8β0 g

(2,0)
pp + 6β1 g

(1,0)
pp + 4β2 g

(0,0)
pp

− g(2,0)
pp ⊗ P (0)

p/p − g
(1,0)
pp ⊗ P (1)

p/p − g
(0,0)
pp ⊗ P (2)

p/p, (2.11)

where the threshold limit of the lower-order scaling functions is consistently used on the

right-hand side. The convolutions are defined as

(g ⊗ P )(ρ) =

∫ 1

ρ
dx1dx2g(x1)P (x2)δ(x1x2 − ρ) (2.12)

and the conventions for the coefficients βn and P
(n)
p/p of the perturbative expansion of the

beta function and the splitting functions are spelled out in (A.2) and (A.3).

2.2 Top-quark production channels near partonic threshold

The resummation of soft-gluon and Coulomb corrections requires to decompose the partonic

production cross sections into contributions with definite colour and spin states of the top-

quark pair, σ
(0),R,2S+1LJ
pp′ . For the colour representations, the familiar decomposition of the

tensor product 3 ⊗ 3̄ = 1 + 8 of the SU(3) representations is used, where for gluon initial

states the symmetric and antisymmetric colour channels with respect to gluon exchange,

8s and 8a, are distinguished. For the spin states, the spectroscopic notation for orbital

angular momentum L = S,P, . . . , spin S and total angular momentum J is used.

In the quark-antiquark induced production channel, the top-antitop pair is dominantly

produced in a colour-octet 3S1 state, while the dominant production channel in gluon fusion

is given by a colour-singlet or symmetric octet 1S0 state. The threshold limit of the leading

order S-wave cross sections is given by

σ
(0),8,3S1
qq̄ = π

(N2
c − 1)

2N2
c

α2
s(µ

2)

ŝ
β, (2.13a)

σ(0),8s,1S0
gg = π

(N2
c − 4)

2Nc(N2
c − 1)

α2
s(µ

2)

ŝ
β, (2.13b)

σ(0),1,1S0
gg = π

1

Nc(N2
c − 1)

α2
s(µ

2)

ŝ
β, (2.13c)

where we have left an overall factor 4m2
t /ŝ unexpanded. The spin label in these expressions

will be dropped if no confusion can arise. For the counting αs ∼ β used in (1.1) also

subleading terms of O(β2) in the threshold expansion of the Born cross section must be

taken into account at N3LL accuracy. For the S-wave production processes (2.13), these

terms are given by a correction factor 1− 1
3β

2. At the same order, there are contributions

to the total cross section from P-wave production channels 3P0, and 3P2 (see e.g. [46]) with

– 6 –
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the contributions to the total production cross section

σ(0),R,3P0
gg = σ(0),R,1S0

gg β2, (2.14a)

σ(0),R,3P2
gg = σ(0),R,1S0

gg

4

3
β2. (2.14b)

Since the second and third Coulomb corrections differ for S-wave and P-wave production

channels (see e.g. [47]) it is necessary to distinguish the different angular momentum states

contributing to the subleading Born contributions.

In addition to the colour-singlet and symmetric octet channels, there is also a kine-

matically suppressed contribution from the antisymmetric colour-octet channel

σ(0),8a,1S0
gg = π

Nc

6(N2
c − 1)

α2
s(µ

2)

ŝ
β3. (2.15)

As mentioned in [34] and discussed in the context of the violation of the Landau-Yang

theorem in QCD [48, 49], this suppression is not the signal of P-wave production but the

result of an accidental cancellation in the Born S-wave matrix element.

2.3 Combined soft and Coulomb resummation at NNLL

Threshold resummation of soft logarithms [50, 51] was first established for top-quark pair

production at NLL [52, 53] and more recently at NNLL for the total cross section [13–16]

and pair-invariant mass or single-particle-inclusive observables [20–22]. The combination

of soft-gluon and Coulomb-gluon resummation up to NNLL in the combined counting (1.1)

was shown in [13, 19] for pairs of heavy coloured particles produced in an S-wave state. This

method was applied to top-quark production in [15, 18]. The basis for the joint soft and

Coulomb resummation is the factorization of the total partonic production cross section

into a potential function J , a hard function H, and a soft function W [19]:

σ̂pp′(ŝ, µf ) =
4m2

t

ŝ

∑
R=1,8

1∑
S=0

HR,S
pp′,i(mt, µf )

∫
dω JSR

(
E − ω

2

)
WR
i (ω, µf ) , (2.16)

which was derived using the leading-power Lagrangians of soft-collinear effective the-

ory (SCET) and potential non-relativistic QCD (PNRQCD). Here E =
√
ŝ − 2mt is the

energy relative to the production threshold. The sum is over the colour representations R

of the final state top-pair system, i.e. the colour-singlet and octet states, and the total spin

S = 0, 1. The index i denotes the colour basis for the hard scattering pp′ → tt̄ [13]. The

leading-order hard function for the S-wave scattering process pp′ → (tt̄)
2S+1SJ
R for the colour

state R and spin state S is related to the partonic Born cross sections in the corresponding

channel at threshold (2.13) according to

σ̂
(0),R,2S+1SJ
pp′ (ŝ, µf ) ≈

ŝ→4m2
t

βm2
t

2π
H
R,S(0)
pp′ (µf ) . (2.17)

In (2.16) we have made the conventional prefactor 4m2
t /ŝ explicit that is implicitly included

in the hard function in [19]. The soft function WR
i in (2.16) is defined by a time-ordered

– 7 –
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expectation value of Wilson lines and corresponds to the 2 → 1 process of the production

of a heavy particle in the colour representation R [13]. For resummation of threshold

logarithms the momentum-space method [32, 39, 40] is used, where the soft and hard

functions are evolved from a soft scale µs ∼ mtβ
2 and a hard scale µh ∼ 2mt to the

factorization scale µf ∼ mt using renormalization-group equations (RGEs) summarized

in section 3 below. The potential function is given in terms of the imaginary part of

the Coulomb Green function in non-relativistic QCD, which resums ladder diagrams with

Coulomb-gluon exchange to all orders in αs. The resulting resummed cross section is of

the form [19]

σ̂res
pp′(ŝ, µf ) =

4m2
t

ŝ

∑
R,S

HR,S
pp′,i(mt, µh)URi (µh, µs, µf )

(
2mt

µs

)−2η

× s̃Ri (∂η, µs)
e−2γEη

Γ(2η)

∫ ∞
0
dω

JSRα
(
E − ω

2

)
ω

(
ω

µs

)2η

.

(2.18)

Here the Laplace transformation of the soft function,

s̃Ri (ρ, µ) =

∫ ∞
0

dωe−sωWR
i (ω, µ), (2.19)

was introduced, where s = 1/(eγEµeρ/2). After carrying out the differentiations with

respect to η in (2.18), this variable is identified with a resummation function which contains

single logarithms, αs ln(µs/µf ), while the resummation function Ui sums the Sudakov

double logarithms αs ln2 µh
µf

and αs ln2 µs
µf

. The precise definitions of these functions for

the case of heavy-particle pair production are given in [19] and the expansions required

for N3LL accuracy can be found in [32]. For the NNLL resummation carried out in [15],

the NLO hard [23, 54] and soft [13] functions have been used, together with the three-loop

cusp-anomalous dimension [44] and the remaining anomalous dimensions in the evolution

equations at two-loop accuracy. In the Coulomb sector, using the NLO potential function

quoted in [15] resums all corrections of the form (αs/β)k and αs × (αs/β)k. This was

supplemented by a leading resummation of logarithms by using a running Coulomb scale,

and the inclusion of the leading so-called non-Coulomb correction [15, 27, 55], which give

rise to a tower of terms of the form α2
s lnβ × (αs/β)k.

3 Towards N3LL resummation

In this section we collect the input required for N3LL resummation according to the sys-

tematics defined in (1.1) and identify missing ingredients, whose effect will be estimated in

the phenomenological results.

For soft-gluon resummation alone, the required ingredients to increase the logarithmic

accuracy are well-defined, but not fully available for N3LL resummation. For NnLL accu-

racy according to (1.1), the cusp-anomalous dimension has to be known at (n + 1)-loop

order, the remaining anomalous dimensions in the evolution equations of the soft and hard

functions to n-loop order. The fixed-order soft and hard functions have to be known to

– 8 –
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Nn−1LO (NnLO) accuracy for the NnLL (NnLL’) approximation. For top-quark produc-

tion, NNLO soft and hard functions can be obtained from results of [32–34, 56] as discussed

in sections 3.1 and 3.2. The four-loop cusp anomalous dimension was recently computed for

the quark case [57] but is still unknown for gluons. However, this affects only the full N3LL

resummation but not the expansion to N3LO considered in this paper. Further, the three-

loop soft anomalous dimension is known for the massless [58, 59] but not the massive case.

Concerning the corrections in the Coulomb sector, the potential function for the colour-

singlet, spin-triplet case is known at the required accuracy from a calculation of e−e+ →
tt̄ [35–37]. This requires the insertion of O(α2

s, αsβ, β
2) suppressed potentials, which are

not fully known for colour-octet states. In section 3.3 we obtain the expansion of the

potential function to O(α3
s). We partially generalize the result to general spin and the

colour-octet case and estimate the remaining unknown colour-octet contributions.

However, the presence of Coulomb corrections near the total production threshold

ŝ → 4m2
t complicates the extension to higher accuracy compared to resummations for

other kinematical threshold definitions such as the pair-invariant mass or single-particle-

inclusive observables [20–22]. The enhancement of Coulomb corrections by negative powers

of β requires to control the corrections involving positive powers of β in the curly brackets

in (1.1) to achieve the desired accuracy using the counting αs ∼ β. In the effective-

theory framework of [13, 19] used to derive the factorization (2.16), such corrections arise

from power-suppressed interactions and production operators in SCET and PNRQCD and

require an extension of the factorization formula (2.16) with generalized hard, soft and

potential functions. In particular, the simplification of the colour structure to that of a

2 → 1 scattering process has only been shown at leading power. It is known that three-

particle colour correlations appear in infrared singular parts of the pp′ → tt̄ scattering

amplitudes [60, 61], but do not contribute to the NNLO and NNLL cross section [19, 27, 33].

In the framework of [13, 19] these corrections do not enter in the definition of the soft

and hard functions and their evolution equations, but rather through the generalized soft

and hard functions in the extended factorization formula. The complete treatment of the

O(α2
s, αsβ, β

2) corrections required for a full soft and Coulomb resummation at N3LL is

beyond the scope of this paper, but we will include several corrections of this form:

• Corrections of the form α3
s ln2,1 β to the N3LO cross section arise from (ultra)soft

corrections5 due to the power-suppressed chromoelectric ~x· ~Es vertex in the PNRQCD

Lagrangian. In the language of [13, 19] these corrections arise from generalized soft

and potential functions. We estimate these corrections using the known result for

the colour-singlet case [62].

• Corrections due to subleading production operators are related to the P-wave pro-

duction channels (2.14), which give rise to α3
s × ( 1

β , ln
2 β, lnβ) corrections relative

to the leading S-wave channels since the β2 suppression of the Born cross section

can be compensated by the second Coulomb singularity. In section 3.4 we apply

5The “soft” modes in the terminology of [19] are called ultrasoft in the PNRQCD literature.
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the NLL resummation formula to P-wave channels, which is sufficient to obtain the

threshold-enhanced terms at O(α3
s).

• The interference of the second Coulomb correction with subleading soft-collinear in-

teractions suppressed by β2 results in contributions ∼ α3
s log β to the total cross

section. While there is current interest in subleading soft-collinear effects using QCD

factorization [63–65] and SCET [66–69] approaches, these effects have not been sys-

tematically studied for top-quark production. In section 3.5 leading-logarithmic sub-

leading corrections to the initial state are heuristically included using universal results

from Drell-Yan and Higgs production.

In this way, subleading soft-collinear and soft-potential corrections are included. From

the arguments used to exclude contributions from power suppressed soft-potential or soft-

collinear interactions at NNLO [19] it is expected that sub-leading corrections at N3LO

separately affect the initial and final state and a cross-talk between soft-collinear and soft-

potential corrections only appears at higher orders.6

3.1 Hard functions

The hard function satisfies the evolution equation

d

d lnµ
HR,S
pp′ (µ) =

(
(Γrcusp + Γr

′
cusp) ln

(
4m2

t

µ2

)
+ 2γVi + γR,SJ (µ)

)
HR,S
pp′ (µ). (3.1)

Up to the three-loop level [44], the light-like cusp anomalous dimension satisfies the so-

called Casimir scaling, i.e. Γrcusp = Crγcusp, where Cr is the quadratic Casimir for the SU(3)

representation r of the parton p. At the four-loop level, the recent result for the quark

cusp-anomalous dimension [57] shows a violation of this property (see also [70, 71]). The

anomalous dimension γVi can be written in terms of single-particle anomalous dimensions:

γVi = γp + γp
′
+ γRH,s. (3.2)

where the anomalous dimensions for light partons, γp, are known up to three-loop level.

The results in the notation used here are collected in [72]. The anomalous dimension for

massive particles γRH,s is known up to two-loop level [13, 73]. The anomalous dimension

γR,SJ (µ) arises first at two-loop order because of additional IR divergences in the hard func-

tion, which are related to UV divergences of the potential function arising from insertions

of non-Coulomb potentials. The RGE for the corresponding matching coefficient of the

electromagnetic quark current was derived at NLL in the PNRQCD framework [30] and

the fixed-order three-loop anomalous dimension was computed in [74], see also [75]. For the

colour-octet case, the O(α2
s) result for γR,SJ can be obtained from the non-Coulomb correc-

tions to the potential function obtained in [27, 55], and is given in (3.34). The three-loop

result is not known yet.

6Such a correction would involve one insertion of the chromoelectric vertex and one insertion of a

subleading SCET interaction, where the latter vanish in a frame where initial-state partons have vanishing

transverse momentum [19, 66].
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The hard functions are required up to the two-loop level for NNLL′ and N3LL resum-

mation. The one- and two-loop solution of the evolution equation (3.1) is given explicitly in

appendix A.1. The initial conditions for the evolution can be obtained from comparing the

scaling functions obtained from the expansion of the resummation formula to the threshold

limit of the result of a diagrammatic calculation of the total NLO and NNLO cross section

in the corresponding colour and spin state. Subtracting constant contributions to the po-

tential and soft functions, this relates the hard function at some initial scale to the constant

(i.e. ρ-independent) term in the scaling function f
(n,0)
pp,R , which will be denoted by C

R(n)
pp (the

spin-dependence of the scaling functions will be left implicit for notational simplicity). The

resulting relations of the NLO and NNLO constants C
R(1)
pp and C

R(2)
pp to the one- and two-

loop hard functions are given in (A.7) and (A.8). In order to extract the hard functions,

we choose the initial scale µh = mt, which simplifies the relation to the C
R(n)
pp compared

to the more natural scale 2mt since the factorization-scale dependence is conventionally

expressed in terms of ln
(
µf
mt

)
in (2.7). The one-loop hard coefficients are obtained from

the comparison to the threshold expansion of the NLO cross section [23, 54] as7

h
8(1)
qq̄ (mt) = CF

(
−8 ln2 2 + 12 ln 2− 32 +

7π2

3

)
+
CA
9

(
−72 ln 2 + 200− 9π2

)
− 4

9
((10− 12 ln 2)nfTF + 8) , (3.3)

h1(1)
gg (mt) = CF (−20 + π2) +

4

3
CA(3 + π2 − 6 ln2 2), (3.4)

h8S(1)
gg (mt) = CF (−20 + π2) + CA

(
8 +

5π2

6
− 8 ln2 2 + 4 ln 2

)
, (3.5)

where the notation for the perturbative expansion of the hard function is given in (A.4).

The results for the two-loop constants in the threshold limit have been obtained in [34],

C̄
8(2)
qq̄ = 1104.08− 42.9666nf − 4.28168n2

f , (3.6)

C̄1(2)
gg = 37.1457 + 17.2725nf , (3.7)

C̄8s(2)
gg = 674.517− 45.5875nf . (3.8)

We denote these constants by a bar to denote that the correction factors in the threshold

expansion in [34] are defined relative to the leading cross sections (2.13) at ŝ = 4m2
t ,

whereas we keep the factor 4m2
t /ŝ = 1 − β2 unexpanded. Because of the enhancement

due to the second Coulomb correction, this leads to a difference in the expression for

the two-loop constants in the two conventions, see eq. (A.9). In addition, since no spin

decomposition is performed for the NNLO results [34], contributions from sub-leading P-

wave production channels as given in (3.48) below have to be subtracted.8 A further

contribution to the NNLO constant arises from the subleading antisymmetric colour-octet

7In the expression for h
8(1)
gg (µh) in [15] the non-logarithmic terms with colour factor CA should have the

opposite sign. The numerical implementation is not affected by this typo.
8After the completion of the work described here, results for polarized two-loop amplitudes have been

published in [76].
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gluon channel (2.15) since the accidental suppression of the Born matrix element does

not persist at one loop [34, 48, 49]. Therefore, the one-loop squared contribution in the 8a
channel leads to anO(α2

s/β
2) correction relative to the leading order cross section (2.15) [34]

C̄8a(2)
gg = 11.2531− 2.29745nf + 0.14257n2

f , (3.9)

which contributes at the same order as the constants C
R(2)
gg in the dominant colour-

symmetric production channels. Since the top-quark pair is produced in an S-wave state in

the 8a channel and the soft-gluon and Coulomb corrections do not distinguish between the

8s and 8a representations, the contribution to the resummed cross section can be correctly

taken into account by adding the constant (3.9) to the one of the symmetric octet (3.8).

We therefore define

C̄8(2)
gg = C̄8s(2)

gg +
σ

(0),1
gg + σ

(0),8s
gg

σ
(0),8s
gg

C̄8a(2)
gg = 690.271− 48.8039nf + 0.2n2

f , (3.10)

where the normalization of C
8a(2)
gg in eq. (4.8) of [34] was taken into account and Nc = 3

was used in the second step. The constants C̄
R(2)
pp′ are related to the two-loop coefficients

of the hard function by (A.10). For the number of light flavours nf = 5 and using Nc = 3

and TF = 1/2 we obtain

h
8(2)
qq̄ (mt) = C̄

8(2)
qq̄ − 57.818 = 724.387, (3.11)

h1(2)
gg (mt) = C̄1(2)

gg − 1344.66 = −1221.16, (3.12)

h8(2)
gg (mt) = C̄8(2)

gg + 143.403 = 594.655. (3.13)

3.2 Soft function

The RGE of the Laplace-transformed soft function (2.19) reads

d

d lnµ
s̃Ri (ρ) =

[
−(Γrcusp + Γr

′
cusp) ρ− 2γRW,i

]
s̃Ri (ρ). (3.14)

The anomalous dimension γW is related to that of the hard function according to

γRW,i = γVi + γφ,p + γφ,p
′

= γrs + γr
′
s + γRH,s, (3.15)

with the anomalous dimensions γφ,p entering the evolution of the parton distribution func-

tions in the x→ 1 limit (2.6). In the second equality of (3.15), soft anomalous dimensions

of massless partons p in the colour representation r, γrs ≡ γp + γφ,p, have been introduced.

At least up to three-loop level for the massless partons and the two-loop level for massive

particles, the soft anomalous dimensions satisfy Casimir scaling

γrs = Crγs, γRH,s = CRγH,s. (3.16)

The known results for the soft anomalous-dimension coefficients are summarized in (A.16)

and (A.17). The unknown three-loop soft anomalous dimension for massive particles, γ
(2)
H,s,

will be kept explicitly in the results to estimate the resulting uncertainty.
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The one- and two-loop solution of the evolution eq. (3.14) is given in appendix A.2. As

initial conditions, we require the functions s̃Ri (0), which are available for arbitrary colour

representation [13] at one-loop level,

s̃
(1)R
i (0) = (Cr + Cr′)

π2

6
+ 4CR, (3.17)

while the two-loop coefficients have been calculated for the colour singlet [32, 56] and

octet [33] for identical initial state representations (i.e. Cr = Cr′),

s̃
(2)1
i (0) = C2

r

π4

18
+ CrCA

(
2428

81
+

67π2

54
− π4

3
− 22ζ3

9

)
+ CrnfTF

(
−656

81
− 10π2

27
+

8ζ3

9

)
, (3.18)

s̃
(2)8
i (0) = s̃

(2)1
i (0) + C2

A

(
1784

27
+

2π2

3
+

13π4

180
− 10ζ3

)
+ CACr

4π2

3
− CAnfTF

640

27
.

3.3 Potential corrections

The potential function for S-wave production in the colour channel Rα and spin state S is

given in terms of the imaginary part of the zero-distance Green function of the Schrödinger

equation,

JSRα(E,µ) = 2 Im
[ (

1 + dJv
2
)
GRα(0, 0;E,µ)

]
, (3.19)

where we use the abbreviation v =
√
E/mt. The LO Green function is obtained as solution

of the Schrödinger function with the Coulomb potential and sums up all correction of the

form (αs/β)k. For higher-order corrections we make use of the method described in [35]

where insertions of higher-order potentials are treated perturbatively. The N3LO Green

function for the colour-singlet, spin-triplet case computed in [35–37] includes all corrections

up to terms of order (αs/β)k × (α3
s, α

2
sv, αsv

2, v3).

The coefficient dJ in (3.19) is introduced in order to reproduce the kinematical correc-

tion (1− 1
3β

2) to the S-wave production processes (2.13). The expansion of the NNLO Green

function reads ImGRα(0, 0;E,µ) ∝ v(1 + 5
8v

2) + O(αs), where the kinematical correction

∼ v2 arises from the relativistic kinetic energy correction term ∂4/8m3
t in the NRQCD La-

grangian. Furthermore, the relation of the variable v used in the PNRQCD Green function

to the non-relativistic velocity β reads at this accuracy

v = β

(
1 +

3

8
β2 + . . .

)
. (3.20)

Taking these corrections into account leads to the value

dJ = −4

3
(3.21)

familiar from the treatment of top-quark pair production in e−e+ collisions. The coefficient

dJ receives corrections at O(αs) and becomes scale-dependent. However, these corrections

only contribute to the constant term at O(α3
s) and are therefore beyond N3LL accuracy.
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Starting from NNLO the potential function is explicitly scale dependent,

d

d lnµ
JSR(E,µ) = −γR,SJ (µ)JSR(E,µ), (3.22)

where the anomalous dimension is the same one that appears in the evolution equation of

the hard function (3.1). In a fixed-order expansion to O(α3
s) it has the form

γR,SJ (µ) = α2
sγ
R,S(1)
J +

α3
s

(4π)

[
γ
R,S(2,1)
J ln

(
2mt

µ

)
+ γ

R,S(2,0)
J

]
+O(α4

s). (3.23)

The three-loop anomalous-dimension coefficients γ
R,S(2,i)
J are known for the colour-singlet

case [74].9 The results for the colour-octet case are currently not known. However, in the

fixed-order expansion of the cross section to O(α3
s) these terms cancel against corresponding

contributions from the evolution of the hard function (3.1).

3.3.1 Potentials

For the computation of the Coulomb Green function we use the formalism of PNRQCD in

the conventions of [35]. After performing a colour and spin decomposition (see appendix B),

the potential for a quark-antiquark pair can be written in the form

V R,S(p,p′) =
4παsDR

q2

[
VRC −VR1/m

π2 |q|
mt

+VR,S
1/m2

q2

m2
t

+VRp
p2 + p′ 2

2m2
t

]
+
παs
m2
t

νR,Sann , (3.24)

with the colour factor

DR =
CR
2
− CF , (3.25)

where CR is the quadratic Casimir of the representation R. For the computation of the

O(α3
s) corrections to the potential function, we require the Coulomb potential VRC and the

1/m potential up to the two-loop level and the 1/m2 potentials VR,S
1/m2 and VRp as well as the

so-called annihilation correction νR,Sann at one-loop. The Coulomb potential at the relevant

accuracy is known both for the colour-singlet [78] and octet states [79] and is given in (B.6).

The 1/m2 potential is spin dependent and reads at leading order in d = 4 − 2ε

dimensions

VR,S,(0)
1/m2 = νSspin + ε νε,Sspin +O(ε2) (3.26)

with the explicit values

νS=1
spin = −2

3
, νε,S=1

spin = − 5

18
, (3.27)

νS=0
spin = 0 , νε,S=0

spin = −1

2
. (3.28)

The one-loop result for the colour-singlet case is given in [35] and generalized to the octet

case in appendix B, see also [80].

9The relation to the notation of [74] is γ
R,S(1)
J = 2γ

(2)
v , γ

R,S(2,1)
J = −32γ

(3)
v and γ

R,S(2,0)
J = 8( 4

3
(1 +

ln 2)γ
(3)
v +γ

(3)′
v −2β0γ

(2)
v ). Note that the coefficient β0 in the convention of [74] is 1/4 that in our convention.

A modification of γ
′(3)
v due to the d-dimensional treatment of spin was pointed out in [77].
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The annihilation contribution arises from local four-fermion operators in NRQCD [81]

and was omitted in the calculations of [15, 27]. The leading correction arises for the colour-

octet, spin-triplet case,

ν8,1
ann

(0)
= 1, (3.29)

and results in a contribution to the NNLO threshold expansion of the top-quark pair

production cross section in the quark-antiquark channel first obtained by an explicit two-

loop calculation in [34]. The annihilation corrections to the one-loop matching coefficients

of the four-fermion operators [81] also arise in the spin-singlet channel and therefore also

enter in the gluon-fusion initial state. The corresponding one-loop coefficients and the

resulting corrections to the potential function are given in appendix B.2.

Therefore, all ingredients of the potential are known at the required accuracy, apart

from the 1/m potential, which is known at the one-loop level [27, 55] for the singlet and

octet cases, but only for the singlet case at the two-loop level [82]. In addition, at O(α3
s) also

ultrasoft corrections due to the power-suppressed ~x · ~Es vertex in the PNRQCD Lagrangian

become relevant, which are also only known for the colour-singlet case [62]. We will estimate

the effect of the 1/m potential and the ultrasoft corrections in the colour-octet case by a

naive replacement of colour factors.

3.3.2 Expansion of the potential function

Given the above results for the potentials, we can obtain the expansion of the potential

function to O(α3
s) using the expressions from the N3LO calculation of e−e+→ tt̄ [35–37].

The annihilation corrections are computed as discussed in appendix B.2. A brief de-

scription of the methods used for the expansion of the Green function in αs is given

in the following. The required corrections are expressed in terms of nested harmonic

sums and sums over (poly-)gamma functions. They depend on αs through the parameter

λ = (−DRαs/2)
√
−mt/(E + iΓt), where Γt is the top-quark decay width. In the former

case, the summation limits depend on λ, but we can always transform the sums in such a

way that this dependence is shifted to the summand. In both cases, we then expand the

summand in the limit λ → 0 before performing the sum. Afterwards, the coefficients of

the expansion are given by so-called multiple zeta values, which we take from the program

summer [83]. A simple example for the series expansion of a single harmonic sum is

Sa(−1− λ) =

−1−λ∑
i=1

1

ia
= Sa(∞)−

∞∑
i=−λ

1

ia
= Sa(∞)−

∞∑
i=0

1

(i− λ)a

= Sa(∞)−

[
1

(−λ)a
+
∞∑
i=1

1

ia

∞∑
n=0

Γ(a+ n)

Γ(a)n!

(
λ

i

)n]

= − 1

(−λ)a
−
∞∑
n=1

ζ(a+ n)
Γ(a+ n)

Γ(a)n!
λn , (3.30)

where ζ(n) = Sn(∞) is Riemann’s zeta function with integer argument. Since polygamma

functions are related to harmonic sums, after expanding in αs we obtain similar expressions

in that case as well. The infinite series can then be truncated at the required order in αs.
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Finally, we can take the limit Γt → 0+ (with E > 0), which yields the imaginary part

of the Green function from the discontinuity of the square root in λ. Bound-state effects

arising for E < 0 as taken into account in the resummed calculation [15] are not included

in this naive expansion. In the O(α3
s) corrections, these bound-state effects give rise to a

contribution localized at E = 0 [38], which is added separately below.

The resulting expansion of the potential function in the strong coupling constant is

written as

JSR(E,µ) = 2
m2
t

(4π)
v
(
1 + dJv

2
) [

1 +
5

8
v2 − πDRαs(µ)

2

1

v
+
∞∑
n=2

αns (µ)∆J
S(n)
R (E,µ)

]
θ(E).

(3.31)

The O(α2
s) corrections to the potential function read

∆J
S(2)
R (E,µ) =

π2D2
R

12

1

v2
+

1

v

DR

8
(−2β0LE − a1)− γR,S(1)

J LE + cJ,2, (3.32)

where the scale dependence enters only through the variable

LE = − ln

(
2vmt

µ

)
. (3.33)

The constant a1 arises from the NLO Coulomb potential and is given in (B.7). The O(α2
s)

coefficient of the anomalous dimension γR,SJ entering the RGE (3.22) can be read off the

expansion of the potential function and is given by

γ
R,S(1)
J = DR

CA − 2DR

(
νSspin + 1

)
− νR,Sann

(0)

2

 . (3.34)

For νR,Sann
(0)

= 0 and the colour-singlet case D1 = −CF this result agrees with the NLL

anomalous dimension of the electromagnetic quark current in eq. (14) of [30] for the fixed-

order values of the potential coefficients D
(1)
s = α2

s(µ) and D
(2)
S2,s

= D
(2)
d,s = D

(2)
1,s = αs(µ),

as well as with [74]. The constant term in (3.32) is given by

cJ,2 = D2
R

(
νS,εspin

2
+

9π2

32
+

9

4

)
− 3

4
CADR −

1

2
γ
R,S(1)
J . (3.35)

All terms in (3.32) apart from the constant were obtained in [27], with the exception of

the annihilation contribution which was added in [34, 55].

The computation of the O(α3
s) corrections to the potential function requires the use

of the N3LO Green function, which includes all corrections of the form α3
s × (αs/β)k. The

result can be split into several contributions:

∆J
S(3)
R (E) = ∆J

(3)
R,LO(E) + ∆J

S(3)
R,NNLO(E) + ∆J

S(3)

R,N3LO
(E). (3.36)

The expansion of the LO-Green function includes a term ∼ α3
s/E whose imaginary part is

nonvanishing for unstable particles (see e.g. [84]) but does not yield a correction of the form
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α3
s/v

3 if the decay width is neglected. Treating the imaginary part of the Green function

carefully in the distributional sense, it was shown that there is instead a delta-function

contribution at O(α3
s) [38]:

∆J
(3)
R,LO(E) = −α3

sD
3
R

m3
t

8
ζ3δ(E). (3.37)

As discussed in [38] this contribution is taken into account in the resummed calcula-

tion [15, 18], which includes the resummed Coulomb corrections above threshold and the

bound-state corrections below.

The naive expansion of the NNLO Green function in αs is fully known for all required

colour and spin states and gives contributions enhanced by one inverse power of β. The

scale-dependence again enters only through the variable LE :

∆J
S(3)
R,NNLO(E) =

1

4π

{
1

v2

D2
R

6

[
π2 (2β0LE + a1)− 12β0ζ3

]
(3.38)

+
1

v
DR

[
−1

2
β2

0L
2
E +

1

8

(
(4π)2γ

R,S(1)
J − 2β1 − 4a1β0

)
LE + c

(0,1)
J,3

]}
,

with the constant

c
(0,1)
J,3 = −a

R
2

8
+ π2γ

R,S(1)
J − β2

0π
2

12
+

3π2

2
DRCA − π2D2

R

(
νS,εspin +

9

2

)
, (3.39)

where the coefficient aR2 of the NNLO Coulomb potential is given in (B.8). All contribu-

tions of (3.38) apart from the constant c
(0,1)
J,3 are included in the implementation of NNLL

resummation in [15] and the corresponding approximate N3LO prediction. For the colour-

singlet case and the spin states S = 1 and S = 0, this result reproduces the imaginary

part of the threshold expansion of the vector and pseudo-scalar current correlators given

in the appendix of [85] if the corresponding matching coefficients [86–88] are taken into

account.10

The expansion of the N3LO correction to the Green function to O(α3
s) gives rise to

purely logarithmic corrections α3
s ln2,1 β and scale-dependent terms α3

s ln2,1(mtµ ) governed

by the RGE (3.22). The result can be written in the form

∆J
S(3)

R,N3LO
(E) =

1

4π

{(
c

(2,0)
J,3 − 2β0γ

R,S(1)
J

)
ln2 v + c

(1,0)
J,3 ln v

− 4β0γ
R,S(1)
J ln v ln

(
2mt

µ

)
+

1

2

(
γ
R,S(2,1)
J − 4β0γ

R,S(1)
J

)
ln2

(
2mt

µ

)
+
(
−4β0cJ,2 + γ

R,S(2,0)
J

)
ln

(
2mt

µ

)}
. (3.40)

The result of [35–37] and the generalization of the 1/m2 potential to general spin

in (B.14) allows to compute the coefficients c
(i,0)
J,3 and the anomalous-dimension coefficients

10In the pseudo-scalar case the so-called singlet contributions to the two-loop matching coefficient [88]

have to be set to zero since they are not included in [85].
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γ
R,S(2,i)
J exactly for the colour-singlet state. For the colour-octet case, we use the result

for the 1/m2 potential (B.14) and estimate the unknown 1/m potential and the ultrasoft

corrections by a naive replacement of colour factors. The ultrasoft corrections to the Green

function in [62] are presented in a form where logarithmic terms lnαs, ln µ
mt

are given

explicitly while a function δus(Ê) of the variable Ê = E
mtα2

s
is only available numerically.

Using the fact that lnαs-terms cannot appear in a fixed-order calculation and thus must

be canceled by log Ê-terms in the remainder function δus(Ê), it can be checked that all

logarithmic O(α3
s)-contributions can be reconstructed with the replacement ln αs → ln v.

We have checked that the expansion of the Green function computed in [35–37] re-

produces the three-loop anomalous-dimension coefficients γ
R,S(2,i)
J for the colour-singlet

case [74].11 The result for the remaining coefficients is given by

c
(2,0)
J,3 = −DR

(
14D2

R

3
+ (7νSspin + 3)CADR +

1

2
β0 ν

R,S
ann

(0)
)

+ δc
(2,0)
J,3 , (3.41)

c
(1,0)
J,3 = −D3

R

(
38

3
+ 4 ln 2 + 12νSspin

)
+D2

R

[
−CA

(
197

9
+

8π2

9
− 34

3
ln 2

)
− 4CF

(
1 +

4

3
ln 2

)
+ νSspin

(
−8CF +

40

9
nlTF + 2β0 − CA

(
107

9
+ 14 ln 2

))
+ TF

(
40

9
nl −

8

15

)]
+DRβ0

(
4CA −DR

(
8 +

9π2

8

))
+ a1

(
−DR(CA +DR) + γ

R,S(1)
J

)
− DR

2
νR,Sann

(1)
(2mt) + δc

(1,0)
J,3 . (3.42)

The terms given explicitly in these expressions hold both in the colour-singlet and octet

cases. The contributions from the 1/m potential and ultrasoft corrections in the colour-

singlet case are given by

δc
(2,0)
J,3 =

4CF
3

(
4C2

A + 8CACF
)
− CF

4760

27
, (3.43a)

δc
(1,0)
J,3 = −1

9
C2
ACF (48 ln 2 + 197)− 2

9
CAC

2
F (48 ln 2 + 31) + nlTF

1

9
(49CACF − 8C2

F )

− 16

81
CF
(
969 ln 2− 52π2 − 1331

)
, (3.43b)

where the terms containing only the single colour factor CF arise from the ultrasoft cor-

rections.12

3.4 P-wave contributions

The gluon-fusion initial state to top-quark pair production receives contribution from the
3P0 and 3P2 production channels (2.14), which contribute at the same order in the thresh-

old expansion as the kinematic correction to the leading S-wave production channels taken

11In this comparison the scale-dependence of the coefficient dJ in (3.19) must be taken into account, see

e.g. eq. (3.45) in [35] for the case of the vector current.
12Note that in the calculation of the ultrasoft corrections [62] the explicit colour factors for Nc = 3 were

used.
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into account in (3.19). The relative P-wave contribution to the total cross section is pa-

rameterized by the quantity

h
(0),R
pp′,P =

∑
J σ

(0),R,SPJ
pp′

β2σ
(0),R
pp′

, (3.44)

where σ
(0),R
pp′ is the threshold limit of the leading S-wave production cross section (2.13).

For top-quark pair production, P-wave production contributes only to the gluon initial

state in the symmetric colour representations with

h
(0),R
gg,P =

7

3
, R = 1, 8s. (3.45)

The leading-order P-wave potential function for stable particles above threshold is

given by [89, 90]

JPRα(E) = m2
t v

2

(
1 +

(αsDRα)2

4v2

)
JRα(E) , E > 0, (3.46)

with the perturbative expansion

JPR (E) =
m4
t

2π
v3

[
1− πDRαs

2

1

v
+
α2
sD

2
R(3 + π2)

12

1

v2
−
α3
sπD

3
R

8

1

v3
. . .

]
. (3.47)

The α3
s correction agrees with explicit results of the threshold expansion of the current

correlation function [85, 91].

The combination of the Born suppression ∼ β2 of the P-wave cross section and the

two-loop Coulomb enhancement leads to a constant α2
s contribution relative to the leading

S-wave production channel and threshold-enhanced N3LO contributions of order α3
s/β and

α3
s lnβ. In order to obtain these corrections, it is sufficient to consider soft-gluon resumma-

tion at NLL accuracy. In [47] the factorization (2.16) has been shown at least at NLL for

partonic channels with leading P-wave production. Here we heuristically apply this result

also for the case of subleading P-wave contributions to an S-wave dominated process.13

We therefore insert the P-wave potential function in the factorization formula (2.16) and

use the resummed soft and hard functions at NLL accuracy, setting the soft- and hard

scales appearing in the momentum-space resummation formalism to µs = mt ln2 β and

µh = mt. Leading logarithms of potential origin are taken into account by using the scale

µC = mt lnβ in the potential function.

The constant contribution at NNLO obtained in this way is given by

∆σ
R(2)
pp′,P = σ

(0),R
pp′

α2
sD

2
R

(
3 + π2

)
12

h
(0),R
pp′,P . (3.48)

This contribution was taken into account in the determination of the two-loop hard function

in section 3.1. The relevant threshold-enhanced corrections to the N3LO cross section are

13Complications may arise as in the related case of QCD calculations for quarkonia, where P-wave and

S-wave processes are mixed by radiative corrections. However, at least at NLO these issues arise for the

decay of quarkonia to quark pairs, but not in quarkonium production from gluon fusion [46].
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obtained as

∆σ
R(3)
pp′,P = σ

(0),R
pp′ h

(0),R
pp′,P

α3
s

(4π)3

1∑
m=0

f
(3,m)P
pp′(R) lnm

(
µf
mt

)
, (3.49)

with the scaling functions

f
(3,0)P
pp′(R) = −

8π4D3
R

β
+

4π2D2
R

3

(
3 + π2

){
16(Cr + Cr′) ln2 β

− 4 [2(CR + (Cr + Cr′)(4− 6 ln 2)) + β0] log β
}

+O(1), (3.50)

f
(3,1)P
pp′(R) = −

4π2D2
R

3

(
3 + π2

)
16(Cr + Cr′) lnβ +O(1). (3.51)

Note that the form of these corrections relative to the “constant” NNLO term (3.48) differs

from the usual NLO threshold corrections for an S-wave production process (see e.g. [19])

by the coefficient of the Coulomb correction and the presence of the β0-term that arises

from the LL-running of the potential function.

3.5 Next-to-eikonal correction

Contributions of the order α3
s lnβ can arise from the interplay of power-suppressed NLO

corrections αs lnβ× β2 and the NNLO Coulomb correction α2
s/β

2. A full analysis of these

corrections in the EFT framework is beyond the scope of this paper. However, for the

N3LO threshold approximation only the LL next-to-eikonal corrections are relevant that

arise only from initial-state radiation and therefore can be obtained from results for the

Drell-Yan process and Higgs production (see e.g. [63, 65, 92]).

These corrections can be incorporated in our framework by including an additional

term in the one-loop soft function obtained by the replacement[
ln(1− x)

1− x

]
+

→
[

ln(1− x)

1− x

]
+

− ln(1− x) (3.52)

in the position-space soft function WR
i (2mt(1 − z)) given in eq. (C.5) in [13]. This leads

to the LL next-to-eikonal contribution

∆W
(1)
i,n.e.(2mt(1− z)) = − 1

2mt
8(Cr + Cr′) ln(1− z), (3.53)

where the factor (2mt)
−1 arises from the normalization convention of the LO soft function,

W
(0)R
i (ω) = δ(ω).

The next-to-eikonal correction to the cross section is obtained by inserting (3.53) into

the factorization formula (2.16)14

∆σ̂pp′,n.e.(ŝ, µ) =
∑
R=1,8

HR,S
pp′ (mt, µ)

αs(µ)

(4π)

∫ 1

ρ
dwJSR(mt(w − ρ)) 2mt∆W

(1)
i,n.e.(2mt(1− w)) ,

(3.54)

14Note that we do not claim that this factorized formula holds to all orders in perturbation theory and

beyond the LL next-to-eikonal level.
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where we have performed a transformation of variables ω = 2mt(1−w) and approximated

E =
√
ŝ − 2mt ≈ mt(1 − ρ). The only threshold-enhanced contribution at N3LO arises

from the second Coulomb correction in the NNLO potential function (3.32). We therefore

obtain the logarithmic correction to the N3LO scaling function as

∆n.e.f
(3,0)
pp′(R) = −(4π2)2D2

R(Cr + Cr′)
8

3
lnβ. (3.55)

4 Approximate N3LO results

We are now in a position to obtain approximate N3LO predictions based on the partial

N3LL resummation constructed in the previous section. In section 4.1 we present explicit

results for the scaling functions and discuss our estimate of the currently unknown colour-

octet coefficients. In section 4.2 we present results for the total hadronic top-quark pair

production cross section and discuss the scale dependence and the estimate of the remaining

theoretical uncertainty.

4.1 Partonic cross sections

Our default implementation of the partial N3LL resummed cross section is obtained from

the resummation formula (2.18) by inserting the N3LO potential function, the resummation

functions Ui and η at N3LL accuracy, and the two-loop hard and soft functions obtained

in sections 3.1 and 3.2. In addition, the P-wave contribution (3.49) and the contribution

from the interference of next-to-eikonal logarithms and the Coulomb corrections (3.55) are

added. The resummation formula is expanded to O(α3
s), setting the soft and hard scales

introduced in the resummation formalism to µs = ksmtv
2 and µh = khmt, where the

unknown constants kX are of order one. For N3LL resummation, all threshold-enhanced

N3LO terms are independent of these unphysical parameters.

We will present the results for the approximate N3LO corrections for the different

partonic production channels in the form

∆σ̂
R(3)
pp′ (ŝ,mt, µf ) = σ̂

R(0)
pp′ (ŝ,mt, µf )

(
αs(µf )

4π

)3 3∑
m=0

f
(3,m)
pp′(R)(ρ) lnm

(
µf
mt

)
, (4.1)

where the threshold limit of the partonic production cross sections for a given colour

channel (2.13) was factored out. The renormalization-scale dependence can be obtained

using (2.4). We do not perform a decomposition into states of definite spin, i.e. the scaling

functions for the gluon initial states include the P-wave contribution (3.49).

The result of the ω-integral over the potential function in the resummation for-

mula (2.18) is expressed in terms of the energy variable E =
√
ŝ − 2mt ≡ mtv

2. To write

the approximate N3LO corrections as functions of the customary variable β =
√

1− ρ,

the terms ∼ β2 in the relation of the two variables (3.20) must be included. Taking the

overall factor v in the potential function (3.31) into account, the relevant corrections to

the threshold-enhanced terms at O(α3
s) can be obtained by the replacements

1

v2
→ 1

β2
− 3

8
,

ln v

v2
→ lnβ

β2
− 3

8
(lnβ − 1),

ln2 v

v2
→ ln2 β

β2
− 3

8

(
ln2 β − 2 lnβ

)
, (4.2)
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where the O(1) terms contribute to the constants C
(3)
pp′ in the scaling functions. Note that

in contrast to the NNLL implementation [15], at this order one should not replace the

threshold limit σ
R(0)
pp′ in (4.1) by the full Born cross section, since this would treat these

kinematic corrections in an inconsistent way. In order to estimate kinematic ambiguities

of the threshold approximation, we will also consider the results obtained with the un-

expanded scaling functions in terms of the variable v.

The results for threshold expansion of the scale-independent scaling functions for the

different production channels are for the explicit values Nc = 3, nf = 5,

f
(3,0)
qq̄(8) = 12945.4 ln6 β − 37369.1 ln5 β + 27721.4 ln4 β + 41558.7 ln3 β

+ (−32785.3 + 157.914 δc
(2,0)
J,3 ) ln2 β

+ (2611.05 + 157.914 δc
(1,0)
J,3 + 12γ

(2)
H,s) lnβ

+
1

β

[
−2994.51 ln4 β + 2804.73 ln3 β + 3862.46 ln2 β − 6506.96 lnβ − 2774.26

]
+

1

β2

[
153.93 ln2 β + 122.866 lnβ − 144.996

]
+ C

(3)
qq̄(8) , (4.3a)

f
(3,0)
gg(1) = 147456.0 ln6 β − 59065.60 ln5 β − 286099.5 ln4 β + 349462.5 ln3 β

− 117661.0 ln2 β − 111672.0 lnβ +
1

β

[
121277.7 ln4 β

+ 103557.4 ln3 β − 164943.8 ln2 β + 56418.52 lnβ + 14838.1
]

+
1

β2

[
22165.98 ln2 β + 39012.06 lnβ − 2876.606

]
+ C

(3)
gg(1) , (4.3b)

f
(3,0)
gg(8) = 147456.0 ln6 β − 169657.6 ln5 β − 140833.9 ln4 β + 524210.4 ln3 β

+ (−298530.0 + 157.9137 δc
(2,0)
J,3 ) ln2 β

+ (48175.5 + 12γ
(2)
H,s + 157.9137 δc

(1,0)
J,3 ) lnβ

+
1

β

[
−15159.71 ln4 β − 5364.824 ln3 β + 19598.89 ln2 β − 17054.74 lnβ − 2775.05

]
+

1

β2

[
346.3434 ln2 β + 522.9776 lnβ − 71.78836

]
+ C

(3)
gg(8) . (4.3c)

The coefficients of the terms ln6,...3 β, 1
β ln4,...1 β and 1

β2 ln2,...0 β reproduce the results of

the expansion of the NNLL cross section in [15] (up to shifts 41839.4 → 41558.7 in the

coefficient of the ln3 β term and 6528.61 → 6506.96 in the ln β/β term in the quark-

antiquark channel due to the annihilation contribution, which was omitted in [15]). The

threshold approximation of the scaling functions f (3,i) for i 6= 0 related to the factorization-

scale dependence are given in appendix C. These results were obtained both from the

expansion of the resummation formula and by exploiting the known factorization scale

dependence of the PDFs as discussed in section 2.1, finding agreement with the results

obtained using the two methods.

The results for the colour-octet channels in (4.3) depend on the unknown three-loop

coefficient of the massive soft anomalous dimension γ
(2)
H,s and the coefficients δcJ,3 param-
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eterizing the unknown corrections to the potential function from the 1/m potential and

ultrasoft corrections. In our default predictions we set the three-loop massive soft anoma-

lous dimension to zero and estimate the uncertainty based on the known one- and two-loop

results:

γ
(2)
H,s → 0±

γ
(1)
H,s

2

γ
(0)
H,s

≈ ±132. (4.4)

As default value for the potential coefficients in the colour-octet case, we take the esti-

mate obtained by the naive replacement CF → (CF − CA/2) in the known colour-singlet

result (3.43). This amounts to the numerical values

δc
(2,0)
J,3 |

octet
approx. = 22.2716, (4.5a)

δc
(1,0)
J,3 |

octet
approx. = −8.28177 (4.5b)

We estimate the uncertainty due to this estimate as ±2δc
(n,0)
J,3 |octet

approx.. It is seen from (4.3)

that the numerical effect of the unknown potential corrections is expected to be larger than

that of the three-loop soft-anomalous dimension.

The constants C
(3)
pp′(R) in the threshold expansion of the scaling functions (4.3) can

only be obtained from a three-loop computation and will be set to zero in our default

approximation. The expansion of the N3LL resummation formula yields expressions for

these constants that depend on the unphysical scale parameters ks, kh, and kC introduced

in the resummation formalism and are given in appendix C. We will use these results to

estimate the uncertainty of our result due to effects beyond the threshold approximation.

Choosing as a default kX = 1 and varying the scales independently in the interval 1
2 ≤

kX ≤ 2 with the constraint 1
2 ≤

ks
kh
≤ 2 we obtain the estimates

C
(3)
qq̄(8) = 7.0+25.0

−29.1 × 103, (4.6)

C
(3)
gg(1) = −23.4+108.6

−78.5 × 103, (4.7)

C
(3)
gg(8) = −0.4+41.9

−20.8 × 103. (4.8)

We further define the colour-averaged constant in the gluon channel,

C(3)
gg =

σ
(0),8s
gg C

(3)
gg(8) + σ

(0),1
gg C

(3)
gg(1)

σ
(0),8s
gg + σ

(0),1
gg

= −6.98+61.0
−37.3 × 103. (4.9)

In figure 1 we compare the result (4.3) for the approximate N3LO corrections with an

earlier approximation (denoted as N3LOB) based on NNLL resummation [15], where the

terms ∼ ln2,1 β and ∼ 1
β beyond NNLL accuracy were dropped. In the figures we plot the

integrand of the convolution of the approximate N3LO corrections (4.1) with the parton

luminosity in the formula for the hadronic cross section (2.1) as a function of β, including

the Jacobian ∂τ/∂β:

d∆σ
(3)
pp′

dβ
=

8βm2
t

s(1− β2)2
Lpp′(β, µf )∆σ̂

(3)
pp′(β, µf ) . (4.10)
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Figure 1. Partonic N3LO corrections to the cross section for qq̄ → tt̄ (left) and gg → tt̄ (right)

at the LHC (
√
s = 13 TeV), multiplied with the parton luminosities. Black (solid): N3LOapp

using (4.3), where the shaded gray area indicates the uncertainty estimated from varying the con-

stants C
(3)
pp′ and by using the kinematic variable v instead of β. Blue (long-dashed): N3LOB based

on NNLL resummation.

The gray band indicates the uncertainty of our default approximation (4.3) as estimated

from the dependence of the constants (4.6) and (4.9) on the unphysical scales ks, kh,

and by using the kinematic variable v instead of β. In the figure the MMHT2014NNLO

PDFs [6, 93] are used to compute the parton luminosity.

From the comparison of the curves for our best prediction N3LOapp to the earliear

approximation N3LOB it can be seen that the effect of the corrections beyond NNLL

is small in the limit β → 0 but becomes significant for β & 0.3. As already observed

in [15], the corrections to the integrand dσ/dβ in the gluon-fusion channel become very

large for β → 0 and could lead to corrections of the order of several hundred picobarn to

the total cross section at the LHC with 13 TeV. In [15] it was speculated that this might

indicate a poor convergence of the fixed-order expansion, despite an overall small numerical

effect of resummation on the total cross section. In the total cross section, these large

positive corrections are cancelled to a large extent by negative corrections for β > 0.2,

where, however, the threshold approximation is less reliable. The integrand approaches

zero rapidly for β → 1, which indicates that we are at least not including spuriously large

corrections from the region where the threshold approximation breaks down. The gray band

in the figures indicates the growing uncertainty of the threshold approximation for β & 0.4.

The relative uncertainty is larger in the quark-antiquark channel, however, the impact of

both channels on the uncertainty of total cross section is similar as seen in (4.11) below.

4.2 Phenomenological results

In order to obtain predictions for the total hadronic top-quark pair production cross section,

we use as default the MMHT2014NNLO PDFs [6, 93] with αs(MZ) = 0.118. The top-quark

pole mass value mt = 173.3 GeV is used. As central factorization and renormalization

scales we choose µr = µf = mt. The contributions of the different partonic channels to the
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approximate N3LO corrections is obtained as

∆σ
N3LOapp

qq̄ (13TeV) = 1.86pb (4.11a)

+ (0.05C
(3)
qq̄ − 3.91 δc

(1,0)
J,3 + 3.06 δc

(2,0)
J,3 − 0.30 γ

(2)
H,s)× 10−3pb,

∆σ
N3LOapp
gg (13TeV) = 10.09 pb (4.11b)

+ (0.12C(3)
gg − 7.38 δc

(1,0)
J,3 + 6.15 δc

(2,0)
J,3 − 0.56 γ

(2)
H,s)× 10−3pb,

where we have indicated the contributions of the various unknown coefficients entering the

scaling functions (4.3). As default we set the constant terms C
(3)
pp′ to zero and estimate

their size according to (4.6) and (4.9). Furthermore, we estimate kinematic ambiguities of

the threshold approximation by using the expansion in terms of the variable v instead of

β. For the massive soft anomalous dimension and the potential coefficients we choose the

default values and uncertainty estimates (4.4) and (4.5). We then obtain the prediction for

the N3LO corrections to the cross section for µf = µr = mt, and the uncertainties inherent

in our approximations

∆σ
N3LOapp

tt̄
(13TeV) = 12.25 +7.87

−6.24︸︷︷︸
C

(3)

pp′

+5.3
−0.0︸︷︷︸
kin.

± 0.11︸︷︷︸
γ
(2)
H,s

± 0.60︸︷︷︸
δc

(i,0)
J,3

pb, (4.12)

where “kin.” denotes the uncertainty due to the expansion in terms of v instead of β. It is

clearly seen that the uncertainties of the threshold expansion as estimated by the variation

of the constants and the kinematic ambiguity dominate over the uncertainties due to the

unknown soft anomalous dimension and potential coefficients.

In addition to the corrections included in the scaling functions (4.3), there is the

distributional contribution arising from the third Coulomb correction (3.37). Inserting

this correction to the potential function into the factorization formula (2.16) gives the

correction15

∆σC3

N1N2→tt̄X =
∑

p,p′=q,q̄,g

Lpp′(
4m2

t

s
, µf )

∑
R=1,8

α3
s(µr)(−DR)3m4

t ζ3

2s
HR
pp′,i(mt, µr). (4.13)

The resulting correction at the LHC with
√
s = 13 TeV is given by

∆σC3

tt̄
(13TeV) = 0.60 pb, (4.14)

in agreement with [38]. This contribution to the N3LO cross section is therefore of a similar

size as the uncertainties due to the unknown coefficients in N3LL resummation.

Our default prediction is obtained by adding the correction ∆σ
N3LOapp

tt̄
from the thresh-

old expansion of the scaling functions and the correction (4.13) to the NNLO cross sec-

tion [9–12],

σ
N3LOapp

tt̄
= σNNLO

tt̄ + ∆σ
N3LOapp

tt̄
+ ∆σC3

tt̄
. (4.15)

15The present notation is related to the one in [38] by HR
pp′,i =

2π2α2
s

m4
t
σRpp′ .
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In order to estimate the scale uncertainty, we vary both renormalization and factorization

scales independently in the interval 1
2 ≤ µf , µr ≤ 2 with the constraint 1

2 ≤
µf
µr
≤ 2.

We obtain

σ
N3LOapp

tt̄
(13TeV) = 815.70

+19.88(2.4%)
−27.12(3.3%)(scale)

+9.49(1.2%)
−6.27(0.8%)(approx)pb, (4.16)

where the “approx” uncertainty is obtained by adding the different contributions in (4.12)

in quadrature. Compared to the NNLO result,

sigmaNNLO
tt̄ (13TeV) = 802.85

+28.12(3.5%)
−44.97(5.6%)(scale)pb, (4.17)

the approximate N3LO corrections increase the cross section moderately by 1.6% and

reduce the scale uncertainty to the ±3%-level. Adding scale and approximation uncertainty

in quadrature leads to a total perturbative uncertainty of +2.7%
−3.4%, and therefore a reduction

compared to the scale uncertainty of the NNLO result.

For other centre-of-mass energies at the LHC we obtain the results

σ
N3LOapp

tt̄
(7TeV) = 175.56

+4.45(2.5%)
−5.73(3.3%)(scale)

+2.15(1.2%)
−1.45(0.8%)(approx)pb, (4.18)

σ
N3LOapp

tt̄
(8TeV) = 250.22

+6.30(2.5%)
−8.20(3.3%)(scale)

+3.03(1.2%)
−2.03(0.8%)(approx)pb, (4.19)

σ
N3LOapp

tt̄
(14TeV) = 964.32

+23.4(2.4%)
−32.1(3.3%)(scale)

+11.15(1.2%)
−7.36(0.8%) (approx)pb. (4.20)

In addition to the uncertainty of the perturbative calculation estimated by the scale

variation, the prediction of the hadronic cross section also relies on the value of the

strong coupling constant and the PDFs, with their respective uncertainties. For the

MMHT2014NNLO PDF, the combined PDF+αs uncertainty of the NNLO top-quark pair-

production cross section at the LHC is about ±2.5% [93], and therefore below the per-

turbative uncertainty of the approximate N3LO result (4.16). Following [94] we note that

the evolution of the NNLO PDFs is performed including the three-loop splitting function,

so the use of NNLO PDFs in an N3LO calculation is formally consistent, although the

use of N3LO predictions in a PDF fit might lead to a non-negligible effect on the PDFs,

in particular in the case of top-pair production [95]. In the following we discuss only the

estimate of the perturbative uncertainties of our calculation.

It is interesting to compare the approximate N3LO result to the prediction of NNLL

resummation matched to NNLO. Using the programs topixs 2.0.1 [18] and top++

2.0 [17], which implement the combined soft-gluon and Coulomb resummation in momen-

tum space [15] and soft-gluon resummation in Mellin space [16], respectively, we obtain

σNNLL+NNLO
tt̄

(13TeV)= 807.13
+15.63(1.9%)
−36.83(4.6%)(scale)

+19.15(2.5%)
−12.9(1.8%) (approx.)pb (topixs), (4.21)

σNNLL+NNLO
tt̄

(13TeV)= 821.37
+20.28(2.5%)
−29.60(3.6%)(scale)pb (top++). (4.22)

The resummed Coulomb corrections beyond NNLO and bound-state corrections included

in topixs only have a small effect, +2.8 pb for the bound-state corrections and less than

one picobarn for higher-order Coulomb corrections. Furthermore, top++ includes the two-

loop constants C
(2)
pp′ , which are part of the NNLL’ approximation. Setting these constants
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Figure 2. Scale-dependence (µf = µr) of the total cross section for the LHC with
√
s = 13 TeV in

various approximations.

to zero, one obtains the top++ result of 812.20 pb, which is closer to the result of topixs.

The remaining difference indicates the size of sub-leading corrections, which are treated

differently in the different resummation methods. The top++ result is also closer to the ap-

proximate N3LO prediction (4.16), which indicates the numerical relevance of the interplay

of the two-loop constants and the soft threshold corrections. The total scale uncertainty of

the two NNLL results is similar to each other and to that of the approximate N3LO correc-

tion. The topixs result also includes an estimate of the ambiguities of the resummation

procedure, which includes the variation of the soft scale used in the momentum-space ap-

proach and the comparison of the expansion in v and β. Since our approximate N3LO cross

section is based on a partial N3LL resummation, the dependence on the soft-scale is re-

duced compared to the NNLL resummation and enters only in the estimate of the constant

term. No attempt to estimate the ambiguities of the resummation procedure is made in

top++. The fact that the approximate N3LO corrections are close to the resummed results

indicates that the perturbative expansion is well-behaved, despite the large corrections to

the partonic cross sections for small β observed in figure 1.

In figure 2 we compare the factorization-scale dependence of the approximate N3LO

cross section (red dash-dotted) to the NNLO result (blue, long-dashed) and the two re-

summed predictions from top++ (green, dashed) and topixs (magenta, dotted). The

renormalization scale is set equal to the factorization scale. In the topixs calculation, all

other scales are fixed to their default value. It is seen that the inclusion of the approximate

N3LO corrections further flatten the scale dependence compared to the NNLO prediction

and brings the curve closer to the resummed top++ result. In contrast, the topixs curve

follows more closely the NNLO result. In figure 3 we consider instead the factorization

scale dependence for fixed renormalization scale and vice-versa. No results from topixs

are shown since the renormalization scale is not separated from the factorization scale.

Again it is seen that the inclusion of the approximate N3LO corrections stabilize the scale

dependence and brings the result closer to the resummed prediction.
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Figure 3. Total cross section for the LHC with
√
s = 13 TeV in various approximations. Left:

factorization-scale dependence (for µr =mt), right: renormalization-scale dependence (for µf =mt).

Approximate N3LO results were also published in [41, 42]. In these papers, no ana-

lytical results for the partonic cross sections are given so we can only compare numerical

results for the total cross section. In addition, different PDFs are used for the results.

The result of [41] is based on NNLL resummation for one-particle inclusive kinematics. At

the LHC with 13 TeV, a correction of 2.7% relative to the NNLO result is found with a

scale uncertainty of +2.9%
−2.0%. The inherent uncertainty of the constructed approximation is

not estimated. Ref. [42] constructs a partial N3LL soft resummation in Mellin space using

similar input as our approximation, but without the contributions of the N3LO potential

function. Furthermore, they also include 1/N -suppressed contributions in Mellin space and

information on the large-β behaviour. As a result, they find larger corrections of +4.2%

at 13 TeV. The scale uncertainty of ±2.7% is comparable to that of our result (4.16). The

scale-dependence of our result in figure 3 is qualitatively similar to that shown in figure 9

of [42]. An approximation corresponding to the standard Mellin-space resummation [16, 17]

dubbed “N -soft” yields smaller corrections of +2.3% and is therefore closer to our predic-

tion. The ambiguities of the approximation are estimated as ±1.9%, which is larger than

our estimate of +1.2%
−0.8% in (4.16). Therefore, while our default implementation results in a

smaller correction than the one found in [41, 42], the results are consistent if the estimate

of the uncertainties due to the threshold approximation are taken into account. In par-

ticular, using the expansion in terms of v instead of β, we obtain a larger N3LO effect of

2.3% which is in good agreement with the “N -soft” prediction of [42] and with [41]. It is

interesting to compare our uncertainty estimate in more detail to the one of [42]. The “ap-

prox” uncertainty estimate in [42] includes contributions from two sources: the treatment

of the subleading contributions in Mellin space and the parametric uncertainties due to

the unknown three-loop constant term and the massive soft anomalous dimension for the

colour-octet case. The estimate of the three-loop constant in eqs. (5.3) and (5.5) of [42]

amounts to an uncertainty of the cross section of ±2.6 pb at the LHC, which is smaller

than our estimate in (4.12). In contrast, the estimate of the colour-octet soft-anomalous

dimension in [42] amounts to an uncertainty of ±4.6 pb which is much more conservative
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than our estimate.16 Nevertheless, combining the two sources of parametric uncertainty

in quadrature results in a similar parametric uncertainty as in our result. The dominant

contribution to the uncertainty estimate of [42] arises from the ambiguities due to the treat-

ment of the subleading contributions in Mellin space, which contribute an uncertainty of

±1.8%, compared to our smaller estimate of the kinematic ambiguities using the expansion

in v instead of β. In addition, ref. [42] estimates the uncertainty from omitting the N3LO

approximation for the quark-antiquark and quark-gluon initial states as 1%. Instead, our

result (4.11) includes the quark-antiquark channel with a contribution of only 0.2%.

5 Conclusions

We have constructed a combined resummation of threshold logarithms and Coulomb cor-

rections to the total top-quark pair-production cross section at hadron colliders at partial

N3LL accuracy and used the result to compute the threshold limit β =

√
1− 4m2

t
ŝ → 0

of the partonic N3LO cross sections qq̄ → tt̄ and gg → tt̄. Our result makes use of the

state-of-the-art N3LO results for the non-relativistic Green function from a calculation

of e−e+ → tt̄. We have also included contributions from sub-leading P-wave produc-

tion channels and power-suppressed so-called next-to-eikonal corrections that give rise to

threshold-enhanced N3LO corrections due to Coulomb enhancement. We have generalized

the so-called 1/m2 one-loop potential in PNRQCD to the spin-singlet and colour-octet

state. However, the three-loop massive soft-anomalous dimension, the two-loop 1/m po-

tential in PNRQCD and the ultrasoft corrections to the non-relativistic Green function are

currently not known for the production of top-quark pairs in a colour-octet state. We have

estimated the uncertainty due to these missing ingredients on our result. The corrections

from the N3LO Green function and the missing contributions for the colour-octet state

affect the coefficients of the terms α3
s ln2,1 β, and can have a larger numerical effect than

the unknown three-loop massive soft-anomalous dimension.

Using the results for the threshold expansion of the partonic N3LO cross sections, we

obtain moderate corrections +1.5% relative to the NNLO predictions for the LHC with√
s = 13 TeV and a reduction of the factorization- and renormalization-scale uncertainty

to the ±3%-level. We estimate the uncertainty of our prediction due to the threshold

approximation to be about ±1%. The total perturbative uncertainty therefore approaches

a similar level as the PDF+αs uncertainty of ±2.5%. Our default prediction is smaller

than other approximate N3LO predictions [41, 42] but consistent with these results if the

estimate of the uncertainties due to the threshold approximation are taken into account.

The difference between these predictions indicates the possible size of subleading terms in

the threshold expansion.

We have explicitly provided all necessary ingredients to implement our results in a

numerical program. Since the numerical result of the approximate N3LO corrections and

16The conventions of [42] are related to our conventions according to (4π)3(D
(3)
8 −D

(3)
1 ) = 2CAγ

(2)
H,s+ . . . ,

where additional terms arise due to the two-loop soft function [13]. The uncertainty estimate of (D
(3)
8 −

D
(3)
1 ) = ±10 is therefore much larger than (4.4).
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their scale uncertainty are close to the resummed NNLL predictions, this provides a simple,

computationally less expensive way to obtain the leading corrections beyond NNLO. We

plan to include these results in a future version of topixs, as well the implementation of

the fully resummed threshold corrections at partial N3LL accuracy.
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A Renormalization group functions

In this appendix we give explicit results for the NNLO expansion of the hard and soft

functions. The various anomalous dimensions appearing in the expressions are expanded

in the strong coupling constant according to

γ =
∑
n

γ(n)
( α

4π

)n+1
. (A.1)

For the expansion of the β-function and the splitting functions we use the conventions

β(αs) = −αs
∞∑
n=0

βn

(αs
4π

)n+1
(A.2)

Pp/p′(x) =

∞∑
n=0

P
(n)
p/p′(x)

(αs
4π

)n+1
(A.3)

which corresponds to β0 = 11
3 CA −

4
3nlTf .

A.1 Two-loop hard functions

The perturbative expansion of the hard function in the QCD coupling can be written as

HR
pp′(µh) = H

R(0)
pp′ (µh)

[
1 +

∑
n

(
αs(µh)

4π

)n
h
R(n)
pp′ (µh)

]
, (A.4)

where we have extracted the leading-order hard function H
R(0)
pp′ (µh) that includes a factor

α2
s(µh). We also left the spin dependence implicit. The relation of the one- and two-loop

coefficients at a scale µ to the initial conditions at µh = mt follow from the evolution

equation (3.1):

h
R(1)
pp′ (µ) = −Crr′γ(0)

cusp ln2

(
mt

µ

)
− 2(γ

V (0)
i + 2β0 + Crr′γ

(0)
cusp ln 2) ln

(
mt

µ

)
+ h

R(1)
pp′ (mt),

(A.5)
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h
R(2)
pp′ (µ)=

1

2
C2
rr′(γ

(0)
cusp)2 ln4

(
mt

µ

)
+ 2Crr′γ

(0)
cusp

(
γ
V (0)
i + Crr′γ

(0)
cusp ln 2 +

7

3
β0

)
ln3

(
mt

µ

)
+
[(
γ
V (0)
i + 2β0

)(
2γ

V (0)
i + 6β0 + 5Crr′γ

(0)
cusp ln 2

)
− Crr′

(
γ(1)

cusp + γ(0)
cusph

R(1)
pp′ (mt)− 2Crr′(γ

(0)
cusp)2 ln2 2 + γ

V (0)
i γ(0)

cusp ln 2
)]

ln2

(
mt

µ

)
−
[
2γ

V (1)
i + γ

R,S(1)
J + 2Crr′γ

(1)
cusp ln 2 + 4β1

+ 2
(
γ
V (0)
i + 3β0 + Crr′γ

(0)
cusp ln 2

)
h
R(1)
pp′ (mt)

]
ln

(
mt

µ

)
+ h

R(2)
pp′ (mt). (A.6)

Here the factor α2
s(µh) in the leading-order hard function was taken into account. We have

also defined the colour factor Crr′ = Cr + Cr′ .

Expanding the resummation formula for the NNLL and NNLL’ approximations to

O(αs) and O(α2
s), respectively, one obtains the relation between the constant terms C

R(n)
pp

in the threshold expansion of the NLO and NNLO cross sections to the coefficients of the

hard functions at the scale µh = mt:

h
R(1)
pp′ (mt) = CR(1)

pp − Crr′
(

32 + 36 ln2 2− 48 ln 2− 11π2

6

)
− 12CR(1− ln 2), (A.7)

h
R(2)
pp′ (mt) = CR(2)

pp − s̃R(2)
i (0)− (4π)2(cJ,2 + γ

R,S(1)
J ln 2)−

4π4D2
R

3

[
dJ −

3

8

]
− hR(1)

pp′ (mt)

[
Crr′

(
4(8 + 9 ln2 2)− 48 ln 2− 11π2

6

)
+ 12CR(1− ln 2)

]
− C2

rr′

[
24
(
27 ln4 2− 72 ln3 2 + 144 ln2 2− 192 ln 2 + 128

)
− 70π2

3

(
9 ln2 2− 12 ln 2 + 8

)
− 7π4

3
+ 448(3 ln 2− 2)ζ3

]
− Crr′CR

[
−16

(
27 ln3 2− 63 ln2 2 + 84 ln 2− 56

)
− π2

3
(164−210 ln 2)− 224ζ3

]
− Crr′CA

[
268 ln2 2− 4024 ln 2

9
+

8048

27
+

2π4

3

− 1

3
π2
(
36 ln2 2− 59 ln 2 + 84

)
+ 28(3 ln 2− 2)ζ3

]
− Crr′nfTF

[
8

27

(
−270 ln2 2 + 444 ln 2− 296

)
+

4π2

9
(12− 3 ln 2)

]
− C2

R

[
24
(
3 ln2 2− 6 ln 2 + 4

)
− 4π2

]
− CR

[
CA

(
196

9
− 4

3
π2 + 8ζ3

)
(2− 3 ln 2)− nfTF

1

9
(160− 240 ln 2)

]
− β0

[
Crr′

(
−24(3 ln2 2− 6 ln 2 + 8) ln 2 + 11π2 ln 2− 112ζ3

3
− 22π2

3
+ 128

)
+ 12CR

(
3 ln2 2− 6 ln 2 + 4− π2

6

)]
. (A.8)
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Although the natural hard scale is of the order 2mt, these relations simplify for the choice

µh = mt made here. In particular, they become independent of the anomalous dimensions

γVi , which do not obey Casimir scaling. In the NNLO coefficient, the constant terms in the

two-loop soft function (3.18) and the NNLO potential function (3.35) enter. Additionally,

the coefficient dJ from kinematic corrections to the matching of the potential function (3.19)

and the relation (3.20) of the variables v and β have been taken into account. The constants

C
R(2)
pp′ in (A.8) are related to the results in the conventions of [34], here denoted by a bar,

according to

C
R(2)
pp′ = C̄

R(2)
pp′ +

4π4D2
R

3
− 4π2D2

R

(
1 +

π2

3

)
h

(0),R
pp′,P . (A.9)

Here the first correction term arises from multiplying the prefactor 4m2
t /ŝ = 1−β2 with the

second Coulomb correction. Further, since no spin decomposition is performed in the results

for the constants C̄
R(2)
pp in [34], the P-wave contribution (3.48) with the coefficient (3.45)

was subtracted to obtain the hard function for the S-wave process.

For the number of light flavours nf = 5 and using NC = 3 and TF = 1/2, but keeping

the colour representations arbitrary, the NNLO result becomes

h
R(2)
pp′ (mt) = C̄

R(2)
pp′ − s̃

R(2)
i (0) + h

R(1)
pp′ (mt)(2.06903Crr′ − 3.68223CR)

− 5.41462C2
rr′ + 25.0828Crr′CR + 35.5195Crr′ + 8.69899C2

R + 35.9266CR

+D2
R(−554.062 + 61.0012 νSspin − 78.9568 νS,εspin − 129.879 dJ − 169.357h

(0),R
pp′,P )

+DR(263.804 + 15.2503νR,Sann
(0)

). (A.10)

A.2 Two-loop soft function

We consider the perturbative expansion of the soft function in Laplace space,

s̃Ri (ρ, µ) =

∞∑
n=0

(
αs(µ)

4π

)n
s̃

(n)R
i (ρ, µ). (A.11)

The coefficients of the variable ρ are fixed by the anomalous dimensions in the evolution

equation (3.14), so the only required input are constant coefficients s̃
(n)R
i (0):

s̃
(0)R
i (ρ, µ) = 1, (A.12)

s̃
(1)R
i (ρ, µ) =

Crr′γ
(0)
cusp

4
ρ2 + CRγ

(0)
H,s ρ+ s̃

(1)R
i (0), (A.13)

s̃
(2)R
i (ρ, µ) =

1

2

(
Crr′γ

(0)
cusp

4

)2

ρ4 +
Crr′γ

(0)
cusp

12
(3CRγ

(0)
H,s − β0) ρ3

+
1

4

[
Crr′(γ

(1)
cusp + γ(0)

cusps̃
(1)R
i (0)) + 2CRγ

(0)
H,s(CRγ

(0)
H,s − β0)

]
ρ2

+
[
Crr′γ

(1)
s + CRγ

(1)
H,s + s̃

(1)R
i (0)(CRγ

(0)
H,s − β0)

]
ρ+ s̃

(2)R
i (0). (A.14)
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Here it was used that the soft anomalous dimensions of the light partons γs vanish at

the one-loop level. The initial conditions s̃
(2)R
i (0) given in (3.18) were obtained from two-

loop calculations of the soft function in the literature by noting that the soft function in

Laplace space is obtained from the position-space result in [32] by the simple replacement

L = 2 ln
(
iz0µe

γE

2

)
→ −ρ and from the Mellin-space result in [33] by the replacement

L = ln
(
µN
mt

)
→ −2ρ.

The explicit results for the cusp anomalous dimension are given by

γ(0)
cusp = 4,

γ(1)
cusp =

(
268

9
− 4π2

3

)
CA −

80

9
TFnf ,

γ(2)
cusp = C2

A

(
490

3
− 536π2

27
+

44π4

45
+

88

3
ζ3

)
+ CATFnf

(
−1672

27
+

160π2

27
− 224

3
ζ3

)
+ CFTFnf

(
−220

3
+ 64ζ3

)
− 64

27
T 2
Fn

2
f . (A.15)

The one- and two-loop coefficients of the soft anomalous dimensions of the light partons

are given in [32] while the three-loop coefficient can be obtained from the results for γ(2)p

and γ(2)φ,p in [32, 45, 72]

γ(0)
s = 0,

γ(1)
s = CA

(
−404

27
+

11π2

18
+ 14ζ3

)
+ TFnf

(
112

27
− 2π2

9

)
,

γ(2)
s = C2

A

(
−136781

1458
+

6325π2

486
− 44π4

45
+

658

3
ζ3 −

44π2

9
ζ3 − 96ζ5

)
+ CATFnf

(
11842

729
− 1414π2

243
+

8π4

15
− 728

27
ζ3

)
+ CFTFnf

(
1711

27
− 2π2

3
− 8π4

45
− 304

9
ζ3

)
+ T 2

Fn
2
f

(
4160

729
+

40π2

81
− 224

27
ζ3

)
. (A.16)

The heavy particle anomalous-dimension coefficients are only known up to two loops

γ
(0)
H,s = −2,

γ
(1)
H,s = −CA

(
98

9
− 2π2

3
+ 4ζ3

)
+

40

9
TFnf .

(A.17)
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B Potential corrections

B.1 Potential for general spin and colour states

In this appendix we provide the projection of the PNRQCD potential onto spin-singlet

and triplet states and obtain the one-loop 1/m2 potential for the colour-octet case. The

conventions of the PNRQCD Lagrangian follow [35]. The general colour dependence of the

quark-antiquark potential can be decomposed in the two equivalent forms17

Vab;cd(p,p
′) = VS(p,p′)δabδcd + VT (p,p′)TAabT

A
cd

= V 1(p,p′)
1

Nc
δcbδad + V 8(p,p′)2TAcbT

A
ad,

(B.1)

where the potential coefficients in the two conventions are related by

V R = VS −DRVT , (B.2)

with the colour factor (3.25). The potential for arbitrary spin in a given colour channel R

is of the form [35]

V R(p,p′) = VRC (αs)
4πDRαs

q2
− VR1/m(αs)

π2(4π)DRαs
mt|q|

−VRδ (αs)
2πDRαs
m2
t

+ VRs (αs)
πDRαs

4m2
t

[σi, σj ]⊗ [σi, σj ]

+VRp (αs)
2πDRαs(p

2 + p′2)

m2
tq

2
− VRhf (αs)

πDRαs
4m2

tq
2

[σi, σj ]qj ⊗ [σi, σk]qk

+VRso(αs)
3πDRαs
2m2

tq
2

(
[σi, σj ]qipj ⊗ 1− 1⊗ [σi, σj ]qipj

)
+ . . . . (B.3)

Here the spin-dependence is written in a tensor-product notation, a⊗ b, where a (b) refers

to the spin-matrix on the quark (antiquark). In addition to (B.3), also the so-called an-

nihilation contribution from local NRQCD four-fermion operators must be included for

hadronic top-quark production. This is discussed in appendix B.2. The potential (B.3)

can be further decomposed into spin-singlet and triplet contributions according to

V R(p,p′) =
1

2
V R,0(p,p′) 1⊗ 1 +

1

2
V R,1(p,p′)σi ⊗ σi, (B.4)

where the spin projection in d − 1 space dimensions can be performed as discussed in

section 4.5 of [35]. In this way, one obtains the colour- and spin-projected potential

V R,S(p,p′) =
4παsDR

q2

[
VRC − VR1/m

π2 |q|
mt

+ VR,S
1/m2

q2

m2
t

+ VRp
p2 + p′ 2

2m2
t

]
. (B.5)

Additionally, the term ∂4/8m3
t in the PNRQCD Lagrangian is also treated as a potential

(cf. eq. (4.60) of [35]).

17Note that VS is called V1 in [35].
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We require the Coulomb-potential up to two-loop accuracy, which reads in four dimen-

sions

VRC = 1+
αs
4π

(
a1 + β0 ln

µ2

q2

)
+
(αs

4π

)2
(
aR2 + (2a1β0 + β1) ln

µ2

q2
+ β2

0 ln2 µ
2

q2

)
+ . . . (B.6)

with the one-loop coefficient

a1 =
31

9
CA −

20

9
nlTf . (B.7)

The two-loop coefficient depends on the colour representation [78, 79],

a1
2 = C2

A

(
4343

162
+ 4π2 − π4

4
+

22

3
ζ3

)
− CATFnf

(
1798

81
+

56

3
ζ3

)
− CFTFnf

(
55

3
− 16ζ3

)
+ (TFnf )2 400

81
,

a8
2 = a1

2 + C2
A(π4 − 12π2).

(B.8)

The 1/m potential for the colour-singlet case is quoted in section 4.4.2 of [35]. The colour-

octet one-loop result can be found in [55], while the corresponding two-loop result is cur-

rently not known. The resulting uncertainty on our predictions is estimated as discussed

in section 4.1.

The spin-dependence in (B.5) enters only through the 1/m2 potential

VR,S
1/m2 = −1

2
VRδ +

(
vS(ε) +

1

2

)[
VRhf − (d− 1)VRs

]
, (B.9)

where in d = 4− 2ε dimensions

vS(ε) =

{
−1

2ε, S = 0
2ε2+ε−4

6−4ε , S = 1
(B.10)

At tree level, the potential coefficients in the 1/m2 potential are

VR(0)
δ = 1, VR(0)

hf = 1, VR(0)
s = 0, VR(0)

p = 1, (B.11)

so that

VR,S,(0)
1/m2 = vS(ε). (B.12)

The one-loop result for the colour-singlet 1/m2 potential is given in section 4.4.3 of [35].

We argue now that the colour-octet result can be obtained from the singlet case after an

appropriate adjustment of the colour factors. Following [35], the one-loop 1/m2 potential

can be calculated from an NRQCD computation consisting of a “hard” contribution of

tree diagrams with one-loop matching coefficients, and a “soft” contribution of one-loop

NRQCD diagrams. The soft contributions receive contributions from the diagrams in

figure 9 of [35]. It can be seen from the NRQCD Feynman rules that the colour factors are

either the same as the box or crossed-box topologies in the full QCD diagrams,

Cbox
ab;cd = (TATB)ab(T

BTA)cd , Cc-box
ab;cd = (TATB)ab(T

ATB)cd, (B.13)
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or can be written as linear combinations thereof. The projection of these colour fac-

tors on the singlet and octet states can be written in the form Cbox → D2
R and

Cc-box → DR

(
DR + CA

2

)
so that in both cases the result for the general representa-

tion is obtained from the singlet result by the replacement (−CF ) → DR. There are

further contributions from the abelian vertex correction, self-energy insertions and charge-

renormalization counterterms. These contributions contain explicit factors of CF but are

scaleless, so they do not contribute to the finite part of the potential. The hard correc-

tions receive contributions from one-loop matching coefficients of four-fermion operators,

the NRQCD quark-gluon vertex and the gluon two-point functions. Since the former arise

from box-diagrams in full QCD, the same replacement of colour factors as in the soft con-

tribution can be applied, while the colour factors arising from the coefficients di of the

vertex and two-point functions are unmodified.18 As result, we obtain the 1/m2 potential

for the spin-singlet/triplet and colour-singlet/octet states

VR,S,(1)
1/m2 =

[(
µ2

q2

)ε
− 1

]
1

ε

(
− 7

3
DR −

25 + 21vS(ε)

6
CA + β0 v

S(ε)

)

+

[(
µ2

m2
t

)ε
− 1

]
1

ε

(
4CF + 3DR

3
+

17 + 21vS(ε)

6
CA

)
+

(
µ2

q2

)ε
vS(1)
q (ε) +

(
µ2

m2
t

)ε
vS(1)
m (ε), (B.14)

with

vS,(1)
q (ε) =

DR

3
− 7

4
CA −

(
5

9
CA +

20

9
TFnf

)
vS(ε) +O(ε),

vS,(1)
m (ε) =

11DR

3
+ 2CF −

CA
4

+ (6DR + 4CF + 3CA)vS(ε) +
4

15
TF + O(ε), (B.15)

where the O(ε) contributions do not contribute to the logarithmic corrections considered

here. This result agrees with an explicit calculation of the singlet and octet cases [80]. The

potential coefficient VR,(1)
p is the same for both the singlet and the octet case.

B.2 Annihilation contribution

The contribution of local four-fermion operators to the NRQCD Lagrangian is given by

δL4f = −δV 4f
ab;cd

(
ψ†cχbχ

†
aψd

)
, (B.16)

where the labels collectively denote the spin and colour quantum numbers. This convention

agrees with [55]. The four-fermion Lagrangian can be decomposed into contributions with

18Formally this result is obtained by adjusting the colour projection of the contribution of the Wilson

coefficients of the four-fermion operators in the expressions for V(hard)
δ and V(hard)

s in (4.75) and (4.79)

of [35] according to (B.2).
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definite spin and colour quantum numbers, analogously to (B.1) and (B.4)

−δL4f =
δV 1,0

4f

2NC

(
ψ†χ

)(
χ†ψ

)
+ δV 8,0

4f

(
ψ†TAχ

)(
χ†TAψ

)
+
δV 1,1

4f

2NC

(
ψ†σiχ

)(
χ†σiψ

)
+ δV 8,1

4f

(
ψ†TAσiχ

)(
χ†TAσiψ

)
.

(B.17)

The relation to the coefficients dc introduced in [81] is given by

δV 1,0
4f = −2NC

dcss
m2
t

, δV 8,0
4f = −d

c
vs

m2
t

, δV 1,1
4f = −2NC

dcsv
m2
t

, δV 8,1
4f = −d

c
vv

m2
t

. (B.18)

The contributions to the four-fermion operators arising from “scattering” diagrams

(i.e. diagrams present if ψ and χ correspond to different quark flavours) are already in-

cluded in the PNRQCD 1/m2 potential discussed in appendix B.1. For the “annihilation”

contributions (i.e. diagrams only present for identical quark flavours) we use the notation

δV R,S
ann =

παs
m2
t

νR,Sann . (B.19)

The perturbative corrections to the annihilation coefficients up to NLO will be written in

the form

νR,Sann (µ) = νR,Sann
(0)

+
αs
4π
νR,Sann

(1)
(µ) +O(α2

s). (B.20)

The scale-dependence of the NLO coefficient only enters through the running of αs:
19

νR,Sann
(1)

(µ) = νR,Sann
(1)

(2mt)− 2β0 ln

(
2mt

µ

)
νR,Sann

(0)
. (B.21)

At LO, the only non-vanishing correction is

ν8,1
ann

(0)
= 1, (B.22)

which is relevant for the quark-antiquark channel. At NLO there are also non-vanishing

annihilation contributions in the spin-singlet channel, which are relevant for gluon-induced

top production [81]:

ν8,1
ann

(1)
(2mt) = −20

9
TFnl −

32

9
TF − 16CF + CA

(
109

9
+

22

3
ln 2

)
,

ν1,0
ann

(1)
(2mt) = −8CF (1− ln 2),

ν8,0
ann

(1)
(2mt) = −4CF

(
−3CA

2
+ 4CF

)
(1− ln 2).

(B.23)

Here we have neglected imaginary parts, which contribute to toponium decay into light

hadrons and should not be taken into account for the total cross section for pp → tt̄ →
bb̄W+W−.

19Note that the results in [81] are given in terms of α
nl+1
s (µ) whereas we use nl active quark flavours in

the running.
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The corrections to the NNLO Green function due to an insertion of an annihilation

correction is [55]

δannG
(1)S
R = −παs

m2
t

νR,Sann
(0)
[
G

(0)
R (0, 0;E)

]2
, (B.24)

with the resulting correction to the potential function at O(α2
s)

∆annJ
S(2)
R (E) = J (0)(E)α2

s(µ)
DR

4
νR,Sann

(0)
(2LE + 1). (B.25)

The annihilation corrections to the N3LO Green function are obtained from the master

formula in [35] as

δannG
(2)S
R = − α2

s

4m2
t

νR,Sann
(1)

(µ)
[
G

(0)
R (0, 0;E)

]2
− παs
m2
t

νR,Sann
(0)

2G
(0)
R (0, 0;E)G

(1)
R (0, 0;E),

(B.26)

where G
(1)
R (0, 0;E) is the Green function with the insertion of one NLO Coulomb poten-

tial. The second term has the same form as the double insertion of the NLO Coulomb

potential and a delta potential treated in [96] and included in the calculation of [35–37],

so the annihilation correction can be obtained from these results. The logarithmic O(α3
s)

corrections to the potential function are given by

∆J
S(3)
R,ann(E) = J (0)(E)

α3
s(µ)

4π

DR

2

[
β0ν

R,S
ann

(0)
(
L2
E − (2LE + 1) ln

(
2mt

µ

))
+ (νR,Sann

(1)
(2mt) + a1ν

R,S
ann

(0)
)LE

]
. (B.27)

C Scaling functions

In this appendix we collect the numerical expressions for the threshold expansion of the

scaling functions f
(3,i)
pp′(R) with i ≥ 1 parameterizing the factorization-scale dependence, and

the constants C
(3)
qq̄(8) in the scaling functions f

(3,0)
pp′(R). The results of the scaling functions with

i = 2, 3 are already fully determined at NNLL accuracy. We include the expressions given

already in appendix C of [15] for completeness. The constant terms in the scaling functions

depend on the parameters ks, kh, and kC in the unphysical soft, hard, and Coulomb scales

µs = ksmtv
2, µh = khmt, muC = kCmtv.

C.1 Quark-antiquark channel

The constant in the threshold expansion in the quark-antiquark channel is given by

C
(3)
qq̄(8)(kh, ks) = 6951.36 + 202.2716 ln6 kh − 1574.459 ln5 kh + 3123.481 ln4 kh

+ 3828.93 ln3 kh − 6813.31 ln2 kh − 39816.5 ln kh − 202.2716 ln6 ks

− 1167.785 ln5 ks − 1220.5 ln4 ks + 6305.0 ln3 ks + 15434.0 ln2 ks

+ 6050.0 ln ks. (C.1)
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The scaling functions of the scale-dependent contributions are

f
(3,3)
qq̄(8) =− 12945.4 ln3 β + 39223.6 ln2 β − 28867.1 lnβ + 1140.45, (C.2)

f
(3,2)
qq̄(8) =

1

β

(
−2994.51 ln2 β + 5287.18 lnβ − 1005.67

)
+ 38836.1 ln4 β − 111164 ln3 β

+ 78770 ln2 β − 3383.32 lnβ − 3697.7, (C.3)

f
(3,1)
qq̄(8) =

1

β2
(−153.93 lnβ + 56.8546) +

1

β
(5989.02 ln3 β − 7733.19 ln2 β − 2669.2 lnβ

+ 2272.92)− 38836.1 ln5 β + 109310. ln4 β − 78403.7 ln3 β − 37732. ln2 β

+ 36036.4 lnβ + 38614. (C.4)

The constant terms in these functions are given for completeness but are not included

in our default approximation. These results agree with those obtained at NNLL, with

the exception of the coefficient of the log β-term and the constant in f
(3,1)
qq̄(8), which are a

new result.

C.2 Gluon fusion colour-singlet channel

The constant in the scaling function for the colour-singlet gluon-gluon initial state is

given by

C
(3)
gg(1)(kh, ks) =− 23367.7 + 2304.0 ln6 kh − 12526.07 ln5 kh + 12833.21 ln4 kh

− 3051.61 ln3 kh + 24684.5 ln2 kh + 117774. ln kh − 2304.0 ln6 ks

− 1845.80 ln5 ks + 25496.0 ln4 ks + 58820.0 ln3 ks + 6290. ln2 ks

− 49700. ln ks − 21543.91 ln kC . (C.5)

The Coulomb-scale dependence arises here because the P-wave contributions are only in-

cluded with the LO potential function. The NLL treatment of the P-wave corrections leads

also to some spurious contributions due to incomplete cancellations between the P-wave

contribution and contributions arising from the term involving h
(0),R
pp′,P in the two-loop con-

stant (A.9), which are entering in the S-wave contribution that is treated at N3LL. Since

we only use the constant as an uncertainty estimate, we do not attempt to fix this issue.

The scaling functions of the scale-dependent contributions read

f
(3,3)
gg(1) = − 147456 ln3 β + 206398 ln2 β + 10843.3 lnβ − 50289.8 , (C.6)

f
(3,2)
gg(1) =

1

β

(
121278 ln2 β − 58112.2 lnβ + 43685.6

)
+ 442368 ln4 β − 448309 ln3 β

− 297750 ln2 β + 322713 lnβ − 52925.9,

f
(3,1)
gg(1) =

1

β2
(−22166 lnβ − 8283.49) +

1

β
(−242555 ln3 β − 51902.1 ln2 β + 217024 lnβ

− 29709.3)− 442368 ln5 β + 300977 ln4 β + 563908 ln3 β − 618319 ln2 β

+ 132635 lnβ − 16096.3 . (C.7)

– 39 –



J
H
E
P
0
3
(
2
0
1
8
)
1
6
4

C.3 Gluon fusion colour-octet channel

The constant in the scaling function for the colour-octet gluon-gluon initial state is

C
(3)
gg(8)(kh, ks) =− 420.781 + 2304.0 ln6 kh − 9070.07 ln5 kh − 288.71 ln4 kh

+ 31337.14 ln3 kh − 10948.9 ln2 kh − 33050.8 ln kh − 2304.0 ln6 ks

− 5301.8 ln5 ks + 18005.0 ln4 ks + 74880.0 ln3 ks + 60510. ln2 ks

− 22200. ln ks − 336.6236 ln kC . (C.8)

The scaling functions for the factorization-scale dependent terms are

f
(3,3)
gg(8) =f

(3,3)
gg(1), (C.9)

f
(3,2)
gg(8) =

1

β

(
−15159.7 ln2 β + 7264.03 lnβ + 5460.7

)
+ 442368 ln4 β − 558901 ln3 β

− 100578 ln2 β + 284537 lnβ − 88163.8, (C.10)

f
(3,1)
gg(8) =

1

β2
(−346.343 lnβ − 129.429) +

1

β
(30319.4 ln3 β − 1092.09 ln2 β − 21802.5 lnβ

+ 5903.022)− 442368 ln5 β + 522161 ln4 β + 227359 ln3 β − 748536.1 ln2 β

+ 352544 lnβ + 1103.01. (C.11)
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[24] Y. Kiyo, J.H. Kühn, S. Moch, M. Steinhauser and P. Uwer, Top-quark pair production near

threshold at LHC, Eur. Phys. J. C 60 (2009) 375 [arXiv:0812.0919] [INSPIRE].

[25] Y. Sumino and H. Yokoya, Bound-state effects on kinematical distributions of top quarks at

hadron colliders, JHEP 09 (2010) 034 [Erratum ibid. 1606 (2016) 037] [arXiv:1007.0075]

[INSPIRE].

[26] S. Moch and P. Uwer, Theoretical status and prospects for top-quark pair production at

hadron colliders, Phys. Rev. D 78 (2008) 034003 [arXiv:0804.1476] [INSPIRE].

[27] M. Beneke, M. Czakon, P. Falgari, A. Mitov and C. Schwinn, Threshold expansion of the

gg(qq̄)→ QQ̄+X cross section at O(α4
s), Phys. Lett. B 690 (2010) 483 [arXiv:0911.5166]

[INSPIRE].

[28] N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section

and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935]

[INSPIRE].

[29] V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Precision predictions for

the t+ t̄ production cross section at hadron colliders, Phys. Lett. B 703 (2011) 135

[arXiv:1105.5824] [INSPIRE].

[30] A. Pineda, Next-to-leading log renormalization group running in heavy-quarkonium creation

and annihilation, Phys. Rev. D 66 (2002) 054022 [hep-ph/0110216] [INSPIRE].

[31] A.H. Hoang and I.W. Stewart, Ultrasoft renormalization in nonrelativistic QCD, Phys. Rev.

D 67 (2003) 114020 [hep-ph/0209340] [INSPIRE].

[32] T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in

Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].

[33] M. Czakon and P. Fiedler, The soft function for color octet production at threshold, Nucl.

Phys. B 879 (2014) 236 [arXiv:1311.2541] [INSPIRE].

[34] P. Bärnreuther, M. Czakon and P. Fiedler, Virtual amplitudes and threshold behaviour of

hadronic top-quark pair-production cross sections, JHEP 02 (2014) 078 [arXiv:1312.6279]

[INSPIRE].

[35] M. Beneke, Y. Kiyo and K. Schuller, Third-order correction to top-quark pair production near

threshold I. Effective theory set-up and matching coefficients, arXiv:1312.4791 [INSPIRE].

[36] M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum and M. Steinhauser,

Next-to-Next-to-Next-to-Leading Order QCD Prediction for the Top Antitop S-Wave Pair

Production Cross Section Near Threshold in e+e− Annihilation, Phys. Rev. Lett. 115 (2015)

192001 [arXiv:1506.06864] [INSPIRE].

[37] M. Beneke, Y. Kiyo, A. Maier and J. Piclum, Near-threshold production of heavy quarks with

QQ̄ threshold, Comput. Phys. Commun. 209 (2016) 96 [arXiv:1605.03010] [INSPIRE].

[38] M. Beneke and P. Ruiz-Femenia, Threshold singularities, dispersion relations and fixed-order

perturbative calculations, JHEP 08 (2016) 145 [arXiv:1606.02434] [INSPIRE].

– 42 –

https://doi.org/10.1007/JHEP10(2014)098
https://arxiv.org/abs/1407.2532
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2532
https://doi.org/10.1016/j.physletb.2008.07.006
https://arxiv.org/abs/0804.1014
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1014
https://doi.org/10.1140/epjc/s10052-009-0892-7
https://arxiv.org/abs/0812.0919
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0919
https://doi.org/10.1007/JHEP09(2010)034
https://arxiv.org/abs/1007.0075
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0075
https://doi.org/10.1103/PhysRevD.78.034003
https://arxiv.org/abs/0804.1476
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1476
https://doi.org/10.1016/j.physletb.2010.05.038
https://arxiv.org/abs/0911.5166
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5166
https://doi.org/10.1103/PhysRevD.82.114030
https://arxiv.org/abs/1009.4935
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4935
https://doi.org/10.1016/j.physletb.2011.07.058
https://arxiv.org/abs/1105.5824
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5824
https://doi.org/10.1103/PhysRevD.66.054022
https://arxiv.org/abs/hep-ph/0110216
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0110216
https://doi.org/10.1103/PhysRevD.67.114020
https://doi.org/10.1103/PhysRevD.67.114020
https://arxiv.org/abs/hep-ph/0209340
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0209340
https://doi.org/10.1088/1126-6708/2008/07/030
https://arxiv.org/abs/0710.0680
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.0680
https://doi.org/10.1016/j.nuclphysb.2013.12.008
https://doi.org/10.1016/j.nuclphysb.2013.12.008
https://arxiv.org/abs/1311.2541
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2541
https://doi.org/10.1007/JHEP02(2014)078
https://arxiv.org/abs/1312.6279
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6279
https://arxiv.org/abs/1312.4791
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.4791
https://doi.org/10.1103/PhysRevLett.115.192001
https://doi.org/10.1103/PhysRevLett.115.192001
https://arxiv.org/abs/1506.06864
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06864
https://doi.org/10.1016/j.cpc.2016.07.026
https://arxiv.org/abs/1605.03010
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.03010
https://doi.org/10.1007/JHEP08(2016)145
https://arxiv.org/abs/1606.02434
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.02434


J
H
E
P
0
3
(
2
0
1
8
)
1
6
4

[39] T. Becher and M. Neubert, Threshold resummation in momentum space from effective field

theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].

[40] T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation

in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

[41] N. Kidonakis, NNNLO soft-gluon corrections for the top-antitop pair production cross

section, Phys. Rev. D 90 (2014) 014006 [arXiv:1405.7046] [INSPIRE].

[42] C. Muselli, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Top Quark Pair Production

beyond NNLO, JHEP 08 (2015) 076 [arXiv:1505.02006] [INSPIRE].

[43] M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR:

HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182

(2011) 1034 [arXiv:1007.1327] [INSPIRE].

[44] S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The

Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

[45] V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved

Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333

[arXiv:0809.4283] [INSPIRE].

[46] A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M.L. Mangano, NLO production and

decay of quarkonium, Nucl. Phys. B 514 (1998) 245 [hep-ph/9707223] [INSPIRE].

[47] P. Falgari, C. Schwinn and C. Wever, NLL soft and Coulomb resummation for squark and

gluino production at the LHC, JHEP 06 (2012) 052 [arXiv:1202.2260] [INSPIRE].

[48] W. Beenakker, R. Kleiss and G. Lustermans, No Landau-Yang in QCD, arXiv:1508.07115

[INSPIRE].

[49] M. Cacciari, L. Del Debbio, J.R. Espinosa, A.D. Polosa and M. Testa, A note on the fate of

the Landau-Yang theorem in non-Abelian gauge theories, Phys. Lett. B 753 (2016) 476

[arXiv:1509.07853] [INSPIRE].

[50] G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections,

Nucl. Phys. B 281 (1987) 310 [INSPIRE].

[51] S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard

Processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].

[52] N. Kidonakis and G.F. Sterman, Resummation for QCD hard scattering, Nucl. Phys. B 505

(1997) 321 [hep-ph/9705234] [INSPIRE].

[53] R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy quark

hadroproduction cross-section, Nucl. Phys. B 529 (1998) 424 [Erratum ibid. B 803 (2008)

234] [hep-ph/9801375] [INSPIRE].

[54] M. Czakon and A. Mitov, On the Soft-Gluon Resummation in Top Quark Pair Production at

Hadron Colliders, Phys. Lett. B 680 (2009) 154 [arXiv:0812.0353] [INSPIRE].

[55] M. Beneke, J. Piclum, C. Schwinn and C. Wever, NNLL soft and Coulomb resummation for

squark and gluino production at the LHC, JHEP 10 (2016) 054 [arXiv:1607.07574]

[INSPIRE].

[56] A.V. Belitsky, Two loop renormalization of Wilson loop for Drell-Yan production, Phys. Lett.

B 442 (1998) 307 [hep-ph/9808389] [INSPIRE].

– 43 –

https://doi.org/10.1103/PhysRevLett.97.082001
https://arxiv.org/abs/hep-ph/0605050
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0605050
https://doi.org/10.1088/1126-6708/2007/01/076
https://arxiv.org/abs/hep-ph/0607228
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0607228
https://doi.org/10.1103/PhysRevD.90.014006
https://arxiv.org/abs/1405.7046
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7046
https://doi.org/10.1007/JHEP08(2015)076
https://arxiv.org/abs/1505.02006
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.02006
https://doi.org/10.1016/j.cpc.2010.12.040
https://doi.org/10.1016/j.cpc.2010.12.040
https://arxiv.org/abs/1007.1327
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1327
https://doi.org/10.1016/j.nuclphysb.2004.03.030
https://arxiv.org/abs/hep-ph/0403192
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0403192
https://doi.org/10.1140/epjc/s10052-009-1030-2
https://arxiv.org/abs/0809.4283
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.4283
https://doi.org/10.1016/S0550-3213(97)00801-8
https://arxiv.org/abs/hep-ph/9707223
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9707223
https://doi.org/10.1007/JHEP06(2012)052
https://arxiv.org/abs/1202.2260
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.2260
https://arxiv.org/abs/1508.07115
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.07115
https://doi.org/10.1016/j.physletb.2015.12.053
https://arxiv.org/abs/1509.07853
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.07853
https://doi.org/10.1016/0550-3213(87)90258-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B281,310%22
https://doi.org/10.1016/0550-3213(89)90273-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B327,323%22
https://doi.org/10.1016/S0550-3213(97)00506-3
https://doi.org/10.1016/S0550-3213(97)00506-3
https://arxiv.org/abs/hep-ph/9705234
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9705234
https://doi.org/10.1016/j.nuclphysb.2008.06.006
https://arxiv.org/abs/hep-ph/9801375
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9801375
https://doi.org/10.1016/j.physletb.2009.08.036
https://arxiv.org/abs/0812.0353
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0353
https://doi.org/10.1007/JHEP10(2016)054
https://arxiv.org/abs/1607.07574
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.07574
https://doi.org/10.1016/S0370-2693(98)01249-0
https://doi.org/10.1016/S0370-2693(98)01249-0
https://arxiv.org/abs/hep-ph/9808389
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9808389


J
H
E
P
0
3
(
2
0
1
8
)
1
6
4

[57] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-Loop Non-Singlet

Splitting Functions in the Planar Limit and Beyond, JHEP 10 (2017) 041

[arXiv:1707.08315] [INSPIRE].

[58] Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension

in multileg scattering, Phys. Rev. Lett. 117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].

[59] Ø. Almelid, C. Duhr, E. Gardi, A. McLeod and C.D. White, Bootstrapping the QCD soft

anomalous dimension, JHEP 09 (2017) 073 [arXiv:1706.10162] [INSPIRE].

[60] A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering

amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791]

[INSPIRE].

[61] A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive

scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676]

[INSPIRE].

[62] M. Beneke and Y. Kiyo, Ultrasoft contribution to heavy-quark pair production near threshold,

Phys. Lett. B 668 (2008) 143 [arXiv:0804.4004] [INSPIRE].

[63] E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-eikonal corrections to soft gluon

radiation: a diagrammatic approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].

[64] D. Bonocore, E. Laenen, L. Magnea, L. Vernazza and C.D. White, Non-abelian factorisation

for next-to-leading-power threshold logarithms, JHEP 12 (2016) 121 [arXiv:1610.06842]

[INSPIRE].

[65] V. Del Duca, E. Laenen, L. Magnea, L. Vernazza and C.D. White, Universality of

next-to-leading power threshold effects for colourless final states in hadronic collisions, JHEP

11 (2017) 057 [arXiv:1706.04018] [INSPIRE].

[66] A.J. Larkoski, D. Neill and I.W. Stewart, Soft Theorems from Effective Field Theory, JHEP

06 (2015) 077 [arXiv:1412.3108] [INSPIRE].

[67] I. Moult, I.W. Stewart and G. Vita, A subleading operator basis and matching for gg → H,

JHEP 07 (2017) 067 [arXiv:1703.03408] [INSPIRE].

[68] I. Feige, D.W. Kolodrubetz, I. Moult and I.W. Stewart, A Complete Basis of Helicity

Operators for Subleading Factorization, JHEP 11 (2017) 142 [arXiv:1703.03411] [INSPIRE].

[69] M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power

N-jet operators, JHEP 03 (2018) 001 [arXiv:1712.04416] [INSPIRE].

[70] A. Grozin, J. Henn and M. Stahlhofen, On the Casimir scaling violation in the cusp

anomalous dimension at small angle, JHEP 10 (2017) 052 [arXiv:1708.01221] [INSPIRE].

[71] R.H. Boels, T. Huber and G. Yang, Four-Loop Nonplanar Cusp Anomalous Dimension in

N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 119 (2017) 201601

[arXiv:1705.03444] [INSPIRE].

[72] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory

Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 1311 (2013) 024] [arXiv:0903.1126]

[INSPIRE].

[73] T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons,

Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021]

[INSPIRE].

– 44 –

https://doi.org/10.1007/JHEP10(2017)041
https://arxiv.org/abs/1707.08315
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08315
https://doi.org/10.1103/PhysRevLett.117.172002
https://arxiv.org/abs/1507.00047
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00047
https://doi.org/10.1007/JHEP09(2017)073
https://arxiv.org/abs/1706.10162
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.10162
https://doi.org/10.1103/PhysRevLett.103.201601
https://arxiv.org/abs/0907.4791
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.4791
https://doi.org/10.1088/1126-6708/2009/11/062
https://arxiv.org/abs/0908.3676
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3676
https://doi.org/10.1016/j.physletb.2008.08.031
https://arxiv.org/abs/0804.4004
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.4004
https://doi.org/10.1007/JHEP01(2011)141
https://arxiv.org/abs/1010.1860
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1860
https://doi.org/10.1007/JHEP12(2016)121
https://arxiv.org/abs/1610.06842
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.06842
https://doi.org/10.1007/JHEP11(2017)057
https://doi.org/10.1007/JHEP11(2017)057
https://arxiv.org/abs/1706.04018
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.04018
https://doi.org/10.1007/JHEP06(2015)077
https://doi.org/10.1007/JHEP06(2015)077
https://arxiv.org/abs/1412.3108
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3108
https://doi.org/10.1007/JHEP07(2017)067
https://arxiv.org/abs/1703.03408
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.03408
https://doi.org/10.1007/JHEP11(2017)142
https://arxiv.org/abs/1703.03411
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.03411
https://doi.org/10.1007/JHEP03(2018)001
https://arxiv.org/abs/1712.04416
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.04416
https://doi.org/10.1007/JHEP10(2017)052
https://arxiv.org/abs/1708.01221
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.01221
https://doi.org/10.1103/PhysRevLett.119.201601
https://arxiv.org/abs/1705.03444
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03444
https://doi.org/10.1088/1126-6708/2009/06/081
https://arxiv.org/abs/0903.1126
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1126
https://doi.org/10.1103/PhysRevD.79.125004
https://arxiv.org/abs/0904.1021
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1021


J
H
E
P
0
3
(
2
0
1
8
)
1
6
4

[74] B.A. Kniehl, A.A. Penin, M. Steinhauser and V.A. Smirnov, Heavy quarkonium creation and

annihilation with O(α3
s ln(αs)) accuracy, Phys. Rev. Lett. 90 (2003) 212001 [Erratum ibid.

91 (2003) 139903] [hep-ph/0210161] [INSPIRE].

[75] A.H. Hoang, Three loop anomalous dimension of the heavy quark pair production current in

nonrelativistic QCD, Phys. Rev. D 69 (2004) 034009 [hep-ph/0307376] [INSPIRE].

[76] L. Chen, M. Czakon and R. Poncelet, Polarized double-virtual amplitudes for heavy-quark

pair production, arXiv:1712.08075 [INSPIRE].

[77] M. Beneke, Y. Kiyo and A.A. Penin, Ultrasoft contribution to quarkonium production and

annihilation, Phys. Lett. B 653 (2007) 53 [arXiv:0706.2733] [INSPIRE].
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