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Abstract: In this paper we study the confinement/deconfinement transition in lattice

SU(2) QCD at finite quark density and zero temperature. The simulations are performed

on an 324 lattice with rooted staggered fermions at a lattice spacing a = 0.044 fm. This

small lattice spacing allowed us to reach very large baryon density (up to quark chemical

potential µq > 2000 MeV) avoiding strong lattice artifacts. In the region µq ∼ 1000 MeV

we observe for the first time the confinement/deconfinement transition which manifests

itself in rising of the Polyakov loop and vanishing of the string tension σ. After the

deconfinement is achieved at µq > 1000 MeV, we observe a monotonous decrease of the

spatial string tension σs which ends up with σs vanishing at µq > 2000 MeV. From this

observation we draw the conclusion that the confinement/deconfinement transition at finite

density and zero temperature is quite different from that at finite temperature and zero

density. Our results indicate that in very dense matter the quark-gluon plasma is in essence

a weakly interacting gas of quarks and gluons without a magnetic screening mass in the

system, sharply different from a quark-gluon plasma at large temperature.
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1 Introduction

The knowledge of the properties of QCD at finite baryon density is very important for

understanding cosmology and astrophysics [1, 2]. A thorough experimental study of baryon-

rich strongly interacting matter is planned at future heavy ion collision experiments FAIR

and NICA. Today, QCD at high energy density and small baryon density is well explored

thanks to lattice simulations. Unfortunately, lattice simulations cannot be directly applied

to the study of properties of the theory at sufficiently large baryon density because of the

sign problem (for a review see, e.g. [3]). For this reason one has a rather poor knowledge

about the QCD phase diagram in the region of large baryon density.

There are a lot of phenomenological models which predict different interesting phe-

nomena in this region of the phase diagram. As examples of such phenomena one should

mention color flavor locking [4], non-uniform phases in dense matter [5]. More conventional

and general features that people believe in are the restoration of chiral symmetry [6] and

deconfinement1 in dense QCD [8] etc. It is rather difficult to estimate systematic uncer-

tainties of different phenomenological models under discussion. So, it is hardly possible to

assess if these phenomena are realized in the real world.

In this paper we are going to study the deconfinement aspects of the transition (or

transitions) in dense quark matter at low temperature. Since in our consideration it is

assumed that the temperature is much smaller than the baryon chemical potential, T � µb,

there is no hope that in the nearest future this region of the phase diagram will be reached

by standard methods used to overcome the sign problem in simulations of SU(3) QCD.

Instead of considering three-color QCD, in this paper we are going to describe results of

lattice simulation of QCD with the SU(2) gauge group. This theory is free from the sign

problem and it can be directly studied on the lattice.

SU(2) and SU(3) gauge theories with fundamental quarks have many properties in

common. In particular, in both theories confinement/deconfinement and chiral symme-

try breaking/restoration transitions take place at a certain non-zero temperature. The

1Notice that the confinement/deconfinement and the chiral symmetry breaking/restoration transitions

are not immediately related [7], and in dense matter they may take place at different densities.
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mechanism of the fermion mass generation in a dense medium and even the formula for

the fermion mass gap is the same in both theories [9]. In addition, a lot of (ratios of)

observables are almost independent of the number of colors [10].

Still these two theories have some important differences. For instance, the fundamental

representation of the SU(2) is pseudoreal, unlike SU(N) withN ≥ 3, where the fundamental

representation is complex. In addition, the chiral symmetry breaking pattern for the SU(3)

gauge theory differs from that in the SU(2) theory [11]. In particular, in the SU(2) the chiral

symmetry breaking pattern is SU(2Nf ) → Sp(2Nf ) what differs from the SU(3) where

SUL(Nf )× SUR(Nf )× UV (1)→ SUV (Nf )× UV (1). So for the SU(2) gauge theory, there

is no separate UV (1) global symmetry whose generator is the baryon number. Instead the

generator of the baryon number is a part of the Sp(2Nf ) group. An important consequence

of this difference is that SU(2) mesons live in the same representations of Sp(2Nf ) group

together with baryons. Notice also that baryons in the SU(2) contain two quarks and they

are bosons.

We believe that for both theories at sufficiently large chemical potential or at large

temperature the chiral symmetry breaking patterns (which differ in both theories) are not

important. Moreover, in these regions of the phase diagram, where the relevant degrees of

freedom are quarks and gluons (what happens at large µ or T ), it should not be important

if baryons are composed of two or three quarks. These arguments make us believe that

lattice simulations of the SU(2) gauge theory can be used not only for a qualitative study

of dense matter but it can also give quantitative predictions for dense SU(3) QCD.2

There are several papers devoted to study of dense lattice SU(2) QCD (see papers [12–

15] and references therein). It is clear that — in order to observe deconfinement in dense

matter — one needs to reach sufficiently large values of the quark chemical potential

without being hampered by lattice artifacts. We believe that the largest values of the

quark chemical potential µq ∼ 800 − 1000 MeV have been safely reached in our previous

paper3 [14]. However, no signatures of the deconfinement phase were observed in the

previous paper.

2 Lattice set-up

In the present paper we continue our study of two-color QCD in the region of very large

baryon (quark) density. In particular, we carry out lattice simulations with rooted stag-

gered fermions which in the continuum correspond to Nf = 2 quark flavours. In order

to observe condensation of scalar diquarks in simulation at finite volume we introduced a

diquark source term into the lattice action, which is controlled by the parameter λ. In the

previous paper [14] we have observed that in the region of large baryon density our results

only weakly depend on the value of the parameter λ. In the present paper we have investi-

gated in detail the dependence of the order parameters on λ only for few values of chemical

2To prove this statement one needs to conduct numerical simulation the SU(3) theory at nonzero baryon

density which is now impossible. So, this statement can be considered as our assumption.
3Note that throughout this paper we express our results as functions of the quark chemical potential µq.

As we study the theory with gauge group SU(2), this corresponds to baryon chemical potential µb = 2µq.
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Figure 1. The Polyakov loop 〈L〉 as a function of the quark chemical potential. The quark chemical

potential is shown in physical and lattice units.

potential µq and confirmed that the sensitivity is indeed weak. So, in order to reduce the

time used for the simulations we restrict our consideration to the value λ = 0.00075 which

is much smaller than the fermion mass am = 0.0075 used in the simulations.

Contrary to our previous study we have used now the Symanzik improved gauge ac-

tion. In addition to the bulk of simulations at finite µq, also simulations for calibration

at µq = 0 have been performed.4 In this case our string tension at µq = 0 amounts to
√
σ0 = 476(5) MeV at a = 0.044 fm, whereas in our previous study [14] the lattice spacing

was almost three times larger, a = 0.112 fm. This change allowed us to approach the con-

tinuum limit much closer and to reach larger baryon densities without being hampered by

lattice artifacts. In particular, in the present paper we reach the region of baryon density

corresponding to a quark chemical potential µq > 2000 MeV which is the largest value ever

reached in lattice simulations of SU(2) QCD.

The simulations are performed on a 324 lattice (compare with the lattice 163×32 in our

previous study [14]). Numerical simulations in the region of large baryon density require

considerable computer resources. For this reason, for the present paper we conducted our

study at a pion mass of mπ = 740(40) MeV, a value which is larger than that used in [14].

We will preferentially decrease the pion mass in our future simulations. In our present study

we have mπLs ' 5 to be compared with mπLs ' 3 in our previous study. In summary, the

pion mass is larger but finite volume effects are better under control in the present study.

For the calculation of Wilson loops we have employed one step of HYP smearing [17]

for temporal links with the smearing parameters according to the HYP2 parameter set [18],

4We used the QCD Sommer scale r0 = 0.468(4) fm [16] to carry out the scale setting.
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followed by 24 steps of APE smearing [19] for spatial links only with the smearing parameter

αAPE = 0.25. The same smearing scheme was applied in the paper [20] for the extraction

of VQQ̄ from the Wilson loops. In the case of spatial Wilson loops (see below) the smearing

scheme was adopted respectively to consider one of the spatial directions as a “temporal

direction”. For the calculation of the Polyakov loop one step of HYP smearing with the

same parameters was employed.

3 Numerical results and discussion

We start the presentation of the results of our study with the measurements of the av-

erage Polyakov loop 〈L〉. The results are shown in figure 1. It is seen from this figure

that — contrary to the behaviour of the Polyakov loop at the temperature-driven confine-

ment/deconfinement transition where it is a monotonous function of temperature — the

dependence of the Polyakov loop on the chemical potential is rather complicated. First

it rises for chemical potential values up to µq ∼ 850 MeV (aµq ∼ 0.19). Then there is

a rapid change of the slope in the region µq ∈ (850, 1100) MeV. From the chemical po-

tential µq ∼ 1100 MeV (aµq > 0.25), the Polyakov loop rises again reaching a maximum

at µq ∼ 2000 MeV (aµq ∼ 0.45), before it drops. It is not quite clear what physical

phenomena are hidden behind this highly nontrivial behaviour of the Polyakov loop.

To enquire a possible deconfinement transition in dense matter we measured the in-

teraction potential between a static quark-antiquark pair through the measurement of the

Wilson loop. The outcome of this measurement is shown in figure 2. From this figure it is

seen that for sufficiently small µq the potential V (r) is a linearly rising function of distance,

i.e. the system is in the confinement phase. For large values of µq the potential V (r) goes

to plateau at large distance, i.e. the system is in the deconfinement phase. This allows us

to conclude that at large densities the system goes into the deconfinement phase.

Further let us closer determine the chemical potential characterizing the transition

from the confinement to the deconfinement phase. To do this we find the string tension σ

as a function of the chemical potential through a fit of our data by the Cornell potential

V (r) = α/r + σr + c. In the fitting procedure we impose the constraint σ ≥ 0. It turns

out that at nonzero chemical potential the value of σ depends on the range of distances r

covered by the fit. We fit our data in the region r/a ∈ [5, 15] and account for additional

uncertainty due to the variation of the fitting range. The fit is good for not very large

values of the chemical potential µq < 1100 MeV (aµq < 0.25). For a chemical potential

µq ≥ 1100 MeV the Cornell potential does not describe our data at all.

In figure 3 we plot the ratio σ/σ0 as a function of the chemical potential, where σ0 is the

string tension at zero chemical potential. One can see from figure 3 that the string tension

σ decreases with increasing chemical potential. Thus we see that the system becomes

less confined the larger the net quark density is. Finally, in the region µq ≥ 850 MeV

(aµq ≥ 0.19) within the uncertainty of the calculation the string tension is zero. So, we

conclude that the deconfinement takes place at µq ≥ 850 MeV.

In order to study how our results are affected by further decreasing the temperature

of the system we conducted numerical simulations on the lattice 323 × 48 with the same
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Figure 2. The interaction potential V (r) between a static quark-antiquark pair. The potential is

presented in lattice units and the distance between sources is shown in lattice and physical units.

parameters for few values of the chemical potential aµq = 0.1, 0.2, 0.3, 0.35. We found

that the static potentials obtained in these simulations are equal to those obtained on

the lattice 324 within the uncertainty of the calculation, but the signal to noise ratio at

Nt = 48 becomes worse. The respective results in σ/σ0 are shown in figure 3 with the

red triangles. From this study one can conclude that at low temperatures our results

concerning confinement/deconfinement transition are not sensitive to the temperature.

As was mentioned above the Cornell potential describes our data quite well at suffi-

ciently small chemical potential and it does not describe the data at large chemical po-

tential. We believe that this happens since at large chemical potential the system under

study is in the deconfinement phase where the Cornell potential is not applicable. It is

known from µq = 0 studies that in the deconfinement phase the static potential of a quark-

antiquark pair can be described by the Debye screened potential V (r) = (α/r)e−mDr + c.

We fitted our data by a Debye-screened Coulomb potential, the results for Debye mass are

shown in figure 4. We found that the fit is good for values µq ≥ 1100 MeV (aµq ≥ 0.25),

where the screening mass mD 6= 0. In the region µq < 850 MeV the Debye potential does

not describe our data. Finally, in the region 850 MeV < µ < 1100 MeV the Debye poten-

tial fits data quite well but the mD equals zero within the uncertainty. Notice that in the

region 850 MeV < µ < 1100 MeV the string tension σ is also zero within the uncertainty

of the calculation. This implies that our data do not allow us to distinguish confinement

phase from deconfinement phase in this region. So, one can conclude that the confine-

ment/deconfinement transition takes place somewhere in the region µq ∈ (850, 1100) MeV.

Below we will take the midpoint of this interval µq ∼ 1000 MeV as an estimate of the po-

sition of the transition.
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Figure 3. The ratio σ/σ0 as a function of the quark chemical potential. The constant σ0 is the

string tension at µq = 0. The quark chemical potential µq is shown in physical and lattice units.

Figure 4. The ratio of Debye mass mD over the quark chemical potential µq as a function of the

quark chemical potential, which is shown in physical and lattice units.
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A more accurate determination of the confinement/deconfinement transition in dense

matter might be obtained through the measurement of the susceptibility of the Polyakov

loop (as well as other susceptibilities). Unfortunately we are not able to do this since this

would require huge statistics which is beyond our presently accessible resources.

To get more insight into the confinement/deconfinement transition in dense matter let

us study the dependence of the spatial string tension σs on the chemical potential. For

this purpose we have measured spacelike Wilson loops. Taking one spatial direction as a

“time” direction, one can use the relation between the Wilson loop and the static potential

and determine a “spatial potential” Vs(r). To determine the spatial string tension we fit

Vs(r) by the Cornell parametrization Vs(r) = αs/r + σsr + cs, too. For all values of the

chemical potentials under study this form of Cornell potential fits our data well. The

fitting parameter σs is the spatial string tension. Indeed at large distance the spacelike

potential Vs(r) rises as σsr, what implies that the spatial Wilson loop Ws behaves as

Ws ∼ exp(−σsA), where A is a area of the surface spanned by the Wilson loop.

In figure 5 we plot the ratio σs/σ0 as a function of the chemical potential, where σ0 is the

string tension at µq = 0. From this figure one recognizes a monotonous decrease of the spa-

tial string tension in the region µq > 1000 MeV. Notice that this decrease starts precisely in

the region where we have observed the conventional (timelike) confinement/deconfinement

transition in our system. The monotonous decrease ends at µq ∼ 2000 MeV (aµq ∼ 0.45)

where the spatial string tension has become zero within the uncertainty of the calculation.

Thus starting from µq ∼ 2000 MeV spatial confinement completely disappears. Notice also

that in the region aµq ∈ (0, 0.1) the spatial string tension is smaller than that at zero chem-

ical potential. It is still to be clarified if this is a physical effect or statistical fluctuation.

To understand the physical meaning of this result let us recall that the confine-

ment/deconfinement transition at finite temperature and zero chemical potential is con-

nected with the disappearance of the (conventional, timelike) string tension. On the op-

posite, above the transition the spatial string tension does not vanish. In contrast, it rises

with the temperature, and the spatial potential in QCD has nonzero string tension σs at

any temperature [21]. This means that there are nonperturbative effects (in the magnetic

sector) in zero density QCD for any temperature. From this perspective, the confine-

ment/deconfinement transition at finite density and zero temperature looks quite different.

Similarly we observe the vanishing of the string tension. Beyond this net quark (baryonic)

density the spatial string tension starts to decrease. Finally, at the chemical potential µq ∼
2000 MeV it also vanishes. Notice that the vanishing of both string tensions indicates the

disappearance of all nonperturbative effects in QCD and, in particular, the disappearance of

the magnetic screening mass [9]. At the same time, due to asymptotic freedom, the coupling

constant is already sufficiently small in the region µq ≥ 2000 MeV. So, one may conjecture

that in the region beyond µq ∼ 2000 MeV the quark-gluon plasma is essentially a weakly

interacting gas of quarks and gluons without magnetic screening mass governing the system.

The picture of the confinement/deconfinement transition in dense matter presented

so far in this paper is also supported by our study [22] of Abelian monopoles which are

revealed by Abelian projection (in the Maximally Abelian Gauge). It is known that the

percolation properties of the Abelian monopoles are related to the temperature-driven

– 7 –
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Figure 5. The ratio σs/σ0 (of the spacelike string tension) as a function of the chemical potential.

The constant σ0 is the string tension at µq = 0. The quark chemical potential µq is shown in

physical and lattice units.

confinement/deconfinement transition. In particular, in the confinement phase there is one

percolating cluster of monopole currents which disappears at the transition to deconfine-

ment. The same behaviour of the monopole system is accompanying the density-driven

confinement/deconfinement transition in dense matter. In our study we observe always a

percolating cluster in the confinement phase (at small chemical potential). It disappears

at µq > 1000 MeV.

It should be added that at high temperature the spatial string tension is related to

the density of monopoles trajectories wrapped around the (periodic) temporal extent of

the lattice. The larger the density of wrapped monopoles trajectories the larger is the

spatial string tension. In our study of dense SU(2) QCD we observe that above the con-

finement/deconfinement transition at µq > 1000 MeV the density of wrapped monopoles

trajectories starts to decrease. This behaviour is in agreement with the decrease of the

spatial string tension in the same region.

Few words about lattice artifacts are in order. It is known that at large values of the

chemical potential aµq ∼ 1 a saturation effect starts to be seen. The essence of this effect is

that all lattice sites are filled with fermionic degrees of freedom, and it is not possible to put

more fermions on the lattice (“Pauli blocking”). It is known that the saturation effect is

accompanied by the decoupling of the gluons from fermions. Thus, effectively due to satu-

ration, our system becomes gluodynamics which is confined at low temperatures. From this

consideration it is clear that — in order to successfully observe deconfinement in dense mat-

ter — one should have sufficiently small lattice spacing such that the deconfinement is not

spoiled by this kind of artificial confinement at large values of the chemical potential. We

believe that for this reason the deconfinement in dense SU(2) matter was not seen before.

– 8 –
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Now let us return to our results. It may seem from figure 1 that the decrease of

the Polyakov loop for µq > 2000 MeV might be explained by approaching to the artificial

confinement described above. However, we believe that this is not the correct explanation

for the following reasons. First, for µq > 2000 MeV (up to µq ∼ 2500 MeV) the spatial

string tension is vanishing. Second, we do not see a respective rise of the timelike string

tension. Moreover, the potential V (r) for µq > 2000 MeV is well described by Debye

screening potential. So, the properties of the system in the range µq > 2000 MeV are

very different from those of plain gluodynamics at small temperatures. For this reason we

believe that in the region under consideration in this work, µq < 2500 MeV (aµq ≤ 0.55)

our results are not spoiled by eventual saturation effects.

The results of this paper lead us to conclude that the confinement/deconfinement tran-

sition takes place at µq ∼ 1000 MeV. A more detailed study of the position of the transition,

extending this study to more realistic pion masses, will be the goal of our forthcoming study.

Our study of the confinement/deconfinement transition was only possible in lattice

SU(2) QCD. At the end of this paper let us discuss the applicability of our results for

the case of SU(3) QCD. As was noted above there are two very important differences

between two-color and three-color QCD. The first one is that the chiral symmetry breaking

pattern of the two theories is different. The second one is that baryons in the SU(3)

theory are fermions and contain three quarks whereas in the SU(2) theory baryons are

bosons and contain two quarks. According to our results the confinement/deconfinement

transition takes place at very large baryon density (µq ∼ 1000 MeV). Notice that in this

region of µq the chiral symmetry is already restored [14]. So, we believe that the chiral

symmetry breaking pattern does not play any role in this region. Moreover, according to

our previous results [14] in the region of large baryon density the key degrees of freedom

are quarks rather than baryons. Notice also that the ratios of the critical temperature

of the confinement/deconfinement transitions to the string tension Tc/
√
σ0 in two-color

and three-color QCD are close to each other. These facts allow us to conjecture that if

the mechanism of the deconfinement in the cold dense matter is the same in SU(2) and

SU(3) theories the confinement/deconfinement transition in SU(3) theory takes place in the

region µq/
√
σ0 ∼ 2.1. We can also conjecture that the physical scenario of the transition

in the SU(3) theory is similar to that in the SU(2) case. In particular, we expect that the

vanishing of the string tension is followed by the vanishing of the spatial string tension at

sufficiently large baryon density also in SU(3) QCD.

4 Conclusion

In conclusion, in this paper we have studied the confinement/deconfinement transition

aspects in dense lattice SU(2) QCD. The simulations were performed on a space-time

symmetric lattice 324 with rooted staggered fermions at lattice spacing a = 0.044 fm.

The small lattice spacing has allowed us to reach the region of very large baryon density

(µq > 2000 MeV) without getting results spoiled by lattice artifacts. We have measured

the Polyakov loop, the interaction potential between static quark-antiquark pair, the string

tension and the spatial string tension for different values of the quark chemical potential.
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In the region µq ∼ 1000 MeV we have observed the confinement/deconfinement transi-

tion which manifests itself in rising of the Polyakov loop and vanishing of the string tension.

After the onset of deconfinement µq > 1000 MeV we have observed a monotonous decrease

of the spatial string tension which ends with the vanishing of this observable in the region

µq > 2000 MeV. Thus, the confinement/deconfinement transition at finite density and

zero temperature is quite different from that at finite temperature and zero density. In ad-

dition one may expect that in very dense matter the quark-gluon plasma becomes a weakly

interacting gas of quarks and gluons without magnetic screening mass in the system, much

different from the quark-gluon plasma at large temperature.
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