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1 Introduction

In AdS/CFT [1] one identifies the Hilbert space of the CFT with the Hilbert space of the

bulk theory. To make the identification precise one needs to show how one represents local

bulk excitations in the CFT. To this end an algorithm has been developed for representing

local bulk fields as operators in the CFT [2].1 The algorithm works in 1/N perturbation the-

ory and generates an expression for a local interacting bulk field as a sum of CFT operators.

φ = φ(0) + φ(1) + φ(2) + · · · (1.1)

Here φ(0) is built by smearing a single-trace operator in the CFT over a region on the

boundary. For various approaches to constructing φ(0) see [3–14]. φ(1) is an O(1/N)

correction built by smearing double-trace operators, φ(2) is an O(1/N2) correction from

triple-trace operators, and so on. φ(0) behaves like a free field in the bulk and can be used

to reproduce bulk correlators to O(N0) (bulk 2-point functions). The sum φ(0) + φ(1) can

be used to reproduce bulk correlators to O(1/N) (bulk 3-point functions). φ(0) +φ(1) +φ(2)

allows one to reproduce bulk 4-point functions to O(1/N2), and so on.

Although the 1/N expansion of the CFT corresponds to the bulk expansion in powers of

the gravitational coupling κ ∼
√
GN , it’s important to recognize that the expansion (1.1) is

not simply a re-writing of bulk perturbation theory. In particular there is no division of the

CFT into “free” and “interacting” parts. Instead we always work with a fixed interacting

finite-N CFT, and we define a series of operators φ(0), φ(0) +φ(1), φ(0) +φ(1) +φ(2), . . . in

1Some useful previous results on the construction of bulk observables are reviewed in appendix A.
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this interacting CFT whose correlators provide better and better approximations to bulk

correlators. For scalar fields the corrections to φ(0) have been determined by requiring

that the CFT operator corresponding to the local bulk field obeys an appropriate notion of

micro-causality2 when inserted in correlation functions [2]. From the CFT perspective this

corresponds to certain analytic properties of these correlation functions. Rather remarkably

this condition is enough to determine the expression for local bulk operators in the CFT

up to field redefinitions and gives the correct bulk equations of motion at least at tree

level [15]. For other approaches to interacting fields see [16–20].

This algorithm, while successful in reproducing bulk perturbation theory from the

CFT, is still lacking in some respects. First, the condition of bulk micro-causality, although

it can be represented as an analytic property of correlators in the CFT, does not have a

clear explanation in terms of CFT considerations per se. Second, for scalars coupled to

gauge fields (or gravity), the correlator of a bulk scalar with a boundary current (or the

stress tensor) does not obey a simple notion of bulk micro-causality. This is due to Gauss

constraints which demand Wilson lines stretching out to the boundary. While this obstacle

can be overcome by identifying components of the boundary field strengths for which micro-

causality holds [21, 22], this makes it clear that bulk micro-causality is a useful but not

fundamental criterion. Moreover, if one considers bulk gauge fields and gravitons, then even

at the level of two-point functions correlators do not obey bulk micro-causality [23–25]. So

correcting CFT operators in order to preserve micro-causality in the presence of interactions

is a somewhat dubious procedure.

In fact one could ask a broader question. Why should the bulk dual of the CFT be

a local theory at all? After all complete information about the bulk is captured by the

CFT whose correlation functions carry all the required data. The only criterion that seems

necessary is that bulk correlation functions should approach CFT correlation functions (up

to factors ∼ Z∆) as the bulk points approach the boundary. One can imagine many bulk

correlation functions consistent with this condition. For instance one could just use φ(0) to

produce “bulk correlation functions.” Of course the resulting bulk theory won’t be local,

but from a CFT perspective what’s wrong with this procedure?

To address this in section 2 we show that correlation functions involving φ(0) suffer from

ambiguities due to analytic continuation. We then present some implications of this result.

• In section 3.1 we show that in general φ(0) cannot be realized as a linear operator on

a Hilbert space.

• In section 3.2 we discuss implications of this for the program of perturbative bulk

reconstruction, which can now be understood as a procedure for building up well-

defined CFT operators. We show that this new paradigm for reconstruction has

practical advantages, in particular that it applies without modification to bulk fields

with gauge redundancy.

• In section 3.3 we draw broader conclusions about bulk physics. Given the difficulty

with defining φ(0) one possible response would be to abandon any bulk interpretation

2I.e. the property that field operators commute at spacelike separation.
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of φ(0), and to assert that only the corrected field φ has meaning in the bulk.3 As an

alternative response, we advocate that correlators involving φ(0) can be given a consis-

tent bulk interpretation, in which however the fundamental property of operator asso-

ciativity is violated. In other words, we are proposing that φ(0) can be understood as

a logical but non-associative operator. Since φ(0) presumably can only be corrected to

become associative in perturbation theory, this suggests that bulk quantum mechan-

ics only emerges in perturbation theory around a given semiclassical bulk geometry.

2 Ambiguities in correlators with φ(0)

In this section we study 3-point correlators involving φ(0) and two boundary operators and

show that ambiguities arise due to analytic continuation. We will treat the simple case

of massless fields in AdS3. The results generalize to arbitrary spacetime and conformal

dimensions, as shown in appendix C.

Consider a massless scalar field φ in AdS3 which is dual to a primary scalar operator

O of dimension ∆ = 2 in the CFT. The CFT 3-point function is, with coefficient γ

〈O1O2O3〉 = γ
∏
i<j

1

−(Ti − Tj − iεij)2 + (Xi −Xj)2
(2.1)

where we are abbreviating

O1 ≡ O(T1, X1) O2 ≡ O(T2, X2) O3 ≡ O(T3, X3) (2.2)

This is a Lorentzian Wightman correlator, with the operators in the indicated order, cor-

responding to an iε prescription with ε1 > ε2 > ε3 approaching 0+ and εij = εi − εj . We

can smear one of the operators into the bulk by defining

φ(0)(T,X,Z) =
1

2π

∫
(T ′)2+(Y ′)2<Z2

dT ′dY ′O(T + T ′, X + iY ′) (2.3)

Here (T,X,Z) labels a point in the Poincaré patch of AdS3 with metric

ds2 =
R2

Z2

(
−dT 2 + dX2 + dZ2

)
Following [2] we can compute the mixed bulk — boundary 3-point function 〈φ(0)O2O3〉

by applying the smearing integral (2.3) to the CFT correlator (2.1). Since the CFT cor-

relator has singularities it is not a priori obvious that we will obtain a well-defined result.

A reasonable prescription is to start near the boundary Z → 0, since in this limit the

smearing region shrinks to a point and we must recover the correlator of local operators in

the CFT. Then we can analytically continue to finite Z, taking care with any singularities

we encounter along the way.

3In the language of quantum error correction [26, 27], only φ would be a logical operator defined on the

code subspace.
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This procedure was followed in [2], with the result

〈φ(0)O2O3〉 =
γ

2
(
T+

23T
−
23

)2 log
χ

χ− 1
(2.4)

where we’re abbreviating

φ(0) ≡ φ(0)(T1, X1, Z1) (2.5)

We’re using light-front coordinates on the boundary, T± = T ±X and Tij = Ti − Tj , and

we’ve introduced an AdS-invariant quantity χ defined by

χ

χ− 1
=

(
−T+

12T
−
12 + Z2

1

) (
−T+

13T
−
13 + Z2

1

)(
−T+

12T
−
13 + Z2

1

) (
−T+

13T
−
12 + Z2

1

) (2.6)

This quantity inherits an iε prescription from the boundary Wightman correlator, namely

Ti → Ti − iεi. With operators ordered as in (2.4) we would have ε1 > ε2 > ε3. Of course

other orderings are possible. For example 〈O2φ
(0)O3〉 corresponds to ε2 > ε1 > ε3.

The correlator (2.4) is singular at χ = 0 and χ = 1, with a branch cut along the real

axis for 0 < χ < 1. Our goal is to determine the implications of these singularities. There

are two cases to consider: boundary operators that are spacelike separated and boundary

operators that are timelike separated. Here we will treat spacelike separated operators.

For timelike separation see appendix B.

2.1 Spacelike separated boundary points

Suppose the two boundary points (T2, X2) and (T3, X3) are spacelike separated. These

points define a causal diamond on the boundary as shown in figure 1.

• For points in the bulk with χ = 0 one of the factors in the numerator of (2.6)

vanishes, so such points are light-like separated from either the left or right corner of

the diamond. Such singularities are expected, since the bulk point is null separated

from one of the boundary operators.

• Points in the bulk with χ = 1 are light-like separated from either the top or bottom

corner of the diamond. To see this note for example that the top of the diamond

has light-front coordinates T+ = T+
3 , T− = T−2 and null separation from this point

corresponds to −T+
13T
−
12 +Z2

1 = 0. There are no operators at the top or bottom of the

diamond, so such singularities are not anticipated based on the bulk causal structure.

Note that the two light-cones which make up the χ = 1 surface intersect on a semicircle

in the bulk. This semicircle has a geometric interpretation as a spacelike geodesic connect-

ing the two boundary operators. Thus it can be thought of as the RT surface appropriate

for the boundary interval between the two operators [28]. It plays a further role since the

OPE between O2 and O3 when projected on a conformal family can be written as the

integral of φ(0) along the geodesic [29–32].4 This makes it clear why the correlator (2.4) is

singular at χ = 1: as χ → 1+ one encounters a singularity as the bulk φ(0) becomes null

separated from a point on the geodesic. Note that points with 0 < χ < 1 are to the future

or past of the geodesic.

4The RT property is special to AdS3 but the OPE property holds in any dimension.
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Figure 1. On the left, the causal diamond on the boundary determined by two spacelike separated

points. On the right, a bulk time slice with various regions indicated. The two red curves correspond

to χ = 0 and the two blue curves correspond to χ = 1. In region II we have 0 < χ < 1.

Let’s consider the analytic structure of the correlator (2.4) in more detail. As men-

tioned above, (2.4) was obtained by performing the smearing integral near Z = 0 and ana-

lytically continuing the result into the bulk. However we should ask: does the answer only

depend on the final bulk point? Or does it depend on the path that was used to get there?

Since we are considering boundary points at spacelike separation, without loss of gen-

erality we place the boundary operators at (T2 = 0, X2 = −y) and (T3 = 0, X3 = +y).

The bulk point is (T1, X1, Z1). For simplicity we will restrict our analysis to bulk points

with 0 < T1 < y. The correlator (2.4) is then5

〈φ(0)O2O3〉 =
γ

2
(
T+

23T
−
23

)2 log
AB

CD
(2.7)

where

A = −T 2
1 + (X1 + y)2 + Z2

1 + 2iε12T1

B = −T 2
1 + (X1 − y)2 + Z2

1 + 2iε13T1

C = −(T1 + y)2 +X2
1 + Z2

1 + iε12(T1 + y −X1) + iε13(T1 + y +X1)

D = −(T1 − y)2 +X2
1 + Z2

1 + iε12(T1 − y +X1) + iε13(T1 − y −X1)

To see the significance of these formulas a timeslice containing the bulk point is shown

in figure 1. The curves A = 0 and B = 0 are shown in red; they indicate where χ = 0.

The curves C = 0 and D = 0 are shown in blue; they indicate where χ = 1. In the regions

near the boundary the argument of the log is positive, but in region II which corresponds

to 0 < χ < 1 it is negative. Crucially in region II the argument of the log has an imaginary

part Im Arg which depends on the analytic continuation. That is it depends on the starting

point, which determines which of the factors A, B, C, D crosses zero as we continue into

region II. Up to a product of positive quantities which don’t vanish at the singularity, the

outcomes are shown in table 1.
5Operator ordering in this expression is determined by the values of εi. Operators are ordered so that

ImT increases from left to right.
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start from region cross resulting i Im Arg

IV χ = 0 at A = 0 −2iε12T1

V χ = 0 at B = 0 −2iε13T1

I χ = 1 at D = 0 +iε12(T1 − y +X1) + iε13(T1 − y −X1)

III χ = 1 at C = 0 −iε12(T1 + y −X1)− iε13(T1 + y +X1)

Table 1. Continuing into region II for the case of spacelike separated boundary operators.

The factors multiplying the εij ’s in table 1 are to be evaluated where the singularity is

crossed. Fortunately these factors all have definite signs at these points. So up to rescalings

by position-dependent but positive quantities we can summarize the outcome as

start from region i Im Arg

IV −iε12

V −iε13

I −iε12 − iε13

III −iε12 − iε13

At this stage we have cause for concern since the bulk correlator we have obtained de-

pends not only on the final bulk point but also on the path chosen for analytic continuation.

The consequences of this depend on how the operators are ordered.

Bulk operator on left. To place the bulk operator on the left we take ε12 > 0 and

ε13 > 0. In this case the starting region doesn’t matter. No matter what path we follow,

we end up in region II with Im Arg = 0−.

Bulk operator on right. To place the bulk operator on the right we take ε12 < 0 and

ε13 < 0. Again the starting region doesn’t matter, and no matter what path we follow we

end up in region II with Im Arg = 0+.

Bulk operator in the middle. For the ordering 〈0|O2φ
(0)O3|0〉 we take ε12 < 0 and

ε13 > 0. Now the starting region makes a difference. If we start from region IV, that is

timelike to O2, then Im Arg = 0+. On the other hand if we start from region V, that is

timelike to O3, then Im Arg = 0−. The continuations from regions I and III are ill-defined

in the sense that Im Arg depends on the relative size of ε12 and ε13 and also on the values

of T1, X1, y at the point where the singularity is crossed. This makes continuation from

these regions ambiguous.

There are a few comments on correlators in region II that are worth making at this point.

First, note that if the bulk operator is on the left or right the correlator is unambiguous

but comes with opposite iε prescriptions. Since the commutator is then given by the

discontinuity across the cut of the log, we can say with certainty that in region II

〈 [φ(0),O2O3] 〉 6= 0 (2.8)

– 6 –
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If the bulk operator is in the middle the situation is more subtle. Note that starting from

region IV, i.e. timelike to O2, gives the same iε prescription as if the bulk operator was on

the right, so for this particular continuation we would have

〈O2φ
(0)O3〉IV = 〈O2O3φ

(0)〉 (2.9)

On the other hand starting from region V, i.e. timelike to O3, gives the same prescription

as placing the bulk operator on the left, so for this particular continuation we would have

〈O2φ
(0)O3〉V = 〈φ(0)O2O3〉 (2.10)

We will return to interpretation of these results below, around equations (3.4) and (3.5).

To summarize, we’ve identified a region of the bulk where correlators must be defined

by analytic continuation. If the bulk operator is on the left or right the continuation is

unambiguous in the sense that the final correlator one obtains is independent of the path

that is followed. But if the bulk operator is in the middle the continuation depends on

the path. Crossing the light-cone of a boundary operator (χ = 0) is well-defined but the

outcome depends on which light-cone is crossed. Crossing a χ = 1 singularity is ambiguous

and does not lead to a well-defined correlator.

In appendix B we show that the statements in the previous paragraph are also valid

when the boundary points are timelike separated in AdS3. In appendix C we show that they

continue to hold for general spacetime and conformal dimensions. Correlators generically

have a branch cut for 0 < χ < 1, and continuation into this region proceeds in a manner

very similar to what we found for massless fields in AdS3.

3 Implications

We conclude by discussing the implications of our results. First we display a precise sense

in which φ(0) cannot be regarded as a well-defined CFT operator. Then we present a new

paradigm in which bulk reconstruction becomes a perturbative algorithm for generating

well-defined observables in the CFT. Finally we propose that φ(0) can be given an operator

interpretation, in which however the fundamental property of operator associativity is lost.

3.1 Obstruction to an operator interpretation of φ(0)

To summarize the previous section, we’ve identified a region of the bulk 0 < χ < 1 where

the correlator of φ(0) with two boundary operators must be defined by analytic continu-

ation. One can enter this region by crossing χ = 1. However the singularities at χ = 1

are particularly problematic since they make the analytic continuation ambiguous. They

introduce dependence on the relative sizes of the εij , on the position in the bulk where

the χ = 1 singularity is crossed, and on the positions of other operators in the correlator.

This can be seen explicitly in table 1 and 2. In the presence of a singularity at χ = 1 the

singularities at χ = 0 can also cause problems.6 They do not obstruct analytic continua-

tion, since they correspond to crossing the light-cone of a boundary operator, but they can

assign inconsistent iε prescriptions depending on which light-cone is crossed.

6See the discussion at the start of the next section.
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What does this imply for the idea that φ(0) could be an operator in the CFT? To focus

the discussion note that φ(0) can be formally represented either as a smeared CFT operator

or as an infinite sum of local CFT operators. For example in AdS3 [31]

φ(0) =

∫
KO =

Z∆

2

∞∑
m=0

Γ(∆− 1)Z2m

Γ(m+ 1)Γ(m+ ∆)
(∂+∂−)mO(T+, T−) (3.1)

When used inside a correlator, as long as the sum is convergent there is no problem.7 But of

course the sum may not converge. Then analytic continuation becomes necessary and can

generate expressions that depend on additional data. We performed such a continuation in

the previous section and found, in particular, that when the bulk operator is in the middle

of the correlator the continuation depends on the other operators in the correlator. This can

be seen in table 1 (or 2), where crossing χ = 1 with the bulk operator in the middle gives

an overall iε prescription that depends explicitly on y (or t). Even though it’s not manifest

in the formulas, crossing χ = 0 with the bulk operator in the middle also depends on the

other operators in the correlator. This is due to the fact that to cross χ = 0 one must start

on the boundary at timelike separation from one of the other operators, a condition which

obviously depends on the positions of the other operators.

We see that a prescription for calculating correlators involving φ(0) through analytic

continuation from the boundary cannot be made well-defined in advance, without knowing

what other operators will be inserted in the correlator. But we will insist that a good

CFT operator can be characterized intrinsically and has correlators which can be uniquely

defined without such advance knowledge. By this criterion we conclude that φ(0) is not

well-defined as a CFT operator.

3.2 Implications for bulk reconstruction

We’ve argued that φ(0) is not well-defined as a CFT operator. We now show that this

gives a new perspective on bulk reconstruction, as an algorithm for correcting free bulk

operators such as φ(0) in perturbation theory so that they have well-defined correlators.

This requirement applies to all bulk fields, including fields with gauge redundancy, and

appears to be a universal approach to bulk reconstruction.

First note that the difficulty with defining φ(0) is tied to the nature of the χ = 1

singularity. A crucial property which allows the analytic continuation to be ambiguous is

that together the surfaces {χ = 0}∪{χ = 1} wall off a region of the bulk from the boundary.

This enables continuation from the boundary into the region 0 < χ < 1 to be ambiguous.

Thus the algorithm for correcting a bulk operator so that it becomes well-defined must

proceed by eliminating the branch point at χ = 1. Indeed for cubic scalar couplings a set

of corrected operators were worked out in [2, 15] with the result that the 3-point function

of a corrected operator with two boundary operators is analytic for χ > 0. This was done

with the idea that the χ = 1 singularity is an obstruction to bulk locality. Here we are

re-interpreting it as an obstruction to φ(0) being a well-defined CFT operator.

7Equivalently, as long as the integral encounters no singularities there is no problem.
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For a bulk scalar interacting with a gauge field or gravity the construction of corrected

bulk operators was carried out in [15, 22]. The lowest order operator φ(0) suffers from

the same problem as above inside a 3-point function with a boundary conserved current

(or the energy momentum tensor) and a primary scalar. A corrected bulk operator was

constructed such that its 3-point function with Fµν and another scalar operator, or with

Cαβγδ and another scalar operator, is analytic for χ > 0. Here Fµν and Cαβγδ are the

boundary field strength and Weyl tensor.8 The corrected bulk scalar operator solves the

expected bulk equation of motion in holographic gauge [15], so its 3-point function will give

the expected result. But note that if one looks at the 3-point function of the corrected bulk

scalar with a boundary scalar and either jν or Tµν then the result will be non-local.9 This

must be so due to Gauss law constraints. So correlators of the corrected field, although

they are well-defined, are not local. This is an example where corrections are necessary,

not so much to restore locality, as to make correlators well-defined.

For bulk gauge fields and metric perturbations only some of the computations have

been done. Bulk 2-point functions already do not obey bulk micro-causality. Inside 3-point

functions the lowest-order operator F
(0)
µν suffers from the same disease of a branch cut for

0 < χ < 1. We conjecture that the addition of higher-dimension multi-trace operators in

this case is necessary so that bulk 3-point functions are well-defined. Once the 3-point

function is well-defined, the extension to higher-point functions seems to be possible using

a bootstrap approach, at least at tree level [33].

3.3 Associativity and bulk quantum mechanics

We’ve argued that φ(0) is not a well-defined CFT operator. An immediate reaction might

be to give up on φ(0) as a meaningful object, and to say that only the corrected bulk

operators have a sensible interpretation. Here we will propose that φ(0) can be given a con-

sistent interpretation, in which however the fundamental property of operator associativity

is abandoned.

Let’s look at the evidence we have.

• When φ(0) is inserted on the left or right in a 3-point function the correlator is

unambiguous.

• When φ(0) is inserted in the middle the correlator is ambiguous for 0 < χ < 1. How-

ever it is only a binary ambiguity, since any particular path for analytic continuation

will give an overall iε that agrees with either iε12 or iε13.

This makes it very tempting to interpret the ambiguity as a breakdown of operator asso-

ciativity for φ(0) in the region 0 < χ < 1.10 That is, when the bulk field is on the left or

right we have unambiguous correlators

〈φ(0)O2O3〉 and 〈O2O3φ
(0)〉 (3.2)

8Fµν = ∂µjν − ∂νjµ and Cαβγδ = ∂α∂γTβδ − ∂α∂δTβγ − ∂β∂γTαδ + ∂β∂δTαγ .
9So there is still non-analyticity at spacelike separation, but it is not in the problematic form of a

singularity at χ = 1.
10Note that this region in the bulk depends on the positions of both boundary operators.
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But if the bulk field is in the middle we need to specify an order of multiplication and the

two possibilities are

〈
(
O2φ

(0)
)
O3〉 and 〈O2

(
φ(0)O3

)
〉 (3.3)

The prescription for calculating 〈
(
O2φ

(0)
)
O3〉 is to analytically continue into 0 < χ < 1

starting from a point on the boundary that is timelike to O2, and the prescription for

calculating 〈O2

(
φ(0)O3

)
〉 is to start from a point on the boundary that is timelike to O3.

One way to argue for this interpretation is to compute the correlation function while

multiplying the operators in a definite order. We can do this by taking an OPE limit. For

example let’s work with spacelike-separated points on the boundary and work in the limit

|X3| → ∞. Then we can compute the correlator by taking an OPE between φ(0) and O2. In

this limit, as we show in appendix C, we can continue into 0 < χ < 1 with a well-defined iε

prescription. It is the same iε that we would have gotten by starting at timelike separation

to O2. We regard the OPE as multiplying O2 by φ(0) first, then later multiplying by O3.

This supports the interpretation as calculating 〈
(
O2φ

(0)
)
O3〉. Of course we could have

sent |X2| → ∞ and started by taking the OPE between φ(0) and O3. We would interpret

this as multiplying operators in the opposite order.11

This has an amusing implication for commutators. One might be tempted to interpret

the prescription for defining 〈
(
O2φ

(0)
)
O3〉 as using a smearing region for φ(0) that can

include O2 but is spacelike separated from O3, so that φ(0) commutes with O3. This is

indeed what (2.9) suggests. Likewise one might be tempted to interpret the prescription

for defining 〈O2

(
φ(0)O3

)
〉 as a smearing that can include O3 but is spacelike separated

from O2, so that φ(0) commutes with O2. This is indeed what (2.10) suggests. But if φ(0)

is taken to be non-associative then a direct attempt to check this interpretation is foiled.

The parenthesis must go around the commutator, so for 0 < χ < 1 we have12

〈
(

[O2, φ
(0)]
)
O3〉 6= 0 (3.4)

〈O2

(
[φ(0),O3]

)
〉 6= 0 (3.5)

We obtain the pleasing result that φ(0), thought of as a non-associative operator, treats

the other operators in a correlator democratically.

To conclude, in the language of quantum error correction we are asserting that φ(0)

is a logical but non-associative operator. This means it cannot be interpreted in standard

quantum mechanics. The bulk reconstruction procedure corrects φ(0) to become a well-

defined CFT operator, which in our interpretation means that it restores associativity.

Somewhat surprisingly it also gives rise to local bulk physics. However the procedure

for correcting φ(0) (bulk reconstruction) only appears to be possible in 1/N perturbation

theory, and cannot be carried out outside the code subspace. The reason for this is well-

known. The towers of higher-dimension multi-trace operators one needs to correct φ(0) are

11Our prescriptions for defining 〈
(
O2φ

(0)
)
O3〉 and 〈O2

(
φ(0)O3

)
〉 would also allow us to take OPE’s at

timelike separation.
12Note that this would not have been possible for a linear operator whose 3-point function with two other

operators had only one branch cut. With only one discontinuity across a cut available, one or the other of

these commutators would have to vanish.

– 10 –



J
H
E
P
0
3
(
2
0
1
8
)
1
5
1

independent operators in the 1/N expansion but not at finite N . So at finite N , or when

the number of insertions in a correlator scales like some power of N , one cannot expect to

be able to correct φ(0) to get unambiguous bulk correlators. In perturbation theory around

a semiclassical background we can recover correlation functions from the CFT which look

like they come from a local gauge-fixed bulk theory, but beyond perturbation theory bulk

observables are at best non-associative. This means that at finite N we cannot use bulk

observables to build a bulk Hilbert space. It appears that bulk quantum mechanics only

arises in perturbation theory around a semiclassical background. It would be interesting

to explore the relevance of this for the firewall paradox [34–38] and to understand if there

is a connection to the obstacles to defining observables studied in [39, 40].
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A Construction of local bulk operators

We give a quick review of the established procedure for constructing local bulk scalar

fields in terms of the CFT. We start with a primary scalar field O∆ of dimension ∆ in

the CFT and introduce a smearing function K∆(T,X,Z|T ′, X ′). The smearing function

should satisfy the free wave equation(
∇2

AdS −∆(∆− d)
)
K∆(T,X,Z|T ′, X ′) = 0 (A.1)

We define a free bulk field φ(0)(T,X,Z) by

φ(0)(T,X,Z) =

∫
dT ′dd−1X ′K∆(T,X,Z|T ′, X ′)O∆(T ′, X ′) (A.2)

The smearing function should satisfy appropriate boundary conditions so that we recover

O∆ from φ(0) as the bulk point approaches the boundary. The choice of smearing function

is not unique, but a convenient choice is to take

φ(0)(T,X,Z) =
Γ(∆− d

2)

2πd/2Γ(∆− d+ 1)
(A.3)

×
∫

T ′2+|Y ′|2<Z2

dT ′dd−1Y ′
(
Z2 − T ′2 − |Y ′|2

Z

)∆−d
O∆(T + T ′, X + iY ′)

where we have normalized

φ(0)(T,X,Z) ∼ Z∆

2∆− d
O(T,X) as Z → 0 (A.4)
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This can also be written as an infinite sum. For example in AdS3, with T± denoting

light-front coordinates on the boundary, we have

φ(0)(T+, T−, Z) =
Z∆

2

∞∑
m=0

Γ(∆− 1)Z2m

Γ(m+ 1)Γ(m+ ∆)
(∂+∂−)mO(T+, T−). (A.5)

The two-point function computed in the CFT, 〈φ(0)φ(0)〉, reproduces the bulk two-

point function of a scalar field in AdS. If one computes the 3-point function of φ(0) with

two boundary operators one gets

〈φ(0)(x, z)O1(y1)O2(y2)〉 =
1

(y1 − y2)2∆1

[
z

z2 + (x− y2)2

]∆2−∆1

I(χ) (A.6)

Here x, y1, y2 are spacetime coordinates in the CFT. We’ve introduced an AdS-invariant

combination

χ =
[(x− y1)2 + z2][(x− y2)2 + z2]

(y1 − y2)2z2
(A.7)

and

I(χ) =
γ

2∆− d

(
1

χ− 1

)∆∗
F

(
∆∗, ∆∗ −

d

2
+ 1, ∆− d

2
+ 1,

1

1− χ

)
(A.8)

where γ is the coefficient of the CFT 3-point function and ∆∗ = 1
2(∆ + ∆1 −∆2).

This result has singularities when the bulk point coincides with a bulk space-like

geodesic connecting the boundary points y1 and y2, and it has a branch cut when the

bulk point is to the future or past of this geodesic. Since this singularity appears when

the bulk point is space-like separated from the boundary operators the correlation func-

tion does not obey bulk micro-causality. This was used in [15] as a guiding principle to

reconstruct the bulk field. Micro-causality was restored by correcting the definition of the

bulk field, adding an infinite sum of smeared double-trace scalar primaries O1,2
∆n

built from

O1, O2 and 2n derivatives.

φ(T,X,Z) = φ(0) +
1

N

∑
n

an

∫
dT ′dd−1X ′K∆n(T,X,Z|T ′, X ′)O1,2

∆n
(T ′, X ′) (A.9)

The coefficients an are to be chosen so that when φ is inserted inside a 3-point function

in place of φ(0), the 3-point function becomes analytic when the bulk point is space-like

separated from the boundary points. This leads to explicit expressions for an which are

unique up to field redefinitions. The resulting bulk field φ has been shown to solve the

expected local bulk equation of motion to order 1/N .

B Timelike separated boundary points

In section 2.1 we analyzed the 3-point correlator of a massless field in AdS3 with two

boundary operators when the boundary operators were spacelike separated. Here we study

what happens when the boundary operators are timelike separated. The upshot is that

although the geometry is different, the qualitative outcome is the same.

– 12 –
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(T  ,X  )
3 3

X

2 1

I

III

II

X

Z

IV V

−t+T t+Tt−T−t−T
1 1 1

Figure 2. On the left, the causal diamond on the boundary determined by two timelike separated

points. On the right, a bulk time slice with various regions indicated. The two red curves correspond

to χ = 0 and the two blue curves correspond to χ = 1.

start from region cross resulting i Im Arg

IV χ = 1 at C = 0 iε12(T1 − t−X1 + iε13(T1 + t+X1)

V χ = 1 at D = 0 iε12(T1 − t+X1) + iε13(T1 + t−X1)

I χ = 0 at B = 0 −2iε13(T1 − t)
III χ = 0 at A = 0 2iε12(T1 + t)

Table 2. Continuing into region II for the case of timelike separated boundary operators.

A pair of timelike separated points defines a causal diamond on the boundary as shown

in the left panel figure 2. From (2.6) we see that now χ = 0 corresponds to bulk points that

are null separated from the top or bottom of the causal diamond, while χ = 1 corresponds

to bulk points that are null separated from the left or right tip of the diamond. So relative

to the previous discussion, all that happens on a fixed time slice of the bulk is that the red

and blue curves get switched. This is illustrated in the right panel of figure 2, where without

loss of generality we have taken the boundary operators to be located at (T2 = −t, X2 = 0)

and (T3 = +t, X3 = 0). We take the bulk point to be (T1, X1, Z1), and for simplicity we

restrict our analysis to 0 < T1 < t.

With timelike separated boundary points, continuing into region II gives the results

shown in table 2. Up to rescaling by position-dependent but positive factors this amounts to

start from region i Im Arg

IV iε12 + iε13

V iε12 + iε13

I iε13

III iε12

The outcome is qualitatively the same as spacelike separation. If the bulk operator is on

the left or right in the correlator then the εij ’s all have the same sign and the continuation

into region II is unambiguous. But if the bulk operator is in the middle, with say ε12 < 0
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and ε13 > 0, then the result depends on the starting region. If we begin in region I we get

Im Arg = 0+, while if we begin in region III we get Im Arg = 0−. The continuation from

regions IV and V is ambiguous since it depends on the relative size of ε12 and ε13 as well

as on the values of the coordinates T1, X1, t at the point where the singularity is crossed.

C General spacetime and conformal dimensions

In this section we study the correlator for general conformal and spacetime dimensions. The

upshot is that the phenomena we found for massless fields in AdS3 in fact hold in general.

The 3-point function 〈φ(0)O2O3〉 for general operator dimensions ∆1, ∆2, ∆3 is given

in (A.6). The result has singularities at χ = 0 and χ = 1, where the AdS-invariant

combination χ is in general defined by13

χ =

(
−T 2

12 + |X12|2 + Z2
1

) (
−T 2

13 + |X13|2 + Z2
1

)(
−T 2

23 + |X23|2
)
Z2

1

(C.1)

The first step is understanding where these singularities occur in the bulk. Clearly the χ = 0

singularities occur on light-cones emanating from the boundary points. To understand the

χ = 1 singularities we consider two cases.

Spacelike separated boundary points. Without loss of generality we place the bound-

ary points at equal times and we separate them along the first spatial coordinate of the

CFT. That is, we set

T2 = T3 = 0 X2 = (−y,~0 ) X3 = (+y,~0 ) (C.2)

We label the bulk point (T,X,Z) and look at the behavior on a bulk slice of fixed time

with 0 < T < y. Decomposing the spatial coordinates of the bulk point into their first

component and the rest, X = (V, ~W ), the condition χ = 1 has solutions

V 2 + Z2 =

(
y ±

√
T 2 − | ~W |2

)2

(C.3)

Note that this requires | ~W | < T . At T = 0 we get a semicircle of radius y in the V Z plane.

This semicircle can be understood as a spacelike geodesic connecting the two boundary

points. For T > 0 the semicircle becomes a tube that expands transversely at the speed

of light. That is, the surface χ = 1 is made up of light rays emitted perpendicular to the

geodesic one has at T = 0. The tube ends on the boundary, where it meets the χ = 0

surfaces as illustrated in the left panel of figure 3.

Timelike separated boundary points. In this case we set

T2 = −t T3 = +t X2 = X3 = 0 (C.4)

13In AdS3 one can write χ
χ−1

in the more instructive form (2.6).
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Figure 3. Left panel: a time slice for spacelike separated boundary points. The blue tube is a shell

of light expanding outward from the geodesic, corresponding to χ = 1. The red hemispheres are

light shells emitted from the boundary points, corresponding to χ = 0. Right panel: a time slice

for timelike separated boundary points. The blue surface is a shell of light emitted from the waist

of the boundary causal diamond, corresponding to χ = 1. The red hemispheres are light shells

emitted from the past (absorbed by the future) boundary points, corresponding to χ = 0.

and consider a bulk point with coordinates (T,X,Z). The condition χ = 1 can be factored

and has two branches of solutions. On a bulk time slice with −t < T < t only one branch

is realized, and setting χ = 1 implies that

(|X| − t)2 + Z2 = T 2 (C.5)

When T = 0 we get a sphere of radius t on the boundary. This sphere can be thought of

as the “waist” of the boundary causal diamond determined by the two boundary points,

meaning the intersection of the future lightcone of (T2, X2) with the past lightcone of

(T3, X3). For T > 0 the sphere expands transversely into the bulk at the speed of light.

This is illustrated in the right panel of figure 3.

Having understood where the singularities are located, now let’s study the nature of the

singularities. To do this we introduce a Wightman iε prescription and replace Ti → Ti− iεi
in (C.1). This gives χ an imaginary part, which resolves the singularity but in a way that

depends on which surface we’re crossing. In general

Imχ =
2ε12T12

(
−T 2

13 +X2
13 + Z2

1

)
+ 2ε13T13

(
−T 2

12 +X2
12 + Z2

1

)(
−T 2

23 +X2
23

)
Z2

1

(C.6)

Points with χ = 0 are null separated from one or the other of the boundary points. So

when χ = 0 one of the terms in the numerator vanishes and we have a well-defined iε

prescription. But at χ = 1 the imaginary part depends on both ε12 and ε13 and the

prescription for crossing the singularity is ambiguous.

There are two situations worth commenting on, in which the ambiguity associated with

crossing a χ = 1 singularity can be avoided.
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II

T

T

3

Figure 4. Penrose diagram for AdS2. In AdS2 the only singularities occur when the bulk point is

lightlike to one of the boundary points. These light rays bounce off the boundary as indicated by

dotted lines. This makes correlators of φ(0) in regions II and II’ ambiguous.

• Suppose one crosses χ = 1, but in the limit where one approaches null separation

from one of the boundary points. Then the iε associated with that boundary point

is the one that dominates.

• One can also work in an OPE limit where one sends one of the boundary points to

infinity, in either a timelike or spacelike direction. Then the iε associated with the

remaining boundary point is the one that matters.

Thus the outcome in arbitrary spacetime dimensions is qualitatively similar to what

we found in AdS3. There are a few distinct features that arise in other dimensions.

• In AdS4 and higher, for spacelike separated boundary points, the region analogous

to I and III in figure 1 is connected. Likewise for timelike separated boundary points

the region analogous to IV and V in figure 2 is connected.

• AdS2 is somewhat analogous to timelike separated boundary points in AdS3. In AdS2

singularities only arise at null separation, so there are no χ = 1 singularities to cross.

But there is still an obstacle to regarding φ(0) as a well-defined bulk observable. This

can be seen from figure 4. The ambiguity arises because to continue a correlator

into region II or II’ one must decide whether to start from the left or right boundary.

These two different starting points yield iε prescriptions which depend on which light

cone is being crossed. The different iε prescriptions don’t affect correlators with φ(0)

on the left or right but give different results when φ(0) is placed in the middle.
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