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1 Introduction and result

By a clever combination of modern methods of scattering amplitudes [2], the old Regge

scattering amplitudes approach (Regge trajectory) [3] and taking advantage of the dual

conformal momentum space symmetry of the planar N = 4 SYM theory in four dimensions,

the authors of [1] (see also [4]) obtained a duality between the higher angular momentum

state for a given energy E in terms of the cusp anomalous dimension Γcusp and θ the cusp

angle of the Wilson line with a cusp given by [4, 5],

J + 1 = −Γcusp(θ), E2 = 4m2 cos2 θ/2 , (1.1)

where J is the angular momentum, m is the mass and E the energy. This duality was scru-

tinized in the perturbative regime as well as in the strong coupling limit using AdS/CFT,

reproducing results of the meson spectrum [6] using numerical methods. Unfortunately,

the authors in [1] were unable to find an analytic relation between the string model of the

meson, constructed from an open rotating string as the dual of the meson (massive quark

anti-quark pair) and the cusp anomalous dimension using the Wilson loop approach. The

aim of this paper is to fill this gap and give an explicit analytic expression that relates

the parameters of these two very different approaches to the problem of finding the meson

spectrum. We will work in the context of AdS/CFT (semiclassical approximation) so the

window that we will explore is the strong coupling regime in the field theory side.
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Figure 1. Regge trajectories of N = 4 SYM for λ = 10, 30, 100. The color lines are numerical

results from the meson model and the black curve is the analytical result (4.2), (4.3).

The central result of our paper is that we can calculate the energy and the angular

momentum of the meson model in closed form in terms of only one parameter z̃0 that

correspond to the maximum penetration of the dual string profile in AdS. The result is

E(z̃0)/mq = 2 cos(θ(z̃0)/2), (1.2)

J(z̃0) + 1 =

√
λ

4z̃0

√
1 + z̃2

0

2F1

(
1

2
,

3

2
, 2,− 1

1 + z̃2
0

)
, (1.3)

where

θ(z̃0) = 2K

∫ ∞
0

dξ

(1 + ξ2)
√

(1 + z̃2
0 + ξ2)(2 + z̃2

0 + ξ2)
, (1.4)

is the cusp angle, E is the energy of the quark, anti-quark pair, mq the quark mass, J the

angular momentum and K = z̃0

√
1 + z̃2

0 . 2F1 is the hypergeometric function.

Using these formulas we can reconstruct the information encoded in the meson spec-

trum. In particular, the energy and angular momentum in parametric form with parameter

z̃0. It is usual to represent this result in a parametric E − J plot. The plot was reported

in [6] and reproduced in [1]. In the context of AdS/CFT duality we provide here a version

of this plot (see figure 1). In this figure we show that in fact the numerical integration

of the meson model is equivalent to our results. Figure 1 shows the Regge trajectories

for different values of λ, the ‘t Hooft coupling, obtained by numerical integration of the

equations of motion for the string profile as compared with the analytic result given by our

relations (1.2) and (1.3) in terms of the parameter z̃0 that measures the maximum pene-

tration of the string profile in the bulk. Our results reproduce the well-known asymptotic

analytical information as well as predict new information for the next-to-next to leading
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order for E and J and in fact for the complete functions E and J . The information pro-

vided by our formulas is equivalent to solve a differential equation for the profile of the

string that as far as we know was not solved in analytic form yet. In fact, using the Wilson

loop with a cusp angle θ and then relating θ to the energy and the angular momentum

with Γcusp the cusp anomalous dimension, through the duality (1.1) we can recover all the

information encoded in the string profile as well as the energy and angular momentum

from the bulk of the meson model. Recently another very interesting observable, namely

the length of the string in the meson model, was related to the anomalous dimension of

twist two operators in the field theory side [7].

We will review the construction of the central concepts relevant to our work and then

present support for our main results (1.2) and (1.3). A crucial point relies on the identifica-

tion of a parameter of the string profile in the meson model to a corresponding parameter

in the Wilson loop calculation. The identification of this parameter will be given by ob-

serving that the corresponding analytical expressions that come from the duality (1.1),

through Γcusp and the cusp angle θ associated with the angular momentum and the energy

respectively, match the corresponding expressions of the meson model through the dual-

ity (1.1). To that end the central arguments behind the duality (1.1) will be reviewed. The

cusp anomalous dimension in the context of AdS/CFT can be calculated from a cusped

Wilson loop but also can be related to Regge trajectory from scattering amplitudes in

N = 4 SYM (see section 2). This is an instance of the scattering amplitudes/ Wilson loop

correspondence.

In section 3 we will review the basic ingredients of the meson model constructed from a

rotating string in AdS and extract analytic information through the analysis of interesting

asymptotic limits. These analytical results are crucial to develop our relation between a

Wilson loop with a cusp and meson model. We will present them in a form that is well

suited for our general proposes.

In section 4 we present a compact presentation of the dual conformal symmetry of

planar N = 4 SYM amplitudes and their use to relate the cusp anomalous dimension and

the cusp angle to the angular momentum and the energy respectively. We refer the reader

to the original references for details.

In sections 5 and 6, we present our results and a dictionary that gives analytical support

to the duality (1.1) in the context of AdS/CFT. Finally in section A, we present some final

comments and provide some ideas for future work.

2 Cusp anomalous dimension

2.1 Γcusp from Wilson loop

We will recall the construction of the cusp anomalous dimension from the definition of the

Wilson loop in the context of AdS/CFT. The notation and conventions are given in [17]

and [18]. For details about the calculation of the cusp anomalous dimension we refer the

reader to the original articles.
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In the context of the AdS/CFT, the expectation value of a Wilson loop in the gauge the-

ory is given by the action of a string bounded by the curve at the boundary of space [15, 16],

〈W [C]〉 =

∫
∂X=C

DX exp(−
√
λS[X]), (2.1)

where S[X] is the string action. For large λ, we can estimate the path integral by the

steepest descent method. Consequently the expectation value of the Wilson loop is related

to the area A of the minimal surface bounded by C as

〈W 〉 ≈ exp

(
−
√
λ

2π
A(C)

)
. (2.2)

The construction starts by considering Euclidean AdS space in Poincaré coordinates

ds2 =
1

z2
(dxµdxµ + dz2) , (2.3)

where the conformal boundary is at z = 0.

The computation of the Wilson loop in AdS requires an IR regularization, since the

area of the minimal surface ending at the boundary of AdS is infinite due to the factor

z−2 in the metric. Thus, in order to make sense of the ansatz (2.2), we need to regularize

the area. The standard procedure to regularize the area Aε is based on cutting off that

part of the surface at which z < ε. On the gauge theory side, the Wilson loop requires

regularization in the ultraviolet. According to the UV/IR relation, the IR cutoff ε in AdS

should be identified with the UV cutoff in the gauge theory. If ` is the length of the Wilson

loop contour, the regularized area Aε is defined by

Aε =
`

ε
+Aren +O(ε).

In the presence of a cusp a new logarithmic divergence appears.

Aε =
`

ε
+ Γcusp(θ) log ε+Aren +O(ε).

Consider a loop formed by two half-lines with cusp angle θ on the two dimensional plane

(x1, x2) defined by the metric (2.3). In this case we can obtain an analytic expression for the

minimal surface area whose boundary is the corresponding loop. We use polar coordinates

to parametrize the worldsheet,

x1 = ρ cosϕ, x2 = ρ sinϕ. (2.4)

Using the conformal symmetry z → λz, xµ → λxµ, we can assume that the minimal surface

is described by the anzats [18]

z(ρ, ϕ) =
ρ

f(ϕ)
, (2.5)

with boundary conditions z(ρ, 0) = z(ρ, θ) = 0. This symmetry under dilatation is crucial

for our proposes because it is a guide to relate the parameters of the Wilson loop with
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the corresponding parameters in the meson model. We need to relate an invariant under

dilatations in the two models. A natural candidate is the function f(ϕ).

With this factorization of the ρ and ϕ dependence, the minimal surface condition, i.e.

the equation of motion, becomes an ordinary differential equation for f(ϕ) with boundary

conditions f(0) = f(θ) =∞. In what follows we will not need the explicit form of this dif-

ferential equation. The integration can be formally induced if we notice that the translation

symmetry (ϕ 7→ ϕ− α, α an infinitesimal constant angle) implies the conserved quantity,

H = L − f ′ ∂L
∂f ′

=
f4 + f2√

f4 + f2 + (f ′)2
. (2.6)

From the symmetry of the profile f has a minimum at ϕ = θ/2 where θ is the cusp angle.

Using this condition and the above conserved quantity we can write

K = f0

√
1 + f2

0 , f0 = f(θ/2). (2.7)

Hence, the integration yields

θ = 2K

∞∫
f0

df√
(f4 + f2)2 −K2(f4 + f2)

, (2.8)

which fixes the relation between f0 and the cusp angle θ. Indeed, θ(f0) is a monotonically

decreasing function of f0, θ(0) = π and θ(∞) = 0 (see figure 6 blue line).

The regularized area defined with cutoffs z = ρ/f(ϕ) > ε and ρ < L is

Aε,L =

∫
dρ dϕ

√
f4 + f2 + (f ′)2

ρ

=
2L

ε
+ Γcusp log

ε

L
+A0(θ) + . . .

where the dots denote terms vanishing for ε→ 0 and

Γcusp = 2f0 − 2

∫ ∞
f0

(√
f4 + f2

f4 + f2 −K2
− 1

)
df.

A0 is a regular term that we will not need in what follows.

The substitution f2 = f2
0 + η2 gives [19]

Γcusp(θ) =

∞∫
−∞

dη

(
1−

√
1 + η2 + f2

0

1 + η2 + 2f2
0

)
.

The first term inside the integral is an infinite subtraction constant which makes the area

finite. We can thus identify the logarithmic divergence coefficient with the cusp anomaly.

A closed form of this integral can be obtained for Γcusp, in terms of a hypergeometric

function [17],

Γcusp(θ) =
π

2

f2
0√

1 + f2
0

2F1

(
1

2
,

3

2
, 2,
−f2

0

1 + f2
0

)
. (2.9)
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This relation between the cusp anomalous dimension and the parameter f0 and the

corresponding relation between θ and f0 given by

θ(f0) = 2K

∞∫
0

dη

(η2 + f2
0 )
√

(η2 + f2
0 + 1)(η2 + 2f2

0 + 1)
, (2.10)

where the change of variable f2 =f2
0 +η2 was applied, will be very important in what follows.

2.2 Γcusp from scattering amplidudes

Γcusp(θ) can also be calculated from scattering amplitudes of massive particles in N = 4

SYM. It can be extracted as the coefficient in front of the IR divergence of the scattering

amplitudes. Thanks to a powerful dual conformal symmetry it is possible to show that the

scattering amplitudes depends only on two invariant ratios M(u, v). In the limit u � 1

the coefficient of the IR divergence of the amplitude can be identified with the coefficient

of the UV divergence of the Wilson loop with a cusp [4]

lnM(u, v)→ (lnu)Γcusp(λ, θ) + . . .

From Regge theory, in the same limit the amplitud scales as [5]

M(u, v) ∼ u−(j(s)+1)

where j(s) is the leading Regge trajectory. These different physical interpretations of the

same amplitude M(u, v) relates Γcusp to the Regge trajectory j(s),1

j(s) + 1 = −
(
−
√
λ

2π

)
Γcusp(θ) , s = 4m2 cos2

(
θ

2

)
, (2.11)

where s = E2 is the energy in the CM frame, j(s) is a Regge trajectory and Γcusp is the cusp

anomalous dimension associated with a Wilson loop with cusp angle θ ∈ [0, π]. This relation

has been checked up to three loops in ref. [4], to which we refer the reader for more details.

In particular (2.11) can be used to study the massive quark anti-quark potential. This

perspective open the way to compare the results that come from (2.11) with other models

where the massive quark anti quark potential is involved. One of this models is the meson

model [6] that we will review in the next section. From this meson model we can extract

non perturbative information about the spectra of the meson J(E) and then compare this

information with Γcusp calculated as in subsection 2.1 using a Wilson loop. It turn out the

this two very different perspectives provide numerical support to the duality (2.11) [1].

The aim of our work is to provide analytical support to the validity of this rela-

tion (2.11) in the context of the AdS/CFT correspondence. In section 3, we will recover

the asymptotic information of the meson model in two asymptotic analytical limits and

in section 4 we will give complete support for the validity of this duality for the complete

interval, not just the asymptotic limits considered in sections 3.1 and 3.2.

1Here we write the duality in the AdS/CFT context, that is the reason why the factor
√
λ appears in front

of Γcusp. The duality can also be used in the perturbative regime and the dependence on λ is quite different.
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3 Meson spectrum from a rotating string

The AdS/CFT duality is nowadays a basic tool to study some aspects of strongly cou-

pled gauge theories by using a semiclassical gravity solution in asymptotically AdS space-

time [8–10]. The best studied case is the duality between N = 4 SYM theory in four

dimensions at strong coupling and a weakly coupled gravitational theory in five dimen-

sional AdS. It is well known that to include fields in the fundamental representation of

SU(N) (quarks) in AdS/CFT, one must introduce probe D7-branes in AdS [11]. The dual

gauge theory is the N = 2 SYM theory with massive quarks. The beta function of this

theory is β ∝ λ2Nf/N , where Nf is the number of flavour D7 branes and N is the number

colour D3 branes [12]. This beta function tends to zero for Nf small, fixed ’t Hooft coupling

λ and N →∞ (planar limit), such that the theory remains conformal in this limit.

Mesons of low spin are described as fluctuations of the D7-branes. High spin mesons

are represented by semiclassical rotating open strings attached to the D7-branes [6] (see

also [13] for a review).

The presence of the D7-branes introduce a mass scale in the duality, the quark mass

mq, corresponding to the position of the branes along the radial direction of AdS5. The

mass mq of the quark in the gauge theory is related to the separation distance L = R2/zD7

between D3-branes and D7-branes by the relation

mq =
R2

2πα′zD7
, (3.1)

where zD7 is the position of the D7 branes in the bulk2 The introduction of a mass scale

breaks the invariance under dilatations. Nevertheless we have a new isometry that implies

that the observables are appropriate rescaled variables. For example the energy is not an

invariant but E/mq indeed is an invariant. The separation between the string endpoints

on the D7-brane is not an invariant but we can find a rescaled variable that plays the role

of the meson size in the gauge theory.

The string configuration, can be constructed as a solution of the Nambu Goto action

with appropriate boundary conditions starting from the metric

ds2 =
R2

z2

(
−dt2 + dρ2 + ρ2dθ2 + dz2

)
, (3.2)

where the spatial coordinates are (ρ, θ). As stated in [6] a high-spin meson can be repre-

sented as a semiclassical rotating string with a profile ρ = ρ(z), θ = ωt. The maximum

value of ρ occurs at z = z0. We are interested in U shaped solutions where the end points of

the string hangs from the D7 brane located at z = zD7. As remarked above this parameter

is a measure of the quark mass mq. A very massive meson implies that the D7-brane is

near the boundary.

As discussed in [6], it is convenient to use the dimensionless coordinates ρ̃ ≡ ωρ

and z̃ ≡ ωz.

2In this work we will ignore the backreaction of the D7 branes [12]. An interesting question not considered

here is if this backreaction can still be adapted to fit in the framework of the duality (1.1).
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Choosing the static gauge τ = t and σ = z̃, the Nambu-Goto action takes the form

S = −R
2ω

πα′

∫
dt

∫ z̃0

z̃D7

dz̃
1

z̃2

√
(1− ρ̃2) (ρ̃′ 2 + 1) . (3.3)

Here a prime denotes a derivative with respect to z̃. The string angular momentum is

J =
∂L

∂ω
=

R2

πα′

∫ z̃0

z̃D7

dz̃
1

z̃2

√
ρ̃′ 2 + 1

1− ρ̃2
(3.4)

and the meson energy

E = ω
∂L

∂ω
− L =

R2ω

πα′

∫ z̃0

z̃D7

dz̃
1

z̃2

√
ρ̃′ 2 + 1

1− ρ̃2
. (3.5)

The string profile ρ̃(z̃) is determined by solving the corresponding equations of motion with

the boundary condition
dρ̃

dz̃

∣∣∣
z̃=z̃D7

= 0

i.e. the string ends orthogonally on the D7-brane.

The conditions at z̃0, are

ρ̃(z̃0) = 0,
dρ̃

dz̃

∣∣∣
z̃=z̃0

→ −∞.

The equation of motion and these boundary conditions determine the maximal string pen-

etration z̃0 as function of the position z̃D7 of the D7-brane, and the string profile ρ̃(z̃) for

z̃D7 ≤ z̃ ≤ z̃0.

Unfortunately, the equations of motion with these boundary conditions cannot be

solved by analytical methods and the only recourse at hand is to approximate the profile

ρ̃(z̃) using numerical methods.

The calculation can be drastically simplified by observing the following relation be-

tween string parameters z̃D7 and z̃0. Using the asymptotic data z̃D7(z̃0) ∼ Cz̃3
0 for z̃0 � 1

and z̃D7(z̃0) ∼ z̃0 for z̃0 � 1, where C =
√

2π3/2

Γ(1/4)2
, we found a quite simple closed form

z̃D7(z̃0) =
Cz̃3

0

1 + Cz̃2
0

, (3.6)

using a Padé approximant. This is a central result that will have an important role in what

follows.

A plot of this relation is represented in figure 2, where the green curve is (3.6) and we

compare it to the numerical approximation (dotted line) using shooting techniques. Every

point in this plot represent a complete profile of the string computed numerically compatible

with the given asymptotic data. The agreement is excellent in all the interval confirming

our expectation that we have captured all the information of the relation between the D7

brane position z̃D7 and the maximum deep that the string profile explore in the bulk z̃0.

This relation is valid through all the interval between the end points of the solution for the

profile and determines the spectrum E(z̃0) and J(z̃0) as functions of only one parameter.

In the following we will choose z̃0 for reasons that will become clear later. Analytic results

can be obtained in the two regimes z̃0 � 1 and z̃0 � 1.
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Figure 2. The relation (3.6) (green) and the numerical results for z̃D7(z̃0) (dotted line).

3.1 z̃0 � 1 limit

We see from (3.6) that in this regime

z̃D7(z̃0) ∼ Cz̃3
0 (3.7)

so z̃0 ∼ ω1/3 and we conclude that the string is rotating with a very slow angular velocity

ω → 0. In this circumstance we expect that analytic information can be extracted from

perturbations of the static profile of the string. In fact from [6] we have

E ' 2mq

[
1− C

2z̃2
0

2
+O(z̃4

0)

]
, C =

√
2π3/2

Γ(1/4)2
. (3.8)

From equation (3.4), the result for the spin J at leading order in z̃0 is

J ' R2C
παz̃0

+O(z̃0). (3.9)

As z̃0 � 1 we have J/
√
λ� 1 as expected. By eliminating z̃0 and restoring mq, one gets

E = 2mq − Eb , Eb = mq
κ4

4J2
κ4 =

16C4gsN

π
, (3.10)

where Eb is the binding energy. The asymptotic relations (3.8) and (3.9) are the main

results of this section and will be useful in what follows. We will review now the comple-

mentary limit z̃0 � 1.

– 9 –
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3.2 z̃0 � 1 limit

In the limit z̃0 � 1, the relation (3.6) take the form

z̃D7(z̃0) ∼ z̃0 , (3.11)

the string profile remains very near to the position of the D7-brane. As z̃0 ∼ ω we conclude

that the string is rotating with a high angular velocity ω →∞. One can check by numerical

analysis that z̃(ρ) > ωzD7 ' z̃0. The solution for the profile that we are interested in, is the

near flat space solution. The string profile remains very near the D7 brane so the string is

not probing the AdS spacetime. In this case the equations (3.5) and (3.4) give the energy

and the spin to leading order in 1/ωz0 [6]:

E ' πmq

z̃0
, J '

√
λ

4z̃2
0

. (3.12)

Since z̃0 � 1 we have J �
√
λ. Eliminating z̃0 we find

E '
√

2π3/4mq

(gsN)1/4

√
J . (3.13)

Therefore for J �
√
λ the meson masses follow a Regge behaviour.

4 Asymptotic matching between meson model and cusp anomalous

dimension

In this section we will present the main result of our paper. Our first question is if we can

match the asymptotic results that come from the meson model, eqs. (3.8), (3.9) and (3.12)

with the corresponding asymptotic results for the angular momentum and energy that

come from the duality (2.11). The numerical evidence presented in [1] shows that, in fact,

the matching is possible, at least numerically. This numerical matching is very surprising

because the two approaches are quite different. The aim of this section is to show explicitly

that the match between the asymptotic results can be obtained in analytical form. The first

observation is that the cusp angle and the cusp anomalous dimension depend parametrically

on one parameter f0 of the minimal worldsheet dual to the Wilson loop. From the other

hand the meson angular momentum and energy depend on the worldsheet parameter of the

string profile dual to the meson, namely z̃0. Notice that these two parameters are invariant

under dilatations that are isometries of their respective metrics. The question can be

reformulated as if we can construct a relation between these two different parameters. The

answer is the affirmative and in fact, the relation is quite simple

f0 →
1

z̃0
. (4.1)

The central result of our paper is that we can calculate the energy and the angular

momentum of the meson model in closed form in terms of only one parameter z̃0 that is

the maximum penetration of the string profile in AdS of the meson model. To obtain the
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result that we announced previously in the Introduction, we make use of the parameter z̃0

in equations (2.9) and (2.10) in place of f0 and apply the duality (2.11). We quote again

the result,

E(z̃0)/mq = 2 cos(θ(z̃0)/2) , (4.2)

J(z̃0) + 1 =

√
λ

4z̃0

√
1 + z̃2

0

2F1

(
1

2
,

3

2
, 2,− 1

1 + z̃2
0

)
, (4.3)

where

θ(z̃0) = 2K

∫ ∞
0

dξ

(1 + ξ2)
√

(1 + z̃2
0 + ξ2)(2 + z̃2

0 + ξ2)
(4.4)

and K = z̃0

√
1 + z̃2

0 . 2F1 is the hypergeometric function. By using these formulas the

reconstruction of the meson spectra is straightforward. In particular, we can write the

energy and angular momentum in parametric form with parameter z̃0 to any order in

powers of z̃0. A parametric plot of these basic observables is the E−J graph reported in [6]

and reproduced elsewhere. Our graph (see figure 1) obtained with the aid of equations (4.2)

and (4.3) coincides with previously reported plot using numerical methods [1] so we provide

analytical support for the proposed conformal duality (2.11) in the context of AdS/CFT.

As a check we can recover the asymptotic analytical information given in [6] and

reproduce the asymptotic limits. Taking z̃0 � 1, (equivalent to take f0 � 1) we get

θ(z̃0) = −π 1

z̃0
+ π + · · · . (4.5)

On the other hand, the corresponding asymptotic limit for the cusp anomalous dimension

for the parameter z̃0 � 1 is

J(z̃0) + 1 =

√
λ

2π

(
π

2

1

z̃2
0

− 7

16
π

1

z̃4
0

+ . . .

)
. (4.6)

The z̃0 � 1 limit corresponds to f0 → 0 and then to a cusp angle θ near π (where no

scattering take place). To leading order in 1/z̃0 we have

E

m
= 2 cos

(
θ

2

)
≈ π − θ (4.7)

and
E

m
' π 1

z̃0
, J + 1 '

√
λ

4

1

z̃2
0

, (4.8)

by using our results (4.2), (4.3) and the expansion (A.1) just to leading order in the

parameter z̃0. Perfect agreement with the previously reported formulas is evident. We

could predict the next-to-next to leading order behaviour of the meson as is clear from our

closed relations.

The other interesting limit is z̃0 � 1. In this limit f0 →∞ and the corresponding cusp

angle θ → 0. From the expression (A.2) we have to leading order in z̃0 (see appendix A),

θ(z̃0) =
2π1/2Γ

(
3
4

)
Γ
(

1
4

) z̃0 . (4.9)
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For the energy, as the cusp angle is small, we can use a simple expansion

E

m
= 2 cos

(
θ

2

)
≈ 2− θ2

4
= 2− π

(
Γ
(

3
4

)
Γ
(

1
4

))2

z̃2
0 = 2− π

(
2π2

Γ
(

1
4

)4
)
z̃2

0 , (4.10)

where we have used the identity Γ
(

3
4

)
Γ
(

1
4

)
=
√

2π. At first sight this is not the result ob-

tained from the analysis of the corresponding asymptotic limit from the meson (3.8), unless

C2 = π

(
2π2

Γ
(

1
4

)4
)
.

Using the definition C =
√

2π3/2

Γ(1/4)2
, we can verify that this relation is in fact valid. So we

conclude that our proposal recovers the correct analytical information that we can extract

from the meson model. For the angular momentum we obtain

J(z̃0) + 1 '
√
λ

π

Γ
(

3
4

)
4Γ
(

5
4

) 1

z̃0
=

√
2πλ

Γ
(

1
4

)2 1

z̃0
, (4.11)

where we have used the identity
Γ( 3

4)Γ( 1
4)

2

Γ( 5
4)

= 4
√

2π. This result coincides with the meson

model using the definition of C. We stress that our relation gives much more than the

asymptotic behaviour of the meson model.

To grasp the meaning behind the identification (4.1) recall that for a given cusp angle

θ, f0 is the minimum of the function f defined in (2.5), and by symmetry considerations

it is defined by f0 = f(θ/2). Consider a plane with fixed z, then f0 is proportional to the

distance from the cusp to the minimum of the curve ρ ∼ f(ϕ) (see figure 3 and figure 4).

θ is a monotonically decreasing function of f0 starting from θ = π, f0 = 0 and going to

θ → 0 as f0 → ∞ (see figure 6 blue curve). Then according to our dictionary z̃0 → ∞ as

θ → π and z̃0 → 0 as θ → 0. In the first case the behaviour of the meson is governed by a

Regge trajectory E ∼
√
J and in the second case the energy is of the order E ∼ 2mq, the

binding energy. So the cusp angle has a very nice interpretation in terms of our dictionary.

When the Wilson loop is nearly smooth the behaviour of the meson model is the Regge

limit and when the cusp is very spiky the meson has a nearly vanishing binding energy.

It is also interesting to notice that in the limit z̃0 →∞ as θ → π the Wilson loop is very

smooth and the Bremsstrahlung function B(N,λ) [20] can be used as an exact calculation

for any Nc and λ for the cusp anomalous dimension Γcusp. The relation is

Γcusp(θ − π) = B(θ − π)2 +O(θ4).

We obtained these formulas using the results of the Wilson loop with a cusp angle

θ and the conformal duality reported in section 4 by a simple application of the dictio-

nary (4.1). The results given are valid in the context of AdS/CFT duality with planar

N = 4 SYM theory.
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Figure 3. The minimal surface based on the Wlison loop with a cusp. We also show the regu-

larizarion parameter ε.

b

z θ

ρ

∞ ∞

f0

b b

∞ ∞∞ ∞

f0
f0

z

ρ ρ

z θθ

Figure 4. A transverse cut of the minimal surface at z = const.. The geometric meaning of the

parameter f0 is proportional to the distance of the cusp vertex to the minimal value of the function

f(ϕ). We show diverse profiles of the function f as we vary the cusp angle θ.

5 Exploring the relation between f0 and z̃0 beyond the asymptotic limits

In this section we will show that the relation between the two very different approaches, the

Wilson loop with a cusp and the meson model given by the identification of the maximum

string penetration z̃0 and the minumun value of the function f(ϕ), ϕ ∈ (0, θ), f0 = f( θ2)

with θ the cusp angle given by (4.1) is also valid for the entire interval between the asymp-

totic limits considered in the previous sections.

From the fact that the asymptotic limits (4.8), (4.10), (4.11) can be described with

the same reparametrization we could argue that the reparametrization is universal, i.e. is

valid for the entire interval. But a more compelling approach is to show it with the aid

– 13 –
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of the plots in figure 5. In the plots (a) and (b) we show the numerical integration of

the NG equation of motion for the string profile and then we integrated numerically the

equations (3.4) and (3.5) to obtain E(z̃0), J(z̃0) for the meson model. The figure 5(a) and

(b) also show the corresponding asymptotic limits as reported in the original work [6] and

that we reproduce here in eqs. (3.8), (3.9) and (3.12). The dotted lines in these graphs are

the numerically evaluated corresponding observable in the complete interval.

Next, in figure 5(c) and (d), we plot the corresponding graphs for the same observables

E/mq and J/
√
λ but now using the results from the Wilson loop with a cusp, the cusp

anomalous dimension Γ(f0), and θ(f0) and the duality (2.11). In this way we obtain the

energy and angular momentum as functions of f0, the minimum of the profile function

f(ϕ). Now, the dots come from our previous graphs, evaluated at 1/f0 as predicted by our

dictionary. The full lines in colour comes from the evaluation of the integral for θ(f0) and

the hypergeometric function for Γcusp given in (2.8) and (2.9) respectively, and then using

the duality relation to obtain E(f0), J(f0).

The agreement is eloquent! So we conclude that our dictionary gives a real complete

description of the meson model using information from the cusp anomalous dimension and

the angle of the corresponding cusp θ.3 The case that we have at hand was scrutinized

by us from using interpolation and give excellent results. Nevertheless these interpolation

methods can not be used to prove conclusively that the interpolated observables are in fact

unique (we have a landscape of possible Padé approximants). And/or that the behaviour

of the function must be exactly controlled by the interpolation.

The other reason comes from the fact that two very different constructions, the rotating

string on the one hand and the Wilson loop with a cusp on the other, are related using a

very simple dictionary. From the side of the Wilson loop it is not clear where the complete

profile of the string is encoded. From the side of the meson model it is not clear how the

knowledge of the cusp of the Wilson loop and the cusp anomalous dimension determines

the basic observables of the gauge theory to any order in the relevant parameters. That

means that we are solving the differential equation for the string profile extending the

asymptotic analysis that is reported in the current literature.

As we noted, the full lines (in colour) in figure 5(c) and (d), are the plots of the

numerical evaluation of the duality relation using information provided by the Wilson loop

approach. So we do not need to know the complete profile of the string in the meson model

to obtain the observables E and J . What we need is only one point of the complete profile

namely z̃0 the maximum penetration of the string in the bulk that is also related to the

position of the D7 brane z̃D7 through (3.6).

We also observe that the plot of the energy vs. angular momentum (E − J graph

reported previously in [1] using numerical methods, see figure 6) does not change by the

3This result could come as a surprise at least by the following reasons. This is an example that in some

cases the asymptotic behaviour determines the complete function for an observable in the gauge theory.

In the context of AdS/CFT our experience shows that using two point Padé approximants to interpolate

between the asymptotic behaviour of an observable give a surprising good agreement with the exact result

(when the exact result is known) and/or with the general consideration of the behaviour of the corresponding

function between the asymptotic limits under consideration [21–23].
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(a) (b)

(c) (d)

Figure 5. (a) The energy as function of the parameter z̃0 for the meson model. The asymptotic

limits are plotted in blue for z̃0 � 1 and red for z̃0 � 1. The dotted curve corresponds to the

numerical integration of the profile of the string and numerical evaluation of the integral (3.5). (b)

The angular momentum as function of the parameter z̃0 for the meson model. The asymptotic limits

are plotted in blue for z̃0 � 1 and red for z̃0 � 1. The dotted curve correspond to the numerical

integration of the profile of the string and numerical evaluation of the integral (3.4). (c) In green,

the energy as function of the parameter f0, E/mq = 2 cos(θ(f0)). The dotted curve correspond to

the numerical integration of the profile of the string and numerical evaluation of the integral (3.5)

as function of f0 after using our dictionary (4.1). (d) The angular momenta as function of f0. The

blue curve is the plot of the relation (4.3). The dotted curve is an numerical integration of the

profile of the string and the numerical evaluation of the integral (3.4) in terms of z̃0. Using our

dictionary (4.1) the agreement is evident.

simple argument that the dictionary (4.1) is just a change in the parametrization of E and

J . We can use as a parameter f0 and E(f0), J(f0) to obtain a point in this plot or we can

use z̃0 as a parameter, E(z̃0), J(z̃0) to obtain the complete plot and of course the graphs will

be exactly the same. So we can reproduce the previous numerical analysis with our simple

dictionary. As a consequence of this fact we can see that from the side of the meson model

we need to integrate a complete profile of the string that is a solution of the NG equation

of motion to obtain one point in this graph. Now we need only to know the maximum

penetration of the profile (and not the complete profile!) to construct the entire plot E−J .
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6 Final comments

We have proposed a new recipe for computing E and J for the meson spectrum using

information from Γcusp(θ) and the duality (2.11) in the context of strong coupling, for the

N = 4 which have large spin (semiclassical limit), and whose gravity duals are semiclassical

strings rotating in the AdS5× S5 space-time. Specifically, we constructed an explicit dictio-

nary that relate the meson model observables with the observables of the Wilson loop with

a cusp. We have a prediction at any order in z̃0 for the observables of the meson model.

Implicitly we have solved a differential equation (the profile of the string in the meson

model) in terms of closed functions θ(f0) and Γcusp(θ) that depend only on the point z̃0.

We have covered the case when the Wilson loop is in the fundamental representation,

a “quark” with mass mq. It could be worth to explore the generalisation to the case of D3-

branes [24, 25] (symmetric representation) and D5-brane (antisymmetric representation).

We plan to investigate this issue in a future work.

A holographic computation of the entanglement entropy in conformal field theories has

been proposed via the AdS/CFT correspondence [26, 27]. In [28] the authors examine the

strong subadditivity constraint via direct calculations. As an example they work out the

Wilson loop with a cusp and confirm strong subadditivity. The calculation is analogous to

the one reviewed here (see section 3). It is interesting to note that this implies also via the

dictionary (4.1) that the quark-antiquark pair is entangled. In fact, in [28] the authors find

that the entanglement entropy can be obtained as a direct application of the procedure to

find Γcusp. As we know, the total area is

A/R2 = 2L/ε− Γcusp(θ) logL/ε+ (finite terms).

where R is the AdS radius.

In [26, 27], it is claimed that the entanglement entropy can be computed as follows

SA =
A(Σ)

4G
(d+2)
N

where A(Σ) denotes the area of the surface Σ, and G
(d+2)
N is the Newton constant in d+ 2

dimensional AdS space. The d dimensional surface Σ is determined in such way that is the

minimal area surface whose boundary coincides with the boundary of the submanifold A.

Thus the entanglement entropy can be computed as (up to constant terms)

SA =
R2

4G4
N

(
2L/ε− Γcusp logL/ε

)
So our guess is that entanglement entropy of the quark anti-quark pair can be written in

terms of the spin J(z̃0) of the meson in the gauge theory. In this way the entanglement

entropy depends only on the parameter z̃0 of the dual string.

Recently in [29] the authors found that the entanglement entropy of three-dimensional

conformal field theories contains a universal contribution coming from corners in the entan-

gling surface. This calculation is also very similar to that of Γcusp. It could be interesting

to study these results from the point of view our dictionary to obtain (universal?) physical

information encoded in the meson model.
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A fundamental understanding of the proposed duality is still lacking. We have no

rigorous justification for the interpretation or a convincing geometrical argument for how

it works out so well. To answer such question we could need to relate the two worldsheets

and not only the two parameters z̃0 and f0. Also, we do not know whether it would

make sense, for more general strings, undergoing some complicated motion (e.g. an infinite

string with one endpoint attached to an accelerated heavy quark), and what should be the

physical interpretation in that case.

We hope that such questions will trigger further investigations, leading to conceptual

clarifications and to new results.

For completeness, let us finally mention that corresponding to open string configu-

rations with large angular momentum have been considered within the AdS/CFT corre-

spondence, but for a different space-time geometry, and/or different dynamical situations.

It is natural to wonder if these cases can be approached from the same point of view of

this article.
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A Asymptotic limits for the cusp angle integral (2.10)

We can estimate the value of θ(f0) of the integral (2.10) in two relevant limits. These

asymptotic behaviour is important because we can make contact with the corresponding

limits of the meson energy and angular momenta through our dictionary (4.1). The limit

f0 → 0 of the integral

θ(f0) = 2K

∞∫
0

dη

(η2 + f2
0 )
√

(η2 + f2
0 + 1)(η2 + 2f2

0 + 1)
,

can be estimated using an appropriate Taylor expansion observing that any divergence is

an artefact of the approximation. As we already has been observed the integral is a smooth

function of the parameter f0, in fact is a monotonically decreasing function of f0. In the

limit f0 � 1, after exploring the general behaviour of the integrand around f0 → 0 we can

estimate

θ(f0) = −36305πf9
0

16384
+

359πf7
0

256
− 61πf5

0

64
+

3πf3
0

4
− πf0 + π · · · . (A.1)

To show explicitly that this estimation works very well see figure 6 (green curve).

From the other hand in the limit f0 � 1 the integral (2.10) behaves like

θ(f0) =
2π1/2Γ

(
3
4

)
Γ
(

1
4

) 1

f0
− 0.08

f3
0

+
0.005

f5
0

+O
(

1

f7
0

)
, (A.2)

The estimates (A.1), (A.2) covers practically all the intermediate values of the integral as

can be appreciated in figure 6.
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Figure 6. The numerical result of the integral (2.10) is in blue. The other graphs are the estimation

of the asymptotic behaviour of the integral given in (A.1), (A.2).
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