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1 Introduction

It is well known that despite the name string theory describes not only fundamental strings

but also D- and NS-branes. These appear as extended objects with tension proportional to

g−1
s and g−2

s , respectively, while the tension of the fundamental string itself does not scale

with gs. Thus these branes are non-perturbative, or solitonic, in nature.

That we know as much as we do about the non-perturbative objects of string theory and

M-theory is in large part thanks to the existence of dualities [1]. This paper arises as part

of a broader effort to understand the consequences of acting with T-duality transformations

on solitonic NS branes. While the action of T-duality on a Dp-brane simply generates either
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a D(p+ 1)- or D(p− 1)-brane, depending on whether the duality is carried out in a direc-

tion transverse to the brane or not, the action on NS backgrounds produces results which

are rather more interesting. Working at the level of the corresponding supergravity solu-

tions, the T-dual of the NS5 brane along a transverse isometry produces the Kaluza-Klein

monopole (or KKM). A second T-duality produces a brane — known as the 52
2 — which is

ordinarily said to be “exotic”: it is globally defined only up to a non-trivial T-duality trans-

formation and so can be viewed as a T-fold [2]. It is a “globally non-geometric background”.

It has been argued in [3] that such backgrounds are not really “exotic” in the full string

theory, but are in fact a ubiquitous feature. Their existence can be viewed as being required

by U-duality [4], and they provide sources for non-geometric Q- and R-fluxes, T-dual to

the usual three-form and geometric fluxes sourced by the NS5 and KKM, of interest for

compactifications [5, 6].

The T-duality orbit beginning with the NS5 brane can be written in the notation

of [3] as

50
2 ←→ 51

2 ←→ 52
2 ←→ 53

2, (1.1)

where the subscript stands for the power of g−1
s in the tension and the superscript counts the

number of special circles. Here 50
2 is just the usual NS5 brane, while 51

2 is the KK monopole,

which has three transverse directions and a special isometry direction, as indicated by the

superscript. Note that in order to carry out T-dualities in the transverse directions to these

branes, one needs transverse isometries and so this necessitates smearing the solution at

each step. This smearing changes the corresponding harmonic function. For the exotic 52
2-

brane, one ends up with the harmonic function depending logarithmically on the transverse

radius and hence not vanishing at infinity. The 53
2-brane is even more non-geometric: one

point of view is that this brane is the result of carrying out a T-duality on a direction which

is not an isometry, leading to a background which depends on a dual coordinate (“locally

non-geometric”).

Some other problems arise when considering throat behaviour already at the level of

KK monopole as described in [7]. One question concerns the fact that the T-dual of the KK

monopole in supergravity is naively a smeared version of the NS5 brane, while in principle

one expects the latter to be localised in its transverse directions. As shown in [8], world-

sheet instanton corrections in the smeared NS5 background have the effect of localising the

NS5. Later on, it was realised that one could calculate the worldsheet instanton corrections

to the KK monopole background itself, which turn out to imply that the KK monopole

is localised not in the special isometry direction but in a dual direction [9, 10]. Similar

calculations have been done for the non-geometric 52
2 brane [11–13]. So again, explicit

dependence on dual coordinates appears in the solution, but this time this is suggested by

a worldsheet calculation.1

Dealing with non-geometry, whether manifesting as non-trivial T-duality monodromy

or as dependence on winding coordinates, requires a formalism that goes beyond our usual

supergravity framework. So far the most appropriate formalism to attempt to make sense of

dual coordinates has been that of Double Field Theory (DFT), which starts with doubling

1For further recent study of the expected localisations, see [14].
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(a subset of) the spacetime coordinates and considering a theory invariant under the group

O(d, d) defined on a space parametrized by YM = (Y i, Ỹi) with M = 1, . . . , 2d. All fields of

supergravity then can be arranged into various irreducible representations of O(d, d), e.g.

the NS-NS sector containing the dilaton φ, metric g and the B-field B is described by the

so-called generalised metric

HMN ∈
O(d, d)

O(d)×O(d)
, (1.2)

usually parametrised by

HMN =

(
g −Bg−1B Bg−1

−g−1B g−1

)
, (1.3)

and by the generalised dilaton

e−2d = e−2φ
√
|g| . (1.4)

The dynamics of the theory in the NS-NS sector are provided by an action [15–20]

SDFT =

∫
d2dY e−2d

(
4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md ∂Nd

+ 4∂MHMN∂Nd+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL

)
,

(1.5)

which is fixed by invariance under local transformations which provide the notion of “gener-

alised diffeomorphisms”. Infinitesimally, these combine conventional diffeomorphisms and

gauge transformations into a generalised Lie derivative Λ and act on an arbitrary (gener-

alised) vector as

δΛV
M = ΛΛV

M = ΛN∂NV
M − V N∂NΛM + ηMNηPQ∂NΛPV Q , (1.6)

where

ηMN =

(
0 1d×d

1d×d 0

)
(1.7)

is preserved by O(d, d) transformations. Generalised diffeomorphisms themselves can be

viewed as infinitesimal local O(d, d) transformations (plus a transport term) in the same

way that usual diffeomorphisms are associated to the group GL(d). The algebra of such

transformations is closed only upon imposing a special condition which restricts dependence

of all fields of the theory. This is usually called the section condition, and is given by:

ηMN∂M • ∂N• = 0 , (1.8)

with the bullets standing for any expression in fields. This condition has to be imposed by

hand to keep the theory consistent and to return back to the normal number of coordinates.

The remaining bosonic fields of type II supergravity are the RR fields, and these form

spinors of O(d, d), with the type II theories distinguished by chirality. Extensions of DFT

to treat the RR fields and then supersymmetry were provided in [21–26]. A “split” or

“Kaluza-Klein” formulation, in which not all directions are doubled, was provided for the

NSNS sector in [27]. Reviews covering these and many other aspects are [28–30].
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Since DFT automatically becomes a T-duality covariant theory in the presence of

isometries the whole orbit (1.1) is represented by a single solution of its equations of motion,

which is the so-called DFT monopole constructed in [31]. As dual coordinates are present

in the theory, one can further imagine carrying out “duality transformations” along direc-

tions which are not isometries, leading to configurations which do not violate the section

condition (in that no fields depend on both a coordinate and its dual simultaneously) but

which involve explicit dependence on dual coordinates which are not part of the spacetime.

The DFT monopole solution is characterised by a harmonic function H = H(y1, y2, y3),

which depends on three coordinates, which can be identified with either geometric or dual

coordinates. As was shown in [32], depending on the way this is done, one ends up with

not only the NS5-brane and KK-monopole but also (a generalisation of) the 52
2-, 53

2- and

even 54
2-branes. The latter is a co-dimension-0 object and usually is not considered in the

analysis of exotic branes. The main results were: i) the harmonic function is well behaved

as y2
1 +y2

2 +y2
3 goes to infinity; ii) the backgrounds depend on non-geometric coordinates in

precisely the same way as expected from string world-sheet instanton corrections. Similar

results have been found for brane backgrounds of M-theory in [33] where the exceptional

field theory [34, 35] realising the U-duality group SL(5) was considered.

So far we have mainly discussed backgrounds of field theories rather than proper dy-

namical objects. Ideally, we want to also have an effective worldvolume action for a brane,

completing the action to

Sfull = Sfields + Sbrane (1.9)

such that the full equations of motion produce the correct background as the solution.

In other words, the worldvolume effective action acts as a source of the correspond-

ing brane background. Such actions for the NS5 brane and the KK-monopole are well

known [36–40, 52]. We note that the IIA NS5 brane involves a self-dual three-form, and so

it is more difficult to obtain a genuine action — a PST form is provided in [41]. Effective

actions for exotic branes were considered some time ago in [42] and more recently in [43–45],

based on dualisation of the known effective actions of NS5-brane and KK monopole along

isometry directions.

The aim of the present paper is to construct an effective action describing the full T-

duality orbit (1.1), which is O(d, d) covariant, reproduces the known effective actions upon

solving the section condition appropriately and gives the full DFT-monopole background

when considered as a source for the DFT action2

Sfull = SDFT + Seff . (1.10)

We restrict consideration here only to the case of the T-duality orbit starting with the

Type IIB NS5-brane as in this case one is able to write the full non-linear action. For the

Type IIA case one would have to work in the PST formalism, or restrict the action to its

quadratic form.

2Note that the electric counterpart of this solution, the DFT wave [46], has been shown in [47] to be a

solution of the combined action Sfull = SDFT + SDWS, where SDWS is an action for a doubled string such

as [2, 48–51].
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We will provide a universal DBI term, valid for any number of doubled directions.

The form of this DBI term will be a generalisation to doubled space of a form of the KK

monopole action [52]: this goes by the name of a “gauged sigma model”, the idea being that

one or more of the target space directions is an isometry and the resulting worldvolume

scalar (spacetime coordinate) does not appear in the action, effectively by gauging the

isometry. Half of our doubled directions will be viewed in this manner.

We will also discuss the structure of the Wess-Zumino term for the doubled five-

brane. The NSNS contribution is complicated as it must describe the T-duals of the

electromagnetic dual B6 of the B-field, which means the electromagnetic dual of the Kaluza-

Klein vector, and other more exotic objects, for which non-linear definitions are not known.

However, a linearised description in DFT has been achieved in [53] while the representation

theory structure for this part of the WZ term in O(d, d) is known thanks to [54–58].

Furthermore, the paper [54] constructs a general formula for T-duality covariant WZ terms

of solitonic 5-branes for general d < 10 by introducing worldvolume field strengths for every

O(d, d) covariant multiplet of gauge fields. These results apply for actual reductions, while

in DFT we want to keep the dependence on the doubled internal coordinates (subject to the

section condition) and so have more complicated gauge transformations to consider. Still,

the results of [54] provide a useful guide to the structures that we expect to appear. We

will thus provide worldvolume field strengths, which are actually invariant under the gauge

symmetries of the DFT RR fields only on contraction with an auxiliary worldvolume O(d, d)

spinor which we will explain below. This then allows us to write down the RR contribution

to the full O(10, 10) covariant WZ term. We will then discuss how the coupling to the

NSNS dual O(d, d) covariant potentials should be realised in our formalism, for d = 2, 4

and 10 as examples.

This paper is structured as follows. We begin by introducing the five-brane actions we

are interested in. We do this in section 2: writing down the DBI actions for the IIB NS5

brane and its T-duals, the IIA KKM and the IIB 52
2 brane. Here we will also introduce the

basic ideas of the doubled formalism that we will use. Then, in section 3 we write down

our O(d, d)-covariant DBI action, which resembles that of the “gauged sigma model” form

of the KKM action, and demonstrate its equivalence to the usual actions.

In section 4 we consider the Wess-Zumino terms of these five-brane actions and com-

ment on the Bianchi identities in which these five-branes appear as sources. Finally, in

section 5 we provide a discussion of various aspects of our construction and of possible

future work building on the results of this paper.

2 Review of 5-brane actions, duality and doubling

This section serves to introduce the branes we will study in this paper, and the basics of

the doubled formalisms we will be using to reformulate the brane actions.

2.1 5-brane actions

We begin by reviewing the known actions for the IIB NS5 brane and its T-duals, following

the results of [43, 52].
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The NS5 brane of type IIB theory has a six-dimensional worldvolume action S =

SDBI + SWZ, consisting of a DBI part and a Wess-Zumino term. The latter contains

the coupling to the six-form electromagnetic dual of the B-field, and so takes the form

SWZ = µNS5

∫
d6σB6 + . . . , where the dots indicate additional couplings to the RR fields

such that SWZ is gauge invariant, as we will discuss in section 4. For now we will concentrate

on the DBI part:

SDBI = T5

∫
d6σe−2φ

√
1 + C2

0e
2φ

√√√√− det

(
ĝαβ −

eφ√
1 + C2

0e
2φ
Gαβ

)
. (2.1)

Here φ is the dilaton and C0 the RR 0-form. The overall e−2φ term reveals that the NS5

physical tension is g−2
s T5, with the expected string coupling dependence. The worldvol-

ume fields that appear include the scalars X µ̂(σ), corresponding to the usual spacetime

coordinates, and a one-form cα. These appear in the pullback of the metric, ĝµ̂ν̂ ,

ĝαβ = ∂αX
µ̂∂βX

ν̂ ĝµ̂ν̂ , (2.2)

and in the gauge invariant pullback of the RR two-form, Ĉµ̂ν̂ ,

Gαβ = 2∂[αcβ] + ∂αX
µ̂∂βX

ν̂Ĉµ̂ν̂ . (2.3)

We can obtain an action for the IIA Kaluza-Klein monopole by T-dualising. To describe

this, and to provide the connection to the double field theory approach, let us discuss this

in some generality.

We will be interested in either T-dualising or doubling d directions. Let us group the

10-dimensional coordinates as X µ̂ = (Xµ, Y i), with i the d-dimensional coordinate index

and µ the D = (10− d)-dimensional one. The following Kaluza-Klein type decomposition

is used for the NSNS sector fields:3

ĝµν = gµν + gijAµ
iAν

j ,

ĝµi = gijAµ
j ,

ĝij = gij ,

B̂µν = Bµν −A[µ
jAν]j +BijAµ

iAν
j ,

B̂µi = Aµi +Aµ
jBji ,

B̂ij = Bij .

(2.4)

Now we can recombine the field components into O(d, d) multiplets: a one-form trans-

forming as an O(d, d) vector, and the generalised metric which is an element of the coset

O(d, d)/O(d)×O(d):

Aµ
M =

(
Aµ

i

Aµi

)
, HMN =

(
gij −BikgklBlj Bikgkj

−gikBkj gij

)
, (2.5)

as well as the following scalars under O(d, d):

gµν , Bµν , e−2d = e−2φ
√
|g| , (2.6)

3When we double all coordinate directions (d = 10) we will simply write the 10-d metric and B-field as

gij and Bij , dropping the hats.
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where here |g| ≡ det gij . General O(d, d) transformations are those which preserve the

O(d, d) structure η, taken to be as in (1.7). The standard worldsheet T-duality is a Buscher

duality. Such a duality in the direction x acts as permutation interchanging the V x and

Vx̃ components of an O(d, d) vector VM . Meanwhile, an RR p-form transforms into the

(p± 1)-forms of the dual theory, as detailed in appendix A.4.

Using the above multiplets, it is straightforward to T-dualise the NS5 brane action

and obtain that of the Kaluza-Klein monopole in type IIA. First, let us write the general

decomposition of (2.1). We have

SDBI = T5

∫
d6σe−2φ

√
1 + C2

0e
2φ×

×

√√√√− det

(
gµν∂αXµ∂βXν + gijDαY iDβY j −

eφGαβ√
1 + C2

0e
2φ

)
,

(2.7)

where

DαY
i ≡ ∂αY i + ∂αX

µAµ
i , (2.8)

and

Gαβ = 2∂[αcβ] +
(
Ĉµν − 2Ĉ[µ|i|Aν]

i + ĈijAµ
iAν

j
)
∂αX

µ∂βX
ν

+ 2(Ĉµi −AµjĈji)∂[αX
µDβ]Y

i + ĈijDαY
iDβY

j .
(2.9)

Supposing that d = 1 (and explicitly letting i = 1) the T-dual expression follows simply

from the Buscher rules. For instance, we have for the NSNS fields

g̃11 =
1

g11
, e−2φ̃

√
g̃11 = e−2φ√g11 , Ãµ

1 = Aµ1 , Ãµ1 = Aµ
1 (2.10)

where the tilded fields are the T-duals, and in our RR conventions, the relevant T-duality

rules are (see appendix A.4)

Ĉµν1 = Ĉµν + 2A[µ
1Ĉν]1 , Ĉµ = Ĉµ1 + 2B̂µ1C0 , Ĉ1 = C0 . (2.11)

We use these to first express (2.7) in terms of the duals, then dropping the tildes from the

fields, we can write the DBI part of the IIA KKM action:

SDBI =T5

∫
e−2φg11

√
1+e2φ

1

g11
(Ĉ1)2

×

√√√√√−det

gµν∂αXµ∂βXν+
1

φ11
DαỸ1DβỸ1−

1
√
g11

eφGαβ√
1+e2φ 1

g11
(C1)2

 . (2.12)

Here Ỹ1 is the original Y 1 appearing in (2.7), and we have in the KKM frame that

DαỸ1 ≡ ∂αỸ1 + ∂αX
µAµ1 (2.13)

where Aµ1 are components of the IIA B-field in the decomposition (2.4). We also have:

Gαβ = 2∂[αcβ] + Ĉµν1∂αX
µ∂βX

ν − 2D[αỸ1∂β]X
ν(Ĉν −Aν1Ĉ1) , (2.14)

were Ĉ1 is the i = 1 component of the RR 1-form.
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One might wonder how this can be (part of) the action for the KKM, given that it

does not seem at all spacetime covariant? The mere fact that we have obtained it by

T-duality means that the i = 1 direction has to be an isometry. (Later on, we will discuss

the circumstances in double field theory in which one may not rely on the existence of such

isometries.) Indeed, the KKM differs from the more usual fundamental, D- and NS5 branes

in that is characterised not simply by its worldvolume and transverse directions, but also

has a transverse special isometry direction. Here, this corresponds to the i = 1 direction.

The fact that this is an isometry manifests itself in the absence of the coordinate Y 1 from

the action (2.12). Instead there is a worldvolume scalar, Ỹ1, which as far as the KKM is

concerned can be interpreted as a dual coordinate (reflecting the fact that it is “originally”

a coordinate in the IIB NS5 action).

A covariant form of the Kaluza-Klein monopole action can be obtained by introducing a

Killing vector, k̂µ̂, corresponding to the special isometry direction. In adapted coordinates,

k̂ = ∂
∂Y 1 , and |k̂|2 ≡ ĝµ̂ν̂kµ̂ν̂ = g11. Let

∂̂αX
µ̂ = ∂αX

µ̂ − 1

|k̂|2
k̂µ̂k̂ν̂∂αX

ν̂ , (2.15)

such that in adapted coordinates we have ∂̂αX
µ = ∂αX

µ and ∂̂αY
1 = − ĝµ1

ĝ11
∂αX

µ. This

ensures that Y 1 does not appear in the action. It is easy to check that the following action:

SDBI =T5

∫
e−2φ|k̂|2

√
1+e2φ

1

|k̂|2
(ik̂Ĉ)2

×

√√√√√−det

ĝµ̂ν̂ ∂̂αX µ̂∂̂βX ν̂+
1

|k̂|2
DαỸ DβỸ −

1

|k̂|
eφGαβ√

1+e2φ 1
|k̂|2

(ik̂Ĉ)2

 (2.16)

is the covariantisation of (2.16), with

DαỸ ≡ ∂αỸ − (ik̂B̂)µ̂∂αX
µ̂ (2.17)

and

Gαβ = 2∂[αcβ] + (ik̂Ĉ)µ̂ν̂∂αX
µ̂∂βX

ν̂ − 2D[αỸ ∂̂β]X
µ̂Ĉµ̂ , (2.18)

where ik̂Tµ̂1...µ̂p ≡ k̂
µTµµ1...µp .

This form of the action, which if only the metric parts were present corresponds to a

gauged sigma model, will be our starting point in constructing manifestly O(d, d) covariant

5-brane actions.

One can further obtain the action for the exotic 52
2 brane by T-dualising (2.7) on two

directions [43], so i = 1, 2. Following our (slightly different) conventions with the T-duality

rules of (A.28), the action takes the form:

SDBI =T5

∫
e−2φdetE

√
1+

e2φ

detE
(C12)2

×

√√√√−det

(
gµν∂αXµ∂βXν+

detg

detE
gijDαỸiDβỸj−

eφGαβ√
detE+e2φC2

12

)
,

(2.19)
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where Eij ≡ gij +Bij , C12 = C12 +B12C0, DαỸi ≡ ∂αỸi + ∂αX
µAµi and

Gαβ = 2∂[αcβ]+
(
Ĉµν12+B12(Ĉµν−2ĈµiAν

i+ĈijAµ
iAν

j)
)
∂αX

µ∂βX
ν

−2εij(Ĉµi−AµkĈki)∂[αX
µDβ]Ỹj−

(
C0ε

ij+B̃ij(C12+B12C0)
)
DαỸiDβỸj

(2.20)

where ε12 = 1 and

B̃ij =
detB

detE
(Bij)

−1 . (2.21)

This brane has two special isometry directions, and the corresponding coordinates Y i do

not appear in the action — instead, their duals Ỹi do.

A covariant form of this action, in terms of two Killing vectors, is provided in [44].

2.2 Doubled formalisms

We will now discuss the core ideas of the doubled formalisms that will allow us to rewrite

the above duality orbit of brane actions as a single O(d, d) manifest action. The first

step, starting from a theory defined in terms of coordinates (Xµ, Y i), is to introduce dual

coordinates Ỹi such that the doubled coordinates YM = (Y i, Ỹi) combine into an O(d, d)

vector. Treating coordinates and their duals on the same footing was used in [2, 48–50, 59]

to construct doubled worldsheet theories, in which the target space geometry is doubled.

To avoid introducing extra degrees of freedom, the doubled coordinates must be chiral,

obeying a constraint dYM = SMN ? dY N , where d and ? are the worldsheet exterior

derivative and Hodge star, and the matrix SMN = (η−1H)MN squares to the identity. The

corresponding spacetime theory is that of double field theory [15–20] (as in fact follows

from the beta functional equations [60–63]).

The five-brane actions we will describe will make use of such doubled coordinates.

Unlike the doubled worldsheet, we will not have an intrinsic worldvolume relationship

between the coordinates and their duals. Rather we will posit a form of the doubled

five-brane action which resembles the gauged sigma model action of the Kaluza-Klein

monopole, in which half of the coordinates YM will not appear, assuming the existence of

d (generalised) Killing vectors corresponding to (generalised) special isometry directions.

O(10, 10) DFT. The standard version of DFT involves doubling all coordinates in space-

time. The only bosonic fields are the generalised metric, HMN , generalised dilaton, d, and

RR spinor C. The NSNS sector fields are contained in the former two as in (1.3) and (1.4).

One convenient way to construct the RR spinor is as follows [21]. Introduce d fermionic

creation operators ψi and d fermionic annihilation operators ψi obeying

{ψi, ψj} = δji , {ψi, ψj} = {ψi, ψj} = 0 . (2.22)

The vacuum |0〉 obeys ψi|0〉 = 0, and a general spinor has the form

λ =
∑
p

1

p!
λi1...ipψ

i1 . . . ψip |0〉 , (2.23)
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where we work in Majorana representations (λi1...ip real). One can restrict to Majorana-

Weyl spinors: spinors formed using only odd and even numbers of creation operators have

opposite chirality. (The states of definite chirality are eigenspinors of (−1)NF where the

number operator is NF =
∑

i ψ
iψi.)

The gamma matrices obeying {ΓM ,ΓN} = ηMN can be defined by

ΓM = (
√

2ψi,
√

2ψi) . (2.24)

We will raise the index on ΓM using ηMN . We define

ΓM1...Mn = Γ[M1
. . .ΓMn] . (2.25)

The charge conjugation matrix is

C =

{
C+ ≡

∏
i(ψ

i + ψi) d odd ,

C− ≡
∏
i(ψ

i − ψi) d even ,
(2.26)

and we define the conjugate spinor by λ̄ ≡ λ†C (where (ψi)† = ψi and (ψi)
† = ψi).

The RR spinor of the O(10, 10) DFT is denoted by C and has components

Ci1...ip = [eB2C]i1...ip (2.27)

where C is a polyform of RR potentials, described in appendix A.2. This will be a chiral

spinor, with chirality depending on whether we are in a IIA or IIB frame. A Buscher

duality in the i direction follows from acting with ψi + ψi, and changes chirality.

Let us note also that the gauge symmetries are (using ηMN to raise and lower indices)

δΛHMN = ΛP∂PHMN + 2∂(MΛPHN)P − 2∂PΛ(MHN)P ,

δΛe
−2d = ∂P (ΛP e−2d) ,

δΛ,λC = ΛN∂NC +
1

2
∂MΛNΓMΓNC + /∂λ ,

(2.28)

where ΛM = (Λi, Λ̃i) encodes diffeomorphisms and gauge transformations of the B-field,

while λ is another spinor and gives to gauge transformations of the RR fields. The slashed

partial derivative is

/∂ ≡ 1√
2

ΓM∂M = ψM∂M , (2.29)

where ψM = 1√
2
ΓM = (ψi, ψi).

O(d, d) DFT. Alternatively, we may choose to only double a subset d < 10 of the

coordinates, along the lines of [27]. This produces a slightly more intricate structure. The

DFT coordinates are now (Xµ, YM ). The bosonic fields are the external metric, gµν , the

generalised metric, HMN , and generalised dilaton, d, as well as a tensor hierarchy consisting

of a one-form, Aµ
M and two-form, Bµν . The dictionary relating these to the 10-dimensional

supergravity fields is the same as that presented in equations (2.4) to (2.6) (so it is the same

as one would use in Kaluza-Klein reduction, except one does not assume any coordinate
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independence). In addition, one can include RR potentials, C, Cµ, Cµν , . . . which are O(d, d)

spinors of opposite chirality for fields with even or odd numbers of external indices. These

RR potentials, by decomposing (2.27), correspond to

Cµ1...µni1...ip = [eB̂2 ∧ Ĉ]µ1...µni1...ip . (2.30)

The gauge symmetries can be obtained by decomposing (2.28), first letting M̂ be the

O(10, 10) index and then taking ΛM̂ = (ξµ, Λ̃µ,Λ
M ) (in [27] the component Λ̃µ is taken to

have the opposite sign). In particular, under the gauge transformations Λ̃µ one has

δAµ
M = −∂M Λ̃µ ,

δBµν = 2∂[µΛ̃ν] −A[µ
M∂M Λ̃ν] ,

δCµ1...µn = n(n− 1)∂[µ1Λ̃µ2Cµ3...µn] + (−1)nn
1√
2

ΓM∂M Λ̃[µ1Cµ2...µn] .

(2.31)

One can make these transformations look nicer by writing them in a “covariant” form

as in [27], however we will not do this here. For the RR spinors, one has also have

transformations under external diffeomorphisms

δξCµ1...µn = ξν∂νCµ1...µn + n∂[µ1ξ
νC|ν|µ2...µn] + (−1)n−1 1√

2
ΓM∂Mξ

νCνµ1...µn (2.32)

and under RR gauge transformations:

δλCµ1...µn = n∂[µ1λµ2...µn] + (−1)n
1√
2

ΓM∂Mλµ1...µn , (2.33)

while their transformation under generalised diffeomorphisms ΛM has the same form

as before.

3 O(d, d) covariant DBI action

3.1 The action

Building blocks. We can write an O(d, d) covariant form of five-brane actions. The

coordinates that appear in the action as worldvolume scalars are (Xµ, YM ), where we

have n undoubled coordinates Xµ and the 2d doubled coordinates YM . We introduce the

O(d, d) generalised metric, HMN , the O(d, d) one-form Aµ
M , the external metric gµν and

the generalised dilaton e−2d. We write a covariant differential for the doubled coordinates:

DαY
M = ∂αY

M + ∂αX
µAµ

M , (3.1)

where α, β are worldvolume indices.

To describe the action for DFT monopoles, we adopt the techniques of [38, 52] where

the Kaluza-Klein monopole is viewed as a “gauged sigma model.” We need to introduce d

generalised Killing vectors, ka
M where a = 1, . . . , d. (A generalised Killing vector is simply

defined to annihilate the fields under the transformations δka corresponding to generalised
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diffeomorphisms. In adapted coordinates, we have as usual kMa ∂M = 0 acting on all fields.)

These correspond to some special isometry directions, in a sense. Next define the matrix

hab = HMNka
Mkb

N , (3.2)

with which one write projected (or “gauged”) differentials

D̂αY
M = DαY

M − (h−1)abka
Mkb

NHNPDαY
P , (3.3)

which will have the effect of removing half the doubled coordinates from the action. In

order that the matrix hab be invertible, we need

TM1...Md ≡ εa1...adkM1
a1 . . . kMd

ad
, (3.4)

to be non-zero, as

deth =
1

d!
HM1N1 . . .HMdNdT

M1...MdTN1...Nd (3.5)

Later on, we will discuss how one can view this TM1...Md as the T-duality covariant charge

of the 5-brane, in line with the classification of [54]. In addition, we take

ηMNk
M
a k

N
b = 0 , (3.6)

which will in effect act as a sort of algebraic section condition on the worldvolume action.

Different solutions of this constraint impose the existence of different special isometry

directions in spacetime, and allow us to remove the corresponding scalar fields YM from

the brane worldvolume action that we will consider. Effectively, the condition (3.6) implies

that the kMa live in an at most d-dimensional subspace, while requiring the object (3.4) be

non-zero then implies that in fact they are a set of d independent vectors.

We also include the RR sector, introducing a set of forms which are O(d, d) spinors:

C, Cµ, Cµν , . . . . Alongside the generalised Killing vectors, we have to introduce an auxiliary

O(d, d) spinor λbrane. We require that it satisfy the following constraint:

ΓMλbranek
M
a = 0. (3.7)

As there are d independent kMa , this implies that λbrane is annihilated by half the O(d, d)

gamma matrices ΓM , and therefore it is a pure spinor. (Note that this then implies (3.6).)

Finally, we set the scale of λbrane by requiring that

1

(
√

2)d
λ̄braneΓ

M1...Mdλbrane = TM1...Md . (3.8)

This is the only non-zero spinor bilinear involving λbrane and its conjugate.

The action. We may now write down the full DBI part of the action we consider:

SDBI =

∫
d6σe−2d

√
deth

√
1+e2d(deth)−1/2(λ̄braneC)2×

×

√√√√−det

(
gµν∂αXµ∂βXν+HMND̂αYMD̂βY N−

ed(deth)−1/4λ̄braneGαβ√
1+e2d(deth)−1/2(λ̄braneC)2

)
,

(3.9)
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where

Gαβ = 2∂[αc̃β] + C̃αβ (3.10)

is a worldvolume field strength with the following pullback of RR fields:

C̃αβ =

(
Cµν − (Bµν +

1

2
Aµ

MAν
NΓMN )C +

√
2Aµ

MΓMCν
)
∂[αX

µ∂β]X
ν

+
√

2ΓM

(
Cµ −

1√
2
Aµ

NΓNC
)
∂[αX

µD̂β]Y
M

− 1

2
ΓMNCD̂[αY

MD̂β]Y
N .

(3.11)

The worldvolume one-form c̃α is here taken to also be an O(d, d) spinor. It is easy to check

that the expression (3.11) is invariant under gauge transformations of the external B-field,

using the formula (2.31). We will discuss its transformation properties under RR gauge

transformations in section 4.1.

The term

e−2d
√

deth (3.12)

provides the string coupling dependence: the generalised dilaton factor e−2d tells us that

this brane indeed will have tension scaling as g−2
s .

One way of looking at the action (3.9) is to think of it as a function of d, the number

of doubled directions.4 When d = 0, the fields that appear can be trivially identified with

the usual spacetime ones: thus gµν is the full metric, e−2d ≡ e−2φ is the usual exponential

of the dilaton, and Cµν ≡ Cµν and C ≡ C0 are the usual RR 2-form and 0-form. Then

setting det h = 1 and λ̄brane = 1 we immediately see that what we have is the usual DBI

action for the IIB NS5 brane.

At the other extreme, d = 10, we only have the generalised metric, generalised dilaton

and a single O(10, 10) spinor C. We can replace DαY
M with ∂αY

M , and one has

C̃αβ = −1

2
ΓMNC∂̂[αY

M ∂̂β]Y
N , (3.13)

where we still project, ∂̂αY
M ≡ ∂αYM − (h−1)abka

Mkb
NHNP∂αY P .

For 0 < d < 10, the action interpolates between these two cases. One can choose d to

correspond to the number of actual isometry directions of the backgrounds, in which case

the O(d, d) covariance is unbroken by the section condition solution, and one can view it

directly as the O(d, d) T-duality group.

We stress that the action (3.9) is covariant under O(d, d). Acting with some Buscher

type transformation will map us to a different duality frame. In that frame, we view (3.9)

as providing the DBI action for a brane that is dual to the IIB NS5 brane.

3.2 Analysis of the NSNS terms

Let us focus on the action with the RR and worldvolume fields set to zero. It is

SDBI

∣∣
RR=0

=

∫
d6σe−2d

√
deth

√
− det

(
gµν∂αXµ∂βXν +HMND̂αYMD̂βY N

)
, (3.14)

4Not to be confused here with d, the generalised dilaton.
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Note that one can also write

HMND̂αY
MD̂βY

N = ΠMNDαY
MDβY

N (3.15)

with

ΠMN = HMN − (h−1)abkPa k
Q
b HMPHNQ . (3.16)

Fully doubled: d = 10. We consider first the situation in which we have doubled all

directions in spacetime. The action is simply

SDBI

∣∣
RR=0

=

∫
d6σe−2d

√
deth

√
− det

(
HMN ∂̂αYM ∂̂βY N

)
. (3.17)

The section condition is supposed to be ∂i 6= 0, ∂̃i = 0, so that the background fields may

depend on the coordinates Y i but not the Ỹi. As it stands, any of these may in principle

appear in the action as worldvolume scalars. We will show in this section how one may

remove the Ỹi, in which case this action describes the IIB NS5.

Suppose we take the generalised Killing vectors ka
M to lie only in dual directions, i.e.

kia = 0 and k̃ai 6= 0. Then hab = k̃aik̃bjg
ij and deth = (det k̃)2 det g−1, where we view k̃ai

as a 10× 10 matrix and take its determinant. We find due to this that

e−2d
√

deth = e−2φ| det k̃| . (3.18)

Now, we have

∂̂αY
i = ∂αY

i (3.19)

and

∂̂αYi = ∂αYi − (h−1)abk̃aik̃bjg
jk∂αYk − (h−1)abk̃aik̃bjBklg

lj∂αY
k . (3.20)

In adapted dual coordinates, where the components of the Killing vectors are given by

k̃ai = δai, one has k̃aik̃bj(h
−1)ab = gij , which is always true for d independent vectors, and

so one finds

∂̂αYi = Bij∂αY
j . (3.21)

As promised, half the coordinates — in this case, those that are the duals in the section

with physical coordinates Y i — have been projected out. The action (3.17) becomes

SDBI

∣∣
RR=0

=

∫
d6σ |det k̃|e−2φ

√
− det (gij∂αY i∂βY j) . (3.22)

(Note that we have not written a tension prefactor, say SDBI = T̃5

∫
d6σ(. . . ), but ideally

one should absorb the leftover factor of det k̃ into T̃5 and identify this with the original T5.

This should be kept in mind below.)

If we did not choose the kMa to lie only in dual directions, we would obtain alternative

forms of this action. If there is a spacetime isometry in the direction i = z, then for instance

picking ka
z 6= 0 but k̃az = 0 for one a would give us the action for a KKM in type IIA

instead. To explore these possibilities, we will restrict to d < 10. In particular, to make

contact with the known forms of the NS5, KKM and 52
2 actions, it is convenient to specify

to the case d = 2.
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Partially doubled: d = 2. We again write the NSNS part of the DBI action:

SDBI

∣∣
RR=0

=

∫
δ6σe−2d

√
deth

√
− det

(
gµν∂αXµ∂βXν + ΠMNDαYMDβY N

)
, (3.23)

where
hab = HMNk

M
a k

M
b ,

ΠMN = HMN − habHMPHNQkPa k
Q
b ,

DαY
M = ∂αY

M + ∂αX
µAµ

M .

(3.24)

We have two generalised Killing vectors kMa obeying ηMNka
Mkb

N = 0. There are three

choices of solutions each leading to a different effective action

NS5 : kMa = (0, k̃am) ,

KKM : kMa = {(km1 , 0), (0, k̃2m)} ,
52

2 : kMa = (kam, 0) .

(3.25)

Since we are in the O(2, 2) theory, these are the only choices (up to a diffeomorphism in

the KK5 case) for the Killing vectors. For larger groups the orbit will become longer and

include e.g. 53
2 and 54

2 branes.

We will consider the available possibilities case by case. In doing so, we will make use of

the dictionary in section 2.2 relating the components of the DFT fields e−2d, HMN , Aµ
M to

the decomposition of the 10-dimensional fields ĝµ̂ν̂ = (gµν , Aµ
i, gij), B̂µ̂ν̂ = (Bµν , Aµi, Bij).

Here µ̂ is the original ten-dimensional index, and i = 1, . . . , d denotes the directions which

are doubled.

NS5-brane. Choosing kMa = (0, k̃ai) we have habk̃aik̃ai = gij so that the only non-

vanishing component of the projected generalised metric is:

Πij = Hij − habHikHj lk̃akk̃bl
= gij −BikgklBlj −BikBj lgkl = gij .

(3.26)

Hence, for the worldvolume matrix whose determinant appears in the second square root

in the action, we find

gµν∂αX
µ∂βX

ν + gij(∂αY
i + ∂αX

µAµ
i)(∂βY

j + ∂αX
µAµ

j) , (3.27)

which is just the usual Kaluza-Klein-esque decomposition of the full expression

ĝµ̂ν̂∂αX
µ̂∂βX

ν̂ . Note that all the dual coordinates disappear because the correspond-

ing components of the projected generalised metric Π vanish. Alternatively, one could

calculate:

D̂αY
M =

(
DαY

i

BijDαY
j

)
. (3.28)

One also computes the determinant

dethab =
1

det gij
(det k̃ai)

2. (3.29)
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so that for the NSNS only part of the DBI action one gets

SNS5
DBI

∣∣∣
RR=0

=

∫
d6σ |det k̃|e−2φ

√
− det

(
ĝµ̂ν̂∂αX µ̂∂βX ν̂

)
, (3.30)

Since the Killing vectors can be chosen to be some constants, they can be moved out from

the integration as an overall prefactor.

KK monopole. We now turn to the Kaluza-Klein monopole. We pick the ka
M so

that we have one non-vanishing Killing vector in the geometric directions and one in the

dual directions. The algebraic section condition enforces them to be kM1 = (ki1, 0) and

kM2 = (0, k̃2i) with ki1k̃2i = 0. We can take a representative solution to be:

kM1 = (k1
1, 0, 0) ≡ (k, 0, 0, 0),

kM2 = (0, 0, 0, k̃22) ≡ (0, 0, 0, k̃).
(3.31)

It is important to realise that the section condition solution is still such that (Xµ, Y i)

define the physical spacetime and Ỹi are duals. However, we will see that this choice of the

kMa in fact removes the Y 1 coordinate from the brane action, and in its place its dual Ỹ1

appears. With the Y 1 direction corresponding to an isometry, this can be used to see that

the action obtain is as expected the T-dual of the NS5 brane action on the i = 1 direction.

The matrix hab is found to be

hab =

(
k2(g11 + g22(B12)2) kk̃B12g

22

kk̃B12g
22 k̃2g22

)
⇒ deth =

(kk̃g11)2

det g
. (3.32)

Then one has

habka
Mkb

N =
1

g11


1 0 0 −B12

0 0 0 0

0 0 0 0

−B12 0 0 det g + (B12)2

 , (3.33)

from which one gets

ΠMN =
1

g11


0 0 0 0

0 det g + (B12)2 −B12 0

0 −B12 1 0

0 0 0 0

 , (3.34)

or equivalently

D̂αY
M =


−g12
g11
DαY

2

DαY
2

DαỸ1
g12
g11
DαỸ1

 (3.35)

and hence the derivatives DαỸ2 and DαY
1 do not appear in the action, leaving only DαY

2

and DαỸ
1.
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Substituting all these expressions into the covariant effective action one obtains

SDBI

∣∣
RR=0

=

∫
d6σkk̃g11e

−2φ×

×

√
− det

(
gµν∂αXµ∂βXν +

det g

g11
DαY 2DβY 2 +

1

g11
D̃αỸ1D̃βỸ1

) (3.36)

where

D̃αỸ1 ≡ ∂αỸ1 + ∂αX
µAµ1 +DαY

2B21 . (3.37)

Now, let us first show this agrees with the known KKM action presented in section 2.1.

Using the usual Kaluza-Klein-esque decomposition of the 10-dimensional metric ĝµ̂ν̂ in

section 2.2, we find that the geometric piece can be written as

gµν∂αX
µ∂βX

ν +
det g

g11
DαY

2DβY
2 = ĝµ̂ν̂ ∂̂αX

µ̂∂̂βX
ν̂ , (3.38)

where µ̂ = (µ, i) and

∂̂αX
µ̂ = ∂αX

µ̂ − 1

|k̂|2
k̂µ̂k̂ν̂∂αX

ν̂ , (3.39)

where we introduce a Killing vector k̂ such that k̂1 = k and |k̂|2 = ĝ11k
2. We have

∂̂αX
µ = ∂αX

µ, ∂̂αY
2 = ∂αY

2 and ∂̂αY
1 = − 1

ĝ11
(ĝ12∂αY

2 + ĝµ1∂αX
µ). Identifying ĝij = gij

and ĝµi = gijAµ
j leads to (3.38).

The piece that is non-geometric can be written as

D̃αỸ1 ≡ ∂αỸ1 + ∂αX
µ̂B̂µ̂1 , (3.40)

using the identification Aµi = B̂µi + Aµ
iB̂ij , Bij = B̂ij , where B̂µ̂ν̂ is the 10-dimensional

B-field. The determinant in the action therefore contains the term

1

g11
D̃αỸ1D̃βỸ1 =

1

|k̂|2
(∂αỸ + k̂ν∂αX

µ̂B̂µ̂ν̂)(∂βỸ + k̂ν∂βX
µ̂B̂µ̂ν̂) . (3.41)

Here we renamed Ỹ ≡ kỸ1.

Finally, we consider the prefactor e−2φkk̃g11 = e−2φ|k̂|2 k̃k . Up to the constant term

k̃/k, this is the correct prefactor with the norm of the Killing vector k̂ corresponding to the

special isometry direction appearing explicitly. Hence the action agrees with that in [52]

(up to sign conventions for the B-field).

Observe that the generalised Killing vector kM1 becomes in this frame the special

Killing vector k̂ of the KKM background. The other generalised Killing vector kM2 , which

still points in the dual directions, does not have a geometric interpretation, and instead

continues to play its former role of removing the second dual coordinate, Ỹ2, from the action.

Now let us comment on the T-duality relating this action to that of the NS5. Note

that T-dualising along an isometry given by a Killing vector k̂, one has (see the appendix

of [44], for instance)

e2φ̃ =
1

|k̂|2
e2φ , (3.42)
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which accounts for how the dilaton in the NS5 frame transforms: e−2φNS5 = |k̂|2e−2φKKM .

To analyse the rest of the action, let us simplify matters by assuming we are in adapted

coordinates, where k = 1. Then we can use the usual Buscher rules for a T-duality in the

1 direction:

g̃11 =
1

g11
, Ãµ1 = Aµ

1 ,

g̃12 = −B12

g11
, Ãµ

1 = Aµ1 ,

g̃22 =
det g + (B12)2

g11
,

B̃12 = −g12

g11
.

(3.43)

Written in terms of the dual quantities, the action in this frame has the form:

SDBI

∣∣
RR=0

=

∫
d6σe−2φ̃

√
− det (gµν∂αXµ∂βXν + g̃ijDαY iDβY j) (3.44)

with Y i = (Ỹ 1, Y 2) and DαY
i = ∂αY

i + ∂αX
µÃµ

i. This is nothing other than the NS5

brane action that we considered before.

52
2-brane. The final possibility is to take

kMa = (kia, 0) . (3.45)

This will lead to the action of the 52
2 brane. We proceed as before. We have the matrix

hab = kiak
j
b(gij −Bikg

klBlj) = kiak
j
bgij

det g + (B12)2

det g
, (3.46)

where the second equality is true because d = 2. Hence,

deth = (det k)2 (det g + (B12)2)2

det g
(3.47)

where we take the determinant of kia viewed as a two-by-two matrix. From this it follows

that

habkMa k
N
b =

(
det g

det g+(B12)2
gij 0

0 0

)
. (3.48)

So one gets

ΠMN =

(
0 0

0 det g
det g+(B12)2

gij

)
, (3.49)

or

D̂αY
M =

(
B12

det g+(B12)2
εijDαỸj

DαỸi

)
. (3.50)

As expected in this case, both physical coordinates Y i are projected out of the action, and

their place is taken by two dual coordinates Ỹi, which are viewed as extra worldvolume
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scalars in this frame. Letting Eij = gij +Bij , the action is written as

SDBI

∣∣
RR=0

=

∫
d6σe−2φ |det k| |detE|

√
− det

(
gµν∂αXµ∂βXν +

det g

detE
gijDαỸiDβỸj

)
(3.51)

which agrees with the corresponding part of the 52
2 action derived in [43, 44] by T-dualising

the NS5 action on both directions Y i, as presented in (2.19) in section 2.1.

One could also work in an alternative parametrisation of the generalised metric, in-

volving a bivector field βij ,5

HMN =

(
g̃ij g̃ikβ

kj

−β̃ikgkj g̃ij − βikg̃klβlj

)
. (3.52)

Now all expressions become more compact and the calculations are identical to those for the

NS5 brane — which is of course because this choice of frame really expresses the generalised

metric in terms of the dual variables. We find for instance

deth = (det kia)
2 det g̃,

Πij = g̃ij .
(3.53)

Note that the dual dilaton is defined as e−2d = e−2φ/
√
g̃. Hence, the effective action

becomes

S
522
DBI =

∫
d6σ |det k|e−2φ

√
− det

(
gµν∂αXµ∂βXν + g̃ijDαỸiDβỸj

)
, (3.54)

which can again be easily identified as the T-dual of the NS5 brane action.

Before moving on, let us comment on the T-duality monodromy that characterises this

brane. This takes the form of a shift of the bivector, βij → βij + Λij . Acting on kMa , this

is kia → kia + Λij k̃aj , k̃ai → k̃ai. Hence, as k̃ai = 0 in this case, the kMa are well-defined.

(Actually, we could already have made this comment for the twice smeared NS5 brane, for

which the monodromy appears as a shift of the B-field, Bij → Bij + Λij for which kia → kia,

k̃ai → k̃ai + Λijk
j
a.)

3.3 Analysis of the RR terms

Recall from section 2.2 that the single O(d, d) spinor λ is identified with a polyform
∑

p λ(p)

in spacetime, and constructed using d fermionic creation operators ψi, which together with

the annihilation operators ψi provide a representation of the O(d, d) Clifford algebra. Some

useful results are that if λ has components λi1...ip , then

(ψiλ)i1...ip = pδi[i1λi2...ip] ,

(ψiλ)i1...ip = λii1...ip ,
(3.55)

while

(Γijλ)i1...ip = 2p(p− 1)δi[i1δ
j
i2
λi3...ip] ,

(Γijλ)i1...ip = −2λiji1...ip ,

(Γi
jλ)i1...ip = δji λi1...ip − 2pδj[i1λ|i|i2...ip] .

(3.56)

5For a comprehensive review of supergravity theory based on β-formalism see [64].
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Fully doubled: d = 10. In the O(10, 10) frame which corresponds to the IIB NS5

brane, the pure spinor λ is

λ̄brane = (det k̃ai)
1/2ψ1 . . . ψ10|0〉 ⇒ λ̄brane = (det k̃ai)

1/2〈0| . (3.57)

The scale has been set after noting that TM1...Md has non-zero component

Ti1...i10 = εi1...i10(det k̃ai).

There is a single O(10, 10) spinor C whose components are (in the conventions of [21]

where the B-field is minus that of [43])

Ci1...ip = [eB2 ∧ C]i1...ip (3.58)

where C = C0 + C2 + C4 + . . . is the sum of the RR forms in IIB. Thus C only contains

even numbers of creation operators.

We can easily compute the quantities that appear in the action (3.9). We have:

λ̄braneC = (det k̃ai)
1/2C0 , (3.59)

so that ed(deth)1/4(λ̄braneC)2 = eφ(C0)2. Meanwhile, one can calculate

−1

2

λ̄brane

(det k̃ai)1/2
ΓMNC∂̂αYM ∂̂βY

N = Cij∂αY i∂βY
j − C(0)∂αY

i∂̂βYi

= (Cij −BijC(0))∂αY
i∂αY

j

= Cij∂αY
i∂αY

j ,

(3.60)

where we used adapted coordinates such that ∂̂αY
i = ∂αY

i and ∂̂αYi = Bij∂αY
j . Thus

the action reproduces the contributions of RR terms to the IIB NS5 DBI action.

Partially doubled: 0 < d < 10. In the O(d, d) frame which corresponds to the IIB

NS5 brane, the pure spinor λ̄brane is

λ̄brane = (det k̃ai)
1/2ψ1 . . . ψD|0〉 ⇒ λ̄brane = (det k̃ai)

1/2〈0| . (3.61)

The DBI action now involves the three O(d, d) spinors C, Cµ, Cµν . We have that C and Cµν
are formed from even numbers of creation operators, while Cµ is formed from odd numbers.

The components of these spinors are just

Ci1...ip = [eB̂2 ∧ Ĉ]i1...ip ,

Cµi1...ip = [eB̂2 ∧ Ĉ]µi1...ip ,

Cµνi1...ip = [eB̂2 ∧ Ĉ]µνi1...ip ,

(3.62)

where we now denote the 10-d fields as B̂µ̂ν̂ , Ĉ0, Ĉµ̂ν̂ , . . . in order to make the connection

with the DFT variables clearer after splitting µ̂ = (µ, i).

Clearly, we still have

λ̄braneC = (det k̃ai)
1/2C0 , (3.63)
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while we need to compute λ̄braneC̃αβ with C̃αβ as in (3.11). We find

λ̄braneC̃αβ
(det k̃ai)1/2

=
(
Cµν(0) −BµνC(0) +Aµ

iAν
jCij −A[µ

iAν]iC(0) + 2A[µ
iCν]i

)
∂[αX

µ∂β]X
ν

+ 2
(
Cµi −AµiC(0) −AµjCji

)
∂[αX

µDβ]Y
i

+ (Cij −BijC(0))D[αY
iD̂β]Y

j ,

(3.64)

after using D̂αYi = BijDαY
j . Relating the components of the B-field as usual as

B̂ij = Bij ,

B̂µi = Aµi +Aµ
jBji ,

B̂µν = Bµν −A[µ
iAν]i +Aµ

iAν
jBij ,

(3.65)

we find that

λ̄braneC̃αβ
(det k̃ai)1/2

=
(
Ĉµν − 2ĈµiAν

i +Aµ
iAν

jĈij

)
∂αX

µ∂βX
ν

+ 2(Ĉµi + CijAµ
j)∂[αX

µDβ]Y
i + ĈijDαY

iDβY
j

= Ĉµ̂ν̂∂αX
µ̂∂βX

ν̂ ,

(3.66)

so again the choice of λ in this frame picks out the correct contribution of the RR fields to

IIB NS5 DBI action, using ed(deth)−1/4 = eφ(det k̃ai)
−1/2.

As all quantities used here transform covariantly as O(d, d) spinors, we can transform-

ing both λbrane and C and obtain the correct expressions for the RR contributions to the

DBI action in the KKM and 52
2 cases.

3.4 Charges

The d Killing vectors kMa give rise to an antisymmetric charge

TM1...Md = εa1...adkM1
a1 . . . kMd

ad
. (3.67)

The determinant factor that appears in the action can be written as

e−2d
√

deth = e−2d

√
1

D!
HM1N1 . . .HMdNdT

M1...MdTN1...Nd . (3.68)

The paper [54] analysed string solitons and their classification under T-duality, showing

that they fall into totally antisymmetric representations of O(d, d). In particular, the

five-branes in D = 10 − d dimensions appear in the antisymmetric representation with

d antisymmetric indices, and in fact this further splits into self-dual and anti-self-dual

irreducible representations, corresponding to five-branes with vector multiplets (as for the

IIB NS5 and its T-duals) and tensor multiplets (as for the IIA NS5 and its T-duals),

respectively.
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charge brane charge brane

IIB T12 (+) NS5

IIA T 1
2 (−) KKM T12 (+) NS5

IIB T 12 (+) 52
2 T 1

2 (−) KKM

IIA T 12 (+) 52
2

Table 1. Branes and their charges. Note that T 2
1 would also describe KKM.

For instance, consider the case d = 2. We require

TMN = ±1

2
εMN

PQT
PQ , (3.69)

where εMNPQ is defined by ε12
12 = 1, and indices are raised and lowered using ηMN . This

leads to the following conditions:

(+) T 1
2 = T 2

1 = 0 , T 1
1 = T 2

2

(−) T 12 = T12 = 0 , T 1
1 = −T 2

2 .
(3.70)

We note that Buscher transformations have determinant −1 and so send εMNPQ → −εMNPQ.

This means that a charge that is self-dual in one frame will be anti-self-dual in another.

However, in each case, the inequivalent representation will continue to describe the “other”

five-brane duality chain. The duality orbits we are interested in therefore appear as

in table 1.

Note that T-duality in the direction i acts by raising or lowering the index i. This

suggests the charges T 1
1 and T 2

2 must lie in a different orbit entirely, as they are mapped

back into themselves on Buscher transformations. However, the corresponding potentials

do not correspond to BPS objects (they are in a non-supersymmetric conjugacy class

according to the analysis of [54], for instance). In fact, consistent with that these are not

allowed by our condition kMa k
N
b ηMN = 0. Hence, one may understand this as the BPS

condition.

4 O(d, d) covariant Wess-Zumino action

4.1 Gauge transformations and worldvolume field strengths

In the DBI part of the action, there were two types of contributions from the RR fields,

reflecting the presence in the original NS5 DBI term of the RR 0-form, C0, and the RR

two-form, C2. Both of these fields appeared in a gauge invariant: the 0-form is triv-

ially invariant, while the two-form appeared alongside a worldvolume one-form, cα, in the

combination

Gαβ = 2∂[αcβ] + Ĉµ̂ν̂∂αX
µ̂∂βX

ν̂ , (4.1)

where under gauge transformations δCµ̂ν̂ = 2∂[µ̂λ̂ν̂] we have δcα = −λ̂µ̂∂αX µ̂.

In the DFT reformulation, the situation is more complicated. Consider the case d = 10.

There is a single RR spinor C, carrying no (doubled) spacetime indices, and transforming
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under RR gauge transformations as δC = ψM∂Mλ, where λ is a spinor of opposite chirality

to C (and where again ψM ≡ 1√
2
ΓM = (ψi, ψ

i)).

We obtained the term involving C2
0 which appears in the NS5 action by making use

of the pure spinor λbrane, which was defined up to scale by kMa ΓMλbrane = 0. But consider

the gauge transformation

δ(λ̄braneC) = λ̄braneψ
M∂Mλ , (4.2)

which is apparently non-zero, unless

ψMλbrane∂M = 0 . (4.3)

One can argue that this must in fact be true: in coordinates adapted to the isometry, we

have kMa = δMa and ∂a = 0. Let ã denote the remaining d directions which do not corre-

spond to the isometries associated to kMa (some of these directions may be dual directions,

depending on the choice of section, in which case also nothing will depend on them, but

we can ignore this possibility). The directions a must be dual to the ã. The definition of

λbrane is that ψãλbrane = 0. Then one sees that ψaλbrane∂a + ψãλbrane∂ã = 0, where the

first term is zero because ∂a = 0 and the second term is zero by the definition of λbrane.

Hence although C itself is not gauge invariant, the pullback λ̄braneC appearing in the

worldvolume action will be.

Now we can move on to discuss the more complicated pullback (3.11) which appeared

in the determinant part of the DBI term. This involves the RR fields C, Cµ, Cµν . These

have the following RR gauge transformations:

δC = ψM∂Mλ ,

δCµ = ∂µλ− ψM∂Mλµ ,
δCµν = 2∂[µλν] + ψM∂Mλµν ,

(4.4)

where λµν and λ have the opposite chirality to Cµν and C, while λµ has the same chirality

(but opposite to Cµ). The variation involving λµν is simply:

δC̃αβ = ψM∂Mλµν∂αX
µ∂βX

ν , (4.5)

while that involving λµ is:

δC̃αβ = 2∂[α(λµ∂β]X
µ) + 2ψNψM∂Nλµ

(
Aµ

M∂[αX
µ∂β]X

ν + ∂[αX
µD̂β]Y

M
)
, (4.6)

and that involving λ is:

δC̃αβ = 2ψM∂[αλ∂̂β]Y
M+2∂[αλψM (Âβ]

M−Aβ]
M )−2D̂[αY

NψM∂Nλ(Âβ]
M−Aβ]

M )

−ψP
(
Bαβ+ψMψN

[
D̂[αY

MD̂β]Y
N+2A[α

MD̂β]Y
N+A[α

MAβ]
N
])
∂Pλ.

(4.7)

Here Âµ
M −AµM = −kMa kNb habHMPAµ

P and we have written worldvolume indices where

we have contractions with ∂αX
µ. These expressions seem quite strange. Notice though,

that contracting with λ̄brane we find simply

δ(λ̄braneC̃αβ) = 2λ̄brane∂[α

(
λµ∂β]X

µ + ψMλ∂β]Y
M
)

(4.8)
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using λ̄braneψMk
M
a = 0, λ̄braneψ

M∂M = 0 and also λ̄braneψM∂α(kMa . . . ) = 0 (as the pos-

sibility of a derivative hitting kMa should not affect the definition of λbrane). Thus the

combination λ̄braneC̃αβ transforms into a total derivative.

We can then combine the pullback with a worldvolume one-form c̃α to produce a gauge

invariant field strength. This c̃α is also an O(d, d) spinor, and we define now

Gαβ = 2∂[αc̃β] + C̃αβ (4.9)

with

δc̃α = −λµ∂αXµ − ψMλ∂αYM + . . . (4.10)

where the dots indicate that in principle one may have additional terms which vanish in

2λ̄brane∂[αcβ] thanks to the λ̄brane, such that λ̄braneGαβ is gauge invariant.

Evidently, one wants to proceed to construct additional gauge invariant pullbacks using

λ̄brane and the other RR spinors. Let us outline how this would be done generally in the

O(10, 10) case, as here we only have C transforming under λ. Clearly the way to pullback

this spinor to get a p-form on the worldvolume is to contract C with λ̄braneΓM1...Mp d̂Y
M1 ∧

· · · ∧ d̂YMp . In particular, for the case of the NS5 brane (in adapted coordinates), where

d̂Ỹi = BijdY
j , one finds explicitly that

1

(
√

2)p
λ̄braneΓM1...MpC∂̂[α1

YM1 . . . ∂̂αn]Y
Mp = (−1)p(p−1)/2Ci1...ip∂[α1

Y i1 . . . ∂αp]Y
ip ,

(4.11)

where note (−1)p(p−1)/2 is +1 for p = 0, 1, 4, 5 and −1 for p = 2, 3, 6.

Now, we can calculate that

δ

(
1

(
√

2)p
ΓM1...MpC∂̂[α1

YM1 . . . ∂̂αp]Y
Mp

)
= p∂[αp

(
ψM1 . . . ψMp−1λ∂̂α1Y

M1 . . . ∂̂αp−1]Y
Mp−1

)
+

1

2
p(p− 1)(p− 2)ηM1M2ψM3 . . . ψMp−1∂[αp ∂̂α1Y

M1 . . . ∂̂αp−1]Y
Mp−1

− p(p− 1)ψM1 . . . ψMp−1λ∂[αp ∂̂α1Y
M1 ∂̂α2Y

M2 . . . ∂̂αp−1]Y
Mp−1

+ (−1)pψNψM1 . . . ψMp∂Nλ∂̂[α1
YM1 . . . ∂̂αp]Y

Mp .

(4.12)

The last two lines always vanish on contraction with λ̄brane.

Let us define

C̃α1...αp = (−1)p(p−1)/2 1

2p/2
ΓM1...MpC∂̂[α1

YM1 . . . ∂̂αp]Y
Mp (4.13)

and introduce worldvolume form fields (which are O(d, d) spinors) c̃α1...αp transforming as

δc̃α1...αp = −(−1)p(p−1)/2 1

2p/2
ΓM1...Mp ∂̂[α1

YM1 . . . ∂̂αp]Y
Mp

= −(−1)p(p−1)/2ψM1 . . . ψMp ∂̂[α1
YM1 . . . ∂̂αp]Y

Mp .
(4.14)
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Then the following “field strength”

Gα1...αp = p∂[α1
c̃α2...αp] −

1

2
p(p− 1)(p− 2)ηMN∂[α1

∂̂α2Y
M ∂̂α3Y

Ncα4...αp] + C̃α1...αp ,

(4.15)

is such that λ̄braneGα1...αp is gauge invariant.

We can rewrite these in form notation: first letting

C̃p ≡ (−1)p(p−1)/2 1

p!

1

(
√

2)p
ΓM1...MpCd̂YM1 ∧ d̂YMp , (4.16)

then we have

G̃p ≡ dc̃p−1 −
1

2
ηMNdd̂Y

M ∧ d̂Y N ∧ c̃p−3 + C̃p , (4.17)

and

δc̃p = −(−1)p(p−1)/2 1

p!

1

(
√

2)p
ΓM1...Mpλd̂Y

M1 ∧ · · · ∧ d̂YMp . (4.18)

In the NS5 frame, we find that

λ̄braneG̃p = Gp (4.19)

where

Gp = dcp−1 +H3 ∧ cp−3 + Cp (4.20)

with δcp = −[e−B2λ]p, after identifying λ̄branec̃p = cp. The key point here is that the use

of the projected coordinates allows us to obtain the H3 factor in this frame from dd̂YM .

4.2 Wess-Zumino term: RR contributions

As explained in appendix A.2, the Wess-Zumino term for the NS5 brane in 10-dimensions

can be written using the field strengths (4.20) as

LWZ = B6 +
1

2
(G6C0 − G4 ∧ C2 + G2 ∧ C4 − G0C6) . (4.21)

We will discuss the B6 in the following subsections. Here, using the results from the

previous subsection, it is trivial to express the remaining terms as:

LWZ ⊃
1

2

(
λ̄braneG̃6λ̄braneC − λ̄braneG̃4 ∧ λ̄braneC̃2

+ λ̄braneG̃2 ∧ λ̄braneC̃4 − λ̄braneG̃0 ∧ λ̄braneC̃6

) (4.22)

which is entirely O(10, 10) covariant. This can be Fierzed into (now suppressing the wedge

symbols for clarity)

LWZ ⊃
1

2

1

210
λ̄braneΓ

M1...M10λbrane

(
G̃6ΓM1...M10C − G̃4ΓM1...M10 C̃2

+ G̃2ΓM1...M10 C̃4 − G̃0ΓM1...M10 C̃6

)
=

1

2

1

(
√

2)10
TM1...M10

(
G̃6ΓM1...M10C − G̃4ΓM1...M10 C̃2

+ G̃2ΓM1...M10 C̃4 − G̃0ΓM1...M10 C̃6

)
.

(4.23)

We claim that this represents part of an O(10, 10) covariant Wess-Zumino term for the

five-branes, and conjecture that reducing this to O(d, d) and imposing ∂M = 0 should lead

to the expressions in [54].
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4.3 Wess-Zumino term: NSNS contributions

We now turn to the leading term, which represents the magnetic potential to which the

five-brane couples electrically. Matters are complicated here by the fact the duality orbit

contains the Kaluza-Klein monopole, which couples to the magnetic dual of the Kaluza-

Klein vector — which is part of the metric. Let us now discuss some elements of how this

is expected to appear in DFT. Recall that in ordinary supergravity, one can introduce B6

as a Lagrange multiplier for the Bianchi identity for B2. This 6-form field is sourced by the

NS5-brane, whose T-dual KK monopole sources a field associated with the dual graviton.

In the linear approximation this would be a vector-valued 7-form, i.e.

B6 = Bµ̂1...µ̂6 ←→ Aµ̂1...µ̂7,µ̂8 = A7,1. (4.24)

Further T-duality action generates fields B8,2, B8,3 and B8,4 which interact with the 52
2, 5

3
2

and 54
2 branes respectively. The latter is a co-dimension-0 object. Full classification of such

objects in terms of irreps of O(d, d) can be found in [54, 56, 65].

From the point of view of the full Double Field Theory, these potentials can be naturally

associated with various Bianchi identities. Let us start with the split version of DFT

which is formulated for a space of dimensions D + 2(10−D) parametrised by coordinates

(Xµ, YM ) and containing as before the fields gµν , Aµ
M , Bµν ,HMN and d. Consider first

the form fields, Aµ
M and Bµν , which provide a “tensor hierarchy” similar to that found

in gauged supergravities and in exceptional field theory. The field strengths for the gauge

potentials Aµ
M and Bµν satisfy Bianchi identities of the following form

D[µFνρ]
M + . . .+ ∂MHµνρ = 0,

D[µHνρσ] + . . . = 0,
(4.25)

where the covariant derivative is defined in a Yang-Mills-like fashion Dµ = ∂µ − LAµ . In

addition, the generalised metric contains components of the B-field and the metric for the

internal space. The corresponding field strength for these fields can be constructed by

using the so-called flux formulation, defining generalised fluxes FMNK and FM built using

derivatives of the generalised vielbein, which themselves obey certain Bianchi identities

(see section 4.4). The corresponding Bianchi identities are simply

∂[MFNKL] −
3

4
FPMNFQKLηPQ = 0 . (4.26)

Following the standard procedure as in [53] one can introduce a dual potential DMNKL

which acts as a Lagrange multiplier imposing the above identity when inserted into the

DFT action. In principle one can perform this procedure for the identities (4.25) obtaining

dual potentials DD−3,M and DD−4, where the number in the subscript denotes the rank of

the form in the external space. Note that at least for DMNKLthis procedure only works at

linear level due to the usual difficulties with the dual graviton.
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Analysing tension for various objects of O(d, d)-covariant theory living in D = 10− d
dimensions in [54] it has been shown that magnetic gauge potentials are the following

DD−4, DD−3,M , DD−2,MN , DD−1,MNK , DD,MNKL,

DD−2, DD−1,M , DD,MN ,

DD,

(4.27)

where the D − n subscript denotes rank of the form in the external D-dimensional space,

and the O(d, d) indices are understand to be totally antisymmetric. As described above

the top form potentials DD,M1...Mn is related to the Bianchi identities for the fluxes FMNK

and FM (at linear level), and the fields DD−3,M and DD−4 could be related to the Bianchi

identities for F2
M andH3. The same procedure must naturally work for all other potentials,

in particular the fields DD−1,MNK and DD−1,M generate “mixed” Bianchi identities via

adding a Lagrange term of the following schematic form to the DFT action:

εµ1...µD
(

(D[µ1FMNK + . . . )Dµ2...µD]
MNK + (D[µ1FM + . . . )Dµ2...µD]

M
)
. (4.28)

When considering a compactification ansatz these become the requirement that the em-

bedding tensor is independent of the (external) coordinates. In principle one may start

with the Bianchi identity (4.26) and understand that as the one formulated in the full

O(10,10) theory. Then split of these identities upon 10 = D + d will generate all known

BI’s from tensor hierarchy and many others, which correspond precisely to the potentials

listed above.6

What we are interested in is the electric coupling of these dual potentials to the

5-branes. Below we present explicit expressions first for O(10, 10), and then O(2, 2) and

O(4, 4) DFT which correspond to D = 8 and D = 6 respectively, essentially following the

set-up of [54], and indicating the choices of Killing vectors kMa which pick out different

branes in these cases.Note that we are not precise about numerical factors, and will write

DαY
M omitting the hat denoting the modification involving the generalised Killing vectors.

In principle, one would want ultimately to fix the full Wess-Zumino term using gauge

invariance. We can define the dual potential DMNPQ in linearised DFT [53], including its

linearised NSNS gauge transformations, and this may be a good starting point. However,

even if we do not know the full gauge transformations of the dual potentials (let alone how

to define them non-linearly), we can and will proceed using the representation theoretic

knowledge of what form they should take thanks to [54] and write down the only possible

way they can couple to the 5-branes.

D = 0 and O(10, 10). Firslty, let us consider the case where all direction are doubled.

We know in this case that the charge has ten doubled indices, while the linearised dual of the

generalised metric leads to a totally antisymmetric tensor with four indices, DMNPQ [53].

We know that the worldvolume is six-dimensional, we also know that 6 + 4 = 10, so it is

natural to postulate in this case that

SWZ ⊃
∫
dσα

1 ∧ · · · ∧ dσα6TM1...M10D
M7...M10∂α1Y

M1 . . . ∂α6Y
M6 (4.29)

6Manifest demonstration of this procedure is work in progress and the results will be available soon.
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provides the coupling to the object DMNPQ. In the NS5 frame, one has Ti1...i10 ∼ εi1...i10
and expect Di1...i4 ∼ εi1...i10Bi5...i10 , thereby automatically reproducing the expected

∫
B6

term. The full WZ term, of course, should be given by combining (4.29) with the RR

contribution (4.23), which is justified here because we know that in the duality frame that

corresponds to the NS5 brane, we obtain exactly the correct expected WZ term for the IIB

NS5 brane (duality covariance effectively ensures that we should then obtain the right WZ

terms for dual branes). It is tempting to wonder whether combining (4.29) with the RR

contribution (4.23) sheds any light on the properties of DMNPQ — for instance, partially

fixing its RR gauge transformations.

D = 8 and O(2, 2). Consider next the case of O(2, 2) DFT with 8 external coordinates

Xµ, where one has the following potentials

D4, D5,M , D6,MN ,

D6.
(4.30)

Note that one cannot have forms of rank larger than 6 as the worldvolume dimension of

all the branes in question is 6.

From the perspective of reduction to D = 8, we can think of each of these gauge

potentials as coupling to differently embedded branes in the full ten-dimensional space

split as 8 + 2, which we can denote as follows:

0 1 2 3 4 5 6 7 | 8 9

× × × × | × × D4 ,

× × × × × | × D5,M ,

× × × × × × | D6,MN , D6 .

(4.31)

Hence, schematically one writes the following for the leading term in the Wess-Zumino

action for the O(2,2) theory on the DFT monopole

SWZ =

∫
TMNdσα1 ∧ · · · ∧ dσα6

×
(
Dα1...α6MN +Dα1...α5,MDα6YN +Dα1...α4Dα5YMDα6YN

)
TMN = kMa k

N
b ε

ab,

(4.32)

where the integration is performed over the worldvolume of the brane and the three different

terms involve the coordinates YM which describe the fluctuations of the brane in the

internal space - allowing for it to be wrapped in different orientations as in the scheme above.

To see explicitly that the above indeed reproduces the known Wess-Zumino terms

for NS5, KK5 and 52
2 branes, one first notes that the object Dα1...α6MN combines

the corresponding gauge potentials in an O(2,2) covariant manner (here we write

VM = (V x, V y, Vx, Vy))

Dα1...α6
xy = Bα1...α6 NS5,

Dα1...α6x
y = Aα1...α6x,x KK5,

Dα1...α6y
x = Aα1...α6y,y KK5,

Dα1...α6xy = Dα1...α6xy,xy 52
2.

(4.33)
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This implies, that these potentials are in the same representation as the charge and hence

correspond to the same choice of the killing vectors kMa solving the section constraint

NS5 : (0, k̃am) SWZ = k̃1xk̃2yε
ab

∫
Bα1...α6dσ

α1 ∧ · · · ∧ dσα6 + . . . ,

KK5 :
(0, ky1 , 0, 0)

(0, 0, k̃2x, 0)
SWZ = ky1 k̃2xε

12

∫
Aα1...α6y

ydσα1 ∧ · · · ∧ dσα6 + . . . ,

KK5 :
(kx1 , 0, 0, 0)

(0, 0, 0, k̃2y)
SWZ = kx1 k̃2yε

12

∫
Aα1...α6x

xdσα1 ∧ · · · ∧ dσα6 + . . . ,

52
2 : (kma , 0) SWZ = kxak

y
b ε
ab

∫
Bα1...α6xy

xydσα1 ∧ · · · ∧ dσα6 + . . . .

(4.34)

We see, that the four classes of solutions of the constraint kMa k
N
b ηMN = 0 correspond to

the three branes with KK5 monopole combining two classes which differ only by x↔ y.

D = 6 and O(4, 4). Consider now the case of O(4, 4) DFT with 6 external coordinates

xµ, where one has the following potentials

D2, D3,M , D4,MN , D5,MNK , D6,MNKL,

D4, D5,M , D6,MN ,

D6,

(4.35)

The corresponding possible embedding/wrapping table for the brane will look as follows

0 1 2 3 4 5 | 6 7 8 9

× × | × × × × D2,

× × × | × × × D3,M ,

× × × × | × × D4,MN , D4,

× × × × × | × D5,MNK , D5,M ,

× × × × × × | D6,MNKL, D6,MN , D6, D
′
6,

(4.36)

note that we again do not list directions for the full doubled space leaving only half of

them. As before the potentials in the last column do not corresponding to supersymmetric

branes and hence cannot enter the Wess-Zumino term at the top level.

Again schematic form of the Wess-Zumino term is simple and straightforward

SWZ =

∫
dσα1 ∧ · · · ∧ dσα6TMNKL ×

(
Dα1...α6MNKL +Dα1...α5,MNKDα6YL

+Dα1...α4,MNDα5YKDα6YL +Dα1α2α3,MDα4YNDα5YKDα6YL

+Dα1α2 Dα3YMDα4YNDα5YKDα6YL

)
,

(4.37)

with the charge defined as

TMNKL = kMa k
N
b k

K
c k

L
d ε
abcd. (4.38)

Finding a general solution of the algebraic section constraint for O(4,4) is a technically

involved problem, however explicit computer check of various solutions shows that there
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are only 5 classes of solutions, which correspond precisely to 5p2-branes with p = 0, 1, 2, 3, 4,

as they were found in [32]. Let us list the representative solutions for these classes

50
2 : kMa = (~0; k̃am) SWZ = k̃1mk̃2nk̃3kk̃4lε

mnklε1234

∫
D6

1234 + . . . ,

51
2 :

kM1 = (k1
1, 0, 0, 0;~0)

kM(2,3,4) = (~0; 0, k̃(2,3,4)m̂)
SWZ = 4km1 k̃2nk̃3kk̃4lε

1nklεm234

∫
D6,1

234 + . . . ,

52
2 :

kM(1,2) = (km̃(1,2), 0, 0;~0)

kM(3,4) = (~0; 0, 0, k̃(3,4)ñ)
SWZ = 4km1 k

n
2 k̃3kk̃4lε

12klεmn34

∫
D6,12

34 + . . . .

53
2 :

kM1 = (~0; k̃11, 0, 0, 0)

kM(2,3,4) = (0, km̂(2,3,4);
~0)

SWZ = 4k̃1mk
n
2 k

k
3k

l
4ε
m234ε1nkl

∫
D6,234

1 + . . . .

54
2 : kMa = (kma ,~0) SWZ = km1 k

n
2 k

k
3k

l
4ε

1234εmnkl

∫
D6,1234 + . . . .

(4.39)

where the normal and dual components of the generalised vectors kMa are separated by

semicolon for the sake of clarity. Just for this expression we define m̂ = 2, 3, 4, m̃ = 1, 2,

ñ = 3, 4. Although the expression above might seem messy, the idea behind that is straight-

forward; one distinguishes five classes of solutions, depending on how many vectors have

non-zero components in the geometric direction.

One notes here, that the above expressions do not only reproduce the structure of

the Bianchi identities for non-geometric backgrounds as obtained in [32], but also give the

correct factor of 4 in the r.h.s.. In addition, one observes the correct counting of indices

of the gauge potential and the following relation between the potentials D6,MNKL and the

gauge potentials D6+p,p which are associated to solutions with p special directions

Dµ1...µ6
1234 = Bµ1...µ6 ,

Dµ1...µ6,1
234 = Aµ1...µ6x,x,

Dµ1...µ6,12
34 = Dµ1...µ6xy,xy,

Dµ1...µ6,123
4 = Dµ1...µ6xyz,xyz,

Dµ1...µ6,1234 = Dµ1...µ6xyzw,xyzw,

(4.40)

with the obvious definition of the coordinates x, y, z, w.

Hence, one concludes, that the solutions listed in [32] correspond to such embedding of

the DFT monopole in the full O(4,4) DFT when it interacts only with the 6-form potential

D6,MNKL. Such dependence of the solution on embedding is expected as the full 10D 6-

form potential for the NS5-brane for example under the split 10 = 6+4 gets decomposed to

various forms. Covariantizing each of them under O(4,4) one get the potentials Dp,M1...Mm

listed above.

4.4 Bianchi identities

We now want to make some comments about the form of the Bianchi identities that are

sourced by the five-brane action we have described. The Bianchi identities in the part
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of DFT described by the generalised metric and generalised dilaton can be formulated

as follows. First, we need to introduce a generalised vielbein, EAM , such that HMN =

EAME
B
NHAB, where the flat generalied metric HAB can be taken to be the identity if

d < 10, or by HAB = diag(η̄, η̄−1) where η̄ is the flat Minkowski metric for d = 10. The

generalised vielbein is a group element and can be taken to obey EAME
B
Nη

MN = ηAB where

ηAB will be chosen to be numerically equal to ηMN .

From this generalised vielbein and its inverse, one can define the following generalised

flux, given in flat indices as follows:

FABC = 2EAME
N
[B∂NE

M
C] + EAMη

MNηKL∂NE
K
[BE

L
C],

FA = ∂ME
M
A + 2EMA ∂Md.

(4.41)

This flux identically satisfies the following Bianchi identities:

EM[A∂MFBCD] −
3

4
FE [ABF|E|CD] ≡ ZABCD = 0 . (4.42)

We can also define the flux in curved indices,

FMNK = 3EA[M∂NEK]
A , (4.43)

which now obeys the BI

SMNPQ ≡ ∂[MFNKL] −
3

4
FPMNFQKLηPQ = 0 . (4.44)

up to terms which vanish by the section condition. The components of the generalised

flux FMNP can be identified with a set of spacetime tensors: the three-form Hijk, the

“geometric flux” τij
k, the non-geometric flux, Qi

jk and the non-geometric R-flux, Rijk.

In presence of sources the r.h.s. of the Bianchi identities gets modified to include a

delta function. Note that the harmonic function H(y) which charactert an es a brane-

like solution solves the Poincare equation with non-vanishing source term, which for the

relevant discussion of [32] reads

3∑
i=1

∂i∂iH(y1, y2, y3) = αδ(y2
1 + y2

2 + y2
3). (4.45)

Substituting the explicit expressions for the backgrounds from [32] we obtain the following

expression for the non-vanishing components of the Bianchi identities

50
2 : Sabcd =

α

4H2
ε1234εabcdδ

(
(x1)2 + (x2)2 + (x3)2

)
,

51
2 : Sabcd =

α

H2
εa123εbcd4δ

(
(x1)2 + (x2)2 + (x3)2

)
,

52
2 : Sabcd =

α

H2
εab12εcd34δ

(
(x1)2 + (x2)2 + (x̃3)2

)
,

53
2 : Sabcd =

α

H2
εabc1εd234δ

(
(x1)2 + (x̃2)2 + (x̃3)2

)
,

54
2 : Sabcd =

α

4H2
εabcdε1234δ

(
(x̃1)2 + (x̃2)2 + (x̃3)2

)
,

(4.46)
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where we include the factors ε1234 = 1 and ε1234 = 1 for the sake of symmetry and SMNKL

is just the full expression (4.44). Note that these precisely repeat the structure of (4.39).

Very similar if not the same Bianchi identities have been found in [66], where however

appeared some inconsistency with the result of [43] (see appendix D.2 of the former for

more details). Hence, the result here and in [32] are closer to the former, than the latter.

There is still the technical question of repeating of all the calculation of [32] for the

case of the localized DTF monopole, i.e. the one with H = H(y1, y2, y3, y4). However, for

sure this will not give new information and the whole discussion will just be repeated.

Taking into account these observation and the expression for the covariant WZ-action

for the O(4,4) theory we conjecture that the full covariant Bianchi identities should be of

the following form

∂[MFNKL] −
3

4
FP [MNFPKL] ∝ TMNKLδ

(
r2(YM )

)
. (4.47)

The function r2(Y ) is always a sum of squares of 4 coordinates which are chosen by solving

the differential section constraint.

5 Discussion

Let us recap the main accomplishments of this paper. We have introduced a formulation of

the action for the IIB NS5 brane and its T-duals in the language of double field theory: this

is an action for a brane in a doubled spacetime (with doubled coordinates YM appearing

as the worldvolume scalars), coupling to a background characterised by its generalised

metric, O(d, d) NSNS tensor hierarchy form fields and O(d, d) RR spinors. The full action

for d = 10 is given by the sum of the DBI action, (3.9) (specialised to d = 10), the WZ

RR contributions (4.23) and the WZ NS contribution (4.29) in terms of the proposed dual

field DMNPQ.

The DFT solution describing these branes has been termed a “DFT monopole” [31],

while the exotic branes obtained by further T-dualities have been dubbed “generalised

monopoles” in [55, 56]. Our doubled 5-brane action lives up to these expectations by mim-

icking the form of the action for the usual Kaluza-Klein monopole [38, 40, 52]. We deal

with having twice as many coordinates by treating half the doubled coordinates as corre-

sponding to special isometry directions. Introducing (generalised) Killing vectors for these

directions, we can construct a manifestly O(d, d) covariant action. These d generalised

Killing vectors kMa allow us to construct a charge TM1...Md = εa1...adkM1
a1 . . . kMd

ad
character-

ising the 5-brane. They also allow us to define an auxiliary O(d, d) spinor λbrane, which is

needed to pullback the O(d, d) RR spinors to the brane worldvolume, by projecting out the

components that should appear in the action different duality frames. These ingredients

combine to produce the O(d, d) covariant DBI action, equation (3.9), while we provided

the essential features of an O(d, d) covariant WZ term in section 4.

This provides a unified formulation of a number of T-dual branes. One can obtain these

dual formulations by making alternative choices of the kMa , while assuming in each case

that the solution to the section condition ηMN∂M∂N = 0 is the same (∂̃i = 0) and that the
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coordinates Y i parametrise the physical spacetime while the Ỹi are dual. Then, as we saw,

choosing a particular kMa to correspond to an isometry in a dual direction (kMa = (0, k̃ai))

or to one in a physical direction (kMa = (kia, 0)) amounted to describing for instance the

NS5 brane or the T-dual KKM. Note that to view this as an actual T-duality in the usual

sense requires there to really be an isometry (corresponding to kia). Otherwise, there is a

somewhat subtle set of possibilities, which we will now discuss in detail.

5.1 Location, location, location

Effectively, we have three choices:

• the choice of solution of the usual “differential” section condition, ηMN∂M∂N = 0.

The solution tells us which d coordinates our fields and gauge parameters may

depend on.

• the choice of “duality frame”, i.e. which d coordinates are taken to be physical, i.e. to

be those of the physical spacetime. In DFT, this does not have to be the same as the

choice of solution to the section condition! Such a background would have physical

coordinates Y i but may depend on the Ỹi as long as it did not also depend on the

physical counterpart of any Ỹi that the fields depend on. Evidently, this is entirely

non-geometric from the supergravity point of view and the general interpretation of

such backgrounds in string theory is not clear. Clearly also this does not correspond

to carrying out a “duality” in the usual sense. Let us refer to this instead as the

choice of “spacetime frame”.

• the choice of the d kMa , which correspond to the existence of d isometries in the

doubled spacetime. The differential section condition imposes that there are always

d isometries: these kMa can correspond to isometries beyond the section condition.

At the risk of overstating the point, let us consider a simple example in great de-

tail. Suppose we have a brane action for just two worldvolume scalars (Y, Ỹ ), viewed as

doubled coordinates, with some non-trivial background generalised metric H(Y, Ỹ ) whose

coordinate dependence is subject to the usual section condition. In principle, we have

an action

S = S[Y, Ỹ ;H(Y, Ỹ )] . (5.1)

Then the possible choices we are faced with amount to the following:

• The section condition solution is ∂Ỹ = 0, the choice of “spacetime frame” is that Y is

the physical coordinate, and we have kMa = (0, k). Then the action is S = S[Y ;H(Y )],

a wholly geometric action. This is analogous to the NS5 brane action.

• Alternatively, if we choose kMa = (k, 0) then the Y direction is also an isometry (as

well as Ỹ ) but its derivatives are removed from the action using the gauged sigma

model approach, and the action is S = S[Ỹ ;H]. This is mildly non-geometric in that

the action is the action of a worldvolume scalar Ỹ (but the background is independent

of both Y and Ỹ ). This is analogous to the KKM and 52
2 actions, and is T-dual to

the subsequent case.
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• Now suppose we solve the section condition as ∂Y = 0 and pick the “spacetime frame”

such that Y is the physical coordinate. The background may still depend on Ỹ . This

is what we would get by naively applying the Buscher rules along a direction which

is not an isometry. If we take kMa = (0, k) then we are forced into having Ỹ as an

isometry direction also. The action is S = S[Y ;H]. This is analogous to the NS5

brane with an isometry, and is T-dual to the preceding case.

• Instead take the previous case but with kMa = (k, 0). We still view Y as a coordinate

in spacetime, but the brane action is S = S[Ỹ ;H(Ỹ )]. This is as non-geometric

as it gets for us. The background depends on dual coordinates: however we see

that the fluctuations of the brane are in the Ỹ direction only and not in the physical

spacetime Y . If this description can be trusted, this describes some an entirely locally

non-geometric brane. The simplest example is maybe to think of this as describing

the action for the KKM localised in winding space. The localisation of the KKM in

this manner is expected from the worldsheet instanton calculation of [9, 10].

We see that operating within DFT provides us with the ability to choose the location of

spacetime, the location of the coordinates that our background can depend on and, for the

class of 5-branes considered in this paper, the location of further special isometry directions.

5.2 Relation to other approaches and future work

Underlying our construction, was the technology of a “gauged sigma model”, meaning

that we required half the doubled directions be isometries, and we introduced generalised

Killing vectors corresponding to these isometries which played a vital role in writing down

the action. In practice, this involved modifying the derivatives of the worldvolume scalars

corresponding to doubled coordinates, so that

∂αY
M → ∂̂αY

M = ∂αY
M − kMa (h−1)abkNb HNP∂αY P . (5.2)

One could also view this as a gauging,

∂αY
M → ∂̂αY

M = ∂αY
M +AMα (5.3)

with a dependent gauge field AαM = −kMa (h−1)abkNb HNP∂αY P (roughly similar to the

viewpoint in [52]).

Now, this is particularly interesting because it seems very close to certain constructions

of actions for strings and particles in doubled spacetime. In particular, in [2, 50] the

doubled string is reduced to the ordinary string by gauging the shift symmetry in the

dual directions on which no fields depend. This gauging is implemented by introducing

an auxiliary worldsheet gauge field — let us also call it AM — whose algebraic equation

of motion allows one to eliminate the dual coordinates (in doing so, implementing the

chirality constraint on the doubled string coordinate). More recently in [67, 68] it was

shown that this extra gauge field is also vital in order to realise the symmetries of double

field theory on the worldsheet or worldline: it ensures a sort of worldvolume covariance

under generalised diffeomorphisms in spacetime — in particular, it guarantees there is
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a worldvolume symmetry when one has generalised Killing isometries (these ideas were

extended to particles in exceptional field theory in [69]).

The gauge field AM is constrained to obey ηMNAMAN = 0 and AM∂M = 0 (and

integrating out its non-zero components the eliminates the dual coordinates from the ac-

tion). Evidently, these constraints do hold for AMα = −kMa (h−1)abkNb HNP∂αY P (assuming

adapted coordinates kMa ∂M = 0). This suggests that there may be a perhaps more fun-

damental formulation of the doubled five-brane, in which one gauges using AαM , with

possibly its equation of motion then ensuring the appearance of the ∂̂αY
M we used. (Note

though that in the approaches mentioned above, one uses AM to eliminate the components

dual to the choice of section, whereas we maintained that our generalised Killing vectors

could correspond to isometries beyond those mandated by the section condition. However,

this is probably not difficult to reconcile.)

This suggests that one should always view brane actions in double field theory as a sort

of gauged sigma model, where one gauges away the isometry directions corresponding to the

dual coordinates. Indeed, any vector of the form kM = ηMN∂NO(Y ), where O(Y ) is any

function obeying section condition, provides a generalised Killing vector as its generalised

Lie derivative is zero automatically. Then, when there is an isometry present in the physical

spacetime, there is an ambiguity in the choice of whether one gauges the physical direction

or its dual. This then underlies how we can obtain the KKM and the 52
2 actions, as well

as that of the NS5 with transverse isometries: we simply take advantage of this ambiguity,

which corresponds directly to T-duality (as pointed out in for instance [31] at the level of

the supergravity solutions), and allows one to take some of the generalised Killing vectors

to correspond to isometry directions in the physical spacetime.

A possibly related observation is to note that a generalised Killing vector kM = (k, k̃)

acts on the NSNS fields as δkg = Lkg, δkB = LkB + dk̃ where Lk is the ordinary Lie

derivative with respect to the vector part of kM , and the one-form part k̃ generates a

B-field gauge transformation. In the NS5 frame, we took the d Killing vectors to lie solely

in the dual directions, thus kMa = (0, k̃a), and demanding that they are generalised Killing

amounts to

dk̃a = 0 . (5.4)

Clearly, one can always locally introduce such k̃a. If we study the NS5 brane in a back-

ground with d transverse directions compactified, then one can take instead k̃a = dY a,

where Y a are the compact coordinates on the transverse circles, which are closed but not

globally exact. It is then this case that one can T-dualise in the usual sense. This sug-

gests some interesting relationship with the (somewhat mysterious) global properties of the

doubled space.

As we mentioned earlier on in the paper, O(d, d) covariant Wess-Zumino terms for

solitonic branes after dimensional reduction have been provided in [54], and it would be

interesting to further understand how our O(10, 10) expression reduced to these cases. It

would also be interesting, and connected to the discussion above, to understand whether

one must necessarily use the projected coordinate derivatives ∂̂αY
M as we have done, or

whether there is a more elegant formulation of the WZ term without this explicit projection.

– 35 –



J
H
E
P
0
3
(
2
0
1
8
)
1
1
1

As another comment, one should notice that the precise potential of (the dual) split

O(d, d) DFT excited by the brane depends on how it is embedded into the full D + (d +

d) dimensional space. First sign of that is that the Bianchi identities of [32] are only

reproducible from the potential D6,MNKL in O(4, 4), For other groups, which correspond

to d 6= 4 one cannot embed the brane such as to have all fluxes internal and hence one

must consider different Bianchi identities of DFT. Explicit derivation of this procedure is

reserved for future work.

It would be interesting to construct the O(d, d) covariant actions for the other type

II NS sector five-branes: the type IIA NS5 brane and its T-duals, presumably by starting

with the PST form of the action for the IIA NS5. As double field theory can easily be

extended to describe the heterotic supergravities [16], we could also study the heterotic

5-branes (the actions for the exotic versions of which were also obtained by duality in [44].

Whether the approach using generalised Killing vectors lifts to branes in exceptional

field theory is a very interesting question, together with the question on applicability of the

approach to the D-branes sector of Type II theory. The common subtlety of these problems

is that one has to consider branes of different dimensionality which have to descend from

a single action. In the doubled formalism, all Dp branes are unified into a single brane

spanning half the doubled space, which appears in spacetime as Dp depending on how

the doubled D-brane intersects the latter [2]. This might correspond to choosing different

ways of gauging the doubled coordinates YM (σ) (corresponding to the choices of the kMa ),

followed by a sort of partial static gauge identification so that different numbers of the

coordinates actually lie in the physical and dual directions, allowing one to obtain all

Dp branes.

Of great interest are phenomenological applications of the obtained effective action

and in particular the source-corrected Bianchi identities. One would like to consider such

problems as DFT compactifications and probably involve the obtained effective action in

the microstate counting of black holes, where exotic branes may well be relevant [3].
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A Notations and conventions

A.1 Notations

We adopt the following conventions for labelling of indices

α, β, γ, . . . = 1, . . . , 6 worldvolume

i, j, k, l, . . . = 1, . . . , d internal space curved

ā, b̄, c̄, d̄, . . . = 1, . . . , d internal space flat

µ, ν, ρ, σ, . . . = 1, . . . , 10− d external space curved

µ̂, ν̂, ρ̂, σ̂, . . . = 1, . . . , 10 10D spacetime curved

M,N,K,L, . . . = 1, . . . , 2d DFT curved, O(d, d)-covariant

A,B,C,D, . . . = 1, . . . , 2d DFT flat, O(d)×O(d)-covariant

a, b, c, d, . . . = 1, . . . , d indices labelling Killing vectors

(A.1)

For completeness we list here notations for the objects, which appear in the paper

DYM = dYM +AMµ dX
µ,

kMa = (kma , k̃am) Killing vector in the generalised space
(A.2)

A.2 RR field conventions

Here we recall the conventions of [21] (related to those of [43] by changing the sign of B2).

In IIB, we have a set of even p-forms, C ≡ C0 +C2 +C4 + . . . , and in IIA we have odd

p-forms C ≡ C1 + C3 + . . . . (The duals can be treated democratically in this framework.

We omit them for now.) The field strengths F are defined as

F1 = dC0 ,

F3 = dC2 + C0H3 ,

F5 = dC4 + C2 ∧H3 ,

= dC ′4 +
1

2
C2 ∧H3 −

1

2
B2 ∧ dC3 ,

F2 = dC1 ,

F4 = dC3 +H3 ∧ C1 ,
(A.3)

where

C ′4 = C4 +
1

2
C2 ∧B2 , (A.4)

is an alternative choice for the four-form potential used in some papers. The total gauge

transformations of these fields are:

δC0 = 0 ,

δC2 = dλ1 ,

δC4 = dλ3 − dλ1 ∧B2 ,

δC ′4 = dλ3 −
1

2
dλ1 ∧B2 +

1

2
dΛ1 ∧ C2 ,

δB2 = dΛ1 ,

δC1 = dλ0 ,

δC3 = dλ2 −B2 ∧ dλ0 ,

(A.5)

So note that the IIB fields (C0, C2, C4) are invariant under B-field gauge transformations

(these are denoted Âp in [21]) while (C0, C2, C
′
4) are not (these are denoted Ap in [21]).
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Following [21], we define an alternative set of p-form potentials Cp (in [21] these are

what they denote by Cp) by

C = eB2 ∧ C , (A.6)

so that
C0 = C0 ,

C2 = C2 +B2C0 ,

C4 = C4 +B2 ∧ C2 + 1
2B2 ∧B2C0 ,

C1 = C1 ,

C3 = C3 +B2 ∧ C1 . (A.7)

The gauge transformations are

δC0 = 0 ,

δC2 = dλ1 + dΛ1C0 ,

δC4 = dλ3 + dΛ1 ∧ C2 ,

δC1 = dλ0 ,

δC3 = dλ2 + dΛ1 ∧ C1 , (A.8)

so these are not invariant under B-field transformations, but however transform in a con-

sistent manner under them. In [21] they show that it is in fact the potentials Cp which are

encoded as O(d, d) spinors.

A.3 NS5 worldvolume conventions

To describe the NS5 brane, we also need to introduce some dual potentials in IIB. We have

F7 = dC6 + C4 ∧H3

δC6 = dλ5 − dλ3 ∧B2 +
1

2
dλ1B2 ∧B2

(A.9)

while the field strength of 6-form dual to the B-field is defined via

dH7 = −F3 ∧ F5 + F1 ∧ F7 . (A.10)

We solve this Bianchi identity via (after [3] with respect to whom we have B2 → −B2):

H7 = dB6 −
1

2
(F1 ∧ C6 − F3 ∧ C4 + F5 ∧ C2 − F7 ∧ C0) . (A.11)

A short calculation shows that the gauge transformations of B6 can be taken to be

δB6 = dΛ5 +
1

2

(
− F1 ∧ (λ5 −B2 ∧ λ3 +

1

2
B2 ∧B2 ∧ λ1)

+ F3 ∧ (λ3 −B2 ∧ λ1)− F5 ∧ λ1

)
.

(A.12)

To construct a gauge invariant WZ term, we introduce worldvolume gauge potentials

c1, c3, c5 and their field strengths:

G0 = C0 ,

G2 = dc1 + C2 ,

G4 = dc3 +H3 ∧ c1 + C4 ,

G6 = dc5 +H3 ∧ c3 + C6 .

(A.13)
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The potentials transform as

δc1 = −λ1 ,

δc3 = −λ3 + λ1 ∧B2 ,

δc5 = −λ5 + λ3 ∧B2 −
1

2
λ1 ∧B2 ∧B2 .

(A.14)

The Wess-Zumino term is (this is the expression in [3]. Two of the terms appear to be

missing from the expression in [54]):

LWZ = B6 +
1

2
(G6C0 − G4 ∧ C2 + G2 ∧ C4 − G0C6) . (A.15)

Under gauge transformations, we have

δLWZ = d

[
Λ5+

1

2

(
−G4 ∧ λ1+G2(λ3−B2 ∧ λ1)− G0(λ5 −B2 ∧ λ3 −

1

2
B2 ∧B2 ∧ λ1)

)]
.

(A.16)

The expression (A.15) can also be written as

LWZ = B6 +
1

2
((dc5 +H3 ∧ c3)C0 − (dc3 +H3c1) ∧ C2 + dc1 ∧ C4) . (A.17)

If we let

c̃5 = c5 +B2 ∧ c3 +
1

2
B2 ∧B2 ∧ c1 ,

c̃3 = c3 +B2 ∧ c1 ,

c̃1 = c1 ,

(A.18)

transforming as δc̃p = −λp, then we further see that

LWZ = B6 +
1

2
(dc̃5C0 − dc̃3 ∧ C2 + dc̃1 ∧ C4) , (A.19)

with the calligraphic RR forms as defined in (A.6). Alternatively, one can define

G̃p = dc̃p−1 + Cp (A.20)

then the WZ term is also expressible as:

LWZ = B6 +
1

2

(
G̃6C0 − G̃4C2 + G̃2C4 − G̃0C6

)
. (A.21)

A.4 T-duality of RR fields

The following Pin(d, d) transformation:

Si ≡ ψi + ψi (A.22)

(with S−1
i = Si) induces the following O(d, d) tranformation [21]

hi =

(
−1 + ei ei
ei −1 + ei

)
, (ei)jk = δijδik . (A.23)
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Acting on the generalised coordinates YM , this interchanges Y i with Ỹi and sends YM →
−YM for YM 6= Y i, Yi. Thus it generates a Buscher transformation in the direction i

accompanied by a reflection in all other directions.

We find that acting on a spinor C we have, taking i = 1 for definiteness,

(S1C)µ1...µp = C1µ1...µp

(S1C)1µ1...µp = Cµ1...µp ,
(A.24)

where µi indices run over the directions excluding i = 1. Taking into account the reflections,

this implements the Buscher rules as:

C̃µ1...µp = (−1)pC1µ1...µp

C̃1µ1...µp = (−1)pCµ1...µp ,
(A.25)

In particular, IIA and IIB are related very simply via:

C1 = C0 ,

Cµ = Cµ1 ,

Cµν1 = Cµν ,
Cµνρ = Cµνρ1 ,

(A.26)

and so on for the higher rank potentials. From this one can find, for instance, that the

components of the ten-dimensional IIA RR fields are related to those of the IIB fields by:

Ĉ1 = C0

Ĉµ = Ĉµ1 + B̂µ1C0

Ĉµν1 = Ĉµν + 2A[µ
1Ĉν]1

Ĉµνρ = Ĉµνρ1 + 3B̂[µ|1|Ĉνρ] − 6A[µ
1B̂ν|1|Ĉρ]1 .

(A.27)

This agrees with the result of reducing the field strengths of (A.3) to 9 dimensions and

matching the resulting (appropriately redefined) components.

The result of doing two T-dualities follows either by inverting (A.27) to find the rules

for the IIB fields, or by applying (ψ1 + ψ1)(ψ2 + ψ2) to the spinor and then acting with a

reflection in both the 1 and 2 directions. One easily obtains the T-duality transformations:

C̃0 = −C12 ,

C̃12 = C0 ,

C̃µ1 = −Cµ2 ,

C̃µ2 = Cµ1 ,

C̃µν = Cµν12 ,

C̃µν12 = Cµν ,

(A.28)

and so on.
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