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1 Introduction

In the past several years, there has been a growing interest in the topic of “holographic

complexity.” This interest was originally motivated by the late time growth of the wormhole

volume in two sided black holes, which seems to have no correspondence in the boundary

which is in thermal equilibrium. It was then conjectured that such a phenomenon should

be related to the quantum complexity of the boundary state [1], and this conjecture was

strengthened by study of quantum chaos, namely the “switchback effect” [2, 3]. There

have since been several conjectures as to the exact quantity dual to complexity on the

boundary, all tied to the phenomenon of expanding wormholes in two-sided black holes.

The first proposal was that complexity is dual to the volume of a maximal spatial slice

with a given boundary [1], and the next [4, 5] was the gravitational action evaluated on

the Wheeler-DeWitt (WDW) patch. A third closely related conjecture was later proposed

in [6], namely that the complexity is dual to the space-time volume of a WDW patch.
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Unfortunately, there is little that we know about the concept of quantum complexity

in the boundary field theory. The basic definition involves a reference state |ψ0〉, a set of

quantum gates G = {gi}, and a tolerance parameter ε. The complexity of a quantum state

|ψ〉 is the minimum number of gates one needs to make up a quantum circuit Q =
∏C
i=1 gi

so that df (Q|ψ0〉, |ψ〉) < ε. One can also define the complexity of a unitary operator U

to be the minimum number of gates one needs to make up a quantum circuit QU so that

||QU −U || < ε.1 The holographic complexity is supposed to be the state complexity, while

we also use the operator complexity to analyze the characteristic behavior in section 3.

Even with these definitions, the task of actually computing the relative complexity of two

states is notoriously difficult. What is more, in the definition one has to make several

choices, and where these choices appear in the holographic prescription is as of yet unclear.

It is also a puzzle how one goes from the discretum of quantum circuits to a supposedly

continuous quantum field theory. There has been considerable effort defining complexity

in the quantum field theory [7–12], however they are weakly related to the holographic

complexity at this point. Therefore, what we are interested in is to utilize our intuitions

from quantum mechanics to conjecture some constraints on complexity in general. These

constraints are to be tested for both the boundary theory and the holographic theory.

Among the constraints which people have considered is the Lloyd bound [13]. This

bound was derived from the Margolus-Levitin theorem [14] under the assumption that each

gate will evolve a generic state into an orthogonal state. It states that the time rate change

of complexity2 is constrained by the energy:

Ċ ≤ 2M

π
, (1.1)

where M is the energy of the system. In [4, 5] it was conjectured that neutral black holes

should saturate this bound, and this assumption was made in order to set the constant

of proportionality between complexity and action. This conjecture originated from the

fast scrambling nature of black holes and the related idea that black holes are the fastest

possible quantum computers. However, one finds that for neutral black holes, the Lloyd

bound is saturated from above [15], which makes the conjecture somewhat suspicious. One

can also argue that the Lloyd bound is not an exact bound because the assumption is based

on is highly unrealistic. In fact, whether this assumption applies in the case of holographic

complexity has recently been questioned in [16].

In light of these difficulties with the Lloyd bound, it is interesting to test these holo-

graphic complexity conjectures3 against additional pieces of intuition in novel contexts.

One context which might reasonably provide a testbed is the noncommutative field theo-

1df ( , ) is the Fubini-Study metric for quantum state df (α, β) = arccos

√
|〈α|β〉|2

〈α|α〉〈β|β〉 . The norm ||A||

for operators can be defined as the square root of the spectral radius ρ(A†A), which is the supremum of

the eigenvalues of A†A.
2We also refer to the time rate change of complexity as the “complexification” rate, which should be

considered synonymous as they appear in this paper.
3In this paper we will consider only complexity = action, and discussion of the complexity = volume

and complexity = spacetime volume conjectures are left for future work.
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ries. The study of such theories has a long history and has produced many profound results,

see for example [17–22]. One feature of noncommutative field theory which is suggestive of

interesting behavior is that it adds a degree of non-locality, which has been shown to lead

to interesting effects, e.g. an increase relative to the commutative case in the dissipation

rate of scalar modes [23]. Indeed, the holographic entanglement entropy in this context

has already been studied in, for example, [24, 25], where non-trivial behavior was found

in the limit where the Moyal scale is much larger than the thermal scale. The geometry

was obtained in a string theory context by turning on the NS-NS B fields on Dp branes.

The non-vanishing B field then induces Dirichlet boundary condition for open strings, and

non-zero commutator of the end point coordinates [17]. After decoupling the closed strings,

the Dp brane world volume becomes a noncommutative space. It was shown that in such

setup, although space is coarse-grained by the Moyal scale, which might indicate a reduc-

tion in the number of degrees of freedom, it turns out that all thermodynamical quantities

are unchanged [18, 20]. This can be understood by looking at the thermal boundary state

in the large N limit, which consists of only planar diagrams without external legs. Such

diagrams are insensitive to the non-commutativity of the spacetime [26]. It thus provides

a perfect arena for testing quantum complexity, whose main characteristic is that it is

more than thermodynamics. If the holographic complexity can see the difference caused

by non-commutativity, it is a sign that we are on the right track.

The remainder of this paper is organized as follows: In section 2 we construct the

holographic dual of a noncommutative super Yang-Mills (NCSYM) theory and compute the

holographic complexity of a state on the boundary using the CA proposal. The complexity

growth rate is given as a function of the Moyal scale a, the horizon radius rH and time t,

and at late times its monotonic enhancement with a is shown. In section 3, we attempt

to give a quantum mechanical explanation of the enhancement of late time complexity

growth rate. In section 4, we discuss the finite time behavior of our result and compare to

the recent independent studies [15]. To make our result more convincing, we explore more

examples with non-commutativity in section 5. We have a similar setup as in section 2 in

various dimensions and we have various numbers of pairs of noncommutative directions.

In 6, we conclude with a brief discussion of our results and make a few remarks of possible

directions for future studies. In the appendix A, we show the explicit calculation for the

WDW patch action. Appendix B talks about the thermodynamic property of the Dp brane

solutions.

2 Holographic complexity of 4d N = 4 NCSYM

2.1 The holographic dual to noncommutative SYM

We consider the noncommutative field theory widely studied in the context of string theory.

It was shown that the non-vanishing NS-NS B field will induce noncommutative space on

the D brane that decouples from the closed string excitations [17]. The way to turn on the

B field is to perform a T duality, in D3 brane for instance, along x3 direction, assuming

the x2, x3 are compatified on a torus. The torus becomes tilted after the T duality, which
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indicates a D2 brane smearing along x3 direction. Then one performs another T duality

along x3, to get the following solution ([18, 19]):

ds2 =α′
[( r
R

)2(
−f(r)dt2 + dx2

1 + h(r)(dx2
2 + dx2

3)
)

+

(
R

r

)2( dr2

f(r)
+ r2dΩ2

5

)]
,

f(r) = 1−
(rH
r

)4
, h(r) =

1

1 + a4r4
,

(2.1)

e2Φ = ĝ2
sh(r),

B23 = B∞(1− h(r)), B∞ = − α′

a2R2
,

C01 = −α
′a2r4

ĝsR2
, F0123r =

4α′2r3

ĝsR4
h(r).

(2.2)

The {t, x1, x2, x3} are the D3 brane coordinates, while {x2, x3} are non-commuting with

Moyal algebra

[x2, x3] = ia2. (2.3)

The radius coordinate r has units of inverse length,4 and a is the Moyal scale with units

of length. rH denotes the location of the event horizon, and ĝs denotes the closed string

coupling, which is related to the S5 radius as R4 = ĝsN .

Note that the geometry becomes degenerate at r → ∞; thus we have to put the

boundary theory on some cutoff surface rb < ∞. It was shown that this natural cutoff

plays an important role in the divergent structure of entanglement entropy [24]. However,

as will be explained later, our computation is cutoff independent; therefore we don’t need

to worry about it.

As explained in [18], all the thermodynamic quantities of this solution are the same as

in the commutative case. In particular, the temperature and entropy is independent of a,

given by

E =
3r4
HΩ5V3

(2π)7ĝ2
s

T =
rH
πR2

,

S =
4πR2r3

HΩ5V3

(2π)7ĝ2
s

(2.4)

It is then interesting to ask whether the complexity is affected by the non-commutativity

because complexity is fine-grained information that knows more than thermodynamics.

We adopt the Complexity equals Action (CA) approach to compute the holographic

complexity of the boundary state. It involves evaluating the action in a bulk subregion,

4In the literature, the coordinate denoted here by ’r’ is typically denoted ’u’ in order to emphasize that

it does not have dimensions of length. We have however chosen to denote it by ’r’ to avoid confusion with

the Eddington-Finkelstein like null coordinate.
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called the Wheeler-deWitt (WDW) patch. Recent work on evaluating gravitational ac-

tion [27] provided a toolkit that deals with null boundary contributions in the context of

Einstein gravity. Hence we are interested in the Einstein frame action of type IIB super-

gravity:

ds2
E = exp(−Φ/2)ds2, (2.5)

2κ2SE =

∫
d10x
√−gE

[
R− 1

2
|dΦ|2 − 1

2
e−Φ|dB|2 − 1

2
eΦ|F3|2 −

1

4
|F̃5|2

]
− 1

2

∫
C4 ∧ dB ∧ F3, (2.6)

where the notation |Fp|2 = 1
p!Fµ1...µpF

µ1...µp is understood. One should keep in mind that

the 5-form F̃5 is self dual while evaluating this action. This requirement actually always

makes the term |F̃5|2 = 0.5

2.2 Wheeler-DeWitt patch action

The WDW patch is defined to be the union of all spatial slices anchored on a boundary

time slice Σ. Regarding representing the boundary state, the WDW patch differs from the

entanglement wedge at two points: first, it specifies a specific time slice on the boundary,

instead of a covariant causal diamond; second, it probes behind the horizon, which is

supposed to contain information beyond thermodynamics. It was conjectured in [4, 5] that

the action evaluated in the WDW patch is dual to the relative complexity of the quantum

state living on Σ. This conjecture is referred to as ‘complexity = action’ or CA duality.

In our noncommutative geometry setup, we will be interested in the WDW patch for the

two-sided black hole, which intersects the left boundary at time tL, and the right boundary

at time tR. According to CA quality, the action evaluated on such a patch will compute

the relative complexity of the quantum state of the boundary CFT living on the (tL, tR)

slice as

C(tL, tR) = kSWDW, (2.7)

with the coefficient set to k−1 = π~ by the assumption that AdS-Schwartzchild black hole

saturates the Lloyd bound. The complexity computed this way is cutoff dependent, but

its time derivative

Ċ(tL, tR) :=
d

dtL
C(tL, tR), (2.8)

in which we are interested, is cutoff independent. Notice that our choice to differentiate

with respect to the left time is arbitrary, as the geometry should be symmetric between left

and right. It will prove convenient to utilize radial advanced/retarded null coordinates:

dr∗ =
R2dr

r2f(r)
, u = t+ r∗, v = t− r∗. (2.9)

5We point it out that due to the famous subtlety about type IIB action, that the self-duality condition

should be imposed by hand, the treatment we use for the action is only plausible. There are other ways

to impose self-duality, for example the PST formulation, but the action computation and the holography

there will be subtle.
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V1

V2

B2

B1

Sε

(uL, vL)

(uL + δt, vL + δt)

(uR, vR)

(v
=
v
L )

(u
=
uL

)

Figure 1. Two WDW patches separated by δt. Although the boundary of each patch is really at

some large but finite rb, the choice of rb drops out in the differences we consider and we do not

indicate it explicitly in this graphic.

Notice that unlike r, r∗ has units of length. Suppressing all but the bulk and timelike

direction, the contributions to the time rate change of the WDW patch can be visualized

in the conformal diagram represented in figure 1.

The calculation of the time rate change of the action is detailed in appendix A. It is

convenient to express the result in terms of the radial coordinate rB of the pastmost joint

of the WDW patch (joint B2 in the diagram 1, which coincides with joint B1 as δt → 0.)

Note that rB increases monotonically with tL from rB = 0 to rB = rH as tL →∞, and so

we will use it to parameterize the time dependence of the complexification rate.6 We find

the following combined result:

ṠWDW =
Ω5V3

(2π)7ĝ2
s

(−2 log(1 + a4r4
B)

a4
+ 4r4

B + 6r4
H

+ 3(r4
H − r4

B) log

∣∣∣∣ cc̄
√
ĝsR

2r2
B

α(1 + a4r4
B)1/4(r4

H − r4
B)

∣∣∣∣) (2.10)

where c and c̄ are arbitrary constants associated with the normalization of boundary null

generators entering the computation of δSjoint. See appendix A.3, as well as [8, 27] for

discussion.
6We consider only tL > 0, and fix tR so that this corresponds to when the joint B has left the past

singularity. Complexification rate is odd with respect to tL = 0 due to symmetry.
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Various aspects of the time dependence (or rB dependence) of equation (2.10) are

unusual in light of the conjectured CA duality. Similar features have been seen in other

systems [15]. We discuss the finite time behavior in section 4.

The late time complexification rate is achieved by sending rB → rH :

Ṡ
∣∣
t→∞ ≈

Ω5V3r
4
H

(2π)7ĝ2
s

(
10− 2

log(1 + a4r4
H)

a4r4
H

)
(2.11)

One can immediately see that if we assume the standard relationship, C = kS with

k = 1/π, then the system violates the Lloyd bound (1.1) at late times: the ratio Ṡ
2M should

be less than or equal to 1, but at late times it saturates values between 4/3 to 5/3 as we

vary a. The relevance of the bound to holographic complexity has been disputed [16], and

violations have been found in many other systems. But for purposes of comparison we find

it interesting that, even if we had not assumed the standard k = 1/π, but instead used

the logic that commutative black holes should saturate the Lloyd bound, we would set

k = 3/(4π). Clearly, the associated bound would fail immediately upon considering highly

noncommutative black holes. Rather than proposing some different k in the relationship

C = kS, we find it plausible that such a choice does not generalize to all systems, at least

under the current conventions for computing bulk action.

Overlooking the Lloyd bound for now, the dependence of the late time complexification

on the noncommutativity parameter a is rather striking.

As one can see from figure 2, the complexification rate increases with the non-commuta-

tivity parameter a, or more specifically the Moyal scale. It’s also intriguing that a always

appears in the combination arH , indicating that the only reference scale in the theory

that the Moyal scale is sensitive to is the thermal scale T−1 ∼ r−1
H . When a � T−1,

the complexification rate does not change much. It noticeably changes when a becomes

comparable to T−1. When a� T−1, the complexification rate stops growing and saturates

a new bound. It is inspiring to see that it does not grow indefinitely because that will violate

the Lloyd bound in any possible sense. On the other hand, the ratio that it increases is an

interesting rational number 5/4. It may imply that this enhancement could be understood

as some counting problem. With all these interesting features in mind, we want to answer

two questions:

1. How might we explain the enhancement from non-commutativity?

2. Are there other examples of noncommutative theories that corroborate these results?

These will provide the content for the next few sections.

3 Non-commutativity enhancement of complexification rate

Why the above enhancement should be exactly 25% is as of yet unclear. We do, however,

have a conceptual argument for why there should be a noncommutative enhancement at all.

Consider the following problem: we have a unitary operator U , whose complexity is

known to be C(U), and we want to know what can be said about the complexity of C(UN )

– 7 –
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1 2 3 4
arH

8.0

8.5

9.0

9.5

10.0

S


C rH
4

Figure 2. Late time action growth rate normalized by C = α4Ω5V3

ĝ2s
and extra rH dependence,

versus arH , which is the Moyal scale measured in units of thermal length. It is observed that

the complexification rate under the CA conjecture increases significantly when the Moyal scale is

comparable to the thermal scale, and saturate a new bound which is 5/4 of the commutative value

when the Moyal scale is much larger than the thermal scale.

for some integer N . One thing that can be immediately said is that

C(UN ) ≤ NC(U) (3.1)

Because given an optimal circuit Q implementing U , UN can be implemented by

N successive applications of Q, namely QN .7 The bound above need not be saturated,

however, as there might be a few gates at the beginning of Q which can cancel with some

at the end of a successive copy of Q, resulting in a new circuit which (a unitary identical)

to QN , but which is less complex. If we suppose that every time a new copy of U is added

(after the first one of course), we get a cancellation of χ gates, and we suppose that χ

doesn’t depend on N (or at least asymptotes to a constant as N becomes large), then

we have

C(UN ) ≈ NC(U)− (N − 1)χ (3.2)

It’s easy to show that this formula holds for any U → Un with the same χ.

7There is a subtlety here in that Q only need implement a unitary that is within some small number ε

of U , but if this is the case, there is no guarantee that QN will be within ε of UN . It is also possible that

for particular choices of gate set, some power of Q, say QM , may itself be a gate. This would result in

“saw tooth” growth in complexity and periodically discontinuous time derivatives. It may be hoped that

such issues are rendered obsolete in an appropriate continuum limit (as in the “geometry of complexity”

program [28, 29]), and we ignore these subtleties for the present discussion.
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If we are then interested in the (time evolution of the complexity of a family of oper-

ators) generated by some hamiltonian H

U(t) = eiHt, (3.3)

then we may use the above to write

C(t) ≡ C(U(t)) = C[U(δt)t/δt] ≈ t

δt
[C(δt)− χ] + χ. (3.4)

This will be true for any t and δt. Therefore we can compute the complexification rate

d

dt
C(t) ≈ 1

δt
[C(δt)− χ] . (3.5)

Now, what happens if we turn on non-commutativity in our theory? Let us suppose

that our Hamiltonian H = Ha varies continuously with the Moyal scale a, and suppose that

our gates vary continuously as well so that the gates in the noncommutative theory can be

identified with gates in the commutative theory. Suppose furthermore that for sufficiently

small δt, Ua(δt) = eiHaδt can be optimally approximated by the same circuit Q, but with

each of the original gates g replaced with its noncommutative analog ga (Call this circuit

Qa). Then it is still true that UNa can be implemented by QNa . But now, because of the

non-commutativity, it is likely that fewer of the gates at the beginning and end of Q will

commute with each other (see figure 3). And so we can still write

Ca(t) ≈
t

δt
[Ca(δt)− χa] + χa ≈

t

δt
[C(δt)− χa] + χa, (3.6)

but because fewer gates cancel, χa will be smaller than the original χ. These mean that

the complexifaction rate

Ċa(t) ≡
d

dt
Ca(t) ≈

1

δt
[C(δt)− χa] (3.7)

gets an enhancement due to the suppression of χa. Finally we get an enhancement ratio

of complexification rate as

Ċa(t) ≈
C(δt)− χa
C(δt)− χ Ċ(t). (3.8)

The same effect could be understood as arising from an increased non-locality due to

the noncommutativity. The dependence of complexity growth on the locality of gates is

explored in [5], where an extension of the Lloyd bound is studied by looking at the “k-

locality” of the Hamiltonian and the gate set. A “k-local” operator is one that acts on at

most k degrees of freedom: a k-local Hamiltonian consists of interactions coupling at most

k degrees of freedom, and similarly a k-local gate set consists of at most k-local operators.8

For convenience we let the Hamiltonian be “k-local” while the gate set is “j-local.” Usually,

the Lloyd bound should be satisfied if j = k, because one can choose the coupling terms

8To avoid dependence on choice of basis, we would like to define k as the maximum rank of the coupling

terms, or the maximum rank of the generators of the gates.
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Commutative Case Non-Commutative Case

× ×
× ×

Figure 3. This circuit represents the end of one copy of a circuit QU implementing a hypothetical

unitary U and the beginning of a second copy of QU . In this plot horizontal lines are qubits,

and the dots connected by vertical lines are gates acting on the pair of qubits they connect. For

this illustration, we will consider gates to be their own inverse. Gates from two copies may cancel

(illustrated here with dashed blue lines connecting the gates), reducing the complexity of the circuit

and providing a more efficient way to compute UN . This cancellation relies, however, on the ability

of gates to commute past each other, so that gates which could cancel can meet. We argue that in the

noncommutative case, fewer gates commute and so there are fewer cancelations of this type. In this

illustration, we see on the third line that a gate which can commute to cancel in the commutative

case is prevented from doing so in the non-commutative case due to mild non-locality. Cartoon

inspired by one used in a talk by Adam Brown.

as gates so that the time evolution could be easily implemented by the gates. However if

one chooses a different j for the gate set, a bound of the following general form is to be

expected

Ċ ≤ g(k)

g(j)

2M

π
, (3.9)

where g(k) is a monotonically increasing function. The interesting connection to our in-

terpretation of non-commutativity is that the Moyal area introduced in non-commutative

space can be thought of as an effective k for the Hamiltonian, meaning that non-local

interactions couple wider range of degrees of freedom than local interactions. On the other

hand, we are not changing j because our holographic prescription is not changed. Then

we have an extra factor g(k)/g(j) > 1 in the bound, hence an enhanced bound. A similar

factor greater than 1 is hence obtained in eq. (3.8).
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4 Finite time behavior

Up to now, we have only discussed the asymptotic behavior of the complexification rate

at late times. It is plausible that the early time complexification rate is not as important

as the late time limit because there is a thermal scale time resolution for this quantity.

One might think of this resolution as the time scale for a new gate to act on the state. In

the paper [15] people carefully studied the finite time behavior of the complexification rate

and found several interesting features. We will briefly outline the finite time behavior for

noncommutative SYM, reproduce those features, and find new features introduced by the

non-commutativity.

We will rewrite equation (2.10) using the dimensionless parameters

b = arH , ρ = rB/rH , γ =
cc̄
√
ĝsR

2

α′r2
H

, (4.1)

so that we get

δS

δt
=

Ω5V3r
4
H

(2π)7ĝ2
s

(−2 log(1 + b4ρ4)

b4
+ 4ρ4 + 6 + 3(1− ρ4) log

∣∣∣∣ γρ2

(1+b4ρ4)1/4(1−ρ4)

∣∣∣∣ ). (4.2)

Note that since T = rH/π, we have b = πaT .

We will now normalize this by the late time commutative result at the same tempera-

ture to define

Ċn(ρ) =
− log(1 + b4ρ4)

4b4
+

1

2
ρ4 +

3

4
+

3

8
(1− ρ4) log

∣∣∣∣ γρ2

(1 + b4ρ4)1/4(1− ρ4)

∣∣∣∣ (4.3)

Substituting left time in thermal units for ρ, can plot Ċn vs time at fixed b and γ,

yeilding (in the case where we take b→ 0 and γ = 80) the plot in figure 4.

It is clear from this plot that there is a local maximum at early time (around t = 0.1β, β

being the inverse temperature), and then at late times, it approaches the smaller asymptotic

value from above. There is also a logarithmic divergence as t goes to zero which comes from

the log term in equation (4.3). Both of these features are observed in [15], where they are

discussed in great detail. The logarithmic divergence is not important in the sense that if

you take the average complexification rate over a roughly thermal time scale, this divergence

will be gone. A small period of decreasing complexity remains, but such behavior is not

altogether prohibited. At early times the complexity is highly sensitive to the choice of

the reference state, and only at late times is a constant growth rate expected for generic

(time-independent) Hamiltonians. Regardless, the issues of the local maximum and the

asymptotic approach to the “bound” from above are not resolved in any explanations here.

One could average over an artificially long period of time to smooth out the local maximum,

but doing so would never eliminate the approach from above, irrespective of the physicality

of such a procedure.

Our primary interest here, however, is to discuss how these behaviors change with the

noncommutative parameter b. To that end, we will consider what happens when we replot

this curve fixing γ but varying b. The result is displayed in figure 5.
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NormalizedComplexificationRate
ComplexificationRate vs Time: b=0 and γ=80

Figure 4. Normalized complexification rate versus time in thermal units for γ = 80 and b = 0.

Figure 5. Normalized complexification rate versus time in thermal units. γ is held fixed at 80

while b = arH is varied.

From figure 5 we see that as the non-commutativity is turned up, the local maximum

decreases, and the asymptotic value increases. It is obvious that the change happens at

b ∼ π, which is when the Moyal scale a is comparable to the thermal scale T−1 = π/rH . For

b � π, it seems that the asymptotic value is approached from below. Strictly speaking,
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Figure 6. The vertical axis is the ratio between the local maximum and the asymptotic late time

value of the complexification rate. The black, orange and blue curves correspond to γ = 1, 2, 3.

it is not true, because the local maximum always exists, but has a diminishing relative

height and is pushed to very late time. We can find the local maximum and plot its ratio

to the asymptotic value versus b as in figure 6. The fact that the local maximum decays

physically rather than by tuning some artificial choice is a sign that the noncommutative

complexification rate at late time is a more qualified bound for a generic quantum system.

We will discuss it in more details in the conclusion.

It is observed that the complexification rate mainly depends on temperature through

the combination b, except an extra logarithmic contribution from γ. Therefore we expect

that the variation with respect to temperature is similar as figure 5. This can be imple-

mented by varying b while fixing the combination γb2, i.e., fixing a. When this is done

with γb2 = 1 one gets figure 7, which is indeed similar to figure 5. This check shows that

the only scale that the non-commutativity a is sensitive to is the thermal scale.

Finally, one may also be interested in the effect of γ, which at fixed AdS radius and

temperature encodes information about the normalization of the generators of the null

boundaries of the WDW patch. It has been suggested that this normalization, which is

ambiguous in the action, should correspond to an ambiguity in the definition of complexity

on the boundary such as the choice of reference state [8]. In our case, we observe that the

dependence on γ does not depend on the non-commutativity at all, which seems to support

this idea for a broader class of theories.

5 Other noncommutative systems

As a test of the above argument, and to better understand the dependence of the enhance-

ment on various factors, we would like to consider more examples of noncommutative field

theories. It’s easy to extend the D3 brane solution we discussed in section 2 to other Dp

branes, in which we are also able to put more noncommutative pairs of directions. For

p = 4, 5, 6, we can turn on more than one B field component, making multiple pairs of

– 13 –
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Figure 7. Normalized complexification rate versus time in thermal units. γb2 is held fixed at 1

while b = arH is varied.

directions non-commuting. Let us denote the number of non-vanishing B components as

m so that B will be a rank-2m matrix. In this section, we will investigate the dependence

of late time complexification rate on the dimension of space p and the rank of the B field.

5.1 Supergravity solutions and decoupling limit

The general string frame metric for non-extremal Dp branes with m non-commuting pairs

of directions are given as

ds2

α′
=
( r
R

) 7−p
2

(
−f(r)dx2

0 +

p−2m∑
i=1

dx2
i +

m∑
i=1

hi(r)(dy
2
i,1 + dy2

i,2)

)

+

(
R

r

) 7−p
2
(
dr2

f(r)
+ r2dΩ2

8−p)

) (5.1)

where

f(r) = 1− r7−p
H

r7−p , (5.2)

hi(r) =
1

1 + (air)7−p . (5.3)

In NS-NS sector we have

e2Φ = ĝ2
s

(
R

r

) (7−p)(3−p)
2

m∏
i=1

hi(r),

B(i) = − α′

(aiR)
7−p
2

[1− hi(r)]dyi,1 ∧ dyi,2.
(5.4)
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We also have many R-R fields turned on via the T-duality. One would expect them by

looking at the Chern-Simons term in D brane action

SDpCS = µp

∫
(C ∧ exp(B + kF ))p+1 . (5.5)

Only rank-(p+ 1) R-R potential Cp+1 is turned on without any background field, whereas

in the presence of B field, terms like Cp+1−2n∧B(i1)∧· · ·∧B(in) can also be sourced, where

n = 0, 1, · · · ,m. In other words, when m = 1, we have Cp−1 turned on; when m = 2, we

have Cp−3 turned on, and so on.

The general formulae for all these R-R fields are

Cp+1 = −(α′)
p+1
2

ĝs

( r
R

)7−p∏
i

hi(r),

C
(j)
p−1 =

(α′)
p−1
2

ĝs

( r
R

)7−p
(ajR)

7−p
2

∏
i 6=j

hi(r),

C
(j,k)
p−3 = −(α′)

p−3
2

ĝs

( r
R

)7−p
(ajakR

2)
7−p
2

∏
i 6=j,k

hi(r),

C
(j,k,l)
p−5 =

(α′)
p−3
2

ĝs

( r
R

)7−p
(ajakalR

3)
7−p
2

∏
i 6=j,k,l

hi(r).

(5.6)

We are omitting the basis here, but it’s clear that these components are along all the direc-

tions on Dp brane except for the directions of the B fields indicated by their superscript.

We also omitted their (inverse) hodge dual forms which may contribute to the action.

While these are all good solutions for supergravity in the bulk, one has to be careful

with its world volume dual theory. The decoupling limit of the world volume theories for

2 ≤ p ≤ 6 in the presence of B field is studied in [30], with the conclusion that there is

no decoupling limit for D6 branes even for m > 0. For p ≤ 5, decoupling limits do exist,

and it’s reasonable to talk about the complexity on the world volume theory. One may be

worried that for D4 brane we have to up lift to 11 dimensions to compute the M theory

action, but the effective string coupling at high energy is

eΦ ∼ r
(7−p)(p−3−2m)

4 , (5.7)

which is suppressed by the non-commutativity when m ≥ 1, indicating that at sufficiently

high energy, we don’t have to go to M theory.

As such, we will be using type IIB action for odd p and type IIA action for even p.

The type IIA action is

SIIA
string =

1

2κ2

∫
dx10√−g

[
e2Φ

(
R+ 4|dΦ|2 − 1

2
|H|2

)
− 1

2
|F2|2 −

1

2
|F̃4|2

]
− 1

4κ2

∫
B ∧ F4 ∧ F4, (5.8)

with the usual conventions:

F2 = dC1, F4 = dC3, F̃4 = F4 − C1 ∧H. (5.9)
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5.2 Complexification rates

We report the action growth rates with the following p-dependent prefactor,

cp ≡
Ω8−pr

7−p
H

(2π)7ĝ2
s

, (5.10)

We also divide out the transverse volume Vp to give a “density of action.” The complexi-

fication rate will be related to the action growth rate by eq. (2.7), where the coefficient k

is not specified yet. We will discuss the strategy of choosing k at the end of the section.

Both the joint and boundary contributions to the late time complexification rate take a

particularly simple form:

Ṡjoint = (7− p)cp

Ṡboundary =
1

8
(65− 14p+ p2)cp

(5.11)

The bulk contributions exhibit more interesting dependencies on the size and number

of noncommutativity parameters. These are here reported for each p.

D2 brane. This is the simplest case, where we have fewest R-R fields and don’t need to

put the self-duality constraint. We have

F2 = dCp−1, (5.12)

F̃4 = dCp+1 − Cp−1 ∧H. (5.13)

Plugging them in the type IIA action, we obtain the complexity growth rate. Including

all contributions, the late time limit becomes

Ṡp=2,m=1 = 12cp. (5.14)

Surprisingly, we find that the late time complexification rate does not even depend on the

non-commutativity parameter a. We may argue that it is the case where the bound is

already saturated so that non-commutativity could not enhance it anymore.

D4 brane. This is the minimal dimension that we can include two pairs of noncommu-

tative directions, hence m = 2. The R-R field contents are

F2 = dC
(1,2)
p−3 , (5.15)

F̃4 =
∑
i

[
dC

(i)
p−1 − C

(1,2)
p−3 ∧H(i+1)

]
+ ∗−1

[
dCp+1 −

∑
i

(
C

(i)
p−1 ∧H(i)

)]
. (5.16)

Note that mod m is understood in the supercript of the forms.

The complexity growth rate including all contributions has late time limit

Ṡ4,2 =

(
5 +

3a3
1a

3
2r

6
H

(1 + a3
1r

3
H)(1 + a3

2r
3
H)

)
cp. (5.17)
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The p = 4, m = 0, 1 cases can be obtained by taking one or both of the a parameters

to zero:

Ṡ4,0 = Ṡ4,1 = 5c4 (5.18)

It’s striking that turning on a single pair of noncommutative directions does not affect the

late time complexification rate at all, but turning on the second pair does increase the rate.

It means that we cannot use the argument as for p = 2 to explain the zero enhancement

here because obviously the bound was not saturated yet.

D5 brane. It’s another case where we need to take into account the self-duality issue.

Again we can have m = 2, and the R-R field contents are

F3 = dC
(1,2)
p−3 + ∗−1

[
dCp+1 −

∑
i

(
C

(i)
p−1 ∧H(i)

)]
, (5.19)

F̃5 =
∑
i

[
dC

(i)
p−1 −

1

2
C

(1,2)
p−3 ∧H(i+1) +

1

2
dC

(1,2)
p−3 ∧B(i+1)

]
+ self dual. (5.20)

The complexity growth rate including all contributions has late time limit

Ṡ5,2 =

(
11

2
+

a2
1a

2
2r

4
H − 2

2(1 + a2
1r

2
H)(1 + a2

2r
2
H)

+
a2

2 log(1 + a2
1r

2
H)

2a2
1(a2

1 − a2
2)

+
a2

1 log(1 + a2
2r

2
H)

2a2
2(a2

2 − a2
1)

)
c5. (5.21)

We can also examine the m = 1 case by taking a2 = 0 and a1 = a:

Ṡ5,1 =

(
5− 1

1 + a2r2
H

)
cp,

Ṡ5,0 = 4cp

(5.22)

In contrast with p = 4, turning on the first pair of noncommutative directions already

changes the complexity, and turning on the second enhances more.

D6 brane. Finally we may investigate a case where we can turn on 3 pairs of noncom-

mutative directions, hence D6 brane. For m = 3, the R-R field contents are

F2 = dC
(1,2,3)
p−5 + ∗−1

[
dCp+1 −

∑
i

(
C

(i)
p−1 ∧H(i)

)]
, (5.23)

F4 =
∑
i

[
dC

(i+1,i+2)
p−3 − C(1,2,3)

p−5 ∧H(i)
]

+ ∗−1

[
dC

(i)
p−1 −

∑
j 6=i

C
(i,j)
p−3 ∧H(j)

]
. (5.24)

The complexity growth rate including all contributions has late time limit

Ṡ6,3 =

(
4+

a1a2 log(1 + a3rH)

(a2−a3)a3(a3−a1)rH
+

a2a3 log(1 + a1rH)

(a3−a1)a1(a1−a2)rH
+

a3a1 log(1 + a2rH)

(a1−a2)a2(a2−a3)rH

)
c6

(5.25)

The three a-dependent terms have the property that no matter how many a’s you turn

off, their sum is a constant as -1. Thus again, it is a situation where only turning on
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p m = 0 m = 1 m = 2 m = 3 πBL
2 12 12 - - 7

3 8 10 - - 6

4 5 5 8 - 5

5 4 5 6 - 4

6 3 3 3 4 3

Table 1. This table lists all the action growth rate at late time for general p and m. They are in

unit of the constant cp defined in eq. (5.10). The last column is showing the Lloyd bound BL also

in unit of cp.

maximum number of non-commutativity can we increase the non-commutativity, similar

to the p = 4 case.

Ṡ6,0 = Ṡ6,1 = Ṡ6,2 = 3c6 (5.26)

However, this complexity growth rate seems to have no physical meaning, because there

is not a world volume theory that is decoupled from gravity. The holographic principle is

subtle in this case. We present the result here because the bulk computation can be done

in a similar manner without noting the difference. Whether the quantity so computed has

any physical meaning is an open question.

5.3 Summary of results

From the above computation, we find that when we turn on non-commutativity on Dp

branes, the complexity growth rate either stays the same, or increases. The fact that it

does not decrease is encouraging for our argument given in section 3. However, the values

of the enhancement ratio are not understood.

In the table 1, we list all the density of late time action growth rate in unit of cp, in

the limit that all m non-commutativity parameters ai, i = 1, . . . ,m, goes to infinity.

There are no obvious laws that govern these rates in general, but we do observe some

interesting features. For both D3 and D5 branes, we have enhancement from each pair of

non-commuting directions. In particular, the ratio for the enhancement from the first pair

are the same in both cases, and the enhanced amount from the first and second pair are

also the same in D5 brane. These two cases seem to provide reasonable behaviors one may

naively expect. On the other hand, the type IIA supergravity with even-ps does not always

have complexification rate enhancement from non-commutativity. The reason for it may

depend on the details of the boundary theory.

In the table 1, we also list the Lloyd bound computed from the ADM mass of the

geometry (see appendix B). One may set the coefficient k in eq. (2.7) to let any of the

complexification rate to saturate the Lloyd bound. For instance, if we want to set the

commutative N = 4 SYM (p = 3, m = 0) to saturate the bound, we can take πkp=3 = 3/4.

However, the consequence is that we can always turn on the non-commutativity and violate

this bound. In order that the Lloyd bound is not violated, we need to guarantee that the
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maximum complexification rate for each p is bounded by BL, thus

k2 ≤
7

12π
, k3 ≤

3

4π
, k4 ≤

5

8π
, k5 ≤

2

3π
, k6 ≤

3

4π
. (5.27)

If one follows the argument at the end of section 3, and get an enhanced bound for

non-commutative field theory, the bound on kp will be weaker. On the other hand, the

Lloyd bound is defined under the assumption that all gates take a generic state to an

orthogonal state, which is usually not true. It is argued that we simply should not take

this bound seriously [16]. This objection will make it hard to determine what k should be,

but for our purpose, k does not quite affect our main result.

6 Conclusion

In this paper, we have considered the effects of non-commutativity on the holographic

complexity of SYM according to the complexity = action conjecture. We have done this

in the hope that this would produce further evidence about the validity of this conjecture,

and of the concept of holographic complexity more generally. Our main result is that the

late time complexification rate increases with the non-commutativity in a class of theories.

We computed the holographic complexity for 4D N = 4 non-commutative super Yang-

Mills, by evaluating the WDW action in the bulk geometry described by type IIB supergrav-

ity with D3 branes. We saw a 5/4 enhancement for late time complexification rate in the

non-commutative result over the commutative result. This was striking because it is well

known that the thermodynamics of this theory are independent of the non-commutative

parameter a. The observed changes to complexity support the idea that complexity is more

than thermodynamics, and indicates that the CA prescription is reproducing this feature

of complexity. Comparing to the Lloyd bound derived from the total energy, we discovered

that using the coefficient of proportionality k = 1/π as in [4] will make the commutative

late time complexification rate violate the bound. One could in principle avoid this by

arguing that k should not be universal for all kinds of theories, but the commutative black

hole still can not saturate the bound because there should be space for enhancement from

the non-commutativity.

We presented a quantum argument to explain this enhancement and to argue that we

should have expected it. We assume that the time evolution operator is approximated by

sequential copies of the same quantum circuit, and the optimization of the total circuit

when you combine them will be less efficient in non-commutative theories. We also argue

that this expectation matches the k-locality model prediction if we relate the size of Moyal

scale to the size of locality k. Then we investigate the finite time behavior of this com-

plexification rate and see that the problematic finite time maximum gets suppressed by

non-commutativity.

Finally, we generalized the solution for D3 branes to general Dp branes to get a broader

class of noncommutative gauge theories. We presented similar calculations as for p = 3

and obtained the late time complexification rates for 2 ≤ p ≤ 6 and all allowed ranks of the

B field. The result for p = 5, which is similar to p = 3, but has another enhancement with
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the same magnitude from the second B field component, is consistent with our heuristic

argument. The results for the even p cases are less well understood. We found that there

is no enhancement for p = 2 and that for p = 4 one must introduce a second B field

component to get an enhancement. This result would seem to be in mild tension with the

argument of section 3. The correct explanation for this behavior is left for future work.

Despite not seeing an enhancement in some cases, it is at least encouraging that no decrease

was observed, which would have been a much clearer contradiction to the arguments of

section 3.

Regarding the statement that non-commutativity enhances the complexification rate

in general, there are several interesting aspects one can investigate. First, this result is

in tension with the often expressed idea that the commutative AdS-Schwarzschild black

hole is the fastest possible computer [4]. If non-commutativity can somehow increase the

computational speed even further, it would be very interesting to see if it also increases the

scrambling process of the black hole. Second, it also would be interesting to compute the

complexity of a weakly coupled field theory on a non-commutative manifold in order to test

the conclusion of our heuristic argument in a non-holographic context. Such a computation

would, in light of this work, provide for a more robust check on the complexity = action

conjecture. The work of [7, 8] might prove useful to such an endeavor. Another interesting

extension of this work would be to repeat the computations for the complexity = volume,

and the complexity = spacetime volume conjectures, which will be both a test for our

results, and a test for the holographic complexity prescriptions. Finally, it was pointed

out to us by Eoin Ó Colgáin that the geometry corresponding to the D3-brane case that

we have considered here has been discovered to belong to a larger class of deformations of

AdS5, studied in e.g. [31–33]. It would perhaps be interesting to extend the results of this

paper to the more general case.
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A Calculation of ṠWDW

To minimize clutter in expressions, in this appendix we set 2κ2 = (2π)7α4 = 1 and reinstate

κ dependence only at the end. Following the systematic treatment of [27], the action on a

bulk subregion is divided into contributions as follows:

SV =

∫
V

(
R+ Lm

)√−gdV
+ 2ΣTi

∫
∂VTi

KdΣ + 2ΣSisign(Si)

∫
∂VSi

KdΣ− 2ΣNisign(Ni)

∫
∂VNi

κdσdλ

+ 2Σjisign(ji)

∫
Bji

ηjidσ + 2Σmisign(mi)

∫
Bmi

amidσ

(A.1)
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The first line we call the bulk contribution. The second line contains boundary con-

tributions along timelike (T ), spacelike (S), and null boundaries (N ), respectively. The

final line contains joint contributions, divided into those which result from intersections of

timelike and/or spacelike boundaries, and those which include one or more null boundaries.

Sign conventions and notation for integrand quantities will be explained as needed in what

follows.

While the action on a WDW patch is obviously of interest for its conjectured relation

to Quantum Complexity, its time derivative is simpler to compute and interesting for diag-

nostic purposes. Due to the spacetime symmetries, this quantity reduces to the difference

of two volume contributions (V1 and V2 in figure 1), one boundary surface contribution (Sε
in figure 1), and two joint contributions (B1 and B2 in figure 1).

δSWDW = δSbulk + δSboundary + δSjoints

δSbulk = SV1 − SV2
δSboundary = −2

∫
Sε
KdΣ

δSjoints = 2

∫
B1

a1dσ − 2

∫
B2

a2dσ

(A.2)

A.1 Bulk contribution

The bulk integral contributions are of the form:

Sbulk =

∫
V

√−gE
(
R+ Lm

)
dV, (A.3)

where Einstein frame metric is used. For the action eq. (2.6) and field content eq. (2.2)

we have

R =
−2
√
ĝs
(
2a4r4

H + a8r4(r4 + r4
H)
)

α′R2(1 + a4r4)9/4
, (A.4)

Lm =
2
√
ĝs
(
4a4r4

H + a8r4(3r4 + r4
H)
)

α′R2(1 + a4r4)9/4
. (A.5)

We let the integral over x1, x2, and x3 give V3 and the five-sphere Ω5. Also abbreviate

C =
α′4Ω5V3

ĝ2
s

. Further let ρ(u, v) and ρ̄(u, v) denote the radial value r as implicit functions

of advanced/retarded coordinates u and v from the appropriate quadrant (here the left and

bottom quadrants, respectively). The form of these functions is not important here.

The bulk contribution for V1 can be written in (u, r) coordinates with radial limits

expressed implicitly.

SV1 = C

∫ uL+δt

uL

du

∫ r=ρL(u−vL)

r=ε
dr

4r3(a8r8 + a4r4
H)

(1 + a4r4)2
, (A.6)

Here r = ε is a surface close to the singularity which will be sent to zero. A similar

expression can be written for V2 in (v, r) coordinates, and after the radial integration
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we have:

1

C
(SV1 − SV2) =

∫ uL+δt

uL

du
(
G(ρL(u− (vL + δt)))−G(ε)

)
−
∫ vL+δt

vL

dv
(
G(ρL(uL − v)))−G(ρ̄(uR, v))

)
(A.7)

Changing variables u→ uL + vL− v+ δt leads to a cancellation of terms such that for

small δt we are left with

SV1 − SV2 ≈ C
(
G
(
ρ̄(uR, vL) = rB

)
−G

(
ε
))
δt,

G(r) =
a4(2r4 + a4L8 − r4

H)− 2(1 + a4r4) log(1 + a4r4)

(a4 + a8r4)
.

(A.8)

This cancellation is expected from the boost symmetry of the left wedge of the spacetime,

and also indicates the cutoff independence of our calculation. We denote the radial value

at the bottom corner of the WDW patch ρ̄(uR, vL) ≡ rB. As ε → 0 we find a bulk

contribution of

Ṡbulk = lim
δt→0

SV1 − SV2
δt

=
α4Ω5V3

ĝ2
s

(
a4r4

B

1 + a4r4
B

(r4
H − r4

B) + 2r4
B −

2 log(1 + a4r4
B)

a4

)
. (A.9)

Note that rB is related to tL in the manner that as tL →∞, rB → rH . Therefore, the late

time limit can be obtained by taking rB → rH limit.

A.2 Boundary contributions

We adopt the convention that the null boundary geodesics are affinely parameterized:

kµ∇µkν = κkν with κ = 0, which simplifies the action computation considerably because

all but one boundary surface (Sε) make no contribution. The boundary Sε is the spacelike

surface r = ε→ 0. The contribution is of the form

δSboundary = −2

∫
Sε
KdΣ (A.10)

where dΣ is the induced volume element on the boundary hypersurface and K is the

extrinsic curvature: K = gµν∇µsν with the unit normal sν chosen to be future directed,

away from the WDW patch. This convention for choosing the direction of the surface

normal is responsible for the minus sign on this term [27].

For our metric eq. (2.5) we have

K =

(
ĝs
α2

)1/4 4rh(r)f ′(r) + f(r) (32h(r)− rh′(r))
8Rh(r)7/8

√
−f(r)

, (A.11)

which as ε→ 0 leads to

Ṡboundary = 4r4
H

α4Ω5V3

ĝ2
s

(A.12)
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A.3 Joint contributions

There are two joints (B and B′) which contribute to the complexification rate. Each of

these is comprised of the intersection of two null surfaces, so their contributions are of

the form

SJ = 2Σmisign(mi)

∫
Bmi

amidσ (A.13)

ami = log

∣∣∣∣−1

2
kL · kR

∣∣∣∣
where dS is the volume element on the joint. Here kL and kR are future-pointing null

generators along the left-moving and right-moving boundaries, respectively. Both of the

joints in question lie at the past of the corresponding null segments, which together form

the past boundary of a WDW patch. Together these facts determine that the sign of each

joint’s contribution to the WDW patch action is positive [27], and so taking a difference of

two patches leads to the signs given in equation (A.2).

In addition to the affine parameterization of boundary generators, a convention must

be chosen to fix their normalization. It may be possible to associate the freedom allowed

by this choice with corresponding conventions which must be established in the definition

of quantum complexity (e.g., choice of reference state and gate set). Indeed, progress has

been made in this direction [8]. For our purposes, establishing a normalization convention

is necessary to make meaningful comparisons between different WDW patch actions (such

as that implicit in our “time derivative”) as parameters of the theory are adjusted.

We normalize according to kL · tL = −c and kR · tR = −c̄, where t̂R and t̂L are

normalized generators of time-translation on each boundary. With this in mind we choose

(kL)µ = −c
(
δtµ −

√−grr
gtt

δrµ

)
(kR)µ = c̄

(
δtµ +

√−grr
gtt

δrµ

)
.

(A.14)

For small δt, the joints B2 and B1 are at fixed radii r = rB and r = rB + 1
2

√
−gtt
grr

δt,

respectively. The quantities am in equation (A.13) are easily evaluated at each joint and

the combined contribution is found to be:

SB1 − SB2 = 2
α4V3Ω5

ĝ2
s

(
r3 log

[
− c̄cR

2(ĝ2
sh(r))1/4

αr2f(r)

]∣∣∣∣r=rB1

r=rB2

)

≈ δtα
4V3Ω5

ĝ2
s

(
2r4
H + r4

B(2 + a4(3r4
B + r4

H))

1 + a4r4
B

+ 3(r4
H − r4

B) log

∣∣∣∣ cc̄
√
ĝsR

2r2
B

α(1 + a4r4
B)1/4(r4

H − r4
B)

∣∣∣∣)
(A.15)
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A.4 Combined contributions

We can combine contributions (A.9), (A.12), and (A.15) to arrive at the full time rate

change of the WDW patch action (reinstating explicit κ dependence and immediately

using 2κ2 = (2π)7α4):

ṠWDW =
Ω5V3

(2π)7ĝ2
s

(−2 log(1 + a4r4
B)

a4
+ 4r4

B + 6r4
H

+ 3(r4
H − r4

B) log

∣∣∣∣ cc̄
√
ĝsR

2r2
B

α(1 + a4r4
B)1/4(r4

H − r4
B)

∣∣∣∣) (A.16)

B Thermodynamics and the Lloyd bound

It is interesting that the thermodynamic quantities for these systems exhibit no dependence

on the noncommutativity parameter a (see [18] for discussion). We find that for general p,9

E =
(9− p)r(7−p)

H

2(2π)7ĝ2
s

VpΩ(8−p)

T =
(7− p)r(5−p)/2

H

4πR(7−p)/2

S =
4πR(7−p)/2r

(9−p)/2
H

(2π)7ĝ2
s

VpΩ(8−p)

(B.1)

with E being the ADM mass. The first law dE = TdS is easily confirmed.

In the original CA duality conjecture [4, 5] the proportionality constant in Complexity =

k×Action was fixed by an expectation that black holes are the fastest computers in nature,

and that at late times they would saturate a bound from Lloyd [13, 14]. Matching Ċ = 2M
π

at late times for Schwarzschild AdS black holes sets the constant at k = 1
π . The relevance

of the Lloyd bound to these considerations is questionable [16], but in the interest of com-

parison we note that the systems studied in this work would require different constants to

meet the same criterion: for the commutative black holes to saturate the bound at late

times, k = lim
t→∞

2M
πṠ

would be given by

p = 2 p = 3 p = 4 p = 5 p = 6

k 7
12π

3
4π

1
π

1
π

1
π

Furthermore, if the proportionality k were fixed with reference to commutative black

holes, the bound would still be violated by highly noncommutative black holes. Rather than

proposing novel bounds or searching over all systems for a minimum necessary k = lim
t→∞

2M
πṠ

(giving the weakest bound on Ṡ) to be the true proportionality in C = kS, we suspect that

the precise proportionality cannot be universally generalized between systems, at least

under the established conventions for computing WDW action.

9Note that for p = 5 equations (B.1) would indicate zero specific heat. We take this as further evidence

that results for p ≥ 5 should be viewed skeptically.
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