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crimination of jets from different originating particles exclusively from information iden-

tified by the machine. The approach we propose is to first organize information in the

jet by resolved phase space and determine the effective N -body phase space at which dis-

crimination power saturates. This then allows for the construction of a discrimination

observable from the N -body phase space coordinates. A general form of this observable

can be expressed with numerous parameters that are chosen so that the observable max-

imizes the signal vs. background likelihood. Here, we illustrate this technique applied to

discrimination of H → bb̄ decays from massive g → bb̄ splittings. We show that for a simple

parametrization, we can construct an observable that has discrimination power comparable

to, or better than, widely-used observables motivated from theory considerations. For the

case of jets on which modified mass-drop tagger grooming is applied, the observable that

the machine learns is essentially the angle of the dominant gluon emission off of the bb̄ pair.
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1 Introduction

Several groups have recently applied promising machine learning techniques to the problem

of classifying jets from different originating particles [1–17]. A review of the advances

of the field is presented in ref. [18]. These approaches, while demonstrating exceptional

discrimination power, often come with the associated costs of utilizing hundreds of low-

level input variables with thousands of correlations between them, and lack an immediately

accessible physical interpretation. Ref. [19] presented the first application of a bottom-up

organizing principle, whereby neural networks were trained and tested on minimal and

complete bases of observables sensitive to the phase space of M subjets in a jet. By

appropriately identifying M subjets in a jet, this study probed their phase space with

sets of 3M − 4 infrared and collinear (IRC) safe observables. This essentially utilizes

the distribution of the M subjets on the phase space to identify useful information for

discrimination. By increasing the dimensionality of the phase space in a systematic way,

ref. [19] used machine learning to demonstrate that in the case of discriminating boosted

hadronic decays of Z bosons from jets initiated by light partons, once 4-body phase space

is resolved, no more information is observed to contribute meaningfully to discrimination

power. In addition, ref. [20] also presented a first application of this method to developing

promising generic anti-QCD taggers that match or outperform the discrimination power of

dedicated taggers. Such approaches motivate the development of novel observables that can

capture all of the salient information for discrimination of jets as learned by the machine.

While the output of a neural network, boosted decision tree, or other machine learning

method is itself an observable, it is in general a highly non-linear function of the input.

Additionally, the precise form of the explicit observable constructed by the machine is

very sensitive to the assumed parameters; for example, the number of nodes or layers in a

neural network. In this paper, we propose a procedure to identify discriminating features of
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jets learned by machines to then generate novel observables. These observables capture the

important physics identified by the machine while at the same time being human-parseable.

The general procedure is as follows:

1. Construct a basis of observables that is sensitive to the phase space of subjets in a

jet. Measure these basis observables on your signal and background samples.

2. Use machine learning techniques, such as neural networks, to identify the resolved

M -body phase space at which signal vs. background discrimination power saturates.

3. Construct a function of the phase space variables (with tunable parameters) at which

discrimination power saturates. This function will be a new observable on the jets

that can be used individually for discrimination.

4. Fix the parameters in the new observable by demanding that it maximizes some

discrimination metric, such as the area under the signal vs. background efficiency

curve (ROC curve).

This algorithm is simple enough that it can be automated with essentially no human input,

with a specified basis of observables to span M -body phase space and an appropriate

functional form for the observable. We will present and use a particular choice for the

phase space basis and functional form of the final observable in this paper, but these may

need to be modified and optimized for different studies.

For concreteness, here we apply the above approach to the problem of discriminating

highly boosted decays of the Standard Model Higgs boson to a pair of b-quarks from

splittings of gluons to b-quarks. We study identification of H → bb̄ decays here as the

signal and background jets both have a two-prong substructure, and theoretically-optimized

discrimination observables have not been studied in great detail. Recently, ref. [21] utilized

jet substructure approaches to propose a promising search strategy for this boosted decay

mode of the Higgs, encouraging the possibility of discovery in data from Run-II of the

LHC. In order to further increase the probability of discovery, it is necessary to explore

new strategies to ensure sensitivity to the specific features of this decay mode.

Using the organizing principle proposed in ref. [19], if discrimination power saturates

at M -body phase space then the machine must be learning some function of the corre-

sponding 3M − 4 phase space variables. To resolve the M -body phase space, we use the

N -subjettiness observables [22, 23], as employed in ref. [19]. In the case of discrimination

of boosted H → bb̄ decays from g → bb̄ splittings, we find that the discrimination power

increases only slightly once 3-body phase space is resolved. Thus, we will only study the

resolved 3-body phase space in this paper. The function of the observable on 3-body phase

space that we study is a simple product form

β3 ≡
(
τ
(0.5)
1

)a(
τ
(1)
1

)b(
τ
(2)
1

)c(
τ
(1)
2

)d(
τ
(2)
2

)e
. (1.1)
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Figure 1. H → bb̄ jet efficiency vs. g → bb̄ jet rejection rate plots for ungroomed (a) and

groomed (b) jets. For both, the M -body curves determined by a neural network demonstrate a

large increase in discrimination power between 2- and 3-body phase space. Also shown (in red) is the

new observable which captures the majority of information important for discrimination identified

by resolving 3-body phase space.

Here, the τ
(β)
N are the N -subjettiness observables, 3-body phase space is 5 dimensional, and

the parameters a, b, c, d, e will be chosen to maximize discrimination power. We emphasize

that while this product form is simple, there may be a better choice for the form of function

on phase space.

We show in figure 1 the results of this analysis. We consider jets in simulation on which

no grooming has been applied and on which the modified mass-drop tagger (mMDT) [24, 25]

has been applied. We then measure the mass mJ of these ungroomed or groomed jets (as

appropriate) and make a cut of mJ ∈ [100, 150] GeV, in the range of the Higgs peak.

On these jets, we then measure the 2- and 3-body phase space variables and determine

the single function of the 3-body phase space variables as described above. The signal

and background efficiencies in figure 1 do not include the effects of the mass cut, so that

the curves end at 100% signal and background efficiency. The ROC curve for the new

observable is shown as the solid line on these plots, and exhibits significant improvement

over the 2-body phase space observables and nearly captures all discrimination power of

3-body phase space. In the case of mMDT jets, we will show that this new observable

effectively corresponds to the angle of the dominant gluon emission off of the bb̄ pair.

The outline of this paper is as follows. In section 2 we review and define the minimal

and complete observable bases that are used to identify the coordinates of M -body phase

space, and discuss the mMDT groomer. In section 3, we describe our event simulation and

machine learning implementation, and demonstrate the application of our procedure for

developing the new observable in the case of H → bb̄ vs. g → bb̄. Further, we explore the

physics implications of the functional form of the observable, and compare its discrimina-

tion power to standard observables motivated from QCD considerations. We conclude in

section 4 and discuss other possible applications of this procedure.

– 3 –



J
H
E
P
0
3
(
2
0
1
8
)
0
8
6

2 Observable basis

In this section, we discuss the basis of IRC safe observables that we use to identify structure

in the jet, following the approach presented in ref. [19]. For our analysis, we exclusively

use the N -subjettiness observables [22, 23, 26]. This is without loss of generality and the

analysis can, for example, be equivalently implemented with the N -point energy correlation

functions [27] or the four-momentum of subjets from the exclusive kT algorithm. This

specific choice for each M -body basis is only to ensure that the set of observables minimally

and completely span the phase space of emissions in a jet.

The N -subjettiness observable τ
(β)
N provides a measure of the radiation about N axes

in the jet, specified by the angular exponent β > 0:

τ
(β)
N =

1

pTJ

∑
i∈Jet

pT i min
{
Rβ1i, R

β
2i, . . . , R

β
Ni

}
. (2.1)

Here, pTJ is the transverse momentum of the jet of interest, pT i is the transverse momentum

of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity and

azimuth between particle i and axis K in the jet. In our analyses, we choose to define

the N axes in the jet according to the exclusive kT algorithm [28, 29] with E-scheme

recombination [30].

To identify structure in the jet, we use the organizing principle proposed in ref. [19] so

that our choice of basis of observables is complete and minimal. We first identify the set of

N -subjettiness observables that completely specify the coordinates of M -body phase space.

Since M -body phase space is 3M −4 dimensional, we only measure 3M −4 N -subjettiness

observables, as follows:{
τ
(0.5)
1 , τ

(1)
1 , τ

(2)
1 , τ

(0.5)
2 , τ

(1)
2 , τ

(2)
2 , . . . , τ

(0.5)
M−2, τ

(1)
M−2, τ

(2)
M−2, τ

(1)
M−1, τ

(2)
M−1

}
. (2.2)

For further details on this method, we ask the reader to refer to ref. [19]. Note that

when all particles have non-zero energy and are at a finite angle to one another, the

3(M − 2) + 2 = 3M − 4 observables span the space of phase space variables for generic

momenta configurations. Following from the above, we list the sets of observables that

were used in our analysis for resolving particular M -body phase space:

2-body: τ
(1)
1 , τ

(2)
1

3-body: τ
(0.5)
1 , τ

(1)
1 , τ

(2)
1 , τ

(1)
2 , τ

(2)
2

4-body: τ
(0.5)
1 , τ

(1)
1 , τ

(2)
1 , τ

(0.5)
2 , τ

(1)
2 , τ

(2)
2 , τ

(1)
3 , τ

(2)
3

5-body: τ
(0.5)
1 , τ

(1)
1 , τ

(2)
1 , τ

(0.5)
2 , τ

(1)
2 , τ

(2)
2 , τ

(0.5)
3 , τ

(1)
3 , τ

(2)
3 , τ

(1)
4 , τ

(2)
4

6-body: τ
(0.5)
1 , τ

(1)
1 , τ

(2)
1 , τ

(0.5)
2 , τ

(1)
2 , τ

(2)
2 , τ

(0.5)
3 , τ

(1)
3 , τ

(2)
3 , τ

(0.5)
4 , τ

(1)
4 , τ

(2)
4 , τ

(1)
5 , τ

(2)
5

2.1 mMDT grooming algorithm

In the analysis of the next section, we measure the aforementioned observables on sam-

ples of both ungroomed jets and jets groomed with the modified mass-drop tagger
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(mMDT) [24, 25]. Given a set of constituents of a jet with radius R, and for a fixed

transverse momentum fraction parameter zcut, the mMDT grooming algorithm proceeds

as follows:

1. Recluster the jet with the Cambridge/Aachen (C/A) algorithm [31–33].

2. Sequentially step through the branching history of the reclustered jet. At each

branching with daughter branches i and j, check the mMDT criterion

min(pT i, pTj)

pT i + pTj
> zcut. (2.3)

If the condition fails, drop the softer of two daughter branches and follow through to

the next branching in the rest of the clustering history.

3. This continues until the mMDT criterion is passed. At this point the algorithm

terminates and the final jet is groomed of all branches that fail to pass the test.

This ensures that the softest emissions at wide angles from the hard subjets, and

contamination from the underlying event (UE) and initial state radiation (ISR), are

effectively removed from the final groomed jet.

In the groomed case, the observable bases are measured after grooming, thus the collection

of particles in the jet effectively contributing to the phase space are different than for

ungroomed jets.

3 How to make an observable

In this section, we describe our event simulation and implementation of machine learning

to the N -subjettiness basis of observables described in the previous section. We generate

background pp → Z + bb̄ and signal pp → Z(H → bb̄) events at the 13 TeV LHC with

MadGraph5 v2.5.4 [34]. The Z bosons were used as a control and decayed exclusively to

neutrinos. These tree-level events are then showered in Pythia v8.226 [35, 36] with default

settings. Later in this section we will also show results obtained by applying the observable

learned from Pythia to events showered with Herwig v7.1.1 [37, 38]. We use FastJet

v3.2.1 [39, 40] to cluster the jets. On the clustered anti-kT [41] jets with radius R = 0.8

and minimum pT of 500 GeV, we then measure the basis of N -subjettiness observables

using the code provided in FastJet contrib v1.026. The observables are measured at the

particle level and we do not apply any detector simulation.

We then study these jets without grooming and with mMDT grooming with zcut = 0.1.

On these samples, we measure the jet mass and apply a cut of 100 < mJ < 150 GeV which

selects the Higgs signal region. Additionally, we measure the sufficient collection of N -

subjettiness observables to completely determine up through 6-body phase space. We then

proceed to develop novel observables learned from the machine that further discriminate

signal and background.

To do this, we use the approach of ref. [19]. This enables us to identify the resolved

phase space that captures the vast majority of the discrimination power. To calculate the
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Figure 2. H → bb̄ jet efficiency vs. g → bb̄ jet rejection rate plot for the ungroomed (a) and

groomed (b) jets, as determined by a neural network. The curves effectively demonstrate saturation

of discrimination power on the resolution of 3-body phase space.

ROC curves for M -body phase space shown in figure 2, we trained deep neural networks

with fully-connected layers on the bases of N -subjettiness observables discussed in the

previous section. Discrimination power is seen to dramatically increase on going from 2-

to 3-body phase space, and higher phase space improves discrimination only slightly. All

networks were trained using the Keras [42] deep learning libraries. However, it is important

to note here that this procedure, as justified in ref. [19], is agnostic of the specific machine

learning method used and, equivalently, other machine learning methods (like a boosted

decision tree) could have been used to identify the point of saturation. From these results,

in what follows we will exclusively study 3-body phase space.

From the assumption that 3-body phase space effectively saturates discrimination

power, our goal is to define a single observable that captures this discrimination power.

As previously discussed, this proposed observable must be a function of the phase space

variables at the point of saturation. Determining this function thus requires parametrizing

the possible functions of the phase space variables somehow. Our approach will be illus-

trative and demonstrate the procedure for doing so. However, there may be smarter or

more effective ways to optimize this process. Here, we will just consider the observable

formed from the product of 3-body (5 dimensional) phase space variables, raised to powers

a, b, c, d and e:

β3 =
(
τ
(0.5)
1

)a(
τ
(1)
1

)b(
τ
(2)
1

)c(
τ
(1)
2

)d(
τ
(2)
2

)e
. (3.1)

At this stage, the optimal values of these powers are undetermined, and there is no guar-

antee that this form of the observable actually includes all discrimination power of 3-body

phase space. We leave the problem of a complete observable basis to future work.
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Figure 3. Histograms for the values of exponents of the product observable. For ungroomed (a)

and groomed (b) jets exponent values in these histograms were accepted when the generated AUCs

for the binned signal and background likelihood distributions were above 0.81 and 0.73 respectively.

3.1 Determining optimal parameters

Utilizing the measurements of N -subjettiness observables from our datasets of groomed

and ungroomed jets, we run a Monte Carlo simulation whereby uniform random numbers

in the range [−5, 5] were assigned to the exponents a, b, c, d and e.1 In each run, val-

ues of the resultant product observable were measured on samples of 200,000 signal and

background jets from Pythia that passed the mass cut of mJ ∈ [100, 150] GeV. We then

construct the 1 dimensional binned likelihood distributions of the observable, which is the

optimal discriminant for a given functional form of the observable by the Neyman-Pearson

lemma [43]. The likelihood distributions of the observable, for each set of exponent values,

were then used to calculate the area under the ROC curve (AUC) to estimate the discrim-

ination power. For each run, the values of the exponents and the calculated AUC were

stored only when the AUC crossed a threshold value of 0.5. This was necessary to exclude

binning effects on the measured discrimination power of the observable.

We apply this procedure to jets that have been groomed with mMDT and those that

have not. In the groomed case, due to the exclusion of soft emissions and contamination

from initial state radiation (ISR) or underlying event, it is relatively straightforward to

extract a useful physical understanding from the obtained functional form of the observable.

In figure 3, we plot the distributions of the exponents a, b, c, d and e with the requirement

1We also attempted to identify the set of exponent values that maximizes the AUC using stochastic

gradient descent. However, due to the finite binning necessary to calculate the likelihood and therefore the

AUC, we were unable to demonstrate satisfactory convergence to maxima. Additionally, the Monte Carlo

approach enables a direct study of correlations of the exponents on the discrimination power. This will be

demonstrated shortly.
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Figure 4. Heat maps of the correlation between a and b exponents of the product observable for

ungroomed (a) and groomed (b) jets.

that the AUC for the corresponding product observable is greater than 0.81 or 0.73, for

ungroomed and groomed jets, respectively. These distributions will enable us to extract

the exponent values for which the AUC is maximized for the binned likelihood distributions

of the product observable measured on signal and background.

By studying the histograms of the exponents one can make the following conclusions:

• For the ungroomed jets, AUC is maximized when c = 0, d = 0.5, e = −1 as the

distributions for these exponents are very narrow. Since the distributions for a and

b are both approximately uniform on [−5, 5], further interpretation is required. This

will be done shortly.

• For the groomed jets, AUC is maximized when c = 0, d = −2, e = 2. Again, since a

and b are both approximately uniformly distributed over [−5, 5], further analysis is

required to determine the values that maximize the AUC.

To determine the values for a and b for both ungroomed and groomed jets, we work to

understand the correlation between the exponents.

To determine the correlation between the exponents a and b, we plot their joint proba-

bility distribution from the uniform sampling on [−5, 5] with the same cuts on the resulting

observables’ AUC. For both ungroomed and groomed jets, this is shown in figure 4. These

plots demonstrate a strong correlation between these exponents, which to very good ap-

proximation is:

Ungroomed : a+ b = 2 , Groomed : a+ b = −2 . (3.2)

These relationships can be used to fix b, for example, as a function of exponent a. To

determine the value of the exponent a, we then fix b, c, d, and e as earlier, and calculate

the AUC for a ∈ [−5, 5]. The results of this scan are shown in figure 5 for ungroomed
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and groomed jets. In particular, we note from the plot that AUC is maximized for the

ungroomed case when a = 2 and for the groomed case when a = −2. This implies that the

exponent b = 0 for both cases, using eq. (3.2).

Thus, the product observable takes on the following forms for the two kinds of jets:

Ungroomed : β3 =

(
τ
(0.5)
1

)2 (
τ
(1)
2

)0.5
τ
(2)
2

, Groomed : β
(g)
3 =

(
τ
(2)
2

τ
(0.5)
1 τ

(1)
2

)2

. (3.3)

Any monotonic function of the observable will produce the same discrimination power, and

so we can simplify the expression for the groomed product observable. For the product

observable for groomed jets, we use the expression:

β
(g)
3 =

τ
(2)
2

τ
(0.5)
1 τ

(1)
2

. (3.4)

It is interesting to note that the observables from this method are Sudakov safe [44, 45]

because they are formed from ratios of IRC safe observables.

3.2 Physical interpretation

In figure 6, we plot the distribution of these new product observables measured on signal

and background jets showered in Pythia. This shows that these product observables on

ungroomed and groomed jets effectively separate signal from background. Additionally, in

figure 7, we measure these product observables determined from the Pythia signal and back-

ground samples on the jets showered with Herwig. We observe a similar relative separation

between the distributions, although the absolute scale is different, in the Herwig samples

suggesting that these observables are sensitive to real physics, and not idiosyncrasies of the

parton shower programs.
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Figure 6. Distributions of the product observable for signal (red) and background (blue), measured

on the samples of ungroomed (a) and groomed (b) jets showered with Pythia, within a mass cut of

mJ ∈ [100, 150] GeV.
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Figure 7. Distributions of the product observable for signal (red) and background (blue), measured

on the samples of ungroomed (a) and groomed (b) jets showered with Herwig.

Especially for groomed jets, these simple forms for the product observables enable a

nice interpretation of the physics to which they are sensitive. In the case of ungroomed jets,

there are multiple sources of radiation (final state, initial state, underlying event, etc.) that

makes an interpretation a bit more challenging, so we won’t discuss it more here. When

the jets are groomed with mMDT, however, contamination radiation from the initial state

or underlying event is dominantly removed, and so a picture of the jet exclusively with

radiation from the final state is accurate. In this case, the mMDT jet with resolved 3-body

phase space consists of the b and b̄ pair, and the dominant gluon emitted off of them. The

3-body phase space configuration is shown in figure 8, with transverse momentum fractions
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Figure 8. Illustration of the momentum fraction and pairwise angle variables that describe 3-body

phase space.

zi and pairwise angles θij . In what follows, we will let particles 1 and 2 be the b and b̄, and

particle 3 be the gluon.

Because we make a cut on the jet mass and there is no soft singularity for g → bb̄

splitting, we assume that the emitted gluon is relatively soft and/or collinear with respect

to the b and the b̄. With this assumption, then the value of τ
(0.5)
1 is completely determined

by the b and b̄. Then, the value of τ
(0.5)
1 is approximately

τ
(0.5)
1 ' z((1− z)θ12)

0.5 + (1− z)(zθ12)
0.5 (3.5)

= (z(1− z)θ212)
0.25

(
z0.75(1− z)0.25 + z0.25(1− z)0.75

)
.

Here, z is the transverse momentum fraction of the b quark subjet, for example. The com-

bination z(1−z)θ212 is just the ratio of the jet mass to the jet transverse momentum to this

order, m2
J/p

2
TJ , and is approximately constant because the mass cut is relatively narrow.

The term in parentheses on the right,
(
z0.75(1− z)0.25 + z0.25(1− z)0.75

)
, is typically an

order-1 number, as there is no soft singularity for g → bb̄ splitting nor for H → bb̄ decays.

So, to good approximation, τ
(0.5)
1 on these jets with a mass cut is just some constant value.

The remaining factor in β
(g)
3 however, contains significantly interesting physics. The

two other N -subjettinesses that appear in that observable can be expressed as (see ref. [19]

for more details):

τ
(1)
2 =

2z3zi
zi + z3

θi3 , τ
(2)
2 =

z3zi
zi + z3

θ2i3 . (3.6)

In writing this, we assume that the gluon, with transverse momentum fraction z3 = 1 −
z1 − z2, is the first particle clustered by the kT algorithm, and therefore sets the value

of these τ2 observables. zi is the transverse momentum fraction of the closer in angle of

particles 1 or 2 (the b or b̄), with θi3 this angle. The ratio that appears in β
(g)
3 is therefore

τ
(2)
2

τ
(1)
2

=
min[θ13, θ23]

2
. (3.7)

Therefore, with these assumptions, the groomed jet product observable is approximately

proportional to the angle between the dominant gluon emission and the closer of the b or b̄:

β
(g)
3 ∝ min[θ13, θ23] . (3.8)
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Figure 9. Signal efficiency versus background rejection rate for N -subjettiness ratio τ
(2)
2,1 , N

(2)
2 ,

and D
(2)
2 , measured on ungroomed (a) and groomed (b) jets showered using Pythia, compared to

the discrimination power of the product observable β3 or β
(g)
3 . The discrimination power of the

product observable is comparable to that of the standard observables.

As color octets, gluons preferably emit at wide angles, while singlet Higgs bosons emit at

small angles, and so we do expect this observable to provide discrimination power.

3.3 Comparison to standard observables

To demonstrate that these observables learned by the machine are indeed powerful, we

compare their discrimination power to that of a collection of standard observables. For

comparison, we use N -subjettiness ratio τ
(2)
2,1 with winner-take-all axes [46–48] and (gener-

alized) energy correlation function ratios D
(2)
2 [49] and N

(2)
2 [50]. While these and related

observables have been used for identification of boosted H → bb̄ decays, they are not nec-

essarily optimized for this purpose. Nevertheless, they provide a useful benchmark. The

signal efficiency versus background rejection rates for jets showered in Pythia are shown in

figure 9 and for jets from Herwig, in figure 10. Most interestingly, for ungroomed jets, the

new product observable β3 outperforms each of these standard observables. On groomed

jets, the discrimination power of all of the observables is much closer and D
(2)
2 apparently

slightly outperforms β
(g)
3 . Nevertheless, this demonstrates that, with very little human in-

put, powerful discrimination observables can be constructed from what the machine learns.

It is instructive to also directly compare the value of our β3 observables directly to the

output likelihood ratio as determined on the 3-body phase space observables from the neural

network. In figure 11, we have made scatter plots of the value of β3 or β
(g)
3 (as appropriate)

versus the likelihood ratio as measured on 1000 of both signal and background jets. If the

β3 observables perfectly captured the information in the likelihood, these scatter plots

should reduce to a monotonic curve. The deviation from monotonicity is a measure of the

information that β3 misses with respect to the likelihood. Broadly, these plots demonstrate

a monotonic relationship between β3 and the likelihood, but there is some spread. The

relative size of the spread is less for β3 measured on ungroomed jets, which may reflect

that in this case, β3 captures more of the information in the likelihood than β
(g)
3 .
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Figure 10. Signal efficiency versus background rejection rate for N -subjettiness ratio τ
(2)
2,1 , N

(2)
2 ,

and D
(2)
2 , measured on ungroomed (a) and groomed (b) jets showered using Herwig, compared to

the discrimination power of the product observable β3 or β
(g)
3 .
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Figure 11. Scatter plots of 1000 signal (red) and background (blue) jets in the plane of β3 versus

the 3-body phase space likelihood ratio from the neural network. Ungroomed jets are shown in (a),

and mMDT groomed jets in (b). The gross monotonic relationship between β3 and the likelihood

indicates that most of the information in the likelihood is captured in β3, while the spread indicates

that there is some discrimination information that is missed in β3.

4 Conclusions

Previous deep learning studies in jet physics have shown immense promise. While it has

been shown that appropriately designed deep learning techniques can outperform standard

observables, such studies have not effectively probed what more information the machines

are identifying. Building on ref. [19], we propose a procedure that develops powerful new

observables from the knowledge of the information contained in jets that contributes to

an observable’s discrimination power. By systematically controlling the information fed to
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neural networks, it is possible to identify the minimal amount of information required to

effectively discriminate between highly boosted decays of different massive particles and

light QCD partons. The method of planing introduced in ref. [17] may also be useful in

identifying the minimal information necessary for powerful discrimination.

Here, we have proposed an algorithm that can, in principle, be automated to construct

new observables for any discrimination problem. While the H → bb̄ application shows

promise, such a procedure might also be applied to other specific problems like identifying

q vs. g jets, top quarks, or even to develop new observables that work effectively as generic

anti-QCD taggers. The most improvement to this method would be accomplished by

construction of an optimal basis of functions with parameters that can be tuned to maximize

discrimination power. Of course, at this point, one is faced with a trade-off between

simplicity and efficacy that must be taken into account. By utilizing constructive deep

learning techniques that are sensitive to exotic configurations within jets, this approach is

presented with an intention to open the door to a whole new class of powerful substructure

observables that can be tailored to specific or generic classification problems, while also

providing further physics insight regarding the jets being studied.
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