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ABSTRACT: We systematically study the modifications in the couplings of the Higgs boson,
when identified as a pseudo Nambu-Goldstone boson of a strong sector, in the light of
LHC Run 1 and Run 2 data. For the minimal coset SO(5)/SO(4) of the strong sector, we
focus on scenarios where the standard model left- and right-handed fermions (specifically,
the top and bottom quarks) are either in 5 or in the symmetric 14 representation of
SO(5). Going beyond the minimal 55, — 5r representation, to what we call here the
‘extended’ models, we observe that it is possible to construct more than one invariant in
the Yukawa sector. In such models, the Yukawa couplings of the 125 GeV Higgs boson
undergo nontrivial modifications. The pattern of such modifications can be encoded in a
generic phenomenological Lagrangian which applies to a wide class of such models. We
show that the presence of more than one Yukawa invariant allows the gauge and Yukawa
coupling modifiers to be decorrelated in the ‘extended’” models, and this decorrelation
leads to a relaxation of the bound on the compositeness scale (f > 640 GeV at 95% CL, as
compared to f > 1TeV for the minimal 55, — 5r representation model). We also study
the Yukawa coupling modifications in the context of the next-to-minimal strong sector
coset SO(6)/SO(5) for fermion-embedding up to representations of dimension 20. While
quantifying our observations, we have performed a detailed 2 fit using the ATLAS and
CMS combined Run 1 and available Run 2 data.
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1 Introduction

With increasing precision in measurements of the Higgs boson properties at the Large
Hadron Collider (LHC), the possibility that the Higgs may be a composite object [1-5]
can be put to stringent tests. In this context, the scenarios where the Higgs is identi-
fied as a pseudo Nambu-Goldstone boson (pNGB) of a strongly interacting sector are of
special interest. This has received considerable attention following its identification as a
holographic dual of 5d gauge-Higgs unification models [6-9]. In this paper, however, we
stick to an effective 4d scenario, and do not comment on possible UV completion of such
models. The approximate shift-symmetry of the pNGBs can screen the weak scale from
physics beyond the compositeness scale (f ~ O(TeV)). This provides a well-motivated
framework for natural electroweak symmetry breaking.

The direct signatures of these models at the LHC could be the appearance of additional
resonances of the strong sector [10-18]. However taking cue from non-observation of these
resonances, attempts have been made to push up the resonance masses while keeping the
theory still natural [19-23]. The other inevitable and testable features of these models
are deviations of the Higgs couplings compared to their standard model (SM) predictions.



One of the consequences of compositeness is that the couplings are replaced by form factors
which are momentum dependent. However, it is difficult to test this momentum dependence
at the LHC. Nevertheless, the nonlinearity of the pNGB dynamics provides a finite shift
in the Higgs couplings measurable in the precision era of the LHC. In this paper we make
a systematic study of the pattern and constraints on such modifications that arise in a
general class of composite Higgs models.

We categorize the scenarios considered under three major heads:

o Minimal model: coset SO(5)/SO(4), with both the left- and right-handed fermions
kept in the fundamental 5 of SO(5), represented in literature as MCHM35, _5,, [24-29].

e Extended models: coset SO(5)/SO(4), with at least one of the left- or right-handed
fermions kept in the symmetric 14 of SO(5). They are denoted in literature as
MCHM14L_14R, MCHM14L_5R, and MCHM5L_14R [29*35].

e Nezt-to-minimal models: coset SO(6)/SO(5), denoted as NMCHM, with different
choices of representation up to dimension 20 [21, 36-44].

The couplings of the pNGB Higgs with the weak gauge bosons (VVh) are usually
suppressed in a general class of composite models. The parameter ¢ = v2/f? < 1, where
v = 246 GeV is the electroweak vacuum expectation value (vev), controls this suppression.
The Yukawa couplings are generated through a mixing between the elementary fermions
and the operators of the strong sector. Once the strong sector is integrated out the effective
Higgs-fermion interaction term looks like [45, 46],

t
Lo o< fLH frF (Hf2H> ) (1.1)
where F(HTH/f?) is a function of the SU(2);, doublet Higgs field (H). The contributions
from the higher dimensional operators with independent coefficients, added to the SM
dimension-4 Yukawa term, give rise to a modification in the couplings of the Higgs with
the fermions (ffh), see also [47, 48] in a different context. In the minimal model, the SM
fermions couple to only one operator of the strong sector. As a result the modification of
the couplings depends on only one free parameter £. The other parameters in the effective
Lagrangian are fixed from the requirement of reproducing the corresponding SM fermion
mass. Therefore, ffh and VVh couplings get highly correlated, and stringent constraints
on f emerge [49, 50] from the increasingly precise measurements of Higgs production and
decays at LHC. In the extended models, owing to the presence of more than one invariant
in the Yukawa sector with different coefficients, the correlation between ffh and VVh
modifiers is weakened, and we observe a possible relaxation of the bound on f. This
happens in certain regions of the parameter space where a possible enhancement in ffh
vertex can partially offset the suppression in VV'h coupling. Additionally, the extended



models, carrying more than one invariant in the Yukawa sector, have the distinct advantage
of being free from ‘double tuning’ [30].

In this paper, we first concentrate on a systematic and comparative study of various
possibilities of Higgs coupling modifications in the context of the extended models.? For
each such possibilities, we construct one-loop Coleman-Weinberg Higgs potential [52], and
identify regions of parameters space where the top mass, Higgs mass and the electroweak
vev are reproduced. Next we consider the next-to-minimal model which contains a SM
scalar-singlet (n) apart from the Higgs doublet. Their mixing can significantly modify
the observed Higgs boson couplings. In this context also, we survey different fermionic
representations and calculate the corresponding modifications to Yukawa couplings.

We then construct an effective phenomenological Lagrangian whose parameters capture
the coupling modifications of a general class of models mentioned earlier. The explicit
connection between the coefficients of the Lagrangian and the parameters of the specific
models is specified on a case-by-case basis. We perform a x? analysis with the ATLAS and
CMS combined Run 1 [53] and available Run 2 data [54-66] to estimate a bound on f in
the extended models and compare it with that of the minimal model. In the context of
the next-to-minimal model, we provide an estimate of the amount of doublet-singlet scalar
mixing allowed by the current data.

The rest of the paper is organized as follows. In section 2 we review the consequences of
various fermionic embedding for SO(5)/SO(4) as well as SO(6)/SO(5) cosets. In section 3
we present a phenomenological Lagrangian that captures the generic features of a wide
class of models in terms of the Higgs coupling modifiers. Following this parametrization
we perform a fit to the existing data using the x? minimization technique in section 4.
Finally, we draw our conclusions in section 5.

2 Composite models and modified Yukawa couplings

In this section we consider different representations for fermions in SO(5)/SO(4) and
SO(6)/SO(5) cosets and work out the modifications in the top quark Yukawa coupling
in a systematic manner.

2.1 SO(5)/SO(4) coset

As long as the coset is SO(5)/SO(4), the modification in V'V h coupling is solely determined
by &, as

kvv,lz(gw’"”:\/1§:1;g. (2.1)

GVVh)SM

A = 1/¢ is a measure of minimal tuning in any composite Higgs model. On top of this, an additional
tuning, dubbed ‘double tuning’, arises in scenarios (e.g. MCHMs, _5,) where the coefficients of the quadratic
and quartic terms in the potential are not in the same order of the elementary-composite mixing parameter.
This can be avoided when either the fermion kinetic and/or the Yukawa terms contain at least two invariants.

*We do not consider representation 10 of SO(5) because it does not lead to more than one Yukawa invari-
ant keeping a discrete parity that protects the Zbb vertex [29, 51]. Note that the choice MCHMj14, 15, where
tr can be fully composite, involves minimal tuning as compared to the double tuned MCHMs, 5, [30].
However, we do not consider this choice because it contains a single Yukawa invariant.
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Table 1. List of II-functions, defined in eq. (2.2) for different representations.

The number of Yukawa invariants, on the other hand, depends on the representations
in which ¢7, and tg are embedded. We write down the relevant invariants using the pNGB

T
representation ¥ = <0, 0,0,h/f,/1— h2/f2> in the unitary gauge:

o tr and tg in 5 (MCHMs, _5,):  (Q,.2)(S7.T7),

ot and tg in 14 (MCHM y, _14,): S7.Q, . THE, (37.Q, ) (ST.THY),
e t; in 14, tp in 5 (MCHMiy, —5;): QtL P, (st Qt L)(sTR),

e trin 5, tgin 14 (MCHM;, _14): Q) TH.S, (@7 .5)(ST.TH.x).

Above, Q;, and T3, contain t; and tp as incomplete SO(5) multiplets, respectively (see
appendix A.1). The most general Lagrangian involving the top quark can be written as

L= ELgHtL (q, h)tL + iRgHtR (q, h)tR + %LHtLtR(qa h)tR + h.c. (2.2)

The dependence on the strong sector dynamics is encoded inside the momentum de-

pendent II-functions. In table 1, we show the explicit forms of those functions for various

L,R LR(Q)

representations in terms of the Higgs field with coefficients 173 . The expressions

for the latter in terms of the masses (m;) and decay constants (FiL’R) of the strong sector
resonances are given in the appendix B for the extended models, namely, MCHM 4, 144,
MCHM 4, —5, and MCHMS5, 14, respectively. The mass of the top quark and the modifi-
cation of top Yukawa can be calculated from eq. (2.2) as

’HtLtR (q7 h)’

\/HtL Q7

In the second equality of eq. (2.3

ytth 1 1 8mt
my = L kg, = = (1—5) 7 (2.3)
My (g, h) lg=0, hso " Wan)sm Wian)sm 27) v

), the factor (1 — 75) arises due to canonical normalization
of the Higgs field. As argued in [31, 67], the top quark contribution to the effective gluon-
gluon-Higgs (ggh) coupling in composite Higgs models is independent of the wave function

renormalization effects of the top quark due to cancellation with resonance loops. This



would imply a deviation in effective ggh coupling compared to the effective tth coupling.
The modification of the effective ggh coupling can be expressed as

k(t)h — Cggh — 1 <1 _ 15) dlog ‘HtLtR ((L h)’ ] (2'4)
94 (cggn)sm  (Cogn)gm 2 oh q—0, h—v

The one-loop Coleman-Weinberg Higgs potential receives largest contribution from the top
quark, as

2N / log q HtLHtR + |HtLtR’ ) f2 —|—,8 (25)

I
The coefficients o and § above are integrals over the form factors. A similar contribution
to « arises from gauge boson loops with opposite sign (largest contribution from SU(2)y,
gauge bosons), parametrized as [68, 69]

2 2951, (2.6)

@9 = 796722
where ¢, is an O(1) positive constant absorbing the details of the integration, g is the
SU(2)1, gauge coupling, and g, corresponds to that of strong sector spin-1 resonances. The
gauge contribution to S is numerically small. To calculate the top-induced contribution to
« and 3, we use certain parametrization of the momentum dependent form factors based
on scaling arguments. The decay constants and the top-partner masses are parametrized as

FPR=APRF mi=gif, (2.7)

where )\f’R are dimensionless constants and g; denote strong couplings. In the present
analysis, we keep |\;| /g;i < 1. The strong sector coupling strengths are kept well within
the perturbative limits, i.e. 1 < g; < 2w. Regarding the integrals over the form factors in
fermionic sector, the loop factors and the dimensionful variables are shown explicitly. Some
group theoretic factors also emerge due to the decomposition of the SO(5) resonances in
terms of SO(4) multiplets. We assume that sufficient number of resonances with coupling
strengths g; saturate the form factors, rendering the integrals finite. As an illustration, we
show one of the integrals involved in the Higgs potential, as parametrized in [3, 68, 69|

L,R n L,R n
/ d'q <H1,2 (Q)> ~ ™ 1 <H1,2 (0)> A =129 (2.8)
— ~1,2 7 ) — Ly 4 .
(2m)* \ 15" (g) 1672 \ 115°"(0)
(n)

where ¢ 5 are O(1) numbers and the forms factors are displayed in appendix B. Finally we

use the following phenomenological constraints to generate the allowed parameter space:

169 GeV < my < 176 GeV, v =246 GeV,
123GeV <myp < 127GeV, 1TeV <m; =g;f <2rnf. (2.9)

We present the results of our numerical analysis in figure 1. Depending on the embedding of
the top quark the value of k,y, varies. Interestingly, for MCHM4; —14; and MCHM 4, _5,
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Figure 1. Results from the numerical analysis for MCHM;i4, 14, (blue), MCHMy4, _5, (brown)
and MCHM5;, 14, (magenta) are shown. In the left panel k7, is plotted against & while at the
right panel we show the correlation between k';tg)h and k,z,. While generating the model points we

vary the strong couplings g; and g, in the range [1,27] and )\iL’R/gi within [—1,1]. All the points
shown in the plots satisfy the phenomenological constraints given in egs. (2.9).

we get an enhancement in top Yukawa coupling compared to its SM value (k;, > 1), for
a large number of model points. On the other hand, for MCHMj5, 145 the top Yukawa is
always suppressed. This is linked to the relative sign between the coefficients of the two
Yukawa invariants. In figure 1 (right panel) we show the variation of k;;)h with k,, and one
observes that the two quantities are almost equal for all model points. This implies that
the numerical impact of the wave function renormalization of the top quark is very small.

2.2 SO(6)/SO(5) coset

The next-to-minimal model, with SO(6)/SO(5) coset includes a real singlet scalar (n)
along with the usual Higgs doublet. Quite a few interesting features emerge in this case,
depending on whether 7 acquires a vev [21, 43, 44] or not [70-73]. In the present section
we discuss the effect of the n-vev and consequently the doublet-singlet scalar mixing on the
Yukawa couplings. Here we follow the convention and notation as presented in [21].

In this case the structure of the Lagrangian involving the top quark is similar to
eq. (2.2), with the exception that the II-functions are dependent both on A and 7, as
shown in appendix C, for different representations. Although compared to SO(5)/SO(4)
coset, more possibilities of embedding ¢7, and tg in different SO(6) multiplets exist, we stick
to the choices shown in appendix A.2 only. The Lagrangian, in terms of the canonically
normalized quantum fields (hy,, 1), upon electroweak symmetry breaking, can be written as

LD mtt+ kg, (%) Bt + kg, (%) it (2.10)
Due to the doublet-singlet mixing, the state corresponding to the observed Higgs field is

h' = cos Omixhp — sin Oixn (2.11)
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Figure 2. The variation of kg, with x = (n)?/f? is shown. In the left panel, for illustration, we
keep the ratio Hff’ JTIE (see appendix C) fixed at 0.2, and plot the curves for different values of £. In
the right panel we fix £ and plot for different values of the ratio mentioned above. While plotting
the curves we assume that Hf’R < HOL’R and the mixing angle 6,3, < 0.25 is respected.

where 6,ix denotes the amount of mixing and is constrained by the LHC Higgs data. For
the case, where both m,, > mj, and (1) > (h), the mixing angle can be simply parametrized

as [44]
() (n)

2
s

§X
Kz, o 1oy v (213)

where x = (n)?/f?. Because of an inherent Z» symmetry associated with our choice of
embedding, n couples with the top quark as n?. When the Z, symmetry is spontaneously
broken the dependence on x appears. The appearance of £ is a consequence of constructing
an SU(2) invariant Yukawa-like term involving the 7 field. Finally the expression for the
Yukawa coupling modifier involving the observed Higgs is obtained as

<1. (2.12)

gmix ~

We also observe that

Kygns = €08 Omixckign,, — sin Omixkg, - (2.14)

We show some representative plots illustrating the impact of x on the Yukawa coupling
modifier. In figure 2 we present the variation of k3, with x for NMCHMg, ¢, . Obviously
extra model dependence appears in the case of symmetric representation (20), where more

than one Yukawa invariant exist.

3 Effective phenomenological Lagrangian

The modifications in the Higgs couplings as discussed in the previous section have two
generic features: (i) modification in V'V h coupling, arising from the non-linearity of the



pNGBs, is universal as long as the coset belongs to SO(N)/SO(N — 1) group (modulo the
mixing with other states), and (i) modification of the Yukawa couplings depends on the
choice of fermion embeddings. These can be captured in an effective Lagrangian as,

L= LsverTr+AL,

2
f 9" gt b ~S gL Houn—Y vad
LsverT D 0, H'0"H + > H H(WMW“+2COSQ?L)ZMZ“> 2 Yuqr Hup d yaqr Hdg

Qs s 1 6 em em HTH v
- Z ylb GMVG# Z yzb ng /UTFMVF'M . (31)

zud i=u,d

Above, Lsyrrr comprises of the Standard Model effective Lagrangian with relevant
dimension-4 and dimension-6 operators, where the explicit forms of the numerical co-
efficients b; are given in [74]. In the SO(5)/SO(4) models, additional contributions to
dimension-6 operators emerge, given by

H'H H'H
AL f2 (HTH)G“(HTH) Z(A;‘Fau)yu?QLchR—Z(A&‘Hsd)yd?qLHdR
u d
S em HH
—Z - GWG“” - ZA b —— F, F. (3.2)
i= ud i=u,d f

In the above Lagrangian we have dropped terms which are highly constrained by the
electroweak precision observables [45]. One can read off the Yukawa and ggh/yyh coupling
modifiers as

1 ¥ 1
(3.3)
and the modifier for V'V h coupling as

1
kyyn=1— 55 . (3.4)

While £ represents the ratio of the weak scale to the effective scale of the theory, thus
naturally controlling the coupling modifiers, a brief discussion of the other two parameters,
namely A and ¢, in the effective Lagrangian is in order. The origin of A can be traced
back to the nonlinear realization of the pNGB sector. In scenarios containing only one
Yukawa invariant this is a numerical constant (e.g. in MCHMs5, 5., A ~ —3/2), while
in the extended models with several invariants this factor may deviate depending on the
details of the strong sector resonances. In contrast, d reflects the effect of partial composite
nature of the top quark in these theories, contributing to the anomalous dimension of the
top quark. In the effective ggh and y+vh vertex, in fact, contributions from the wave
function renormalization cancel against the resonance loop contributions [31, 67]. In our
phenomenological analysis, that follows in the next section, we will employ the effective
Lagrangian (egs. (3.1) and (3.2)), to confront the LHC Higgs data. All fitting are done
assuming A; and J; to be free parameters. Further we assume that the bottom and 7



Modifiers Dependence on parameters
kyvi (VV =WW,ZZ) 1— 3¢
Ktn 14+ (At +61)¢€
(t)
Kogh/vin 1+ A8
Kyp 1—3¢
(b) 3
Kyan 1-35¢
kT?h 1- %6

Table 2. Scaling of the Higgs effective couplings for SO(5)/SO(4) model.

Yukawa couplings are modified only by the universal factor A, = A, = —3/2, i.e. they are
always suppressed compared to their SM values. We also make a reasonable approximation
dp = 6 = 0. A complete list of all the coupling modifiers within the SO(5)/SO(4) model
is given in table 2.2 The explicit expressions of A; and 6&; in terms of the form factors are
defined in table 5 of appendix D.

The main feature that gets added when one moves to the next-to-minimal model is the
presence of an additional singlet scalar and its mixing with the Higgs doublet. A description
of the composite models including a SM singlet in the context of a strongly interacting light
Higgs can be found in [75]. Here we present a simplified effective Lagrangian keeping only
the dominant terms. We add the following piece involving 1 to egs. (3.1) and (3.2),

1 2 2
ALy ~ 50umd"n > yu(AZ)/%ﬁLHCuR -3 yd(AZ)/%QLHdR : (3.5)
u d

Note that the dimension-5 operators involving a single 7 field is not allowed in the presence
of a Z5 symmetry, as discussed in previous section. Due to doublet-singlet scalar mixing
(Omix), the Yukawa modifier for the observed Higgs boson (h') assumes the following form

Ky = €08 Omix (1 + (Af + 07)§) + sin QmixA?\/g, (3.6)

where A} is a function of (A%})" and the n-vev. The expressions for A/ for different
representations are given in table 6 of appendix D. In the following analysis we assume
A} = A} for simplicity.

The VVR' coupling modifier now picks up the additional factor cos 6,ix compared to
the minimal coset (see eq. (3.4))

kVVh’ = COS Gmixv 1-— f (37)

3In [53], effective ggh and «yyh coupling modifiers have been calculated keeping only the dominant terms:

kggn = 1.06 (k\2,)2 +0.01 (k)2 —0.07 k) k) and Koy o 0.07 (k$9,)2 +1.59 k), —0.66 k%2, kww.




4 Constraints from LHC Run 1 and Run 2 Higgs data

In this section we discuss how the Higgs coupling modifications confront the recent LHC
data [53-66]. We perform a x? fit to assess the present constraints starting from the effective
Lagrangian introduced in the previous section. We use the combined ATLAS4+CMS Run
1 results for signal strengths, given by the ‘six-parameter’ fit as shown in table 15 of [53].
The so far available Run 2 (13 TeV) results are summarized in table 3.

The effective Lagrangian given in eq. (3.2), which corresponds to SO(5)/SO(4) coset,
have three independent parameters £, A; and J;. Using this parametrization we calculate
the Higgs signal strengths in various final states normalized to their SM values. These
are then compared with the data using the x? fit. The minimum value of the x? and
corresponding best-fit values of the parameters in the extended models are given below.

e Run 1:
anin =1.92, A;=-0.31, 0; =0.10, £=0.13, (4.1)

e Run 1 4+ Run 2:

i = 18.85, Ay = —0.06, & =0.02, £€=0.05. (4.2)

This may be compared with a similar fit obtained for the MCHMj5, _5, with only one
free parameter £. The best-fit values are given by

e Run 1:
X = 343, € =10.007, (4.3)

e Run 1 + Run 2:
X = 19.72, € =0.00. (4.4)

In figures 3 we plot Ax? as a function of &, corresponding to our effective Lagrangian
eq. (3.2), with all other parameters fixed to their best-fit values. For comparison, we also
show the curve for MCHMj5, _5,., and our results agree with [44] wherever we overlap. For
the extended models, we obtain a lower bound f > 465 GeV at 95% CL from Run 1
data only. This should be compared with f > 780 GeV at 95% CL for MCHMs, _5,. The
relaxation of the bounds on f for the extended models follows from the reduced correlation
between kg, and kyyy in the effective Lagrangian in eq. (3.2) as compared to the tight
correlation in MCHMj5, _5.. We find that combined Run 1 and Run 2 data give significantly
more stringent lower bound, namely, f > 640 GeV at 95% CL for the extended models.

In figures 4 we check whether the extended models fit the data better (i.e. x2/d.o.f. is
lower) than MCHMj5, _5,.. In the blue shaded region the extended models, as parametrically
encoded in the effective Lagrangian in eq. (3.2), fit relatively better for the entire range of
£. On the same plot we also throw the actual model points, with the resonance masses and
decay constants as the strong sector inputs, discussed on a case-by-case basis in section 2.1,
satisfying the constraints shown in eq. (2.9). In figures 5, the experimentally preferred
regions for the coupling modifiers are shown at 68% and 95% CL in the (kg,~€) and

~10 -



Run 2 Data

Collaboration | References | Decay Channels | Production Modes Results
[54] 17474 VBF 1.707 550

g9F 0.8070:13

55, 56] Yy VBF 2.1010:89

VH 0.7075:3

ttH 0.6019-%0

ATLAS [57] z7z* ggF 111793
VBF 4.00777

(56, 58] bb VH 1.2070:32

ttH 0.8070:89

56, 59] Multileptons ttH 1.60105
[60] WWwW ggF + VBF + VH | 1.050702

ggF 1117930

[61] vy VBF 0.500%9

VH 2.301 150

ttH 2.2010-%

CMS [62] z7* ggF + ttH 1.2019-32
[63] T g9F + VBF +VH | 1.06703)

[64] bb ZH 1.201045

[65] Tp+others ttH 0.7210:%2

[66] Multileptons ttH 1.5079-30

Table 3. Results from the ATLAS and CMS collaborations for Higgs signal strengths at 13 TeV
are tabulated.

(k;?hfktgh) planes. The model points are observed to span over a large range of the preferred
regions. It may be noted that present experimental precision is not sensitive to the value
of &; separately; what is in fact bounded is the combination (A;+ d;). Future colliders may
have sufficient precision to sense the different modifications in the top Yukawa coupling
and the effective ggh coupling.

Moving to the next-to-minimal coset, we deal with a new feature that the Higgs doublet
now mixes with a real singlet. The mixing results in a further suppression of the observed
Higgs boson coupling to the massive gauge bosons. The Yukawa couplings are modified too
because of the presence of a singlet. We perform a similar x? analysis with the combined
Run 1 and Run 2 results to impose an upper bound on the amount of mixing. Figure 6
shows that the maximum amount of mixing allowed so far at 95% CL is Oix ~ 0.35. Future
data would constrain it even further [21].
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Figure 3. Results of x? analysis for Run 1 and Run 1 + Run 2 datasets are shown in the left and
right panels, respectively. Solid black line represents Ax? = x2? — x2, for the extended models,
while the red dashed lines represents the same for MCHM5, _5,.. Green and yellow regions denote

the allowed range for & at 68% and 95% CL, respectively.
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Figure 4. In both the left and right panels, blue shaded regions denote relatively lower values of
x?%/d.o.f. for the extended models, given by the effective Lagrangian in eq. (3.2), compared to the
MCHMs5, _5,,. Model points, with resonance masses and decay constants as inputs, satisfying the

constraints of eq. (2.9), are superimposed.

5 Conclusions

Non-linearity of pNGB dynamics modifies the Higgs boson couplings with the weak gauge

bosons as well as with the fermions compared to their SM expectations.

The ratio &,

which parametrizes the hierarchy between the weak scale and the strong sector spontaneous
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and 95% (yellow) CL using combined Run 1 and available Run 2 data. In the left panel the red
line corresponds to MCHM5, _5,. On the right panel, the grey dashed line corresponds to §; = 0.

Valid ‘extended model’ points are observed to lie within the experimentally allowed regions.
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Figure 6. For the next-to-minimal model, the allowed regions in the ,;x — ¢ plane at 68% (green)
and 95% (yellow) CL are shown using the combined Run 1 and available Run 2 data. The brown
lines represent the contours of fixed k,z,,, while the blue dashed lines correspond to that of ky v .

symmetry breaking scale, controls this deformation. In MCHMj5, 5., the Yukawa sector
contains a single invariant. Here, the single parameter £ appears in the modifications
of both VVh and ffh couplings, leading to a rather strong lower limit f > 1TeV, as
the data show increasing affinity towards the SM predictions. In the extended models,
MCHM 14, —145, MCHM4; 5, and MCHM5, _145, owing to the presence of more than one
invariant in the Yukawa sector, the ffh coupling modifier depends on other parameters of
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the strong sector in addition to £&. This releases the tension leading to a new lower limit
f > 640 GeV, which is much relaxed compared to the limit in MCHMs5, _5, .

An important feature of these models is the emergence of a parametric difference in
the top Yukawa and the effective gluon-gluon-Higgs vertices. This arises because of a
cancellation between the top-partner resonance masses in the loop with the wave function
renormalization of the top quark in the calculation of the effective ggh vertex. However,
the present data is insensitive to smell this difference.

We have in fact constructed a phenomenological Lagrangian which captures the effects
of a vast array of such models with different fermionic representations. We have constrained
the parameters of this Lagrangian using LHC data and observed that the allowed regions
are quite consistent with a reasonable choice of strong sector input parameters of the
individual models which yield correct values of my, v and my,.

We have extended our analysis to the next-to-minimal model as well. The appearance
of a real singlet scalar adds a new twist to phenomenology, whose mixing with the Higgs
doublet is constrained by the LHC data. Interestingly, the singlet scalar also contributes
to the top Yukawa through an effective higher dimensional operator.

Our analysis shows that further precision, likely to be achieved in future colliders,
would constrain these scenarios to the extent that individual models could be discriminated,
and the proposition that the Higgs boson may have a spatial extension would be challenged
with more ammunition.
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A Fermion embeddings

A.1 SO(5)/SO(4) coset

Fundamental 5 and symmetric 14 representations of SO(5) can be decomposed under the
unbroken SO(4) = SU(2);, x SU(2)R as follows:

5=1®4=(1,1)(2,2),
14=19409=(1,1)®(2,2)®(3,3). (A.1)
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We embed t7, into the (2,2)’s so that the correction to Zbb vertex is under control, while 5
is embedded into the (1,1). The embeddings of the top quarks into incomplete multiplets
of 5 and 14 are given below.

T
Q= (Y(22,0)", T =(0,0,0,0,tg)", (A.2)
and
R R
Qi, ;T = (28 | 1, (A.3)
Ot [ 4505
where ,
\11(2,2) = ﬁ(ibLuvaitLa _tL) (A4)

A.2 SO(6)/SO(5) coset

Decomposition of different representations of SO(6), used in the main text, under the
maximal subgroup SO(6) D SO(4) x SO(2) ~ SU(2)r, x SU(2)g x U(1)y, is as follows:

6g = (Za 2)0 @b (17 1)2 % (17 1)—2 s
150 =(1,1)0® (2,2)2®(2,2)_2® (3,1)p ® (1,3)0, (A.5)
209 = (1, 1)0 & (1, 1)4 & (1, 1)_4 D (2, 2)2 (&) (2, 2)_2 ) (3, 3)0 ,

where the subscripts denote the charges under U(1),. Embedding of ¢;, and ¢ in the above
representations are given as

T
Q¢ = (V(22,0,0)" , T8 = (0,0,0,0,0,t5)", (A.6)
0 —ii&
2
MM‘O%@ ite 0 O2x2
1 V2 1 = O4><2
Qi, = 0 , TP = 0 % . (AT
\D(Q’Q) 02><2 02X2 —th O
— 2
O2x4 O2x2
and
0 0 3;2)
4x4 —= tr
Q2 — 5 L - ~ay3l4]Uax2 ' (A.8)
b ir 0 oy
Voo | O2x2 2x4 372
V2

B Details of form factors

The form factors appearing in table 1 can be decomposed under unbroken SO(4) and
written in terms of masses and decay constants of the resonances. Detailed expressions
of the form factors for MCHM;14; —145, MCHM1y4, _5; and MCHMj5; _14; models are listed
below (for explicit calculations see [31]).
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C II-functions for next-to-minimal models

The II-functions for the next-to-minimal case are given for different representations in
table 4. The NMCHM5;, 1, case is not included in the table because it cannot generate
a Yukawa term in the Lagrangian.

Models e, (h,m) e, () Moy ip (hym)
2
NMCHMGL*IR Hé + HlL% ng H{‘R%
2 2 2 .
NMCHMg;, —65, 10§ + 107 0§ + iy 4+ 102, ek 1o
2 2
NMCHMe,, 155 10§ + 107 I§ + 112y i
2 2 4 2
NMCHMe, —205 g + 117 5 ¢ + T2y 4+ 152y b (e g
2 2 2 2
NMCHMis, —¢p | 1§ + {2 + T % | TG + T 4+ 1L 2 TR h
2 2 2 -
NMCHMis; —15, | g + 1 4 + 1% I + 11 2y L f1— b :}%
2 2 2 4 p
NMCHMus, —20, | 5 + {2 + 117 % | 1§ + 1 4y 4+ TS s _;;_;g
JUr I el y
NMCHM?OL—IR 0 12 2 £t H(I)% HfRE _ % _ %
L n? L B2 g2 f f f
+Hn fT + thf72f72
NP § Ly ,
NMCHMQOL—GR 0 e 2 f1 H(})% + H{%% + Hf]%';é % (HfR + HéR% 4 H#R%)
L n? L h?n?
iy + iy o o
VCAE | CE Sy :
NMCHMao, <1, [0 07 2T I+t M 1= -k
L n? L h2n?
=+, =
U P § (RO
NMCHMao,, —205 0 1y 2 1_IOR + Hf% + Hg% ? 1- }J%3 %i (HlLR + HgR n
L 2 L h2 2
iy o+ iy 2

Table 4. List of II-functions for different representations of next-to-minimal model.

D Expressions for A, §; and A7

In table 5 we list the expressions for A; and d; for the models MCHM5, 5, , MCHM 4, 145,

MCHM;4, —5, and MCHM5, 145, respectively.

Table 5. Expressions for A; and ¢; for different representations of SO(5) in which top quark is

embedded.

Models Ay Ot
MCHMS, s, -3 | - (fE+ k)
MCHM 4, — 144 23‘; g - (% + %)
MCHMu4, 5, | 277 — 5 | = (HF + k)
MCHMs, 14, | 27 — 3 | — (i + 1k )
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We present the expressions for (A; + 6;) and A}, as defined in eq. (2.12), in terms of
the form factors, for different SO(6) representations in table 6.

Models Coupling Modifiers
L
NMCHMg, —1, | At + 6 - (% +1)
A 0
-1
HR L R HR HR
NMCHMs; 6 | A¢+ 6 - (HHT%X> {%+%+g+ (E—Fﬁn—}?) X]
nk nk -t
A7 <1+ﬁ> (1+H6§ ) =%
NMCHM Ar+6 LN LU
61, —15R t + 0t — [@JFHT;JF?]
A7 0
LR L R
NMCHMs, _205, | A¢+ 0 [zggR — o - ok - g]
A 0
Lo\ -1 R 1
<1+Hzx) <1+ng) 25+ 5k +3
NMCHM;s, Ar46
R R jmE o omtment Cpent) o gmEmn
“\emr temr T wpar ompar ) X T o2mp X
; L 1 ok oo ok L qR
A7 | (1-x) (1+H—zx) (l+ﬁx> [H—Z+H—g+2n—zn%x] =
—1
oL ol L pRr
NMCHMis, 15, | A¢ + 6 ~ (1+ﬁx) {%+%+g+ (%H—z+n—zﬁ—}?) x}

-1
nkt kL ok mk L R
— —n e S I 12 n 21
NMCHMISL—QOR At + 5t (1 + Hé X) |:Hé‘ + HO + 2 + b} Hé’ + oL I X
-1
A’VI 1 + 1-[fI‘ 1 + n X
t nk oL X 1-x
nt N7, 1y T
_ n Uy 3 1y v
NMCHMZOLflR At'i_(st 1+ H(l]‘X HO + 2 + QH(I]‘ + H(I]‘ X
L L -1
n n n X
A} 1+ Tk 1+ 5#x T
nt O\ R ! LR oy® nof nof
n n
1+@X 1+ FFx 1+ =X |:2H5R7H7L7H7R7§
L R LR L L LR 1R Lk
(1 ol s Ty | oMMy oIy DI, T T
2y T o2nf 2niR [5¢3 nfE ol nfE ol ol ol
R 1L L LR R LR L R LR
NMCHMao, g As + 6: ot Ly, np I g Iy L(eMy My s, I, g Iy T1)
L—6r nf L TILE gy nkw 2Tk Tl 2 TIL TILR 2 TR TILE
L R L LR L R L LR R LR
— ek - TR + 2htm ot ok — E i ntw — bk atw ) X
nZ g g ml iR ok} ng ng ol nf ok ol

L 7R 1L R L R LR
+ gy Iy Iy, I I X3
2 my oft ik of ol obk

-1 -1 -1
nk nk nkk
-(1-x) (1+H%'x> 1+Hé<x) 1+H1L’Rx>

LR L R L LR R LR L R
QHL_&_HJ_’_ Iy I +Hry Ly " oy Ly % X
VL VP A T oy ofbk® T onltnlk o} ol 1-x
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L -1 L R L L L R
NMCHMao, 15, | At + 6 - (1 + %x) [“—; + k34 (%H—g + e+ it o )x]

NMCHMao, 205 | A¢+ 6

nk ot \*
A7 (1 + ﬁ) (1 + ﬁx) =

Table 6. Expressions for (A; + d;) and A} for different representations of SO(6) in which the top
quark is embedded.
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