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1 Introduction

One of the remarkable properties of string theory is its rich structure of dualities: S-

duality is a strong-coupling-weak-coupling duality, which for instance relates the type I to

the heterotic SO(32) string and under which type IIB string theory is self dual. T-duality

relates circle-compactifications with radius R to compactifications with radius α′/R, and

establishes a connection between type IIA and type IIB string theory as well as between the

two heterotic theories. Furthermore, the type IIA and heterotic E8×E8 theories arise from

different compactifications of M-theory, and also the AdS/CFT duality plays an important

role in understanding string theory.

In this work we are interested in T-duality, which is reviewed for instance in [1]. For

d-dimensional toroidal string-theory backgrounds with constant B-field the duality group is

O(d, d;Z), and duality transformations can be performed explicitly by acting on the states

of the theory. For curved backgrounds the situation is more complicated, since in most cases
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a conformal-field-theory (CFT) description is not available. However, T-duality transfor-

mation rules for curved backgrounds can be obtained by following Buscher’s procedure [2–4]

of identifying an isometry of the target-space geometry, gauging the corresponding sym-

metry in the world-sheet theory and integrating-out the gauge field. When applying these

Buscher rules to a background with non-vanishing H-flux, it turns out that the dual geome-

try is topologically-different from the original background [5]. More concretely, if we specify

the direction along which we dualize by a vector field v, then under T-duality the two-form

ιvH and the first Chern class of the circle-fibration Ev corresponding to v behave as

ιvH
T-duality

←−−−−−−−→ c1(Ev) . (1.1)

Identifying then the non-triviality of the circle-fibration as a kind of geometric flux [6], we

see that under T-duality the H-flux and the geometric flux are interchanged.

In order to apply the Buscher rules a (compact) direction of isometry is needed. For

a compact space M one naturally tries to identify a circle in M along which T-duality is

performed, however, the formalism equally applies to angular isometries in a non-compact

space. The latter setting has been briefly discussed for instance in [7, 8] for the case of

R
2, where an angular T-duality transformation leads to a singular dual geometry. It is

expected that for such a geometry winding-modes of the string play an important role,

but to our knowledge a complete understanding of this situation is still missing. It would

therefore be worthwhile to gain more insight on angular T-duality transformations, which

is something we want to address in this work.

More concretely, in this note we consider T-duality transformations along angular

directions for the NS5-brane. Our motivation for studying this particular string-background

is two-fold:

1. The NS5-brane solution is a well-known background with non-trivial curvature and

H-flux. The space transversal to the NS5-brane is four-dimensional and has an so(4)

isometry algebra. However, different from the situation in flat space the norm of

the Killing vectors does not vanish at the origin, and therefore an angular T-duality

transformation of the NS5-brane does not (necessarily) lead to a singular dual space.

We can then compare this background to T-duals of flat space, in order to identify

the relevant degrees of freedom for understanding the singularity of the latter.

2. T-duality transformations for the NS5-brane are usually performed by first compact-

ifying one or more of the directions transversal to the NS5-brane solution, and in a

second step smearing the localized NS5-brane along the compact directions in order

to obtain an isometry (see for instance [9–11]). Compactifying the NS5-brane for

instance on a circle, the isometry algebra gets broken from so(4) to so(3), while the

smearing procedure enhances it to so(3) × u(1). Clearly, this changes the structure

of the background.

The smeared NS5-brane solution compactified on a two-torus undergoes a similar

change, reflected in the change of the isometry algebra so(4) → so(2) → so(2) ×

u(1)× u(1). This smeared configuration is the starting point for a chain of T-duality
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transformations leading to the Kaluza-Klein (KK) monopole [12, 13] and the 522-

brane [14] (also called Q-brane [15]),

smeared NS5
T-duality

←−−−−−→ KK monopole
T-duality

←−−−−−→ 522-brane

where the latter corresponds to a so-called non-geometric background [6, 16–19].

Corrections to the smearing-approximation for this chain of T-duality transformations

have been studied for instance in [9, 20–26], and in the context of Double Field

Theory (DFT) this point has been addressed for instance in [26–29]. In this work we

want to go one step further back and investigate T-duality transformations for the

uncompactified NS5-brane solution along angular directions. Ultimately our question

is whether also here a non-geometric background arises.

This paper is organized in the following way: in order to prepare for the analysis of the

NS5-brane, in section 2 we discuss T-duality transformations for the three-sphere with H-

flux along one and two directions. More concretely, in section 2.1 we identify the NS-charge

and we define geometric charges for this background. In section 2.2 we generalize these

results by including orbifold projections, in section 2.4 we show how under T-duality the

charges are interchanged and in section 2.3 we also determine the β-transform of the three-

sphere background. Throughout our discussion we pay special attention to global issues.

In section 3 we turn to the NS5-brane solution. In particular, in section 3.1 we deter-

mine the NS-charge as well as the geometric charges of the NS5-brane and its orbifolds.

In section 3.2 we perform T-duality transformations along angular directions, and in sec-

tion 3.3 we analyze the amount of supersymmetry preserved by these backgrounds. We

find that one T-duality preserves at most one half of the original supersymmetry, while

two T-dualities break supersymmetry completely.

Section 4 contains a discussion of our results. First, we briefly compare our findings

with T-duality along angular directions for Rn. After that, we contrast our results with the

approach of compactifying the NS5-brane solution, smearing along the compact directions

and performing T-duality along the latter. Our general conclusion is that the uncompact-

ified NS5-brane solution and the compactified-and-smeared solution have rather different

properties and behave very differently under T-duality.

In three appendices we summarize some further details: in appendix A we discuss the

global properties of the isometries of the three-sphere, in appendix B we review lens spaces,

and in appendix C we give some details on our supersymmetry analysis of the NS5-brane

solution and its T-duals.

2 T-duality for the three-sphere

For our discussion of T-duality transformations for the NS5-brane it is useful to review

T-duality for the three-sphere with H-flux. Some of the results presented in this section

can already be found in the literature (see for instance [30–33]), but in order to prepare

for our subsequent analysis we want to recall them here. We also carefully discuss some

of the global issues related to these transformations, but the reader interested only in the

NS5-brane and its T-duals may skip this section.
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2.1 The three-sphere

String theory on a three-sphere of radius R2 = k with k units of H-flux can be described by

the SU(2) Wess-Zumino-Witten (WZW) model at level k. Let us briefly review the main

geometrical aspects of this background.

The setting

We start by considering a round three-sphere of radius R, which can be defined by its

embedding into C
2 through the equation

|z0|
2 + |z1|

2 = R2 , (2.1)

where (z0, z1) ∈ C
2. Using Hopf coordinates

z0 = Reiξ1 cos η , z1 = Reiξ2 sin η , (2.2)

with η ∈ [0, π/2] and ξ1, ξ2 ∈ [0, 2π), the metric and H-flux of the SU(2)k WZW model

take the following form

ds2 = R2
(

dη2 + cos2 η dξ21 + sin2 η dξ22
)

,

H = 2k sin η cos η dη ∧ dξ1 ∧ dξ2 .
(2.3)

The dilaton is taken to be Φ = φ0 = const. Note that in order for the theory to be conformal

one has to impose a relation between the radius and the level k which reads R2 = |k|.

However, for practical purposes it will be convenient for us to keep the dependence on

R2 explicit. In our subsequent analysis we will also make use of the following coordinate

system with θ ∈ [0, π] and χ, ξ ∈ [0, 2π)

χ =
1

2
(ξ1 + ξ2) , ξ = ξ1 − ξ2 , θ = 2η . (2.4)

The metric and H-flux (2.3) in these coordinates take the form

ds2 =
R2

4

(

dθ2 + 4dχ2 + dξ2 − 4 cos θ dχ dξ
)

,

H =
k

2
sin θ dθ ∧ dξ ∧ dχ .

(2.5)

Isometries

The isometry group of the round three-sphere is O(4), and therefore the isometry algebra is

so(4) ∼= su(2)×su(2). Note that this algebra contains u(1)×u(1) as an abelian subalgebra.

Using Hopf coordinates, the corresponding Killing vector-fields for these isometries are

v = ∂ξ1 + ∂ξ2 = ∂χ , v̄ = ∂ξ1 − ∂ξ2 = 2 ∂ξ , (2.6)

which have a nowhere vanishing norm

|v|2 = |v̄|2 = R2 . (2.7)
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These vector-fields can be integrated to U(1) group-actions on the three-sphere, and for

λ ∈ U(1) the group acts on the embedding coordinates (z0, z1) in the following way

v : gλ(z0, z1) = (λz0, λz1) ,

v̄ : ḡλ(z0, z1) = (λz0, λ
∗z1) .

(2.8)

The orbits of such actions are U(1) fibers everywhere in S3, which we review in appendix A

in more detail.

Geometric charges

The three-sphere can be described as a principal U(1) bundle, where the fiber is along one

of the directions in (2.6). There is a natural procedure to assign a U(1) connection to

such fibrations [34]. In particular, for U(1) fiber along some direction ⋆, we determine the

corresponding connection as

A⋆ =
g⋆i
g⋆⋆

dxi , (2.9)

where {dxi} is a local basis on the co-tangent space. For the three-sphere we then obtain

the following:

• Using the coordinates (2.4), the metric in (2.5) can be expressed as

ds2 =
R2

4

(

dθ2 + sin2 θ dξ2
)

+R2

(

dχ−
1

2
cos θ dξ

)2

. (2.10)

The U(1) gauge connection associated to the direction χ reads

Aχ = −
1

2
cos θdξ , (2.11)

and the corresponding field strength is computed as

Fχ = dAχ =
1

2
sin θ dθ ∧ dξ . (2.12)

We can then define a geometric charge nχ associated to the fibration by integrating

Fχ over the base manifold B. The latter is a two-sphere of radius R/2, and the charge

is computed as

nχ =
1

2π

∫

B

Fχ = 1 . (2.13)

This is precisely the first Chern class of the fibration, which in general has to be an

integer for principal U(1) bundles.

• Since also the direction ξ in (2.6) corresponds to a U(1) fiber, we can compute the

charge with respect to such a fibration structure. To do so, we note that the met-

ric (2.5) can be rewritten as

ds2 =
R2

4

(

dθ2 + 4 sin2 θ dχ2
)

+
R2

4

(

dξ − 2 cos θ dχ
)2

, (2.14)
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from which we can determine the gauge field associated to this fiber-bundle structure

as

Aξ = −2 cos θ dχ . (2.15)

This gauge field has field strength

Fξ = 2 sin θ dθ ∧ dχ , (2.16)

and the geometric charge we associate to this fibration has a different normalization

as compared to (2.13). It is given by1

nξ =
1

4π

∫

B

Fξ = 2 . (2.17)

The fact that we obtain two units of geometric charge is because there is an effective

orbifolding in our coordinate ξ (see appendix B). Due to this effect the charge along

the coordinate ξ in this coordinate frame is always even.

Remark

Let us briefly note that in addition to the coordinates (2.4) there is one other consistent

choice, namely

χ̃ = ξ1 + ξ2 , ξ̃ =
1

2
(ξ1 − ξ2) , θ̃ = 2η , (2.18)

again with periods χ̃, ξ̃ ∈ [0, 2π) and θ̃ ∈ [0, π]. This choice is one the same footing

as (2.4), and is more suitable to describe the background as a U(1)ξ fibration. The natural

definitions for the geometric charges are now

ñχ =
1

4π

∫

B

F̃χ , ñξ =
1

2π

∫

B

F̃ξ , (2.19)

where F̃ξ and F̃χ are the field strengths computed in the (χ̃, ξ̃) coordinates. In this frame

we obtain ñχ = 2 and ñξ = 1 for the three-sphere. However, the coordinates (2.18) will

not play a major role in our subsequent discussion.

NS charge

Apart from geometric charges, the background (2.5) also has a non-trivial H-flux. Its

associated charge is defined as usual as

h =
1

4π2

∫

S3

H . (2.20)

In the case of the three-sphere (2.5), we find h = k independent of the coordinate frame

we choose. Furthermore, note that the H-flux is quantized as h ∈ Z.

1Using the definition (2.13), the charge associated with the field strength (2.16) would be n = 4. However,

the base-manifold B in (2.14) is not a two-sphere but rather a double-cover. This has to be taken into account

when computing the charge.
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2.2 Lens spaces and sphere orbifolds

A way to generalize the three-sphere background is to perform an orbifold projection. An

orbifold constructed using a finite symmetry group of the space is again a manifold if and

only if the action of any element of the group on the original space is a homeomorphism

and the symmetry group acts freely on the space. These conditions are satisfied if one

consider a Zk group acting on one of the U(1) fibers of the three-sphere.

The Z
(χ)
k1

orbifold

We begin by considering the case where a discrete symmetry Zk1 acts along the U(1)χ
fiber. The resulting space is locally the same as the original three-sphere, but is globally

different. In particular, the orbifold background can be described by the same fields as

in (2.5) but with the coordinate χ having the period

χ ∈

[

0,
2π

k1

)

, k1 ∈ Z+ . (2.21)

To restore the 2π-periodicity we rescale χ → k1χ, after which the resulting background

fields read

ds2 =
R2

4

(

dθ2 +
4

k21
dχ2 + dξ2 −

4

k1
cos θ dχ dξ

)

,

H =
k3
2

sin θ dθ ∧ dξ ∧ dχ ,

(2.22)

where now χ ∈ [0, 2π) and where we defined k3 = k/k1. In order for this model to be

conformal, the radius has to satisfy R =
√

|k1k3|. Such configuration is known as a lens

space L(k1, 1) (see appendix B) and corresponds to a SU(2)k1k3/Zk1 WZW model. Next,

we compute the charges following the same procedure as in the previous section. With

respect to the U(1)χ fiber, the associated gauge field is

Ak1
χ = −

k1
2

cos θ dξ , (2.23)

from which we determine the geometric charge as nχ = k1. The charge corresponding to

the H-flux is determined as before and is given by h = k3.

Let us now observe that similarly as in (2.5), the orbifolded background (2.22) has in

addition a U(1)ξ isometry along the direction ξ. We can therefore try to determine the

corresponding geometric charge. More concretely, for the connection we find

Ak1
ξ = −

2

k1
cos θ dχ , (2.24)

whose charge, nξ = 2/k1, fails to be in 2Z. The reason is that after the orbifolding

procedure, the ξ-fiber is not a U(1) bundle anymore. Intuitively, the fiber along this

directions remains a U(1) everywhere except at the points (z0, z1) = (0, 1) and (z0, z1) =

(1, 0), where the two fibers collide. There, the ξ-fiber becomes U(1)/Zk1 , and one cannot

define a U(1) connection along this direction.
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The Z
(ξ)
k2

orbifold

A very similar discussion applies if one constructs an orbifold by acting with Zk2 on the

U(1)ξ fiber of the original S3. In this case, the resulting configuration is

ds2 =
R2

4

(

dθ2 + 4dχ2 +
1

k22
dξ2 −

4

k2
cos θ dχ dξ

)

,

H =
k3
2

sin θ dθ ∧ dξ ∧ dχ ,

(2.25)

with χ, ξ ∈ [0, 2π) and the radius has to satisfy R2 = |k2k3|. One can now compute the

charge with respect to the ξ direction, for which the corresponding gauge field reads

Ak2
ξ = −2k2 cos θ dχ . (2.26)

Using the conventions (2.17) one obtains for the charge nξ = 2k2, which satisfies nξ ∈ 2Z.

Analogous to what happened in the previous case, the configuration is not a U(1)χ bundle

anymore, therefore the charge is not well-defined. Furthermore, as argued in appendix B the

configuration (2.25) is only well-defined for odd k2. The reason is that, since the coordinate

frame encodes an artificial orbifolding along the direction ξ, one can only describe further

orbifoldings of this direction which are compatible with it. This is the case for odd k2.

If one wants to construct Z
(ξ)
k2

orbifolds with even k2, one needs to use the frame (2.18),

where the configuration would read

ds2 =
R2

4

(

dθ2 + dχ̃2 +
4

k22
dξ̃2 −

4

k2
cos θ dχ̃ dξ̃

)

,

H =
k3
2

sin θ dθ ∧ dξ̃ ∧ dχ̃ .

(2.27)

The Z
(χ)
k1

× Z
(ξ)
k2

orbifold

Finally, let us comment on the possibility of having Zk1×Zk2 orbifolds. Since the U(1)×U(1)

isometries collapse into a single U(1) at two points on the three-sphere, one has to worry

whether it is possible that Zk1×Zk2 acts freely on these points. In fact, this is the case if k1
and k2 are relatively prime, and the group will act as a Zk1k2 (see appendix B). However,

since the group acts as Zk1k2 on colliding U(1)’s but as Zk1 × Zk2 elsewhere, none of the

directions χ or ξ will be global isometries.

Following the discussions above, we write the most general orbifold configuration using

the coordinates (2.4) as

ds2 =
R2

4

(

dθ2 +
4

k21
dχ2 +

1

k22
dξ2 −

4

k1k2
cos θ dχ dξ

)

,

H =
k3
2

sin θ dθ ∧ dξ ∧ dχ ,

(2.28)

or using the frame (2.18) as

ds2 =
R2

4

(

dθ2 +
1

k21
dχ̃2 +

4

k22
dξ̃2 −

4

k1k2
cos θ dχ̃ dξ̃

)

,

H =
k3
2

sin θ dθ ∧ dξ̃ ∧ dχ̃ .

(2.29)
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Note that the first configuration fails to describe the cases with even k2 and the second the

cases with even k1. In both situations the radius is R =
√

|k1k2k3|. A direct computation

shows that the geometric charges are nχ = k1
k2

and nξ =
2k2
k1

for the first case and ñχ = 2k1
k2

and ñξ =
k2
k1

for the second. Except for k1 = 1 or k2 = 1, all of them are non-integers since

k1 and k2 are relatively prime.

2.3 Clifford tori

As it can be inferred for instance from the metric in (2.3), the three-sphere can locally

be seen as a two-torus — constructed with the two U(1) directions — fibered over a line

segment. This is not a globally-defined fibration structure, since there are two points on the

base where the torus degenerates to a circle. However, this picture is nevertheless useful

since we can interpret T-duality transformations as O(2, 2;Z) acting on the T
2.

Kähler and complex structure of T2

Let us therefore parametrize the two-torus in terms of its complex and Kähler structure τ

and ρ as

τ =
gχξ
gχχ

+ i

√

det gT2

gχχ
, ρ = BT2 + i

√

det gT2 . (2.30)

In terms of these parameters the general configuration (2.28) is described by

τ = −
1

2

k1
k2

e−iθ , ρ = −
1

2
k3e

−iθ , (2.31)

where θ ∈ [0, π] is the coordinate along the line segment. Note that at the end-points

of the segment the imaginary parts of τ and ρ vanish, which are the points where one of

the two cycles of the torus collapses. For the following analysis, we will also consider the

coordinate system (2.18), in which the parameters (2.30) for (2.29) are

τ̃ = −2
k1
k2

e−iθ = 4τ , ρ̃ = −
1

2
k3e

−iθ = ρ . (2.32)

Finally, for all three-spheres the component of the metric on the base is required to be

R2 = |k1k2k3|. This is not affected by any transformation of the toroidal coordinates, and

hence a transformation that preserves R2 will preserve the three-sphere structure.

SL(2,Z)τ transformations

To get some understanding of the three-sphere from the point of view of a torus fibra-

tion, we analyze how SL(2,Z) transformations act on the complex structure τ . These

transformations are large diffeomorphisms, and therefore we can also understand them as

transformations acting on the coordinates (ξ, χ). However, as already discussed, this co-

ordinate frame has some orbifold structure intrinsically encoded in it, which also needs to

be taken into account.

In particular, let us analyze the transformation of the form τ → −1/τ , which cor-

responds to a π/2-rotation of the coordinates. To do this, we will rely on the original

– 9 –
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Hopf coordinates (2.2), where the two angular directions form a torus with no additional

structure. Under this transformation, the coordinates (ξ, χ) transform as

ξ → −2χ = −χ̃ , χ →
1

2
ξ = ξ̃ , (2.33)

and the orbifolding structure is also rotated. Therefore, the natural transformation to

study is

τ → −
1

τ̃
= −

1

4τ
, (2.34)

which is not an SL(2,Z) transformation anymore, but is indeed the transformation ob-

tained by conjugating τ → −1/τ with the coordinate transformation (2.4). Applying this

transformation to (2.31), the resulting configuration is described by

τ ′ =
1

2

k2
k1

eiθ , (2.35)

which acts on the integer numbers k1 and k2 by

k′1 = k2 , k′2 = −k1 , (2.36)

as one would have naturally guessed. The correct sign for Im τ ′ is obtained by taking

absolute values of k′i. This transformation preserves the radius R of the three-sphere and,

therefore, the resulting configuration is again a three-sphere orbifold.

Finally, we point-out that the same result can also be obtained by an explicit rotation

of the metric, after which the geometric charges in the conventions (2.13) and (2.17) are

nχ = −k2
k1

and nξ = −2k1
k2

, which is in agreement with (2.36).

β-transformation

Since we have a description of the three-sphere in terms of a torus fibration, we want to

take the opportunity to perform a β-transformation of the background. This is related

to the β-deformation first discussed in [35]. In terms of the modular parameters of the

two-torus, such a transformation is given by

ρ −→
ρ

−βρ+ 1
, (2.37)

where β ∈ Z. Since the parameter ρ is not affected when changing between the different

frames, the resulting configuration can be obtained in all of them in an analogous way. In

particular, applying this transformation to (2.28) leads to the configuration

ds2 =
R2

4
dθ2 +

R2

Λ

(

4

k21
dχ2 +

1

k22
dξ2 −

4

k1k2
cos θ dχ dξ

)

,

H =
2(β2k23 − 4)k3 sin θ

Λ2
dθ ∧ dχ ∧ dξ ,

e2Φ = e2φ0
4

Λ
,

(2.38)

where φ0 is the constant dilaton of the original three-sphere orbifold and where we defined

Λ = 4 + β2k23 + 4βk3 cos θ . (2.39)

The background (2.38) is a solution of the supergravity equations of motion, and is non-

singular except for |βk3| = 2.
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2.4 T-duality

We now want to investigate the configurations obtained after applying a factorized T-

duality on the sphere and its orbifolds. Buscher’s approach to T-duality involves gauging

isometries of the background [2–4], and we therefore expect to find globally well-defined

T-dual spaces when the isometry of the original background is globally defined.

T-duality along χ: τ ↔ ρ

We start by considering T-duality transformations along the direction χ, which in the

conventions (2.30) with coordinate frame (2.4) corresponds to the interchange τ ↔ ρ. The

configuration dual to (2.31) is characterized by the parameters

τ ′ = −
1

2
k3e

−iθ, ρ′ = −
1

2

k1
k2

e−iθ , (2.40)

with corresponding charges

n′
χ = k3 , n′

ξ =
2

k3
, h′ =

k1
k2

. (2.41)

The condition h′ ∈ Z can only be satisfied if k2 = 1, since the original background is globally

well-defined if and only if k1 and k2 are coprime. In fact, as discussed in section 2.2, this

is the only case when the isometry along χ of the original configuration is globally-defined.

Therefore, dualizing along it when k2 6= 1 leads to a background globally ill-defined. If the

condition k2 = 1 is satisfied, the radius R of the three-sphere remains invariant and the

resulting configuration is a three-sphere orbifold with charges (n′
χ, h

′) = (h, nχ) [32].

The same results can be also obtained by direct application of Buscher rules to the

configuration (2.28) with k2 = 1, obtaining

ds2 =
k1k3
4

(

dθ2 +
4

k23
dχ2 + dξ2 −

4

k3
cos θ dχdξ

)

,

H =
k1
2

sin θ dθ ∧ dξ ∧ dχ ,

(2.42)

and we can then conclude that the effect of T-duality along the direction χ is the interchange

k1 ↔ k3, provided k2 = 1. Therefore, in this case, T-duality relates the following two

conformal theories [36]
SU(2)k1k3

Zk1

←→
SU(2)k1k3

Zk3

. (2.43)

T-duality along ξ̃: τ̃ ↔ −1/ρ̃

Next, we consider the T-duality transformation along direction ξ. The natural coordinate-

frame to describe this duality is (2.18), where it corresponds to the interchange τ̃ ↔ −1/ρ̃

in (2.32). The dual background is then characterized by

τ̃ ′ = 2
1

k3
eiθ , ρ̃′ =

1

2

k2
k1

eiθ , (2.44)

– 11 –



J
H
E
P
0
3
(
2
0
1
8
)
0
6
0

with charges

ñ′
χ = −

2

k3
, ñ′

ξ = −k3 , h̃′ = −
k2
k1

, (2.45)

and again the condition h̃ ∈ Z is only satisfied when k1 = 1, which is the case where the

isometry in the original configuration is globally well-defined.

As in the case of T-duality along χ, the same results can be obtained by direct ap-

plication of Buscher rules to the configuration (2.29). More interestingly, it is possible to

obtain an equivalent result within the coordinate-frame of (2.28). In this frame, the Killing

vector is v̄ = 2∂ξ (see (2.6)), and applying the Buscher rules gives the T-dual background2

ds2 =
k2k3
4

(

dθ2 + 4dχ2 +
1

k23
dξ2 +

4

k3
cos θ dξdχ

)

,

H = −
k2
2

sin θ dθ ∧ dξ ∧ dχ ,

(2.46)

and one can use the previously-mentioned procedure to compute the charges to obtain

n′
ξ = −2k3 , h′ = −k2 , (2.47)

which are consistent with the results found using the other coordinate-frame. Furthermore,

these results could have been obtained also by considering the transformation τ ↔ −1/4ρ.

We then conclude that the effect of T-duality along the direction ξ, with k1 = 1, is the

interchange k2 ↔ k3 and relates the conformal theories

SU(2)k2k3
Zk2

←→
SU(2)k2k3

Zk3

. (2.48)

T-duality along χ and ξ: τ ↔ −1/4τ , ρ ↔ −1/4ρ

Finally, we consider factorized dualities along both directions of the torus simultaneously.

Consecutively applying T-duality along the directions χ and ξ corresponds to the transfor-

mation (in terms of the coordinate frame (2.4))

τ → −
1

4τ
, ρ → −

1

4ρ
. (2.49)

Applying these transformations to (2.28) one obtains a configuration where the fibered

torus is described by

τ ′ =
1

2

k2
k1

eiθ , ρ′ =
1

2

1

k3
eiθ , (2.50)

and corresponding charges read

n′
χ = −

k2
k1

, n′
ξ = −

2k1
k2

, h′ = −
1

k3
. (2.51)

The NS charge is properly quantized only for k3 = 1. This is in fact the self-dual point for

the ρ-transformation and also the case where the radius R of the three-sphere remains in-

variant. We emphasize that it is enough to have only one of the geometric charges correctly

quantized in order to have at least one integer geometric charge in the dual background. In

fact, the dual background for the case k3 = 1 is the original background after a π/2-rotation.

2For T-duality transformations along Killing vector-fields which are not normalized to one, see for

instance [33, 37].

– 12 –



J
H
E
P
0
3
(
2
0
1
8
)
0
6
0

model
global U(1)χ global U(1)ξ h = 1

nχ nξ h nχ nξ h nχ nξ h nχ nξ h

S3 k1
k2

2 k2
k1

k3 k1 k3 2k2 k3
k1
k2

2 k2
k1

1

Tχ(S
3) k3 2 1

k3
k1
k2

k3 k1 1 2 k1
k2

Tξ(S
3) 1

k3
2k3

k2
k1

2k3 k2 1 2 k2
k1

T(χ,ξ)(S
3) −k2

k1
−2 k1

k2
− 1

k3
−k2

k1
−2 k1

k2
−1

Table 1. Summary of geometric and NS-charges for the three-sphere orbifold and its T-dual

configurations. In the first column, T⋆(S
3) denotes the T-dual of S3 orbifold along the direction(s)

⋆. For a globally-defined U(1)χ isometry k2 = 1 is needed, and we have displayed only the integer

charges. Similarly, for a globally-defined U(1)ξ isometry k1 = 1 has to be required and we again

only showed the integer charges.

Summary

The various cases of T-duality transformations discussed in this section are summarized in

table 1. From there one can see how geometric charges and the NS-charge are interchanged,

and we highlight the cases of a globally-defined U(1)χ and U(1)ξ isometry as well as the

case h = 1. We observe that, after a T-duality transformation along a globally-defined

isometry of the three-sphere orbifold, the dual background is again a three-sphere orbifold.

2.5 T-duality along non-globally-defined U(1) fibers

So far we have discussed duality transformations for three-sphere orbifolds along the di-

rections of the vector fields (2.6). In this section, we analyze the local fields obtained

by T-duality transformations along an arbitrary direction of the Clifford torus. In gen-

eral, these directions will not be globally-defined U(1) fibers, and consequently the dual

backgrounds may not be globally-defined or may become non-compact.

For the present discussion, we will go back to the original Hopf coordinates to avoid

any choice of frame that singles out a particular direction. In this frame, a general sphere-

orbifold takes the form

ds2 = R2

(

dη2 +
1

α2
1

cos2 η dξ21 +
1

α2
2

sin2 η dξ22

)

,

H = 2α3 sin η cos η dη ∧ dξ1 ∧ dξ2 ,

(2.52)

with R2 = |α1α2α3| and |αi| ∈ Z+. As follows from our previous discussion, not all values

of (α1, α2) are possible in order to have a globally-defined background. Next, we T-dualize

along the isometry v = β1∂ξ1 + β2∂ξ2 for arbitrary (β1, β2) using the methods described
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in [33, 37]. After a choice of local coordinates (ψ1, ψ2) we obtain the dual configuration

ds2 = R2

(

dη2 +
cos2 η

∆
dψ2

1 +
sin2 η

∆
dψ2

2

)

,

H =
α2
1α

2
2α3β1β2 sin(2η)

∆2
dη ∧ dψ1 ∧ dψ2 ,

e2Φ = e2Φ0
α1α2

α3

1

∆
,

(2.53)

where we have defined

∆ =
(

α1β2 sin η
)2

+
(

α2β1 cos η
)2

. (2.54)

Since this is a local procedure, it does not give information about the global properties

of the coordinates (ψ1, ψ2), which could be even non-compact. We however observe that

by choosing (β1, β2) = (α1,±α2) the dual configuration is locally a three-sphere, and for

β1, β2 6= 0 the space is non-singular.

3 NS5-branes

In this section we discuss T-duality transformations along angular isometries for the NS5-

brane solution and its orbifolds. T-duality transformations along the Hopf-fiber for the

NS5-brane have been considered in [38, 39], where the ten-dimensional solution was first

dimensionally-reduced, then a T-duality for the nine-dimensional solution was performed,

which was then oxidized back to ten dimensions. Here we apply the Buscher rules directly,

consider T-duality along a general direction, and discuss also orbifolds of the NS5-brane.

In addition to determining the T-dual configurations, we analyze the amount of supersym-

metry preserved.

3.1 Prerequisites

To start, let us briefly give some details for the NS5-brane and its orbifolds. In particular,

we determine the geometric and NS-charges.

NS5-brane

The NS5-brane solution has a six-dimensional world-volume, and the four-dimensional

transversal space can be described by the following field-configuration

ds2 = h(r) dr2 +
h(r) r2

4

(

dθ2 + dξ2 + 4dχ2 − 4 cos θdχdξ
)

,

H = ⋆4dh(r) ,

e2Φ = e2φ0h(r) ,

(3.1)

where ⋆4 denotes the Hodge-star operator in four Euclidean dimensions and the variables

take values r ∈ [0,∞), θ ∈ [0, π] and χ, ξ ∈ [0, 2π). The value of the dilaton at infinity φ0

is constant, and the harmonic function h(r) is given by

h(r) = 1 +
k

r2
, (3.2)
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where k ∈ Z+ is interpreted as the number of coincident NS5-branes. Note that the solu-

tion (3.1) can be seen as a three-sphere fibered along the radial direction. This solution is

asymptotically flat at r → ∞, however, unlike empty Euclidean space the angular directions

do not shrink at the origin but the volume of the three-sphere at r = 0 remains finite.

NS5-orbifolds

In analogy to the case of the three-sphere, it is possible to construct a generalization

of (3.1) by considering orbifold projections along the U(1) fibers. The general form of this

configuration is given by

ds2 = h(r) dr2 +
h(r) r2

4

(

dθ2 +
1

k22
dξ2 +

4

k21
dχ2 −

4

k1k2
cos θ dχdξ

)

,

H =
k3
2

sin θ dθ ∧ dξ ∧ dχ ,

e2Φ = e2φ0h(r) ,

(3.3)

where |ki| ∈ Z+. The constraints on the possible values of k1 and k2 imposed by demand-

ing a globally well-defined background coincide with those imposed on the three-sphere

discussed in the last section. The harmonic function is now given by

h(r) = 1 +
|k1k2k3|

r2
, (3.4)

and this configuration is in general not asymptotically R
4 anymore, but nevertheless a

solution of the string equations-of-motion. The geometry at the origin r = 0 is the sphere-

orbifold (2.28) with radius R =
√

|k1k2k3|.

Geometric charges

Since for the above configurations the three-sphere formed by the angular directions does

not shrink to zero at any point, we can describe (3.3) as a principal U(1)-bundle in the same

way as it was done for the ordinary three-sphere. Similarly as before, we can assign gauge

fields to the fibration structures either along the coordinate χ or along ξ. In particular, for

these two choices we have

Aχ =
gχi
gχχ

dxi , Aξ =
gξi
gξξ

dxi , (3.5)

and by integrating the corresponding field strengths over a two-sphere surrounding the

brane at fixed radius we determine the geometric charges as

nχ =
k1
k2

, nξ = 2
k2
k1

. (3.6)

Note that nχ ∈ Z only when k2 = 1 and nξ ∈ 2Z only when k1 = 1, which are, respectively,

the cases when the U(1)χ and U(1)ξ fibers are globally-defined.
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NS charges

The NS charge h of the above configuration can be determined by integrating its Bianchi

identity dH = 4π2h δ(4)(x) over the transversal space (see for instance [40]), which can be

expressed as in integral of the H-flux over a three-sphere S3
∞ at r = ∞. The charge for

the configuration (3.3) satisfies the quantization condition h ∈ Z and is given by

h =
1

4π2

∫

R4

dH =
1

4π2

∫

S3
∞

H = k3 . (3.7)

3.2 T-duality

We are now going to perform T-duality transformations for the NS5-brane background and

its orbifolds. Similarly to the case of the three-sphere, after dividing by a Zp action some of

the isometries of the original NS5-brane might be broken. Applying T-duality along these

directions leads to globally ill-defined configurations.

T-duality along the direction χ

We begin by studying T-duality along the direction χ in (3.3). Applying the Buscher rules

we find the following T-dual configuration

ds2 = h(r)dr2 +
h(r) r2

4

(

dθ2 +
1

k22
sin2 θdξ2 +

k21
h(r)2 r4

(2dχ− k3 cos θ dξ)
2

)

,

B = −
k1
2k2

cos θ dξ ∧ dχ ,

e2Φ = e2φ0 r−2 ,

(3.8)

which is again a solution of the supergravity equations of motion. It is not asymptotically-

flat anymore, and close to the origin the geometry is locally a three-sphere. With the same

prescriptions used above we can assign the following charges to this background

n′
χ = k3 = h , h′ =

k1
k2

= nχ . (3.9)

We observe that only in the case where k2 = 1 the quantization condition h′ ∈ Z will be

satisfied. In fact, as it follows from the discussion on the three-sphere, this is the case

where the U(1)χ isometry of the original background is globally-defined. In this situation,

the effect of T-duality along χ interchanges the geometric charge nχ with the NS-charge h.

T-duality along the direction ξ

As can be seen from (3.3), we can equally-well perform a T-duality transformation along

the direction ξ. In analogy to the case of the three-sphere, the dual background is given by

ds2 = h(r)dr2 +
h(r) r2

4

(

dθ2 +
4

k21
sin2 θdχ2 +

k22
h(r)2 r4

(dξ + 2k3 cos θdχ)
2

)

,

B =
k2
2k1

cos θ dξ ∧ dχ ,

e2Φ = e2φ0 r−2 ,

(3.10)
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which is again a non-asymptotically-flat solution to the string equations-of-motion. As in

the case obtained by T-duality along χ, one can compute the following charges

n′
ξ = −2k3 = −2h , h′ = −

k2
k1

= −
1

2
nξ . (3.11)

The resulting NS charge is an integer only in the case when k1 = 1, which is the situation

where the U(1)ξ fiber of the original background is globally-defined. We observe that, in

this case, T-duality exchanges k3 ↔ k2 as expected.

T-dualities along the directions χ and ξ

Finally, we discuss the background obtained after two T-duality transformations along

the directions χ an ξ. (This is related to the β-deformation discussed in [35].) The dual

configuration can be expressed in the following way

ds2 = h(r)

(

dr2 +
r2

4
dθ2

)

+
k21 k

2
2 r

2h(r)

4Ω

(

1

k21
dξ2 +

4

k22
dχ2 +

4

k1k2
cos θdξ dχ

)

,

B =
k21 k

2
2 k

2
3 cos θ

2k3Ω
dξ ∧ dχ ,

e2Φ = e2φ0
k21 k

2
2h(r)

Ω
,

(3.12)

where we defined

Ω =
(

r2h(r) sin θ
)2

+
(

k1k2k3 cos θ
)2

. (3.13)

As expected, this background is again a solution to the string equations-of-motion. How-

ever, the geometry is somewhat peculiar: at r = 0 the directions θ, ξ and χ describe an

S3 orbifold, whereas at r → ∞ the T
2-fiber corresponding to ξ and χ shrinks to zero size.

The topology of the dual space is therefore different from the original NS5-brane topology.

Furthermore, the NS-charge of the background (3.12) can in principle be computed in a

similar ways as in (3.7), but without proper knowledge of the dual topology this is difficult

in practice. Finally, as we will discuss in the next section, (3.12) does not preserve any

supersymmetry and hence the stability of this solution is not guaranteed.

On the other hand, we want to point-out that the configuration (3.12) obtained after

two T-duality transformations does not show any non-geometric features — contrary to

what one might have naively expected from [6]. This is in contrast to compactifying the

NS5-brane solution, smearing along the compact directions and performing a T-duality

along the latter, after which one obtains a non-geometric 522-brane [14, 15].

3.3 Supersymmetry

We now want to analyze the amount of supersymmetry preserved by the T-dual config-

urations determined in the last section. Even though the dual backgrounds are solutions

to the string equations-of-motion, starting from the 1/2-BPS NS5-brane solution we will

see that a single T-duality along the direction χ or ξ results in a 1/4-BPS configuration.

Furthermore, after two T-dualities supersymmetry is completely broken. These results are
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in agreement with [41–44], where it was found that if a Killing spinor depends on the coor-

dinate along which one T-dualizes then the corresponding supersymmetry will be broken.3

Conventions

In the rest of this section we want to give some details of our analysis. For type II su-

pergravity theories in ten dimensions the supersymmetry variations of the dilatini and

gravitini read as follows (for our conventions see [14])

δǫλ =

(

1

2
/∂Φ−

1

4
/HP

)

ǫ, δǫΨM =

(

∇M −
1

4
/HMP

)

ǫ, (3.14)

where ǫ is a doublet of Majorana-Weyl spinors. The two components of ǫ have the same

(IIB) or opposite (IIA) chiralities. The operator P acts on the spinor doublet as P = σ3 for

type IIB and P = Γ[10] I2×2 for type IIA, where Γ[10] is the ten-dimensional chirality matrix.

Note that if we choose a representation of eigenstates of Γ[10], P will act as +I32×32 on one

component of the doublet and as −I32×32 on the other, both in type IIA/B. Therefore we

will generically denote the two spinors as ǫ = (ǫ+, ǫ−).

The NS5-orbifold

We begin analyzing the amount of supersymmetry preserved by the configuration (3.3).

This includes the NS5-brane for a particular choice of k1 and k2, which is known to be a

1/2-BPS solution. The two Killing spinors for this background are4

ǫ+ = e
χ

k1
Γ
7̂
Γ
8̂ǫ0,+ =

(

cos
χ

k1
+ Γ7̂Γ8̂ sin

χ

k1

)

ǫ0,+ ,

ǫ− = e−
θ
2
Γ
8̂
Γ
9̂e

ξ

2k2
Γ
7̂
Γ
8̂ǫ0,− =

(

cos
θ

2
− Γ8̂Γ9̂ sin

θ

2

)(

cos
ξ

2k2
+ Γ7̂Γ8̂ sin

ξ

2k2

)

ǫ0,− ,

(3.15)

where ǫ0,± are constant Majorana-Weyl spinors satisfying (1 ± Γ6̂Γ7̂Γ8̂Γ9̂)ǫ0,± = 0, which

projects-out half of their components.5

T-dual configurations

Let us discuss the amount of supersymmetry preserved by the various T-dual configurations

discussed above. Here we only give the final results, but details of our computations can

be found in appendix C.

• We start by considering the background (3.8) obtained after a T-duality transforma-

tion along the direction χ. Since ǫ+ in (3.15) depends explicitly on χ, we expect that

the corresponding supersymmetry will be broken. Indeed, for (3.8) we find only one

3A formulation of this condition independent of a particular coordinate frame was given in [45] using

the Kosmann spinorial Lie-derivative.
4We note that ǫ+ is 2πk1-periodic in χ and ǫ− is 4πk2-periodic in ξ.
5The solution presented here correspond to the case where k1k2k3 > 0. Details corresponding to the

opposite case can be found in appendix C
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Killing spinor given by (assuming k1k2k3 > 0)

ǫ− = e−
θ
2
Γ
8̂
Γ
9̂e

ξ

2k2
Γ
7̂
Γ
8̂ǫ0,−

=

(

cos
θ

2
− Γ8̂Γ9̂ sin

θ

2

)(

cos
ξ

2k2
+ Γ7̂Γ8̂ sin

ξ

2k2

)

ǫ0,− ,
(3.16)

where again (1−Γ6̂Γ7̂Γ8̂Γ9̂)ǫ0,− = 0. Note that this configuration preserves only half

of the original supersymmetries.

• A similar analysis applies to a T-duality transformation along the direction ξ. Since

in (3.15) the Killing spinor ǫ− depends explicitly on ξ, we expect that the correspond-

ing supersymmetry will be broken under T-duality. Indeed, for the background (3.10)

we find only one Killing spinor given by (assuming k1k2k3 > 0)

ǫ+ = e−
θ
2
Γ
8̂
Γ
9̂e

χ

k1
Γ
7̂
Γ
9̂ǫ0,−

=

(

cos
θ

2
− Γ8̂Γ9̂ sin

θ

2

)(

cos
χ

k1
+ Γ7̂Γ9̂ sin

χ

k1

)

ǫ0,+ ,
(3.17)

with (1 + Γ6̂Γ7̂Γ8̂Γ9̂)ǫ0,+ = 0. This configuration again preserves only half of the

original supersymmetries.

• After applying two T-duality transformations along the directions χ and ξ, we expect

that both of the supersymmetries corresponding to ǫ+ and ǫ− in (3.15) will be broken.

For the background (3.12) the supersymmetry variations (3.14) can only be solved

for vanishing spinors, and hence supersymmetry is completely broken. This means

that stability is no longer guaranteed, and therefore we do not study this background

in more detail.

3.4 T-duality along non-globally-defined U(1) fibers

We finally want to generalize our previous discussion in the following way: if we interpret

the three-sphere inside the transversal geometry of the NS5-brane solution as a two-torus

fibered over a line-segment, we can in principle perform T-duality transformations also

along an arbitrary direction of the two-torus. In general, such isometries are not globally

well-defined and hence the dual background may show global problems. Nevertheless,

locally this analysis is valid.

Let us rewrite the NS5-brane solution (3.1) in a different set of coordinates which make

the T
2-fibration structure explicit. Including orbifold projections along the two directions

of the two-torus, we have

ds2 = h(r)

(

dr2 + r2dη2 +
r2

α2
1

cos2 η dξ21 +
r2

α2
2

sin2 η dξ22

)

,

H = 2α3 sin η cos η dη ∧ dξ1 ∧ dξ2 ,

e2Φ = e2φ0 h(r) ,

(3.18)
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where η ∈ [0, π/2] and ξ1,2 ∈ [0, 2π) and |αi| ∈ Z+, and where the harmonic function is

given by

h(r) = 1 +
|α1α2α3|

r2
. (3.19)

After performing a T-duality transformation along the direction v = β1∂ξ1 + β2∂ξ2 we

obtain, for a choice of local coordinates (ψ1, ψ2), the configuration

ds2 = h(r)

(

dr2 + r2dη2 +
r2

4

sin2(2η)

∆
dψ2

1

)

+
1

r2h(r)

α2
1α

2
2

∆

(

dψ2 −
α3

2
cos(2η)dψ1

)2
,

H =
β1β2α

2
1α

2
2 sin2(2η)

∆2
dη ∧ dψ1 ∧ dψ2 , (3.20)

e2Φ = e2φ0
α2
1α

2
2

r2∆
,

where we defined

∆ =
(

α2β1 sin η
)2

+
(

α1β2 cos η
)2

. (3.21)

As we mentioned before, following Buscher’s procedure in general does not give global

information about the T-dual space, and hence we have not specified the range of the

coordinates (ψ1, ψ2). Locally, however, (3.20) does solve the string equations-of-motion.

Concerning the amount of supersymmetry preserved by (3.20), for arbitrary (β1, β2) all

supersymmetries are broken — only for (β1, β2) = (α1,±α2) the solution preserves half

of the original supersymmetries. Note that the latter are precisely the examples (3.8)

and (3.10) discussed above.

4 Discussion

In this note we have studied T-duality transformations along angular directions for the

NS5-brane and its orbifolds. This solution has a six-dimensional world-volume, and the

four-dimensional space transversal to the brane can be seen as a three-sphere fibration

along a radial direction.

• In section 2 we therefore first analyzed T-duality transformations for the three-sphere

along one and two directions. We paid special attention to global issues, discussed

orbifolds of the three-sphere, determined corresponding geometric charges and com-

puted the β-transform of the three-sphere.

• In section 3 we then applied our findings to T-duality transformations of the NS5-

brane and its orbifolds. We computed the NS- and geometric charges, we determined

the background after one and two T-dualities along angular directions, and we an-

alyzed the amount of supersymmetry for the dual solutions. In agreement with ex-

pectations from the literature [41–44], we found that one T-duality preserves at most

one-half of the original supersymmetry while two T-dualities break supersymmetry

completely. We furthermore observed that after two T-dualities the background is

geometric, contrary to what one might have expected from [6].

We now want to discuss in some more detail the implications of our results.
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4.1 Comparison with T-duality for R
n

Let us note that performing a T-duality transformation along an angular direction for

empty Euclidean space R
n results in a dual geometry which is singular at the origin [7, 8].

The reason is that the norm of the corresponding Killing vector vanishes there. This is

a puzzling observation, and it has been suggested that winding modes and world-sheet

instantons may play a role in resolving the singularity. On the other hand, we see for

instance from (3.3) that the metric and H-flux of the NS5-brane at the origin r = 0 is

finite. (We ignore the dilaton in the present discussion.) Performing a single T-duality

transformation along an angular direction leads to a geometry which is again non-singular,

as can be seen for instance from (3.8), and the reason for the non-singular behavior of the

dual metric at r = 0 can be traced back to the non-vanishing H-flux h = k3 6= 0.

We do not have an answer to the question whether or how the singularity of the T-dual

of Rn can be resolved. However, for the NS5-brane the H-flux plays an important role in

regard to this point — and therefore one might suspect that also for the case of R
n a

non-trivial B-field or H-flux has to be included. We are planning to come back to this

point in the future.

4.2 Comparison with toroidal compactifications

We also want to compare our results to T-duality transformations for the compactified

NS5-brane solution. As we mentioned in the introduction, in this approach one breaks the

isometry of the NS5-brane in the transversal space from so(4) to so(4−n) by compactifying

on a n-torus Tn with n = 1, 2, . . . In a second step the localized solution is smeared along

the compact directions which enhances the isometry algebra

so(4) −→ so(4− n) −→ so(4− n)×
[

u(1)
]n

. (4.1)

T-duality transformations for these configurations are performed along the compact di-

rections with u(1) isometries, leading for instance to the KK-monopole and the 522-brane.

Note that in these cases T-duality preserves supersymmetry.

Geometric flux

Let us emphasize that when compactifying the NS5-brane, the non-compact transversal

space can no longer be described as a three-sphere fibration along a radial direction. Fur-

thermore, the geometric charge characterizing the non-triviality of the fibration vanishes,

and hence, in some sense, the compactification breaks the geometric charge. This is of

course not a problem, but what our work shows is that the original NS5-solution and the

compactified-and-smeared solution have different topological properties.

Comparison to DFT

The chain of T-duality transformations between the smeared NS5-brane, KK-monopole

and 522-brane mentioned in the introduction has also been discussed in double field the-

ory (see for instance [27, 28, 46]). It would be interesting to also incorporate T-duality

transformations along angular directions into this framework — which should be possible if
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DFT is a background-independent formulation. On the other hand, as we have verified for

the NS5-brane, T-duality can break supersymmetries [41–44] and therefore the generators

of supersymmetry and T-duality transformations do not need to commute. It would be

interesting to see if a supersymmetric formulation of DFT can be made compatible with

this observation.

The NS5-Taub-NUT configuration

We also want to give some more technical details on the difference between the NS5-

backgrounds studied in this work and the compactified-and-smeared configurations.

To obtain the latter, one starts from the NS5-brane solution (3.1), splits the transversal

space as R4 → R
3 ×R, introduces ρ as the radial coordinate in R

3 and x as the coordinate

in R, and compactifies the x-direction on a circle. For the harmonic function one then

finds [9]

h(r) = 1 +
∑

n∈Z

k

ρ2 + (x+ 2πn)2
ρ≫1

−−−−−−→ 1 +
k

2ρ
= h(ρ) , (4.2)

where ρ ≫ 1 corresponds to the smearing limit. In this limit, the background no longer

depends on x and a corresponding direction of isometry appears. Note, however, that by

following this procedure the topology of the background has been changed. More concretely,

the U(1) along the coordinate x is now trivially-fibered and has vanishing geometric charge,

so the NS5-background characterized by the smeared function h(r) has only an NS-charge

h = k. The smearing approximation breaks down at the limit ρ → 0, and one needs

to include corrections that reproduce the original function h(r). These corrections re-

introduce a dependence on the compact coordinate x which breaks the isometry, and such

corrections can be understood as instanton corrections [20].

By performing a T-duality transformation along the compact direction x, one obtains a

Taub-NUT space (also called a KK-monopole) with no NS-charge and k units of geometric

charge [12, 13, 34]. With this knowledge, we can construct geometries with both non-

trivial NS- and geometric charges by putting k1 KK-monopoles and k3 smeared NS5-branes

together. The resulting configuration is

ds2 = h1(ρ)h3(ρ)
(

dρ2 + ρ2dθ2 + ρ2 sin2 θdϕ2
)

+
h3(ρ)

h1(ρ)

(

dx−
k1
2

cos θdϕ

)2

,

B = −
k3
2

cos θ dϕ ∧ dx ,

e2Φ = e2φ0 h3(ρ) ,

(4.3)

with ρ ∈ [0,∞), θ ∈ [0, π] and ϕ, x ∈ [0, 2π). The harmonic functions h1(ρ) and h3(ρ)

correspond to the KK-monopole and the smeared NS5-brane, respectively, and read

hi(ρ) = 1 +
ki
2ρ

. (4.4)

A computation analogous to the ones carried before shows that this background has k1 units

of geometric charge and k3 units of NS-charge. After applying T-duality to the direction
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x, the resulting configuration is again a superposition of NS5-branes and KK-monopoles,

where the numbers k1 and k3 have been interchanged

k1
T-duality

←−−−−−−−→ k3 . (4.5)

We furthermore note that in the limit ρ → 0 the metric in (4.3) remains finite, and the

corresponding geometry is given by the three-sphere orbifold SU(2)k1k3/Zk1 [36]. However,

even though the solution (4.3) close to the origin agrees with the r → 0 behavior of the

ones discussed in section 3, away from r = 0 they are different.
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A Hopf fibration and U(1) actions

The three-sphere S3 can be described as a non-trivial S1 fibration as

S1 −֒→ S3 π
−→ S2 , (A.1)

and the standard way is by using the projection

π :

{

S3 −→ S2

(z0, z1) 7−→ (2z0z
∗
1 , |z0|

2 − |z1|
2)

(A.2)

It is easy to check that π(z0, z1) ∈ S2 and that π(z0, z1) = π(w0, w1) if an only if (z0, z1) =

(λw0, λw1) for λ ∈ U(1). Therefore, at each point of S2 there is a U(1) fiber. Note that the

action of U(1) on each fiber is transitive and free. The fibration is then a principal U(1) bun-

dle. To define the standard Hopf fibration, we use the first expression in (2.8) to construct

the U(1) action on the fiber. However, we can also employ the second action in (2.8) as

π̄ :

{

S3 −→ S2

(z0, z1) 7−→ (2z0z1, |z0|
2 − |z1|

2)
(A.3)

Again, one can show that π̄(z0, z1) ∈ S2 and that, now, π̄(z0, z1) = π̄(w0, w1) if an only if

(z0, z1) = (λw0, λ
∗w1) for λ ∈ U(1). As before, the action acts transitively and freely on

all fibers, and the fibration is again a principal U(1) bundle.

Let us also address the question whether one can construct fibrations using actions

infinitesimally characterized by a linear combination of the vectors v and v̄ in (2.6). If we

take the linear combination av+ bv̄ with where a, b ∈ R, the corresponding group action is

g(z0, z1) = (ei(a+b)αz0, e
i(a−b)αz1) , (A.4)
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where α ∈ [0, 2π). Consider now a U(1) orbit through the point (z0, z1) = (0, 1) defined as

all points satisfying |z1| = 1 and z0 = 0. The action (A.4) acts freely and transitively on it if

and only if a+b = ±1. In other words, only when this condition is satisfied the orbit through

the point (z0, z1) = (0, 1) constructed with the action (A.4) is isomorphic to U(1). Similarly,

the action is free and transitive on the U(1) orbit through the point (z0, z1) = (0, 1) if and

only if a−b = ±1. Then, we can conclude that the only cases that can be used to construct

principal bundles are (a, b) = (±1, 0), (0,±1), which are the ones discussed above.

Finally, we note that although the three-sphere S3 can be described as a principal U(1)

bundle in two different ways, it cannot be described as a principal U(1) × U(1) bundle.

The reason is that the orbits constructed using the U(1)×U(1) action

g(z0, z1) = (ei(α+β)z0, e
i(α−β)z1) , (A.5)

with α, β ∈ [0, 2π), are not isomorphic to U(1)×U(1) everywhere. In particular, the orbits

through the points (z0, z1) = (0, 1) and (z0, z1) = (1, 0) are two U(1) one on top of each

other.

B Lens spaces

Given two natural numbers p and q with p > q and relatively prime, the lens space L(p, q)

is defined as the orbifold S3/Zp constructed with the action

(z0, z1) →
(

e
2πim

p z0, e
2πi qm

p z1

)

, (B.1)

for any m ∈ Zp. This action is free if and only if the condition of p and q being rel-

atively prime is satisfied. Note that, in fact, q is defined modulo p. In terms of Hopf

coordinates (2.2), the action is

ξ1 → ξ1 +
2πm

p
, ξ2 → ξ2 +

2πqm

p
. (B.2)

The Z
(χ)
k1

orbifold

Taking q = 1, the action (B.2) leave the coordinate ξ invariant and acts on χ as

χ → χ+
2πm

p
. (B.3)

Then, the configuration (2.22) where we constructed the orbifold by considering the Zk1

action on χ is the space L(k1, 1).

The Z
(ξ)
k2

orbifold

The action that leaves χ invariant and acts only on ξ corresponds to the case q = p − 1

(equivalent to q = −1). However, in this case the situation is more subtle. The reason

is that, as discussed before (2.17), the coordinates (2.4) are not the most appropriate to
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describe the three-sphere as a U(1)ξ fibration. In particular, if one considers the inverse

transformation of (2.4),

ξ1 = χ+
1

2
ξ , ξ2 = χ−

1

2
ξ , (B.4)

one can easily see that, by sending ξ → ξ+2π, the coordinates ξ1 and ξ2 do not come back to

themselves. The intuition behind this fact is that, when assigning a period of 2π to ξ1− ξ2,

we are effectively orbifolding this direction. In fact, the points related by the Z2 action

(z0, z1) →
(

eiπmz0, e
−iπmz1

)

, (B.5)

with m ∈ {0, 1}, are identified in the coordinates (ξ, χ). We stress, however, that this is an

artifact of the coordinate frame we use, and not an orbifolding of the actual background.

Nevertheless, this effect arises when computing the charges, since we compute them in a

particular frame. This is then the reason for the factor 4π in the normalization of (2.17)

and the even charge along this direction. Changing to the coordinate frame (2.18) will

move this effect from the direction ξ to the direction χ̃.

With this considerations, we next want to find an action that leaves χ invariant. The

natural guess is

(z0, z1) →

(

e
2πim2

k2 z0, e
−

2πim2
k2 z1

)

, (B.6)

for m2 ∈ Zk2 . The space constructed using this action is the L(k2, k2 − 1) lens space. In

terms of the coordinate system (2.4), the action (B.6) acts on the coordinate ξ as

ξ → ξ +
4πm2

k2
. (B.7)

Note that, for even k2, the action looks rather as a Zk2/2-orbifold. However, since m2 ∈ Zk2 ,

the action (B.7) has then fixed points and the corresponding configuration fails to be an

appropriate description for the orbifold constructed with the action (B.6). Again this is

just a coordinate dependent effect. In fact, lens spaces L(k2, k2 − 1) with even k2 can be

described using the coordinates (2.18). In this frame, L(k1, 1) spaces can only be described

in the cases where k1 is odd.

The Z
(χ)
k1

× Z
(ξ)
k2

orbifold

Finally, under certain assumptions it is possible to construct orbifolds with an action along

both χ and ξ directions. The natural generalization to the orbifold actions discussed above

is

(z0, z1) →

(

e
2πi

k2m1+k1m2
k1k2 z0, e

2πi
k2m1−k1m2

k1k2 z1

)

, (B.8)

with mi ∈ Zki . In order to have a globally well-defined orbifold, one has to check whether

this action is free. As already discussed, the two U(1) isometries of the three-sphere

collapse into a single U(1) in two points of the base. However, if the integers k1 and

k2 are relatively prime, the action (B.8) becomes free at these points. In particular, one

can convince oneself that the sets {k̃2m1 + k1m2 |m1 ∈ [0, k1 − 1],m2 ∈ [0, k̃2 − 1]} and

– 25 –



J
H
E
P
0
3
(
2
0
1
8
)
0
6
0

{k̃2m1−k1m2 |m1 ∈ [0, k1−1],m2 ∈ [0, k̃2−1]} contain exactly the same elements as Zk1k2

but in a different order. Therefore, the total space will be L(k1k2, q) for some q 6= 1, and

the resulting space is in fact a Zp-orbifold along an oblique direction.

In terms of the coordinates (2.4), the action (B.8) is

χ → χ+
2πm1

k1
, ξ → ξ +

4πm2

k2
, (B.9)

where again the frame fails to describe the cases with even k2. These cases can be described

using the coordinates (2.18), which fail to describe cases with even k1. Note that k1 and

k2 can never be even at the same time.

C Supersymmetry analysis

In this appendix we give details of the analysis of the supersymmetry variations (3.14) for

some of the configurations appearing in section 3. During the calculation the following

notation will be used:

• Capital letters M,N, . . . correspond to curved space-time indices and take values

M ∈ {0, . . . 9}.

• Space-time indices are separated into those along the brane, µ ∈ {0, . . . , 5}, and those

perpendicular to it, i ∈ {r, θ, χ, ξ}.

• Flat indices are denoted by a hat. For the transverse space we have ı̂ ∈ {6̂, 7̂, 8̂, 9̂}.

The ten-dimensional fields are constructed by trivially adding the brane-volume directions

to the fields describing the transverse space, like (3.1). Note that both the spin-connection

and the NS field strength will have non-zero components only along the directions transver-

sal to the brane. Furthermore, we use conventions where /H = 1
3!Γ

M̂N̂P̂HM̂N̂P̂ , /HM =
1
2!Γ

N̂P̂HN̂P̂M and ΓM̂...N̂ = 1
p!Γ

[M̂ . . .ΓN̂ ].

The NS5-orbifold

We will first analyze the supersymmetry preserved by the NS5-orbifold solution (3.3). This

includes the NS5-brane as a particular case, which is well-known that it preserves half of

the supersymmetries.

Dilatino variation. We begin by analyzing the first of the variations in (3.14). A direct

calculation shows that, in the present case,

δǫλ = −
|k1k2k3|

2r3h(r)3/2
Γ6̂ (1± sgn(k1k2k3)Γ6̂Γ7̂Γ8̂Γ9̂) ǫ , (C.1)

where sgn(x) is the sign function and we pick the plus sign when acting on ǫ+ and the

minus when acting on ǫ−. The matrix Γ[4] = Γ6̂Γ7̂Γ8̂Γ9̂ is the chirality operator of a

representation of the four dimensional euclidean Clifford algebra and, therefore, 1
2

(

1± Γ[4]

)

are projectors. Also, note that the two chirality operators Γ[4] and Γ[10] commute and one
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can construct spinors which are chiral with respect to both of them. We conclude then,

that supersymmetry variations of the dilatino vanishes for spinors satisfying the condition.
(

1± sgn(k1k2k3)Γ6̂Γ7̂Γ8̂Γ9̂

)

ǫ± = 0 , (C.2)

which reduces the degrees of freedom of the original Majorana-Weyl spinors by one half.

For the following we will assume that without loss of generality sgn(k1k2k3) = 1. In the

case where sgn(k1k2k3) = −1, the two spinors of the doublet ǫ are interchanged.

Gravitino variation for ǫ+. We next analyze the second condition in (3.14) for the

component ǫ+. For the components M = µ, the equations δǫΨM = 0 reduce to ∂µǫ = 0,

and the Killing spinors have to be constant along the brane directions. For M = i the

variations are

δǫ+Ψr = ∂rǫ+,

δǫ+Ψθ = ∂θǫ+ +
1

4h(r)

(

Γ8̂Γ9̂ − Γ6̂Γ7̂

)

ǫ+ ,

δǫ+Ψξ = ∂ξǫ+ −
1

4k2h(r)

(

sin θ
(

Γ7̂Γ9̂ + Γ6̂Γ8̂

)

+ cos θ
(

Γ7̂Γ8̂ − Γ6̂Γ9̂

)

)

ǫ+ ,

δǫ+Ψχ = ∂χǫ+ −
1

2r2k1h(r)

(

2k1k2k3 Γ7̂Γ8̂ + r2
(

Γ7̂Γ8̂ + Γ6̂Γ9̂

)

)

ǫ+ ,

(C.3)

and applying them to a spinor ǫ+ satisfying (C.2) they reduce to

δǫ+Ψr = ∂rǫ+ , δǫ+Ψξ = ∂ξǫ+ ,

δǫ+Ψθ = ∂θǫ+ , δǫ+Ψχ =
(

∂χ − 1
k1
Γ7̂Γ8̂

)

ǫ+ .
(C.4)

A general solution to the equations δǫ+λ = 0 and δǫ+ΨM = 0 is

ǫ+ = e

(

χ

k1
Γ
7̂
Γ
8̂

)

ǫ0,+ with (1 + Γ6̂Γ7̂Γ8̂Γ9̂) ǫ0,+ = 0 , (C.5)

where ǫ0,+ is a Majorana-Weyl spinor with constant entries.

Gravitino variation for ǫ
−
. We perform now the same analysis for ǫ−. The supersym-

metry variations for the gravitino along the M = i directions are

δǫ−Ψr = ∂rǫ− ,

δǫ−Ψθ = ∂θǫ− −
1

4r2h(r)

(

2N Γ8̂Γ9̂ + r2
(

Γ8̂Γ9̂ − Γ6̂Γ7̂

)

)

ǫ− ,

δǫ−Ψξ = ∂ξǫ− −
1

4k2r2h(r)

(

(

2k1k2k3 + r2
)

Γ7 (sin θ Γ9 + cos θ Γ8)

− r2Γ6 (cos θ Γ9 − sin θ Γ8)
)

ǫ− ,

δǫ−Ψχ = ∂χǫ− −
1

2k1h(r)

(

Γ7̂Γ8̂ + Γ6̂Γ9̂

)

ǫ− ,

(C.6)

and applying them to a spinor ǫ− satisfying (C.2) they reduce to

δǫ−Ψr = ∂rǫ− , δǫ−Ψξ =

(

∂ξ −
1

2k2
sin θ Γ7̂Γ9̂ −

1

2k2
cos θ Γ7̂Γ8̂

)

ǫ− ,

δǫ−Ψθ =

(

∂θ +
1

2
Γ8̂Γ9̂

)

ǫ− , δǫ−Ψχ = ∂χǫ− .

(C.7)
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The general solution to the supersymmetry equations is

ǫ− = e−
θ
2
Γ
8̂
Γ
9̂e

ξ

2k2
Γ
7̂
Γ
8̂ǫ0,− with (1− Γ6̂Γ7̂Γ8̂Γ9̂) ǫ0,− = 0 , (C.8)

where ǫ0,− is again a Majorana-Weyl spinor with constant entries.

T-dual configuration along χ

Next, we analyze the amount of supersymmetry preserved by the configuration obtained

after performing a T-duality transformation along the direction χ to the NS5-orbifold,

described by the fields (3.8). We will find that part of the supersymmetry of the original

background is broken by the T-duality transformation.

Dilatino variation. The dilatino variation for the present background is now

δǫλ = −
1

2r
√

h(r)
Γ6̂ (1± Γ6̂Γ7̂Γ8̂Γ9̂) ǫ, (C.9)

which is again solved by a doublet of spinors satisfying

(1± Γ6̂Γ7̂Γ8̂Γ9̂) ǫ± = 0 . (C.10)

Note that in this case this condition is independent of the sign of k1k2k3. As in the case

before, this condition projects out half of the components of each Majorana-Weyl spinor.

Gravitino variation for ǫ+. Although the dilatino variations do not depend on the sign

of k1k2k3, the gravitino variations do depend on it. For simplicity, we will only discuss the

case where k1k2k3 > 0. The case where k1k2k3 < 0 can be discussed analogously, and the

results are interchanged between the two components of the doublet. With the mentioned

sign assumption, the variations δǫ+Ψi for a spinor ǫ+ satisfying (C.10) are

δǫ+Ψr = ∂rǫ+ ,

δǫ+Ψθ =

(

∂θ +
1

2h(r)
Γ6̂Γ7̂

)

ǫ+ ,

δǫ+Ψξ =

(

∂ξ +
k1k2k3

2k2r2h(r)2
cos θΓ7̂Γ8̂ +

1

2k2h(r)
(sin θΓ6̂Γ8̂ + cos θΓ7̂Γ8̂)

)

ǫ+ ,

δǫ+Ψχ =

(

∂χ −
k21k2k3
r4h(r)2

Γ7̂Γ8̂

)

ǫ+ .

(C.11)

The first equation, δǫ+Ψr = 0, is solved by spinors which are constant along the direction

r. However, assuming this condition, the other equations δǫ+Ψi = 0 cannot be solved.

Therefore, for the present configuration there is no spinor ǫ+ satisfying the condition (C.10)

with plus sign.

– 28 –
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Gravitino variation for ǫ
−
. For the case of ǫ−, the variations δǫ−Ψi for a spinor ǫ−

satisfying (C.10) are

δǫ−Ψr = ∂rǫ− ,

δǫ−Ψξ =

(

∂ξ −
1

2k2
sin θ Γ7̂Γ9̂ −

1

2k2
cos θ Γ7̂Γ8̂

)

ǫ− ,

δǫ−Ψθ =

(

∂θ +
1

2
Γ8̂Γ9̂

)

ǫ− ,

δǫ−Ψχ = ∂χǫ− ,

(C.12)

which are the same as in the original NS5-orbifold. Therefore, the equations δǫ−ΨM = 0

are solved again by

ǫ− = e−
θ
2
Γ
8̂
Γ
9̂e

ξ

2k2
Γ
7̂
Γ
8̂ǫ0,− with (1 + Γ6̂Γ7̂Γ8̂Γ9̂) ǫ0,− = 0 . (C.13)

This solution corresponds to the case where k1k2k3 > 0. In the case where k1k2k3 < 0,

the ǫ− component has no solution whereas the ǫ+ has a solution of the form (C.13). In

both cases, only half of the Killing spinors of the original background are present after the

T-duality transformation. The configuration is then 1/4-supersymmetric.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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