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Abstract: We reveal elegant relations between the shape dependence of the Casimir ef-

fects and Weyl anomaly in boundary conformal field theories (BCFT). We show that for any

BCFT which has a description in terms of an effective action, the near boundary divergent

behavior of the renormalized stress tensor is completely determined by the central charges of

the theory. These relations are verified by free BCFTs. We also test them with holographic

models of BCFT and find exact agreement. We propose that these relations between

Casimir coefficients and central charges hold for any BCFT. With the holographic models,

we reproduce not only the precise form of the near boundary divergent behavior of the stress

tensor, but also the surface counter term that is needed to make the total energy finite.

As they are proportional to the central charges, the near boundary divergence of the stress

tensor must be physical and cannot be dropped by further artificial renormalization. Our

results thus provide affirmative support on the physical nature of the divergent energy den-

sity near the boundary, whose reality has been a long-standing controversy in the literature.

Keywords: AdS-CFT Correspondence, Classical Theories of Gravity, Conformal Field

Theory

ArXiv ePrint: 1706.09652

1Corresponding author.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2018)046

mailto:miaorongxin.physics@gmail.com
mailto:cschu@phys.nthu.edu.tw
https://arxiv.org/abs/1706.09652
https://doi.org/10.1007/JHEP03(2018)046


J
H
E
P
0
3
(
2
0
1
8
)
0
4
6

Contents

1 Introduction 1

2 Shape dependence of Casimir effects from Weyl anomaly 2

3 Free and holographic BCFT 4

4 Conclusions and discussions 8

A Solutions to holographic BCFT 9

A.1 3d BCFT 9

A.2 4d BCFT 11

1 Introduction

The Casimir effect [1] originates from the effect of boundary on the zero point energy-

momentum of quantized fields in a system. As a fundamental property of the quantum

vacuum, it has important consequences on the system of concern and has been applied to

a wide range of physical problems, such as classic applications in the study of the Casimir

force between conducting plates (and nano devices) [2, 3], dynamical compactification

of extra dimensions in string theory [4, 5], candidate of cosmological constant and dark

energy,1 as well as dynamical Casimir effect and its applications.2

The near boundary behavior of the stress tensor of a system is crucial to the under-

standing of the Casimir effect. For a Quantum Field Theory (QFT) on a manifold M of

integer dimension d and boundary P , the renormalized stress tensor is divergent near the

boundary [8]:

〈Tij〉 = x−dT
(d)
ij . . .+ x−1T

(1)
ij , x ∼ 0, (1.1)

where x is the proper distance from the boundary and T
(n)
ij with n ≥ 1 depend only on

the shape of the boundary and the kind of QFT under consideration. For CFT with

conformal invariant boundary condition (BCFT), one further require that divergent parts

of renormalized stress tensor are traceless in order to get a well-defined finite Weyl anomaly

without divergence. It is also natural to impose the conservation condition of energy:

lim
x→0
〈T ii〉 = O(1), ∇i〈T ij〉 = 0. (1.2)

1See for example ref. [6].
2See for example ref. [7].
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Substituting (1.1) into the above equations, [8] obtains

T
(d)
ij = 0, T

(d−1)
ij = 2α1k̄ij , (1.3a)

T
(d−2)
ij =

−4α1

d− 1
n(ih

l
j)∇lk −

4α1

d− 2
n(ih

l
j)n

pRlp

+
2α1

d− 2

(
ninj −

hij
d− 1

)
Trk̄2 + tij , (1.3b)

tij := dβ1Cikjln
knl + β2Rij + β3kkij + β4k

l
iklje, (1.4)

where ni, hij and k̄ij are respectively the normal vector, induced metric and the traceless

part of extrinsic curvature of the boundary P . The tensor tij is tangential: nitij = 0, d e
denotes the traceless part, Cijkl is Weyl tensor of M and Rij is the intrinsic Ricci tensor of

P . The coefficients (α, βi) fixes the shape dependence of the leading and subleading Casimir

effects of BCFT. The main goal of this letter is to show that one can fix completely these

Casimir coefficients in terms of the bulk and boundary central charges.

2 Shape dependence of Casimir effects from Weyl anomaly

Consider a BCFT with a well defined effective action. The Weyl anomaly A, defined as

the trace of renormalized stress tensor, can be obtained as the logarithmic UV divergent

term of the effective action,

I = · · ·+A log

(
1

ε

)
+ Ifinite, (2.1)

where · · · denotes terms which are UV divergent in powers of the UV cutoff 1/ε, and Ifinite

is the renormalized, UV finite part of the effective action. This part is dependent on the

subtraction scheme. But the dependence is irrelevant for the discussion below and our

results hold for any renormalization scheme.

Inspired by [9, 10], let us regulate the effective action by excluding from its volume

integration a small strip of geodesic distance ε from the boundary. Then there is no explicit

boundary divergences in this form of the effective action, however there are boundary

divergences implicit in the bulk effective action which is integrated up to distance ε. The

variation of effective action is given by

δI =
1

2

∫
x≥ε

√
gT̂ ijδgij (2.2)

where T̂ ij = 2δI√
gδgij

is the non-renormalized bulk stress tensor. The renormalized bulk

stress tensor is defined by the difference of the non-renormalized bulk stress tensor against

a reference one [8]:

T ij = T̂ ij − T̂ ij0 , (2.3)

where T̂ ij0 is the non-renormalized stress tensor defined for the same CFT without boundary.

It is

δI0 =
1

2

∫
x≥ε

√
gT̂ ij0 δgij , (2.4)
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where I0 is the effective action of the CFT with the boundary removed, hence the integra-

tion over the region x ≥ ε. Subtract (2.4) from (2.2) and focus on only the logarithmically

divergent terms, we obtain our key formula

(δA)∂M =

(
1

2

∫
x≥ε

√
gT ijδgij

)
log(1/ε)

, (2.5)

where (δA)∂M is the boundary terms in the variations of Weyl anomaly and T ij is the

renormalized bulk stress tensor. In the above derivations, we have used the fact that I and

I0 have the same bulk Weyl anomaly so that

(δA)∂M = (δI − δI0)log(1/ε). (2.6)

We observe that as the right hand side of (2.5) must give an exact variation, this

imposes strong constraints on the possible form of the stress tensor near the boundary

since this is where one would pick up logarithmic divergent contribution on integration

near the boundary. It is this integrability of the variations which helps us to fix the

Casimir effects in terms of the Weyl anomaly. To proceed, let us start with the metric

written in the Gauss normal coordinates

ds2 = dx2 +
(
hab − 2xkab + x2qab + · · ·

)
dyadyb, (2.7)

where x ∈ [0,+∞). The coefficients kab, qab, · · · parametrize the derivative expansion (with

respect to both x and ya) of the metric. Consider variation of the metric with δgxi = 0 and

δgab = δhab − 2xδkab + · · · . Take first the 3d BCFT as an example. The Weyl anomaly of

3d BCFT is given by [11]

A =

∫
P

√
h(b1R+ b2Trk̄2), (2.8)

where b1, b2 are boundary central charges which depends on the boundary conditions.

Taking the variation of (2.8), we have

b2

∫
P

√
h

[(
Trk̄2

2
hab − 2k̄ack

cb

)
δhab + 2k̄abδkab

]
. (2.9)

Now we turn to calculate the variation of Weyl anomaly from the last term of (2.5). Note

that Cijkl = dRije = 0 for d = 3 . Note also that k̄ij(x) = gi
′
i g

j′

j k̄i′j′(0) = k̄ij(0)−2xkl(ik̄j)l+

O(x2), where gi
′
i is the bivector of parallel transport between x and x = 0 [8]. Taking these

facts into account and substitute (1.1) and (1.3) into the last term of (2.5), integrate over

x and select the logarithmic divergent term, we obtain

−α1

∫
P

√
h

[(
Trk̄2

2
hab − 2k̄ack

cb

)
δhab + 2k̄abδkab

]
+

∫
P

√
h

[(
β3

2
− α1

)
kk̄abδhab +

β4

2
dkackcbeδhab

]
. (2.10)

Note that (2.10) is made up of a structure of curvature components different from those

appearing in (2.9). Integrability of (2.10) gives β3 = 2α1 and β4 = 0. Comparing (2.9)
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with (2.10) gives α1 = −b2. All together, we obtain the relations between the Casimir

coefficients of the stress tensor and the boundary central charges:

α1 = −b2, β3 = −2b2, β4 = 0. (2.11)

Similarly for 4d BCFT, we can obtain the shape dependence of Casimir effects from

the Weyl anomaly [12, 13]

A =

∫
M

√
g
( c

16π2
CijklCijkl −

a

16π2
E4

)
+

∫
P

√
h(b3Trk̄3 + b4C

ac
bck̄

b
a), (2.12)

where a, c are bulk central charges and b3, b4 are boundary central charges. E4 is the Euler

density including the boundary term. To derive tij , we set δhij = 0 for simplicity, since it

only affects the third order derivative terms in the stress tensor. Taking variation of (2.12)

and comparing the boundary term with the last term of (2.5), we obtain

α1 =
b4
2
, β1 =

c

2π2
+ b4, β2 = 0,

β3 = 2b3 +
13

6
b4, β4 = −3b3 − 2b4.

(2.13)

It is remarkable that the boundary behavior of the stress tensor is completely determined

by the boundary and bulk central charges However, it is independent of the central charge

related to Euler density due to the fact that topological invariants do not change under local

variations. We propose that the relations (2.11) and (2.13) between Casimir coefficients

and central charges hold for general BCFT.

3 Free and holographic BCFT

Let us verify our general statements with free BCFT. The renormalized stress tensor of 4d

free BCFT has been calculated in [8, 14, 15]. The bulk and boundary central charges for 4d

free BCFTs were obtained in [12]. We summary these results in table 1 and table 2. Note

that the results for Maxwell field apply to both absolute and relative B.C. We find these

data obey exactly the relations (2.13). β1 for Maxwell field is absence in the literature. Here

from (2.13), we predict that β1 = 0 for all 4d free BCFT due to the fact that c = −2π2b4
for 4d free BCFT. As we will show below, this relation is violated by strongly-coupled CFT

dual to gravity. As a result, β1 is non-zero in general. Comparing with [15], we note that

there is a minus sign typo of β4 for Maxwell field in [8].

Now let us investigate the shape dependence of Casimir effects in holographic models

of BCFT. Consider a BCFT defined on a manifold M with a boundary P . Takayanagi [16]

proposed to extend the d dimensional manifold M to a d + 1 dimensional asymptotically

AdS space N so that ∂N = M ∪ Q, where Q is a d dimensional manifold which satisfies

∂Q = ∂M = P . The gravitational action for holographic BCFT is [16] (16πGN = 1)

I =

∫
N

√
G(R− 2Λ) + 2

∫
Q

√
γ(K − T ) (3.1)
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α1 β1 β2 β3 β4

Scalar, Dirichlet B.C − 1
480π2 0 0 − 19

10080π2 − 1
420π2

Scalar, Robin B.C − 1
480π2 0 0 − 1

288π2 0

Maxwell field − 1
40π2 (0) 0 − 43

840π2
1

70π2

Table 1. Casimir coefficients for 4d free BCFT.

a c b3 b4

Scalar, Dirichlet B.C 1
360

1
120

1
280π2 − 1

240π2

Scalar, Robin B.C 1
360

1
120

1
360π2 − 1

240π2

Maxwell field 31
180

1
10

1
35π2 − 1

20π2

Table 2. Central charges for 4d free BCFT.

plus terms on M and P . Here T is a constant which can be regarded as the holographic

dual of boundary conditions of BCFT [17, 18]. A central issue in the construction of the

AdS/BCFT is the determination of the location of Q in the bulk. [16] propose to use the

Neumann boundary condition

Kαβ − (K − T )γαβ = 0 (3.2)

to fix the position of Q. In [17, 18] we found there is generally no solution to (3.2) for

bulk metric that arose from the FG expansion of a general non-symmetric boundary. The

reason is because Q is of co-dimension one and we only need one condition to determine it’s

position, while there are too many extra conditions in (3.2). To resolve this, we suggested

in [17, 18] to use the trace of (3.2), (1 − d)K + dT = 0, to determine the position of

Q. Nonetheless, it is also possible that one may need to relax the assumption that the

bulk metric admits a valid FG expansion, as has been attempted in [20] for some non-

symmetric boundary in BCFT3. In contrast to a FG-expanded metric whose form near the

boundary M is completely fixed, a non-FG expanded metric has more degree of freedom.

It was suggested in [20] that the embedding equation (3.2) may admit a solution if the bulk

metric is also allowed to adjust itself. However in general this is a highly non-trivial problem

and there is no systematic method available to construct gravity solutions for BCFT in

general dimensions d and with an arbitrary non-symmetric boundary (k̄ab 6= 0) that is not

FG expanded. Remarkably this problem can solved and we will now present the solution.

To make progress in this front, we find that one can instead consider an expansion in

powers of small derivatives of the metric and keep both the z and x dependence as exact

to construct a perturbative solution to the Einstein equation. For simplicity, we consider

the case of hab = δab here. The more general case of a nontrivial boundary metric can

be analysed. We comment on this in the supplementary information. We find useful to

consider the following metric ansatz

ds2 =
dz2 + dx2 +

(
δab − 2xk̄abf

)
dyadyb

z2
+ · · · , (3.3)

– 5 –
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N

M

Q

P

z

Figure 1. BCFT on M and its dual N .

with f = f(x, z) a function such that f(x, 0) = 1. To find solution, let us first consider

the region x ≥ 0 and consider the ansatz f = f(z/x). This ansatz plays an important

role to solve (3.2) for non-symmetric boundary with k̄ab 6= 0. For simplicity we consider

a traceless kab = k̄ab extrinsic curvature here. The solution for the general case is given

in the supplementary information. Substituting (3.3) into Einstein equation and writing

s := z/x > 0, we obtain at the order O(k) a single equation

s
(
s2 + 1

)
f ′′(s)− (d− 1)f ′(s) = 0. (3.4)

It has the solution

f(s) = 1− α1
sd 2F1

(
d−1

2 , d2 ; d+2
2 ;−s2

)
d

. (3.5)

To obtain a solution of the Einstein equation for x < 0, one may analytic continuate (3.5) to

the region s < 0. However this solution while continuous at s = 0, is discontinuous at x = 0

as the region near x = 0 is mapped to widely separated regions s = ±∞. Another possibility

is to first rewrite the expression (3.5) in terms of x and z, and then analytic continuate

the resulting function f(x, z) to the region x < 0. In this way, we obtain a solution of the

Einstein equation that is continuous at x = 0. For example, for d = 3, we have

f(x, z) = 1− α1

( z
x
− g(x, z)

)
, (3.6a)

g(x, z) =
π

2
− 2 tan−1

(
x/
(
z +

√
z2 + x2

))
. (3.6b)

Let us make some comments. 1. For general d, the perturbation 2xk̄abf(x, z) is finite

which shows that (3.4) is a well-defined metric. 2. Note that formally one can expand f

as a power series of z and interpret that as a FG expansion of the metric (3.3). However

the series does not converge whenever x < z. Therefore for the boundary (x→ 0) physics

we are interested in, it is necessary to use the exact solution without performing the FG

expansion. 3. The perturbative background (3.3), (3.5) to the Einstein equation is an

interesting result which may be useful for other studies as well.

So far the coefficient α1 is arbitrary. If we now consider (3.2) in this background, we

find that one can solve the embedding function of Q as x = − sinh(ρ)z+O(k2) provided that

α1 is fixed at the same time. Please see the supplementary information for more details.

See table 3 for values of α1 obtained from holography, where we have re-parametrized

– 6 –
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α1 β1 β2 β3 β4

3d −1
θ 0 0 −2

θ 0

4d −1
2(1+tanh ρ)

tanh ρ
tanh ρ+1 0 5+4 tanh ρ

−6(1+tanh ρ)
tanh ρ

tanh ρ+1

Table 3. Casimir coefficients for holographic stress tensor.

T = (d − 1) tanh ρ and θ = π
2 + 2 tan−1

(
tanh

(ρ
2

))
is the angle between M and the bulk

boundary Q. Using (3.3), (3.5), we can derive the holographic stress tensor [21]

Tij = lim
z→0

d
δgij
zd

= 2α1
k̄ij
xd−1

+O(k2), (3.7)

which takes the expected form (1.3a). According to [21], Tij (3.7) automatically satisfy the

traceless and divergenceless conditions (1.2). Note that in general the stress tensor (3.7) also

contains contributions from gij |z=0 in even dimensions [21]. However, these contributions

are finite, so we can ignore them without loss of generality since we focus on only the

divergent parts in this letter.

Similarly, we can work out the next order solutions to both the Einstein equation

and (3.2), and then derive the stress tensor up to the order O(k2) by applying the for-

mula (3.7). See the appendix for details. It turns out that the holographic stress tensor

takes exactly the expected expression (1.3) with the coefficients listed in table 3. These

coefficients indeed satisfy the relations (2.11), (2.13) provided the boundary central charges

are given by3

b2 =
1

θ
, (3.8a)

b3 =
1

1 + tanh ρ
− 1

3
, b4 =

−1

1 + tanh ρ
, (3.8b)

for 3d and 4d respectively. Since we have many more relations (8) than unknown vari-

ables (3), this is a non-trivial check of the universal relations (2.11), (2.13) as well as

for the holographic proposal (3.2). In fact, the central charges (3.8a), (3.8b) can be

independently derived from the logarithmic divergent term of action by using the per-

turbation solution of order O(kd−1). One can consider general boundary conditions by

adding intrinsic curvatures on Q [18]. In this case the boundary central charges change

but the relations (2.11), (2.13) remain the same. We can also reproduce these relations

in the holographic model [17, 18]. These are all strong supports for the universal rela-

tions (2.11), (2.13). The fact that the both the holographic models of [16] and ours [17, 18]

verify the universal relations (2.11), (2.13) suggests that both proposals are consistent

holographic models of BCFT. We remark that in general there could be more than one

self-consistent boundary conditions for a theory [19] and so there is no contradiction be-

tween [16] and [17, 18]. This is supported by the fact that the two holographic models

gives different boundary central charges despite the same universal relations are satisfied.

3Note that in [18] we find b2 and b4 of [16] vanish for bulk solution that can be FG expanded. Here we

clarify that b2 and b4 of [16] can be non-zero in general if one employ the new background (3.3) in the

non-FG expanded regime.
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From holographic BCFT [16–18], we can also gain some insight into the total energy.

Applying the holographic renormalization of BCFT [17, 18], we obtain the total stress

tensor:

Tij = 2α1
k̄ij
xd−1

− δ(x;P )
2α1

d− 2

k̄ij
εd−2

+O(k2), x ∼ ε. (3.9)

Note that the first term, a local energy density, give rises to a divergence in the total

energy that cannot be canceled with any local counterterm in the BCFT, but only with the

inclusion of the second term, a surface counterterm as first constructed in [14]. The surface

counterterm is localized at the boundary surface P , which has been shifted from x = 0 to

a position x = ε. The requirement of finite energy fixes [14] the relative coefficients of the

two terms in (3.9). Remarkably the holographic constructions [16–18] reproduce precisely

also the surface counter term with the needed coefficient to make the total energy finite :∫∞
ε dxTij = O(k2) <∞, which agrees with the results of [14, 22].

4 Conclusions and discussions

In this letter, we have shown that with the help of an effective action description, the

divergent parts of the stress tensor of a BCFT is completely determined by the central

charges of the theory. The found relations between the Casimir coefficients and the central

charges are verified by free BCFT as well as holographic models of BCFT. We propose

that these relations hold universally for any BCFT. Using the holographic models, we also

reproduce remarkably the precise surface counterterm that is needed to render the total

energy of the BCFT finite.

Our results are useful for the study of shape dependence of Casimir effects [23–25] and

the theory of BCFT [26, 27]. For Casimir effects where there are spacetime on both sides

of the boundary, it has been argued that the divergent stress tensor originates from the

unphysical nature of classical “perfect conductor” boundary conditions [8]. In reality there

would be an effective cut off ε below which the short wavelength vibrational modes do not

“see the boundary”. However for BCFT where there is no spacetime outside the boundary,

the divergent one point function of stress tensor is expected and physical. According

to [28],4 one can derive the one point function of an operator in BCFT from the two point

functions of operators in CFT by using the mirror method. Since two point functions are

divergent when two points are approaching, it is not surprising that the one point function

of BCFT diverge near the boundary. This is due to the interaction with the boundary,

or equivalently, the mirror image. Note that although the stress tensor diverges, the total

energy is finite. Thus BCFT is self-consistent.

Our discussions can be generalized to higher dimensions naturally. Furthermore, our

discussions also apply to defect conformal field theory (DCFT) [29] with general codimen-

sions, which is a problem of great interest. For example, the case of codimension 2 DCFT

is related to the shape dependence of Rényi entropy [9, 10, 30–33]. It is interesting to see

whether the spirit of this letter can apply to general QFT. It is also very interesting to

4We thank John Cardy for [28].
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generalize and apply the techniques of the holographic models to study the expectation

value of current in boundary systems, e.g. edge current of topological materials.
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A Solutions to holographic BCFT

Here we give details about solutions to the Einstein equations and the boundary condi-

tions (3.2) to the next order in derivative expansion of the boundary metric (i.e. O(k2) in

the case of a flat boundary metric hab = δab). Consider the following ansatz for x > 0,

ds2 =
1

z2

[
dz2 +

(
1 + x2X

( z
x

))
dx2

+

(
δab − 2xk̄abf

( z
x

)
− 2x

k

d− 1
δab + x2Qab

( z
x

))
dyadyb

]
+O(k3), (A.1)

where the functions X( zx) and Qab(
z
x) are of order O(k2). We require that

f(0) = 1, X(0) = 0, Qab(0) = qab (A.2)

so that the metric of BCFT takes the form (2.7) in Gauss normal coordinates.

A.1 3d BCFT

Let us first study the case d = 3. The generalization to higher dimensions is straight-

forward. For simplicity, we further set kab = diag(k1, k2), qab = diag(q1, q2), where ka, qa
are constants. Substituting (A.1) into the Einstein equations, and using (A.2) to fix the

integral constants, we obtain (3.5) and

f(s) = 1− α1(s− g(s))

Q11(s) =
1

8
[4q1

(
s2 + 2

)
− α2

1 (k1 − k2) 2
(
s2 − 3

)
g(s)2

−2α2
1 (k1 − k2) 2 log

(
s2 + 1

)
+ s

(
5α2

1 (k1 − k2) 2s+ 4α2

)
+s
(
2α1

(
−5k2

1 + 8k2k1 + k2
2

)
− 4s

(
k2

1 − k2k1 − k2
2 + q2

))
−2g(s)

(
α1k

2
1

(
3α1s+ s2 − 5

)
+ 2α2

(
s2 + 1

))
−2α1g(s)

(
k2

2 (3s (α1 + s) + 1) + 2k1k2 (4− 3α1s)
)
],

Q22(s) =
1

8
[4q2

(
s2 + 2

)
− α2

1 (k1 − k2) 2
(
s2 − 3

)
g(s)2

+s
(
5α2

1 (k1 − k2) 2s− 4α2

)
− 2α2

1 (k1 − k2) 2 log
(
s2 + 1

)
+s
(
4s
(
k2

1 + k2k1 − k2
2 − q1

)
− 2α1

(
k2

1 − 4k2k1 + 7k2
2

))
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+2g(s)
(
2α2

(
s2 + 1

)
− α1k

2
1

(
3α1s+ s2 − 1

))
+2α1g(s)

(
k2

2

(
−3α1s+ s2 + 7

)
+ 2k1k2

(
3α1s+ 2s2 − 2

))
],

X(s) =
1

4
[−α2

1 (k1 − k2) 2s2 log
(
s2 + 1

)
− 2α1 (k1 − k2) 2s

+α1 (k1 − k2) 2g(s)
(
α1

(
s2 + 1

)
g(s) + 2s (s− α1) + 2

)
+s
(
α2

1 (k1 − k2) 2s− 2s
(
k2

1 + k2k1 + k2
2 − q1 − q2

))
], (A.3)

where s = z/x and g(s) = π
2 − 2 tan−1

(
1/(s+

√
s2 + 1)

)
. A continuous solution of the

Einstein equations is obtained by first rewriting (A.1) as function of x and z and then

analytic continutate to the x < 0 region. In this way, we get smooth g(z, x) as (3.6). The

solution is parametrized by two free parameters α1 and α2.

Next we solve (3.2) for the embedding function of Q in the above background. We

obtain, for d = 3, the results

x = − sinh(ρ)z +
k cosh2 ρ

2(d− 1)
z2 + c3z

3 +O(k3) (A.4)

with c3 given by

c3 = −sinh ρ

24

[
7k2

1 + 4k2k1 + 7k2
2 − 4 (q1 + q2)

+
(
5k2

1 + 2k2k1 + 5k2
2 − 2 (q1 + q2)

)
cosh(2ρ)

+α2
1 (k1 − k2) 2

(
(2 + cosh(2ρ)) log(coth2 ρ)− 1

) ]
. (A.5)

The boundary conditions (3.2) also restrict solutions (3.6) and fix the integral constants to

be

α1 =
−1

θ
, α2 = −α1

2
k2, (A.6)

where θ = π
2 + 2 tan−1

(
tanh

(ρ
2

))
is the angle between M and the bulk boundary Q. It

should be mentioned that, following our method, the above α1 is independently obtained in

a recent paper [34]. The derivation of (A.4)–(A.6) is straightforward. For simplicity, let us

first focus on the leading order O(k) term. From dimensional analysis, the embedding func-

tion of Q takes the form x = − sinh(ρ)z+ c2kz
2 +O(k2) with c2 a dimensionless constant.

Substituting the metric (A.1) and the embedding function of Q into the conditions (3.2),

we get two independent equations at order O(k)

sech5(ρ)(−8c2 + cosh(2ρ) + 1)k = 0,(
α1 cosh2(ρ)

(
4 tan−1

(
tanh

ρ

2

)
+ π

)
+ 8c2

)
k̄ab = 0.

Solving the above equations, we obtain c2 and α1 as shown in (A.4), (A.6). Similarly, we

obtain c3 and α2 from (3.2) at order O(k2). It is remarkable that the conditions (3.2) fix

the bulk metric and embedding function of Q at the same time.

Substituting (3.6), (A.1), (A.3), (A.6) into (3.7), we obtain the holographic stress

tensor

Tij = diag

{
α1(k1 − k2)2

x
,
α1(k1 − k2)

x2
− 3α1(k1 − k2)2

2x
,
α1(k2 − k1)

x2
− 3α1(k1 − k2)2

2x

}
.

(A.7)
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It is remarkable that all the qa dependence got cancelled away and the stress tensor (A.7)

takes exactly the expected form (1.3) with coefficients as listed in table 3. Recall that kij
in (1.3) is actually a tensor defined at x instead of the boundary x = 0. It can be obtained

from parallel transport of the extrinsic curvature at x = 0, i.e., k̄ij(x) = gi
′
i g

j′

j k̄i′j′(0) =

k̄ij(0)− 2xkl(ik̄j)l +O(x2) [8].

Further generalization of the our above results is possible. Let us discuss briefly the

case of non-constant metric hij(y) and extrinsic curvature kij(y). In this case, Tij will

include non-diagonal parts generally. These non-diagonal parts obey (1.3b) trivially, since

by definition (3.7) Tij automatically satisfy the traceless and divergenceless conditions (1.2),

which fixs the non-diagonal parts of stress tensor as (1.3b) completely.

Another generalization is to have more general boundary conditions of holographic

BCFT by adding intrinsic curvatures on Q [18]. For example, we consider

I =

∫
N

√
G(R− 2Λ) + 2

∫
Q

√
γ(K − T − λRQ), (A.8)

with the Neumann boundary condition

Kαβ − (K − T − λRQ)γαβ − 2λRQαβ = 0. (A.9)

Substituting the solutions (3.6) into (A.9), we can solve the embedding function of Q

as (A.4) but with different parameter c3 and different integration constants

α1 =
1

2λsechρ/ (1− 2λ tanh ρ)− θ
,

α2 = −α1

2
k2. (A.10)

Here T = 2 tanh ρ + 2λsech2(ρ). From (3.7), we can derive the holographic stress tensor

which takes exactly the expected form (1.3). It is remarkable that although the central

charge b2 = −α1 changes, the relations (2.11) remain invariant for holographic BCFT

with general boundary conditions. The above discussions can be generalized to higher

dimensions easily. The 4d solutions can be used to confirm the universal relations (2.13).

A.2 4d BCFT

Now Let us consider the case d = 4. For simplicity, we also set kab = diag(k1, k2, k3), qab =

diag(q1, q2, q3), where ka, qa are constants. Substituting (A.1) into the Einstein equations,

and using (A.2) to fix the integral constants, we obtain

f(s) = 1+2α1−
α1

(
s2 +2

)
√
s2 +1

, (A.11)

X(s) =
1

6
s2 (2(q1 +q2 +q3)−3(k1k2 +k1k3 +k3k2))− 1

3

(
k21 +k22 +k23−k1k2−k1k3−k2k3

)
g1(s),

Q11(s) =
k21g2(s)+k22g3(s)+k1k2g4(s)

18(s2 +1)3/2
,

+
1

3
√
s2 +1

[
q1
(

2s2 +
√
s2 +1+2

)
+q2

(
−s2 +

√
s2 +1−1

)
+3α2

((√
s2 +1−2

)
s2 +2

(√
s2 +1−1

))]
,
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Q22(s) =
k22g2(s)+k21g3(s)+k2k1g4(s)

18(s2 +1)3/2

+
1

3
√
s2 +1

[
q2
(

2s2 +
√
s2 +1+2

)
+q1

(
−s2 +

√
s2 +1−1

)
+3α3

((√
s2 +1−2

)
s2 +2

(√
s2 +1−1

))]
,

Q33(s) =
(k21 +k22)g5(s)+k1k2g6(s)

18(s2 +1)3/2

−
(q1 +q2)

(
s2−
√
s2 +1+1

)
+3(α2 +α3)

((√
s2 +1−2

)
s2 +2

(√
s2 +1−1

))
3
√
s2 +1

, (A.12)

where gi(s) are defined by

g1(s) = α1

(
α1

(
8
√
s2 +1+s2

(
log
(
s2 +1

)
−4
)
−8
)
−2s2 +4

√
s2 +1−4

)
+s2 (A.13)

g2(s) = 12
(
s2 +1

)
(−s2 +

√
s2 +1−1)+36α1

(
s2 +1

)
(−s2 +2

√
s2 +1−2)

−α2
1

(
−86

(√
s2 +1−1

)
+s2

(
22s2−71

√
s2 +1+108

)
+6
(
s2 +1

)3/2
log
(
s2 +1

))
g3(s) = −6

(
s2 +1

)(
−s2 +

√
s2 +1−1

)
+6α1

(
s2 +1

)(
−s2 +2

√
s2 +1−2

)
+α2

1

(
14
(√

s2 +1−1
)

+s2
(

2s2 +11
√
s2 +1−12

)
−6
(
s2 +1

)3/2
log
(
s2 +1

))
g4(s) = −12

(
s2 +1

)(
−s2 +

√
s2 +1−1

)
−30α1

(
s2 +1

)(
−s2 +2

√
s2 +1−2

)
+α2

1

(
22s4−86

(√
s2 +1−1

)
+s2

(
108−71

√
s2 +1

)
+6
(
s2 +1

)3/2
log
(
s2 +1

))
g5(s) = −6

(
s2 +1

)(
−s2 +

√
s2 +1−1

)
−6α1

(
s2 +1

)((
2
√
s2 +1−3

)
s2 +2

(√
s2 +1−1

))
+α2

1

(
44
(√

s2 +1−1
)

+8s2
(

7
√
s2 +1−9

)
−6
(
s2 +1

)3/2
log
(
s2 +1

)
+s4

(
15
√
s2 +1−28

))
g6(s) = 3

(
s2 +1

)((
3
√
s2 +1−8

)
s2 +8

(√
s2 +1−1

))
+12α1

(
s2 +1

)((√
s2 +1−3

)
s2 +4

(√
s2 +1−1

))
+α2

1

(
4s2
(√

s2 +1−6
)

+28
(√

s2 +1−1
)

+6
(
s2 +1

)3/2
log
(
s2 +1

)
+s4

(
4−15

√
s2 +1

))
.

Note that since the full expressions of Qab are too complicated, we only list the results with

k3 = q3 = 0 for Qab in (A.12). We want to stress that we focus on the general case with

nonzero k3 and q3, we just do not list the full expressions for simplicity.

The above solutions work well for x > 0. A continuous solution of the Einstein equa-

tions is obtained by first rewriting (A.1), (A.11), (A.12), (A.13) as functions of x and

z and then analytic continutate to the x < 0 region. In fact, we only need to replace

all
√

1 + s2 =
√

1 + z2

x2
in (A.11), (A.12), (A.13) by

√
x2 + z2/x. One can check that

after the analytic continutation, the metric (A.1) are solutions to Einstein equations for

x ∈ (−∞,∞). What is more, now it becomes continuous at x = 0 (see xf(s) as an

example). The above solution is parametrized by three free parameters α1, α2 and α3.

Next we solve (3.2) for the embedding function of Q in the above background. We

obtain, for d = 4, the results

x = − sinh(ρ)z +
k cosh2 ρ

2(d− 1)
z2 + c3z

3 +O(k3) (A.14)

with c3 given by

c3 =
−1

288
e−2ρ sinh(ρ)

[
t1(k2

1 + k2
2 + k2

3) + t2(k1k2 + k1k3 + k2k3) + t3(q1 + q2 + q3)
]
,

(A.15)
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with ti given by

t1 = 8 + 48 sinh(2ρ) + 20 sinh(4ρ) + 5 log
(
coth2(ρ)

)
(A.16)

+ cosh(4ρ)
(
log
(
coth2(ρ)

)
+ 20

)
+ cosh(2ρ)

(
6 log

(
coth2(ρ)

)
+ 44

)
t2 = 16 + 24 sinh(2ρ) + 4 sinh(4ρ)− 5 log

(
coth2(ρ)

)
− cosh(4ρ)

(
log
(
coth2(ρ)

)
− 4
)

+ cosh(2ρ)
(
28− 6 log

(
coth2(ρ)

))
t3 = −16e2ρ(cosh(2ρ) + 2).

The boundary conditions (3.2) also fix all the integral constants of the solutions (A.1),

(A.11), (A.12), (A.13)

α1 =
−1

2(tanh(ρ)+1)
,

α2 =
−1

144(sinh(ρ)+cosh(ρ))2
[
35k21 +25k2k1 +25k3k1−37k22−37k23−11k2k3−24q1 +12q2 +12q3

+4
(
4k21−7(k2 +k3)k1−5k22−5k23 +2k2k3−6q1 +3q2 +3q3

)
sinh(2ρ)

+3
(
k21−5(k2 +k3)k1−7k22−7k23−k2k3−8q1 +4q2 +4q3

)
cosh(2ρ)

]
α3 = α2[k1↔ k2, q1↔ q2]. (A.17)

It should be mentioned that, following our method, the above α1 is independently obtained

in a recent paper [34], which exactly agrees with our results when using our notations. The

derivation of (A.14)–(A.17) is straightforward. For simplicity, let us first focus on the

leading order O(k) term. From dimensional analysis, the embedding function of Q takes

the form x = − sinh(ρ)z + c2kz
2 + O(k2) with c2 a dimensionless constant. Substituting

the metric (A.1) and the embedding function of Q into the conditions (3.2), we get two

independent equations at order O(k)

sech5(ρ)(−12c2 + cosh(2ρ) + 1)k = 0,

4k1 (α1(sinh(2ρ) + cosh(2ρ) + 1) + 6c2)

− (k2 + k3) (2α1(sinh(2ρ) + cosh(2ρ) + 1) + 3(−8c2 + cosh(2ρ) + 1)) = 0. (A.18)

Solving the above equations, we obtain c2 and α1 as shown in (A.14), (A.17)

c2 =
cosh2(ρ)

6
, α1 =

−1

2(tanh(ρ) + 1)
. (A.19)

Similarly, we can obtain c3, α2, α3 from Neumann boundary conditions (3.2) at the next

order O(k2, q). It is remarkable that the conditions (3.2) fix the bulk metric and embedding

function of Q at the same time.

Substituting the solutions (A.1), (A.11), (A.12), (A.13), (A.17) into the formula

Tij = lim
z→0

d
δgij
zd

, (A.20)

and noting BCFT is defined in x ∈ [0,∞), we obtain the holographic stress tensor with

non-zero components given by
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Txx = −k
2
1 +k22 +k23−k1k2−k1k3 +k2k3

3x2(tanh(ρ)+1)
,

T11 = − (2k1−k2−k3)

3(1+tanhρ)x3

+
cosh(ρ)−sinh(ρ)

18x2
[
2k21(5sinh(ρ)+8cosh(ρ))+

(
k22 +k23

)
(7cosh(ρ)−5sinh(ρ))

+2k2k3(sinh(ρ)+4cosh(ρ))−k1 (k2 +k3)(sinh(ρ)+19cosh(ρ))+3(q2 +q3)sinh(ρ)−6q1 sinh(ρ)
]
,

T22 = T11[k1↔ k2, q1↔ q2],

T33 = T11[k1↔ k3, q1↔ q3]. (A.21)

We can rewrite the above holographic stress tensor into convariant form:

Tij=
2α1(k̄ij−2xkl(ik̄j)l)

x3
+
α1(ninj− hij

3 )Trk̄2

x2
+
p1Cikjln

knl+p2kk̄ij +p3(kilk
l
j− 1

3hijTrk2)

x2

(A.22)

where ¯ means traceless parts, Cikjln
knl = −1

2 q̄ij + 1
2kk̄ij , α1 is given by (A.17), ni =

(−1, 0, 0, 0), hij = diag(0, 1, 1, 1) and pi are given by

p1 = p3 =
tanh(ρ)

tanh(ρ) + 1
, p2 =

−4 tanh(ρ)− 5

6(tanh(ρ) + 1)
. (A.23)

Now let us turn to the field theoretical result of BCFT stress tensor (1.3a), (1.3b), (1.4),

which takes the form

Tij=
2α1(k̄ij−2xkl(ik̄j)l)

x3
+
α1(ninj− hij

3 )Trk̄2

x2
+
β1Cikjln

knl+β3kk̄ij +β4(kilk
l
j− 1

3hijTrk2)

x2

(A.24)

Recall that kij in eqs. (1.3a), (1.3b), (1.4) is actually a tensor defined at x instead of the

boundary x = 0. It can be obtained from parallel transport of the extrinsic curvature at

x = 0, i.e., k̄ij(x) = gi
′
i g

j′

j k̄i′j′(0) = k̄ij(0)− 2xkl(ik̄j)l +O(x2) [8].

Comparing the holographic stress tensor (A.22) with the field theoretical result (A.24),

we get

β1 = p1 =
tanh(ρ)

tanh(ρ) + 1
, β3 = p2 =

−4 tanh(ρ)− 5

6(tanh(ρ) + 1)
, β4 = p3 =

−4 tanh(ρ)− 5

6(tanh(ρ) + 1)
. (A.25)

Now it is easy to check that the Casimir coefficients α1, βi indeed satisfy the universal

relations

α1 =
b4
2
, β1 =

c

2π2
+ b4, β2 = 0,

β3 = 2b3 +
13

6
b4, β4 = −3b3 − 2b4.

(A.26)

provided the boundary central charges are given by

b3 =
1

1 + tanh ρ
− 1

3
, b4 =

−1

1 + tanh ρ
, (A.27)

Since we have four relations and two unknown variables, this is a non-trivial check of the

universal relations (A.26). Recall that in (A.26) we have c = 2π2 for Einstein gravity
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(16πGN = 1). In fact, the central charges (A.27) can be independently derived from the

logarithmic divergent term of action by using the perturbation solution of order O(k3). It

should be mentioned that the holographic results do not test the relations β2 = 0, since in

our setup we have hab = δab and thus Rij = 0 in the stress tensor eq. (4) of the revised

letter. However, this is a trivial relation and there is no need to test it. From the conformal

symmetry, [8] finds that there is no R̄ij = R̄ij + O(k2, q) terms in the stress tensor. As a

result, we must have β2 = 0.

Further generalization of the our above results is possible. Let us discuss briefly the case

of non-constant metric hij(y) and extrinsic curvature kij(y). In this case, Tij will include

non-diagonal parts generally. These non-diagonal parts obey eq. (3b) of the revised letter

trivially, since by definition (A.20) Tij automatically satisfy the traceless and divergenceless

conditions, which fixs the non-diagonal parts of stress tensor as eq. (3b) in the revised letter

completely.

Now we have shown that the holographic BCFT indeed obeys the universal rela-

tions (2.13), (A.26) between Casimir coefficients and central charges.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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