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Abstract: F-theory/heterotic duality is formulated in the stable degeneration limit of a

K3 fibration on the F-theory side. In this note, we analyze the structure of the stable

degeneration limit. We discuss whether stable degeneration exists for pairs of rational

elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an iden-

tical complex structure, stable degeneration always exists. We provide an equation that

systematically describes the stable degeneration of a K3 surface into a pair of isomorphic

rational elliptic surfaces. When two rational elliptic surfaces have different complex struc-

tures, whether their sum glued along a smooth fiber admits deformation to a K3 surface

can be determined by studying the structure of the K3 lattice. We investigate the lattice

theoretic condition to determine whether a deformation to a K3 surface exists for pairs of

extremal rational elliptic surfaces. In addition, we discuss the configurations of singular

fibers under stable degeneration.

The sum of two isomorphic rational elliptic surfaces glued together admits a defor-

mation to a K3 surface, the singular fibers of which are twice that of the rational elliptic

surface. For special situations, singular fibers of the resulting K3 surface collide and they

are enhanced to a fiber of another type. Some K3 surfaces become attractive in these

situations. We determine the complex structures and the Weierstrass forms of these at-

tractive K3 surfaces. We also deduce the gauge groups in F-theory compactifications on

these attractive K3 surfaces times a K3. E6, E7, E8, SU(5), and SO(10) gauge groups arise

in these compactifications.
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1 Introduction

The F-theory approach to particle physics model building has several advantages. It natu-

rally realizes SU(5) grand unified theories with matter in spinor representations of SO(10).

In contrast to D-brane models, there is no difficulty in generating up-type Yukawa cou-

plings. Furthermore, it can evade the problem of weakly coupled heterotic string theory

addressed in [1]. Recent studies on F-theory model building [2–5] have emphasized the use

of local models. However, in order to address the issue of gravity such as inflation, a global

model of compactification need to be considered eventually. In particular, many insights

can be gained by the duality between heterotic string and F-theory [6–10], which states the

equivalence between the former compactified on an elliptically fibered CY n-fold and the

latter on a K3 fibered CY (n+ 1)-fold in the stable degeneration limit [10, 11].1 The aim

of the present paper is to develop a systematic study of the process of stable degeneration

of a K3 surface for a pair of rational elliptic surfaces.

1For recent discussion of the stable degeneration limit of F-theory and F-theory/heterotic duality, see,

for example, [12–16].
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K3 surface stably degenerates into two rational elliptic surfaces in two distinct ways:

i) K3 surface splits into two rational elliptic surfaces with an identical complex structure

ii) K3 surface splits into two rational elliptic surfaces with different complex structures.

We discuss these cases separately, in section 2 and section 3, respectively.

We demonstrate in section 2.1 that, when a pair of rational elliptic surfaces are iso-

morphic, stable degeneration can be described by a systematic equation. We analyze the

geometry of stable degeneration of the first kind i) using this equation. We determine that

given any pair of isomorphic rational elliptic surfaces, there is some K3 surface that stably

degenerates into the pair.

However, it is considerably difficult to describe stable degeneration by an equation

when two rational elliptic surfaces have different complex structures. Moreover, a pair

of non-isomorphic rational elliptic surfaces glued together along a smooth fiber does not

necessarily admit a deformation to a K3 surface. Complex structures and configurations of

singular fibers are classified for a specific class of rational elliptic surfaces, called extremal

rational elliptic surfaces. We focus on the extremal rational elliptic surfaces to analyze

the stable degeneration of the second kind ii). We determine whether stable degeneration

exists for pairs of these rational elliptic surfaces. We use the lattice theoretic approach to

analyze this process.

We also study the configuration of singular fibers under the stable degeneration limit.

In F-theory, non-Abelian gauge symmetries on the 7-branes are in correspondence with the

types of singular fibers. Therefore, analyzing the configurations of singular fibers under

the stable degeneration limit is of physical interest.

The outline of this study is as follows. In section 2, we discuss the stable degeneration

limit where a K3 surface degenerates into two isomorphic rational elliptic surfaces. We

provide an equation that systematically describes this process. We determine that any

pair of isomorphic rational elliptic surfaces glued together deforms to a K3 surface, which

is a double cover of P2 ramified over a sextic curve. Moreover, we discuss the configurations

of singular fibers under the degeneration. Furthermore, we review the properties of the

extremal rational elliptic surfaces. We discuss some examples of stable degeneration using

an extremal rational elliptic surface. The sum of two isomorphic rational elliptic surfaces

glued together admits a deformation to a K3 surface, the singular fibers of which are twice

that of the rational elliptic surface. For special situations, two fibers of the same type of

the resulting K3 surface collide, and they are enhanced to a fiber of another type. These

situations can be considered as special cases of stable degeneration. For such situations,

some K3 surfaces become attractive. In section 2.4, we determine the complex structures

of these attractive K3 surfaces and their Weierstrass forms. We also deduce the non-

Abelian gauge symmetries that form on the 7-branes in F-theory compactifications on these

attractive K3 surfaces times a K3. E6, E7, E8, SU(5), and SO(10) gauge groups arise in

these models. In section 3, we investigate the stable degeneration limit where a K3 surface

degenerates into two non-isomorphic rational elliptic surfaces. Whether such a degeneration

exists can be determined by studying the lattice structure of the second integral cohomology
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group H2(S,Z) of a K3 surface S. We obtain the lattice condition under which two non-

isomorphic rational elliptic surfaces glued together admits a deformation to a K3 surface.

We determine whether a deformation to a K3 surface exists for pairs of extremal rational

elliptic surfaces. We study the configuration of singular fibers under stable degeneration

using the lattice theoretic argument. We state the concluding remarks in section 4.

2 Stable degeneration of K3 to a pair of isomorphic rational elliptic

surfaces

2.1 Equation for the degeneration of K3 to a pair of isomorphic rational el-

liptic surfaces

In this section, we discuss the stable degeneration of a K3 surface to two isomorphic

rational elliptic surfaces. We provide an equation that describes such stable degeneration

systematically. From this equation, we determine that any pair of isomorphic rational

elliptic surfaces admits stable degeneration (i.e., there is a K3 surface that splits into

that pair of rational elliptic surfaces in the stable degeneration limit). We also conclude

that there always exists some appropriate K3 surface whose singular fibers are the sum

of the singular fibers of the two isomorphic rational elliptic surfaces to which K3 surface

degenerates.

When we discuss a rational elliptic surface in this study, we only consider such a surface

with a section. The base space of a rational elliptic surface is isomorphic to P1 by Lüroth’s

theorem, and it is known that every rational elliptic surface with a section is the blow-up

of P2 in the nine base points of a cubic pencil [17]. The Picard number of a rational elliptic

surface is 10, and the rank of the Mordell-Weil group ranges from 0 to 8:

0 ≤ rk MW ≤ 8. (2.1)

A generic rational elliptic surface has Mordell-Weil rank 8. Rational elliptic surfaces with

Mordell-Weil rank 0 are called extremal rational elliptic surfaces. For extremal rational

elliptic surfaces, the rank of the singularity type is 8, which is the highest for a rational

elliptic surface. We will review the properties of extremal rational elliptic surfaces in

section 2.2. In section 3, we focus on extremal rational elliptic surfaces to discuss the

stable degeneration of a K3 surface into a pair of non-isomorphic rational elliptic surfaces.

When two rational elliptic surfaces have isomorphic smooth elliptic fibers, we can glue

two rational elliptic surfaces in the following fashion: we choose a point in base P1 of each

rational elliptic surface over which the fiber is smooth and isomorphic, and we glue two

rational elliptic surfaces by identifying the isomorphic smooth fibers over the chosen points.

As described in section 3, when a certain lattice theoretic condition is satisfied, the sum of

two (not necessarily isomorphic) rational elliptic surfaces glued together can be deformed

to a K3 surface.

In this section, we particularly consider the case wherein two rational elliptic surfaces

that are glued together are isomorphic. For this particular case, we explicitly provide an

equation that describes the stable degeneration of a K3 surface into the pair of isomorphic
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rational elliptic surfaces glued together. As stated above, a rational elliptic surface X is

the blow-up of P2 in the base points of a cubic pencil; we denote the cubic pencil of a

rational elliptic surface X as f . The double cover of P2 ramified along a degree 6 curve

is, in general, a K3 surface. We particularly consider double covers of P2 ramified over a

degree 6 curve given by the following form of equations:

τ2 = fg, (2.2)

where g is a polynomial of degree 3 and g is the cubic pencil of the same type as the pencil

f , but the ratio of the coefficients of the pencil g is generally different from the ratio of the

coefficients of the pencil f . For this situation, K3 surface (2.2) is elliptically fibered. To

be explicit, when the cubic pencil f is given by

f = a h1 + b h2, (2.3)

where a, b are coefficients of the pencil f , we choose the cubic pencil g as follows:

g = c h1 + d h2. (2.4)

c, d are coefficients of the pencil g, and the ratio [c : d] is generally different from the ratio

[a : b]. For the limit at which polynomial g goes to cubic pencil f (i.e. for the limit at

which ratio [c : d] goes to the ratio [a : b]), equation (2.2) is split into the following two

equations:

τ = f (2.5)

τ = −f.

Each of the above two equations in (2.5) describes a rational elliptic surface given by cubic

pencil f ; therefore, when a cubic polynomial g goes to cubic pencil f , the K3 surface (2.2)

splits into two isomorphic rational elliptic surfaces, each given by the cubic pencil f . This

is the stable degeneration limit of the K3 surface (2.2) splitting into two copies of rational

elliptic surfaces X. Thus, we conclude that two isomorphic rational elliptic surfaces glued

along an isomorphic smooth fiber always admit a deformation to a K3 surface.

We only consider rational elliptic surfaces with a global section in this note; therefore,

they admit transformation into the Weierstrass form. The coefficients of the Weierstrass

form depend on the coordinate of the base P1. We denote the homogeneous coordinate

of the base P1 as [u : v]. In terms of the coordinate [u : v], the stable degeneration of a

K3 surface (2.2) splitting into two isomorphic rational elliptic surfaces is described by the

following equation:

τ2 = u2 + 2kuv + v2. (2.6)

k in equation (2.6) denotes a parameter of deformation. k varies along the deformation,

and when k assumes the values

k = ±1, (2.7)

equation (2.6) splits into linear factors. This occurs when a K3 surface splits into two

isomorphic rational elliptic surfaces.
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We observe from equation (2.6) that the K3 surface (2.2) is the quadratic base change

of the rational elliptic surface (2.5) into which the K3 surface splits in the stable degener-

ation limit, when g is the cubic pencil of the same type as the pencil f . In other words,

the Weierstrass equation of the K3 surface is obtained when some appropriate quadratic

equations are substituted into variables u, v in the coefficients of the Weierstrass form of a

rational elliptic surface. Thus, the generic K3 surface (2.2) that results from the deforma-

tion of two isomorphic rational elliptic surfaces (2.5) glued together has twice the number

of singular fibers as a rational elliptic surface.

For special situations, singular fibers of the same type of the K3 surface, that is ob-

tained as the quadratic base change of a rational elliptic surface, collide and they are

enhanced to a fiber of another type. We discuss these situations in section 2.4.

The aforementioned argument applies to the deformation of every pair of two isomor-

phic rational elliptic surfaces with a global section glued along smooth fiber to a K3 surface.

2.2 Extremal rational elliptic surfaces

We summarize the properties of extremal rational elliptic surfaces. In section 2.3, we

discuss the quadratic base change of extremal rational elliptic surfaces that ramifies only

over smooth fibers. In section 2.4, we discuss the limits at which singular fibers of the

same type collide in the quadratic base change of extremal rational elliptic surfaces. We

discuss the structures of attractive K3 surfaces that result from the quadratic base change

of extremal rational elliptic surfaces in section 2.4.

Extremal rational elliptic surfaces have the singularity type of rank 8, and the Mordell-

Weil groups only have torsion parts. Singular fiber types of the extremal rational ellip-

tic surfaces are classified, and the complex structure of an extremal rational elliptic sur-

face is uniquely determined by the fiber type, except for the surfaces with the fiber type

[I∗0 , I
∗
0 ] [18]. J-invariant of fibers of an extremal rational elliptic surface with the fiber type

[I∗0 , I
∗
0 ] is constant over the base P1, and the complex structure of a rational elliptic surface

with the fiber type [I∗0 , I
∗
0 ] depends on the value of j. The complex structure of an extremal

rational elliptic surface with the fiber type [I∗0 , I
∗
0 ] is fixed when the j-invariant of the fiber

is chosen.

Provided these facts, in this note, we denote an extremal rational elliptic surface using

its fiber type as the subscript. For example, an extremal rational elliptic surface with the

fiber type [IV, IV ∗] is denoted as X[IV, IV ∗]. We simply use n to represent the In fiber, and

m∗ to represent the I∗m fiber. Therefore, an extremal rational elliptic surface with singular

fibers of type IV ∗, I3, and I1 is denoted as X[IV ∗, 3,1]. We denote a surface with the fiber

type [I∗0 , I
∗
0 ] as X[0∗, 0∗](j), because the complex structure of such a surface depends on

the j-invariant of fibers. We list the configurations of singular fiber types of the extremal

rational elliptic surfaces in table 1. The Weierstrass forms of the extremal rational elliptic

surfaces were also derived in [18]. We include the Weierstrass forms of the extremal rational

elliptic surfaces in table 1.

The cubic pencils for all the extremal rational elliptic surfaces, except the surfaces

X[II, II∗], X[III, III∗], X[IV, IV ∗], X[0∗, 0∗](j), were obtained in [19]. The cubic pencil for the
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Extremal rational

elliptic surface
Fiber type a4 a6

X[II, II∗] II∗, II 0 uv5

X[III, III∗] III∗, III uv3 0

X[IV, IV ∗] IV ∗, IV 0 u2v4

X[0∗, 0∗](j) I∗0 , I∗0 su2v2 tu3v3

X[II∗, 1,1] II∗ I1 I1 −3u4 2u5v

X[III∗, 2,1] III∗ I2 I1 −uv3 v5(u− v)

X[IV ∗, 3,1] IV ∗ I3 I1 v3(24u− 27v) v4(16u2 − 72uv + 54v2)

X[4∗, 1,1] I∗4 I1 I1 −3v2(u2 − 3v2) uv3(2u2 − 9v2)

X[2∗, 2,2] I∗2 I2 I2 −3uv(u− v)2 (u− v)3(u3 + v3)

X[1∗, 4,1] I∗1 I4 I1 −3(u− 2v)2(u2 − 3v2) u(u− 2v)3(2u2 − 9v2)

X[9,1,1,1] I9 I1 I1 I1 −3u(u3 + 24v3) 2(u6 + 36u3v3 + 216v6)

X[8,2,1,1] I8 I2 I1 I1 −3(u4 + 4u2v2 + v4) 2u6 + 12u4v2 + 15u2v4 − 2v6

X[6,3,2,1] I6 I3 I2 I1 −3(u4 + 4u3v − 2uv3 + v4)
2u6 + 12u5v + 12u4v2 − 14u3v3

+3u2v4 − 6uv5 + 2v6

X[5,5,1,1] I5 I5 I1 I1
−3(u4 − 12u3v + 14u2v2

+12uv3 + v4)

2(u6 − 18u5v + 75u4v2

+75u2v4 + 18uv5 + v6)

X[4,4,2,2] I4 I4 I2 I2 −3(u4 − u2v2 + v4) 2u6 − 3u4v2 − 3u2v4 + 2v6

X[3,3,3,3] I3 I3 I3 I3 −3(u4 − 8uv3) 2(u6 + 20u3v3 − 8v6)

Table 1. Fiber types of the extremal rational elliptic surfaces, and coefficients a4, a6 of the Weier-

strass form y2 = x3 + a4x+ a6. [u : v] is the homogeneous coordinate on the base P1. For surface

X[0∗, 0∗](j), s, t in coefficients a4, a6 of the Weierstrass form are complex numbers, s, t ∈ C, with

4s3 + 27t2 6= 0. j-invariant of fibers of surface X[0∗, 0∗](j) is a function of s, t.

extremal rational elliptic surface X[IV, IV ∗] is given by

a yz(y + z) + b x3. (2.8)

[x : y : z] represents the homogeneous coordinates on P2, and [a : b] represents the homo-

geneous coordinate on P1. The cubic pencils of extremal rational elliptic surfaces are listed

in table 2.

2.3 Example of generic deformation using an extremal rational elliptic surface

We discuss an example of results in section 2.1 using an extremal rational elliptic surface.

We consider the surface X[IV, IV ∗]. As stated in section 2.2, the cubic pencil of surface

X[IV, IV ∗] is given by

f = a yz(y + z) + b x3. (2.9)

– 6 –
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Extremal rational elliptic surface Pencil

X[II∗, 1,1] a {3(x2 − y2)z + 2x3}+ b z3

X[III∗, 2,1] a z{y2 + x(z − 2x)}+ b x3

X[IV ∗, 3,1] a xyz + b (x+ y + z)3

X[IV, IV ∗] a yz(y + z) + b x3

X[4∗, 1,1] a {(2x+ z)(xz + y2) + x3}+ b x(xz + y2)

X[2∗, 2,2] a (x+ y)(xy + z2) + b x2y

X[1∗, 4,1] a x{(x+ y)z + y2}+ b (x+ y)z2

X[9,1,1,1] a (x2y + y2z + z2x− 3xyz) + b xyz

X[8,2,1,1] a {x(xz − y2) + y2z}+ b (y + 2z)(xz − y2 + z2)

X[6,3,2,1] a z(x2 + xy + xz + y2) + b (−x2z + xyz + y3)

X[5,5,1,1] a yz(x+ y + z) + b x(x+ y)(x+ z)

X[4,4,2,2] a (x− y)(xy − z2) + b xy(x+ y − 2z)

X[3,3,3,3] a (x3 + y3 + z3) + b xyz

Table 2. Pencils of extremal rational elliptic surfaces.

We fix a, b to be non-zero constants in the cubic pencil f . We consider the cubic polynomial

g to be the pencil of the same type as the cubic pencil f :

g = c yz(y + z) + d x3. (2.10)

We fix c, d to be non-zero constants. We choose c, d so that the ratio [c : d] is generally

different from the ratio [a : b] of the coefficients a, b in the pencil f . For the cubic pencil

f (2.9) and cubic pencil g (2.10), equation

τ2 = fg (2.11)

generically provides a K3 surface with two type IV ∗ fibers and two type IV fibers. For the

limit at which ratio [c : d] goes to [a : b], the cubic pencil g coincides with the cubic pencil

f . In this stable degeneration limit, equation (2.11) is split into linear factors; accordingly,

the K3 surface (2.11) splits into two extremal rational elliptic surfaces X[IV, IV ∗].

We stated in section 2.1 that gluing together two isomorphic rational elliptic surfaces,

each given by cubic pencil f , to obtain a K3 surface (2.2) is equivalent to the quadratic

base change of a rational elliptic surface over P1, when the cubic pencil g is chosen to be

the same type as the pencil f . We consider, as an example, the case wherein two extremal

rational elliptic surfaces X[IV, IV ∗] are glued together to form a K3 surface, to demonstrate

this explicitly. We discuss the generic situation in which the quadratic base change ramifies

– 7 –



J
H
E
P
0
3
(
2
0
1
8
)
0
4
5

over smooth fibers. As given in table 1, the Weierstrass form of X[IV, IV ∗] is given by

y2 = x3 + u2v4. (2.12)

Gluing together two X[IV, IV ∗]s and deforming the resulting surface to a K3 surface is

equivalent to substituting the following quadratic equations into variables u, v:

u = α1ũ
2 + α2ũṽ + α3ṽ

2 = α1(ũ− β1ṽ)(ũ− β2ṽ) (2.13)

v = α4ũ
2 + α5ũṽ + α6ṽ

2 = α4(ũ− β3ṽ)(ũ− β4ṽ).

αi, i = 1, · · · , 6, are some constants, and the quadratic terms are split into linear factors

on the right extreme hand sides in equation (2.13). (In (2.13), we assume that β1 6= β2
and β3 6= β4.) The resulting K3 surface has the following Weierstrass form:

y2 = x3 + α2
1α

4
4(ũ− β1ṽ)2(ũ− β2ṽ)2(ũ− β3ṽ)4(ũ− β4ṽ)4. (2.14)

We confirm from equation (2.14) that the resulting K3 surface has two type IV ∗ fibers and

two type IV fibers, for generic constants αi, i = 1, · · · , 6.

When β1 = β2, two fibers of type IV collide and they are enhanced to a type IV ∗

fiber. For this special case, we obtain a K3 surface with three IV ∗ fibers. Situations of

this kind, in which singular fibers of the same type collide in the quadratic base change of

an extremal rational elliptic surface, will be discussed in section 2.4.

2.4 Attractive K3 surfaces as a special deformation of two extremal rational

elliptic surfaces glued together

2.4.1 Complex structures of attractive K3 surfaces, and gauge groups in F-

theory compactifications

In section 2.1, we mainly discussed the quadratic base change whose ramification occurs

over smooth fibers. A smooth fiber remains smooth after the quadratic base change.

When the quadratic base change is unramified over a singular fiber, we obtain two copies

of that fiber.

As we saw in section 2.1, the quadratic base change of a rational elliptic surface to

obtain a K3 surface is the reverse of a process in which a K3 surface splits into two

isomorphic rational elliptic surfaces under stable degeneration. A quadratic base change

generically ramifies only over smooth fibers; we obtain two copies of the singular fiber for

each singular fiber after the quadratic base change. Thus, the resulting K3 surface has

twice as many singular fibers as the rational elliptic surface for such a generic situation.

We consider the special situation of the quadratic base change, where singular fibers of the

same type collide and they are enhanced to a singular fiber of another type. We particularly

consider the examples in which the resulting K3 surfaces after the quadratic base change

are enhanced to attractive K3 surfaces.2 We show in table 3 the resulting fiber type after

the collision of two singular fibers of the same type [20].

2Following the convention of the term in [21], we refer to a K3 surface with the Picard number 20 as an

attractive K3 surface in this study.
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Original fiber type of

a pair of identical singular fibers
Resulting fiber type

In I2n
II IV

III I∗0
IV IV ∗

Table 3. Resulting fibers after the collision of a pair of singular fibers of the same type.

We consider stable degeneration in which two isomorphic extremal rational elliptic

surfaces X[II, II∗] are glued together. When two type II fibers collide in the quadratic base

change, we find from table 3 that the resulting fiber has type IV . The resulting K3 surface

has singular fibers of types II∗, II∗, and IV . The corresponding ADE type is E2
8 ⊕ A2.

This is an extremal K3 surface. An extremal K3 surface is an attractive elliptic K3 surface

with a global section, with the Mordell-Weil group of rank 0. The extremal K3 surface with

ADE type E2
8 ⊕ A2 is discussed in [22]. We next consider the gluing of two isomorphic

extremal rational elliptic surfaces X[III, III∗], in which two type III fibers collide. The

resulting K3 surface has type III∗, III∗, and I∗0 fibers. The corresponding ADE type is

E2
7 ⊕D4. This is also an extremal K3 surface. This K3 surface is discussed in [23] as the

Jacobian fibration of some K3 genus-one fibration without a section. For the gluing of two

isomorphic extremal rational elliptic surfaces X[IV, IV ∗], when two type IV fibers collide,

the resulting fiber has type IV ∗. Therefore, the resulting K3 surface has three type IV ∗

singular fibers. The corresponding ADE type is E3
6 . This is an extremal K3 surface, and

this K3 surface is discussed in [24] as the Jacobian fibration of an attractive K3 genus-one

fibration without a section.

For the gluing of two isomorphic extremal rational elliptic surfaces X[II∗, 1,1], we con-

sider the situation in which two pairs of type I1 fibers collide in the quadratic base change.

The resulting fibers have type I2; the resulting K3 surface has two singular fibers of type

II∗, and two fibers of type I2. When we consider the limit of the quadratic base change

of extremal rational elliptic surface X[III∗, 2,1] at which two type I2 fibers and two type I1
fibers collide, the resulting K3 surface has fibers of types III∗, III∗, I4, and I2. The limit

of quadratic base change of extremal rational elliptic surface X[IV ∗, 3,1], at which two fibers

of type I3 and two fibers of type I1 collide, gives K3 surface with singular fibers of types

IV ∗, IV ∗, I6, and I2.

For the gluing of two extremal rational elliptic surfaces X[4∗, 1,1], when we consider the

limit of the quadratic base change at which two pairs of type I1 fibers collide, the resulting

K3 surface has two singular fibers of type I∗4 and two singular fibers of type I2. For extremal

rational elliptic surface X[2∗, 2,2], when we consider the limit of the quadratic base change

at which two pairs of type I2 fibers collide, the resulting K3 surface has two type I∗2 fibers

and two type I4 fibers. For the gluing of two extremal rational elliptic surface X[1∗, 4,1],

when we consider the limit of the quadratic base change at which two type I4 fibers and

two type I1 fibers collide, the resulting K3 surface has type I∗1 , I∗1 , I8, and I2 fibers.
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For extremal rational elliptic surface X[5,5,1,1], when we consider the limit of the

quadratic base change at which two fibers of type I5 and two fibers of type I1 collide,

the resulting K3 surface has 1 type I10 fiber, 2 type I5 fibers, 1 type I2 fiber, and 2 type

I1 fibers.

From ADE types of the 10 K3 surfaces that we obtained above as the quadratic

base change of extremal rational elliptic surfaces, we conclude that they are extremal K3

surfaces. ADE types of the extremal K3 surfaces and the corresponding complex structures

were classified in [25]. Mordell-Weil groups of extremal K3 surfaces were also derived in [25].

Using table 2 in [25], we can deduce the complex structures of the 10 extremal K3 surfaces

from their ADE types.

The complex structure of an attractive K3 surface S is specified by the transcendental

lattice T (S), which is defined to be the orthogonal complement of the Néron-Severi lattice in

the K3 lattice H2(S,Z) [26]. Therefore, we represent the complex structure of an attractive

K3 surface by the intersection matrix of the transcendental lattice in this study. For an

attractive K3 surface, the transcendental lattice is a 2 × 2 integral, symmetric, positive-

definite even lattice. See section 4 in [24] for a review of the correspondence of the complex

structures of attractive K3 surfaces and the transcendental lattice.

We list the fiber types, corresponding ADE types, the complex structures and the

Mordell-Weil groups of the 10 extremal K3 surfaces, that we obtained above as deforma-

tion of two isomorphic extremal rational elliptic surfaces glued together, in table 4. The

global structures of the non-Abelian gauge symmetries3 that arise on the 7-branes in F-

theory compactifications on the 10 extremal K3 surfaces times a K3 surface are also shown

in table 4. Extremal K3 surface has the Mordell-Weil rank 0, therefore these F-theory

compactifications do not have U(1) gauge field.

2.4.2 Weierstrass equation

We obtained 10 extremal K3 surfaces in section 2.4.1 as the limit of the quadratic base

change4 of extremal rational elliptic surfaces, at which singular fibers of the same type col-

lide. Therefore, by substituting appropriate quadratic polynomials into u, v in the Weier-

strass forms of extremal rational elliptic surfaces, listed in table 1 in section 2.2, we can

deduce the Weierstrass forms of the 10 extremal K3 surfaces, obtained in section 2.4.1.

As an example, extremal K3 surface whose transcendental lattice has the intersection

matrix
(
6 0
0 2

)
, with ADE type E2

6 ⊕A5 ⊕A1, is obtained via the quadratic base change of

extremal rational elliptic surface X[IV ∗, 3,1], in which two fibers of type I3 and two fibers

of type I1 collide. The Weierstrass form of extremal rational elliptic surface X[IV ∗, 3,1] is

given by

y2 = x3 + v3(24u− 27v)x+ v4(16u2 − 72uv + 54v2). (2.15)

The discriminant of the Weierstrass form (2.15) is [18]

∆ ∼ u3v8(u− v). (2.16)

3See [8, 27] for the correspondence of the types of the singular fibers and the non-Abelian gauge groups

on the 7-branes.
4The relationship of K3 surfaces and rational elliptic surfaces via base change is also discussed in [28].
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Singular fibers ADE type Complex Str. Mordell-Weil group Gauge group

II∗ II∗ IV E2
8 ⊕A2

(
2 1

1 2

)
0 E2

8 × SU(3)

III∗ III∗ I∗0 E2
7 ⊕D4

(
2 0

0 2

)
Z2 E2

7 × SO(8)/Z2

IV ∗ IV ∗ IV ∗ E3
6

(
2 1

1 2

)
Z3 E3

6/Z3

II∗ II∗ I2 I2 E2
8 ⊕A2

1

(
2 0

0 2

)
0 E2

8 × SU(2)2

III∗ III∗ I4 I2 E2
7 ⊕A3 ⊕A1

(
4 0

0 2

)
Z2 E2

7 × SU(4)× SU(2)/Z2

IV ∗ IV ∗ I6 I2 E2
6 ⊕A5 ⊕A1

(
6 0

0 2

)
Z3 E2

6 × SU(6)× SU(2)/Z3

I∗4 I
∗
4 I2 I2 D2

8 ⊕A2
1

(
2 0

0 2

)
Z2 × Z2 SO(16)2 × SU(2)2/Z2 × Z2

I∗2 I
∗
2 I4 I4 D2

6 ⊕A2
3

(
4 0

0 4

)
Z2 × Z2 SO(12)2 × SU(4)2/Z2 × Z2

I∗1 I
∗
1 I8 I2 D2

5 ⊕A7 ⊕A1

(
8 0

0 2

)
Z4 SO(10)2 × SU(8)× SU(2)/Z4

I10 I5 I5 I2 I1 I1 A9 ⊕A2
4 ⊕A1

(
10 0

0 2

)
Z5 SU(10)× SU(5)2 × SU(2)/Z5

Table 4. Configurations of singular fibers, ADE types, complex structures and the Mordell-Weil

groups of 10 extremal K3 surfaces. We also list the global structures of the non-Abelian gauge

groups that form on the 7-branes.

Type IV ∗ fiber is at [u : v] = [1 : 0], type I3 fiber is at [u : v] = [0 : 1] and type I1 fiber is

at [u : v] = [1 : 1]. We consider the following substitutions for u, v in the Weierstrass form

of extremal rational elliptic surface X[IV ∗, 3,1]:

u = ũ2 (2.17)

v = 2ũṽ − ṽ2.

This gives the limit of the quadratic base change at which two fibers of type I3 collide at

[u : v] = [0 : 1] and two fibers of type I1 collide at [u : v] = [1 : 1]. The resulting equation

y2 =x3 + v3(2u− v)3(24u2 + 27v2 − 54uv)x

+ v4(2u− v)4(16u4 − 144u3v + 288u2v2 − 216uv3 + 54v4)
(2.18)

gives the Weierstrass form of extremal K3 surface with transcendental lattice
(
6 0
0 2

)
, with

ADE type E2
6 ⊕A5 ⊕A1. The discriminant of the Weierstrass form (2.18) is given by

∆ ∼ u6v8(2u− v)8(u− v)2. (2.19)

We confirm from equations (2.18) and (2.19) that extremal K3 surface (2.18) has two type

IV ∗ fibers, at [u : v] = [1 : 0], [1 : 2], type I6 fiber at [u : v] = [0 : 1] and type I2 fiber at

[u : v] = [1 : 1].
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ADE type f g

E2
8 ⊕A2 0 (u− v)2u5v5

E2
7 ⊕D4 (u− v)2u3v3 0

E3
6 0 (u− v)4u4v4

E2
8 ⊕A2

1 −3u4v4 u5v5(u2 + v2)

E2
7 ⊕A3 ⊕A1 − 9

16 (u2 + v2 + 10
3 uv)u3v3 9

4 u
5v5(14u

2 + 1
4v

2 + 7
18uv)

E2
6 ⊕A5 ⊕A1 v3(2u− v)3(24u2 + 27v2 − 54uv)

v4(2u− v)4 · (16u4 − 144u3v

+288u2v2 − 216uv3 + 54v4)

D2
8 ⊕A2

1 −3u2v2(u4 + v4 − u2v2) (u2 + v2)u3v3(2u4 − 5u2v2 + 2v4)

D2
6 ⊕A2

3

−3 · 4
ω(ω−1)uv[u2 + v2 + (2 + 4

ω−1)uv]

·[u2 + v2 + (2 + 4
ω )uv]2

[u2 + v2 + (2 + 4
ω )uv]3

·{[u2 + v2 + (2 + 4
ω−1)uv]3 + ( 4

ω−1uv)3}

D2
5 ⊕A7 ⊕A1

−3(u4 + 4u3v + 4u2v2 − 3
4v

4)

·(u2 + 2uv − v2)2
u(u+ 2v)(2u4 + 8u3v + 8u2v2 − 9

4v
4)

·(u2 + 2uv − v2)3

A9 ⊕A2
4 ⊕A1

−3[u8 − 12u6 · 2
11+5

√
5
(2uv − v2)

+14u4( 2
11+5

√
5
(2uv − v2))2

+12u2( 2
11+5

√
5
(2uv − v2))3

+( 2
11+5

√
5
(2uv − v2))4]

2[u12 − 18u10 · 2
11+5

√
5
(2uv − v2)

+75u8( 2
11+5

√
5
(2uv − v2))2

+75u4( 2
11+5

√
5
(2uv − v2))4

+18u2( 2
11+5

√
5
(2uv − v2))5

+( 2
11+5

√
5
(2uv − v2))6]

Table 5. ADE types of extremal K3 surfaces, and coefficients f, g of the Weierstrass form y2 =

x3 + fx+ g. [u : v] denotes the homogeneous coordinate on the base P1. ω denotes a cube root of

unity, ω 6= 1.

We show the Weierstrass forms of the 10 extremal K3 surfaces, which we obtained in

section 2.4.1, in table 5. The discriminants of the Weierstrass forms in table 5 are listed

in table 6. The Weierstrass forms of extremal K3 surfaces with ADE types E2
8 ⊕ A2 and

E2
8 ⊕ A2

1 are discussed in [22]. The Weierstrass forms of extremal K3 surfaces with ADE

types E3
6 and E2

7 ⊕D4 are discussed in [24] and [23], respectively.

2.4.3 Anomaly cancellation condition

We consider F-theory compactifications on the extremal K3 surfaces obtained in sec-

tion 2.4.1 times a K3 surface. The resulting theory is a four-dimensional theory with

N = 2, without a four-form flux. The anomaly cancellation condition determines the form

of the discriminant locus to be 24 K3 surfaces, counted with multiplicity; there are 24

7-branes wrapped on the K3 surfaces.5 We show the correspondence of the numbers of

7-branes and the fiber types in table 7. The Euler numbers of the singular fibers can be

found in [29]. The Euler number of fiber type can be considered as the number of the

associated 7-branes. We confirm from tables 4 and 7 that there are in fact 24 7-branes in
5See, for example, [24] for discussion.
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ADE type ∆

E2
8 ⊕A2 (u− v)4u10v10

E2
7 ⊕D4 (u− v)6u9v9

E3
6 (u− v)8u8v8

E2
8 ⊕A2

1 u10v10(u− v)2(u+ v)2

E2
7 ⊕A3 ⊕A1 u9v9(u− v)4(u+ v)2

E2
6 ⊕A5 ⊕A1 u6v8(2u− v)8(u− v)2

D2
8 ⊕A2

1 u10v10(u− v)2(u+ v)2

D2
6 ⊕A2

3 (u− v)4(u+ v)4[u2 + v2 + (2 + 4
ω )uv]8

D2
5 ⊕A7 ⊕A1 v8(u2 + 2uv − v2)7(u+ v)2

A9 ⊕A2
4 ⊕A1

u10v5(v − 2u)5(u− v)2

·[u2 − 11−5
√
5

11+5
√
5
(2uv − v2)]

Table 6. Discriminant ∆ of the Weierstrass forms in table 5 are shown. We suppressed the

irrelevant constant factors of the discriminants.

Fiber type # of 7-branes (Euler number)

In n

I∗0 6

I∗m m+6

II 2

III 3

IV 4

IV ∗ 8

III∗ 9

II∗ 10

Table 7. Associated numbers of 7-branes for fiber types.

F-theory compactifications on the 10 extremal K3 surfaces times a K3 surface. Therefore,

we conclude that the anomaly cancellation condition is satisfied for these compactifications.

By turning on four-form flux [30–34], F-theory compactification on K3 times K3 gives

four-dimensional theory with N = 1 supersymmetry. We confirm from table 1 in [35]

and table 2 in [13] that for F-theory compactifications on the 10 extremal K3 surfaces,

obtained in section 2.4.1, times some appropriate attractive K3 surface, the tadpole [31]

can be cancelled. See [23, 24] for the details.
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3 Stable degeneration of K3 to a pair of non-isomorphic rational elliptic

surfaces

In this section, we discuss the stable degeneration where a K3 surface degenerates into two

non-isomorphic rational elliptic surfaces. It is considerably difficult to provide a general

equation to describe this kind of stable degeneration. Therefore, instead of providing an

equation to describe the process, we use a lattice theoretic approach to determine whether

stable degeneration exists for pairs of non-isomorphic rational elliptic surfaces. For the sake

of brevity, in this section, we simply say “a pair of rational elliptic surfaces” to indicate

a pair of non-isomorphic rational elliptic surfaces. We also discuss the configurations of

singular fibers under stable degeneration. In section 3.1, we will discuss a lattice theoretic

condition for the existence of stable degeneration for pairs of rational elliptic surfaces.

Applying the lattice condition, in section 3.2, we demonstrate that stable degeneration

exists for pairs of extremal rational elliptic surfaces.

Elliptic fiber of a rational elliptic surface generally has the moduli of dimension 1 over

the base P1. Therefore, given a pair of rational elliptic surfaces, there is a pair of isomorphic

smooth elliptic fibers, and the pair of rational elliptic surfaces can be glued along the

isomorphic smooth fibers. However, when elliptic fiber of a rational elliptic surface has the

constant moduli over the base P1, such gluing is not necessarily possible. For the three

extremal rational elliptic surfaces X[II, II∗], X[III, III∗], X[IV, IV ∗], the complex structure of

elliptic fibers is constant over the base P1.6 We do not consider the three extremal rational

elliptic surfaces X[II, II∗], X[III, III∗], X[IV, IV ∗] in this section.

3.1 Lattice condition for stable degeneration limit

We use the Torelli theorem for K3 surfaces [36] to deduce a lattice theoretic condition

that determines whether pairs of rational elliptic surfaces admit stable degeneration. The

Torelli theorem for K3 surfaces states that the geometry of a K3 surface is determined by

the structure of the K3 lattice ΛK3. The K3 lattice ΛK3 of a K3 surface S is the second

integral cohomology group H2(S,Z). The K3 lattice ΛK3 is the indefinite even unimodular

lattice of signature (3,19), and it is the direct sum of three copies of the hyperbolic plane

U and two copies of the E8 lattice:

ΛK3
∼= U3 ⊕ E2

8 . (3.1)

In this note, we assume that a rational elliptic surface has a global section; thus, we

presume that the K3 surface obtained as a deformation of the sum of two rational elliptic

surfaces also admits a global section.7 An elliptic K3 surface having a section is equivalent

6The complex structure of elliptic fibers of extremal rational elliptic surface X[0∗, 0∗](j) is also constant

over the base P1, but there is a degree of freedom in choosing j-invariant of an elliptic fiber. Therefore,

when j-invariant is appropriately chosen, X[0∗, 0∗](j) can be glued with another rational elliptic surface.

For this reason, we include extremal rational elliptic surface X[0∗, 0∗](j).
7In general, genus-one fibered K3 surfaces need not have a global section. For discussion of the geometry

of genus-one fibered K3 surfaces without a section and string compactifications on such spaces, see, for

example, [23, 24, 37]. For recent progress in F-theory compactifications on genus-one fibrations without a

section, see, for example, also [38–48].
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to the primitive embedding of the hyperbolic plane U into the K3 lattice ΛK3 [36, 49].

We denote the ADE types of two rational elliptic surfaces, X1 and X2, as R1 and R2,

respectively. Applying the argument in [50] to the boundary of the closure of K3 moduli,

from the Torelli theorem for K3 surfaces, we deduce that a K3 surface exists and it admits

stable degeneration into two rational elliptic surfaces X1 and X2, exactly when there is a

primitive embedding of the lattice U ⊕R1 ⊕R2 into the K3 lattice ΛK3:

U ⊕R1 ⊕R2 ⊂ ΛK3. (3.2)

Whether lattice U ⊕ R1 ⊕ R2 primitively embeds into the K3 lattice ΛK3 can be

determined by the criterion given in [51]. Some lattice theoretic terms are necessary to

state the criterion; we introduce some lattice theoretic terms first.

By lattice, we indicate a finite rank free Z-module with a non-degenerate integral

symmetric bilinear form. The lattice L is said to be even, when for every element x of L,

x2 = x·x is even. The discriminant of lattice L, disc L, is the determinant of an intersection

matrix (ei · ej)ij for a basis {ei} of the lattice L. The lattice L is said to be unimodular

when its discriminant is ±1. U denotes the hyperbolic plane. The hyperbolic plane U is

the even unimodular lattice of signature (1,1). E8 denotes the even unimodular lattice of

signature (0,8). E8 and U are unique up to the isometries of lattice. When the lattice

L1 embeds into the lattice L2, the embedding L1 ⊂ L2 is said to be primitive when the

quotient L2/L1 is free as a Z-module. The dual lattice of lattice L is the lattice Hom(L,Z),

and is denoted as L∗. The quotient GL := L∗/L is a finite Abelian group, and this group

is called the discriminant group. When L is an even lattice, the map qL : GL → Q/2Z,

qL(x) = x2 mod 2Z (3.3)

defines a non-degenerate quadratic form of the discriminant group GL; form qL is called

the discriminant form.

When A is a finite Abelian group, its length l(A) is defined to be the minimum number

of elements required to generate group A.

Further, we state the criterion of primitive lattice embedding.

Criterion (C) [51]. M is an even lattice of signature (m+,m−), G is the discriminant

group of M and q is the discriminant form of M . Then, M primitively embeds into some

even unimodular lattice of signature (l+, l−) when all of the three conditions i)–iii) are

satisfied:

i) l+ + l− − rkM > l(G).

ii) l+ −m+ ≥ 0, l− −m− ≥ 0.

iii) l+ − l− ≡ 0 (mod 8).

3.2 Pairs of extremal rational elliptic surfaces

Applying criterion (C), we discuss whether the lattice U ⊕ R1 ⊕ R2 of pairs of extremal

rational elliptic surfaces, X1 q X2, primitively embeds into the K3 lattice ΛK3. This
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Extremal rational elliptic surface ADE type Discriminant group

X[0∗, 0∗](j) D2
4 Z/2Z× Z/2Z

X[II∗, 1,1] E8 0

X[III∗, 2,1] E7 ⊕A1 Z/2Z

X[IV ∗, 3,1] E6 ⊕A2 Z/3Z

X[4∗, 1,1] D8 Z/2Z

X[2∗, 2,2] D6 ⊕A2
1 Z/2Z× Z/2Z

X[1∗, 4,1] D5 ⊕A3 Z/4Z

X[9,1,1,1] A8 Z/3Z

X[8,2,1,1] A7 ⊕A1 Z/4Z

X[6,3,2,1] A5 ⊕A2 ⊕A1 Z/6Z

X[5,5,1,1] A2
4 Z/5Z

X[4,4,2,2] A2
3 ⊕A2

1 Z/4Z× Z/2Z

X[3,3,3,3] A4
2 Z/3Z× Z/3Z

Table 8. The discriminant groups and ADE types of the extremal rational elliptic surfaces.

determines whether stable degeneration exists for pairs of extremal rational elliptic surfaces.

An even unimodular lattice of signature (3,19) is unique up to the isometries of lattice [52].

Therefore, when the lattice U ⊕ R1 ⊕ R2 admits a primitive embedding into some even

unimodular lattice of signature (3,19), it primitively embeds into the K3 lattice ΛK3.

As stated in section 2.2, the complex structures and singular fiber types of the ex-

tremal rational elliptic surfaces were classified. For an extremal rational elliptic surface,

the discriminant group and the Mordell-Weil group are identical [53]. The Mordell-Weil

groups of the rational elliptic surfaces were computed in [54]. We list the discriminant

groups and ADE types of extremal rational elliptic surfaces in table 8.

Let G denote the product group of the discriminant groups of two extremal rational

elliptic surfaces X1 and X2. We determine the pairs of extremal rational elliptic surfaces

that satisfy the condition i)

rk ΛK3 − rkU ⊕R1 ⊕R2 > l(G). (3.4)

in criterion (C). From table 8, we observe that the length of the discriminant group of an

extremal rational elliptic surface is either 1 or 2. For two extremal rational elliptic surfaces,

X1 and X2, the singular fiber types R1 and R2 are rank 8 even lattices

rkR1 = rkR2 = 8 (3.5)
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of signature (0,8). Thus, the lattice U ⊕ R1 ⊕ R2 has the signature (1,17). The difference

of the rank of the K3 lattice ΛK3 and the rank of the lattice U ⊕R1 ⊕R2 is

3 + 19− (1 + 17) = 4. (3.6)

The length l(G) of the discriminant group G attains this bound only when the discriminant

groups of two extremal rational elliptic surfaces both have the length 2. The product group

G of the discriminant groups of extremal rational elliptic surfaces has the length 4 only for

three pairs8 of extremal rational elliptic surfaces:

X[4,4,2,2] qX[2∗, 2,2], X[2∗, 2,2] qX[0∗, 0∗], X[0∗, 0∗] qX[4,4,2,2]. (3.7)

For all other pairs of extremal rational elliptic surfaces, the criterion (C) applies. Both

conditions ii) and iii) in criterion (C) are satisfied:

3− 1 > 0, 19− 17 > 0, (3.8)

and

3− 19 ≡ 0 (mod 8). (3.9)

Thus, we determine that the lattice U⊕R1⊕R2 primitively embeds into the K3 lattice ΛK3

for all pairs of extremal rational elliptic surfaces, except the three pairs X[4,4,2,2]qX[2∗, 2,2],

X[2∗, 2,2] qX[0∗, 0∗] and X[0∗, 0∗] qX[4,4,2,2]. We conclude that the stable degeneration of a

K3 surface exists for all pairs of extremal rational elliptic surfaces except the three pairs.

The remaining three pairs, X[4,4,2,2] q X[2∗, 2,2], X[2∗, 2,2] q X[0∗, 0∗] and X[0∗, 0∗] q
X[4,4,2,2], have the ADE types D6 ⊕ A2

3 ⊕ A4
1, D6 ⊕D2

4 ⊕ A2
1, D

2
4 ⊕ A2

3 ⊕ A2
1, respectively.

ADE types of the singular fibers of elliptic K3 surfaces with a global section were classified

in [55]. We conclude from table 1 in [55] that the lattice U ⊕R1 ⊕R2 primitively embeds

into the K3 lattice ΛK3 for the three pairs of extremal rational elliptic surfaces. (They

correspond to No.2079, 2043, 2152 in table 1 in [55], respectively.) This demonstrates that

the stable degeneration of a K3 surface exists for the remaining three pairs of extremal

rational elliptic surfaces.

The aforementioned argument demonstrates that stable degeneration exists for all

pairs9 of extremal rational elliptic surfaces.

From lattice embedding

U ⊕R1 ⊕R2 ⊂ ΛK3, (3.10)

we deduce that the ADE type of the singular fibers of the resulting K3 surface is the

sum of the ADE types of the singular fibers of the two non-isomorphic extremal rational

elliptic surfaces.

8The product of discriminant group Z/3Z × Z/3Z and another discriminant group with length 2 has

length 2. For example, the product of Z/3Z×Z/3Z with Z/2Z×Z/2Z is isomorphic to Z/6Z×Z/6Z, which

has the length 2.
9As we stated at the beginning of this section, the three extremal rational elliptic surfaces X[II, II∗],

X[III, III∗], X[IV, IV ∗] are not considered in this section.
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4 Conclusion

In this study, we analyzed the stable degeneration of a K3 surface into two rational el-

liptic surfaces. We also discussed the configurations of singular fibers under the stable

degeneration limit.

We demonstrated that gluing together two isomorphic rational elliptic surfaces and

deforming the resulting surface to a K3 surface is always possible. We provided an equation

to describe this kind of stable degeneration. The sum of two isomorphic rational elliptic

surfaces glued together admits a deformation to a K3 surface, the singular fibers of which

are twice the singular fibers of the rational elliptic surface. For special cases, two fibers

of the same type of the resulting K3 surface collide, and they are enhanced to a fiber of

another type. Some K3 surfaces become attractive in these cases. We determined the

complex structures and the Weierstrass forms of these attractive K3 surfaces. We also

deduced the gauge groups in F-theory compactifications on these attractive K3 surfaces

times a K3.

We also investigated the deformation of two non-isomorphic rational elliptic surfaces

glued together to a K3 surface, using the Torelli theorem of K3 surfaces. We deduced

the lattice theoretic condition that must be satisfied to ensure that a deformation to a K3

surface exists for pairs of non-isomorphic rational elliptic surfaces. We confirmed that the

lattice condition is satisfied for all pairs of the extremal rational elliptic surfaces. Thus,

all such pairs of extremal rational elliptic surfaces glued together admit a deformation to

a K3 surface. This demonstrates that for any pair of extremal rational elliptic surfaces,

except the three extremal rational elliptic surfaces X[II, II∗], X[III, III∗], X[IV, IV ∗], there is

a K3 surface that stably degenerates into that pair. The ADE type of singular fibers of the

resulting K3 surface is the sum of those of the two non-isomorphic extremal rational elliptic

surfaces glued together. The lattice condition discussed in this study can be extended to

general pairs of rational elliptic surfaces.
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