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1 Introduction

Gluons are ubiquitous at the LHC, and gluon fusion is among the phenomenologically most

interesting production mechanisms. Specifically, the production of final states including

one or more Higgs bosons is typically dominated by gluon fusion, with a virtual top-quark

loop mediating the interaction to the Higgs bosons.

Precise predictions for such processes are indispensable for measuring the properties

of the Higgs boson. On the one hand, gluon fusion processes experience large K-factors.1

Examples include a K-factor of 2.3 for single Higgs and 1.7 for Higgs pair production at

next-to-leading order (NLO) [4–10] which clearly demonstrates the importance of taking

higher-order corrections into account. On the other hand, calculating these higher-order

corrections is extremely challenging. Gluon fusion is a loop-induced process, and the top-

quark mass introduces an additional scale in the loop integrals. While the NLO corrections

to single-Higgs production have been known analytically for some time [5–8], the calculation

1See [1–3] for a discussion of ’timelike’ logarithms in gluon fusion and their resummation which reduces

the size of perturbative corrections significantly.
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of NLO corrections to processes with more than one final-state particle is still subject of

on-going work. For di-Higgs production, which requires the evaluation of two-loop integrals

with four scales, numerical results have only become available recently [9, 10].

To make higher-order computations feasible an effective field theory (EFT), where the

top quark has been integrated out in the limit of an infinite top-quark mass, mt → ∞,

has been used extensively in the literature. In this approximation, results are available at

NNNLO for single Higgs production [4, 11] and at NNLO for Higgs pair production [12, 13],

and for other gluon fusion processes, i.e. gg → ZZ, gg → Hj at NNLO [14–17] and

gg → HZ. Beyond the infinite top mass limit, several results have also been obtained in

the large-mt expansion (LME) for a number of processes listed here:

• gg → H: up to 1/m6
t at NNLO [18–22], including gg → Hg at NLO

• gg → HH: up to 1/m12
t in [23] and 1/m8

t in [24] at NLO; up to 1/m4
t at NNLO [23]

• gg → HZ: up to 1/m8
t [25] at NLO

• gg → ZZ: up to 1/m12
t in [26] and 1/m8

t in [27] at NLO

The expansions can be rescaled with the exact leading order (LO) result

dσrescaled LME
NLO /dX =

dσLME
NLO/dX

dσLME
LO /dX

dσexact
LO /dX , (1.1)

where dσ/dX indicates the differential cross section with respect to some quantity X. For

inclusive Higgs production this yields good agreement with the exact NLO result [5–8].

The comparison with the exact Higgs pair production result has however revealed the

shortcomings of the approximation (1.1) for this process [9, 10]. This issue is especially

pronounced when distributions are considered.

Here, we advocate a different approach, based on conformal mapping and the con-

struction of Padé approximations from expansions in different kinematical regimes of the

amplitude. This strategy has first been introduced for heavy-quark current correlators

Π(j)(q2/(4m2
q)) [28, 29] and applied successfully up to four-loop order [30–32]. The approx-

imation can be improved systematically by including more information from the various

kinematic limits. In fact, the three-loop approximation is indistinguishable from the results

of an exact numeric computation [33]. In [28], it has also been shown for the decay H → γγ

that a Padé reconstruction of the top mass effects from the asymptotic expansion in a large

top mass yields excellent agreement with the full NLO decay rate. Like for heavy-quark

correlators and the H → γγ decay rate, the amplitude for Higgs production in gluon fusion

only depends on one ratio of scales and the application of the method is straightforward.

However, the amplitudes for the remaining processes listed above depend on 4-5 scales.

Padé approximations based on the LME terms alone have been used to reconstruct the

interference contribution in gg → ZZ [26]. An attempt to reconstruct the gg → HZ cross
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section has been made in [25].2 In this work, we show how such an approximation can

be improved drastically by also taking into account expansions in other kinematic regions,

using Higgs pair production as an example.

Measuring di-Higgs production at the LHC allows to directly determine the trilinear

Higgs boson self-coupling λ3 [34–36], which serves as a probe of the shape of the Higgs

potential and is a crucial test of the mechanism of electroweak symmetry breaking in na-

ture. While the couplings of the Higgs boson to the gauge bosons and third-generation

fermions have been firmly established to be Standard Model like within 10–20% [37–39],

constraining the trilinear self-coupling is highly challenging. With 3000 fb−1 of data the

estimated bounds are 0.2 < λ3/λ
SM
3 < 7.0 (neglecting systematic uncertainties) [40]. Cur-

rent bounds from Higgs pair production final states limit the trilinear Higgs self-coupling

between −8.8 < λ3/λ
SM
3 < 15.0 [41]. Under the assumption that only the trilinear Higgs

self-coupling is modified, bounds can be obtained from single Higgs production through the

electroweak corrections [42–45] or from electroweak precision observables [46, 47]. However,

the current bounds are still above the limits from perturbativity [48].

Precise theory predictions are crucial in the extraction of λ3 from the cross section mea-

surements. It is evident already at leading order (LO) that the LME alone is not sufficient.

In fact, as shown in figure 1, the cross section is dominated by energies of about 400 GeV,

whereas the LME breaks down at the top pair-production threshold around 2mt ≈ 350 GeV.

As we will show, constructing Padé approximations from the LME can ameliorate this

problem to some degree, but not solve it completely. The reason for this is that, above

the top threshold, the production amplitude receives non-analytic contributions, which

cannot be reproduced by the purely rational Padé approximants. Incorporating these non-

analytic threshold corrections enhances the quality of the approximation dramatically in

the dominant kinematic region and thus leads to a much improved prediction for the total

cross section.

The outline of this paper is as follows: in section 2 we introduce our method for

single Higgs production and then show how it can be generalized to the case of Higgs pair

production. The computation of the additional input terms from the expansion around

the top threshold is described in section 3. In section 4 we perform a detailed comparison

of both the LO and NLO Padé approximation with the full LO result and the recent NLO

results [9, 10], respectively. We conclude in section 5 and offer an outlook over possible

applications of our method.

2 The method

We first discuss the construction of a Padé approximation for the simple case of the vir-

tual amplitude Agg→H(∗) in section 2.1 and then generalize the approach to Higgs pair

production in section 2.2.

2The method presented below depends crucially on the analytic structure of the amplitude, whereas [25]

considers Padé approximants to the differential cross section, which is not an analytic function of the ratio

ŝ/(4m2
t ) near mt →∞. Therefore, the approach used in [25] does not yield an adequate description above

the top threshold and the improvement from employing a conformal mapping is marginal.
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Figure 1. Invariant Higgs mass distribution for the full LO cross section (dark blue) and the large

mass expansion (LME) up to O(1/m8
t ) as given in ref. [24] (red-dashed).

2.1 Padé approximation for gg → H(∗)

The LO diagram for the production of an off-shell Higgs in gluon fusion is shown in figure 2

(left). The corresponding amplitude can be expressed through a dimensionless form factor

F4 that only depends on the variable z = (ŝ+ i0)/(4m2
t )

Aµνab (g(p1, µ, a), g(p2, ν, b)→ H(∗)(pH)) =
ytŝ√
2mt

αs
2π
δabTFA

µν
1 F4(z) (2.1)

where ŝ = (p1 + p2)2 = p2
H , yt =

√
2mt/v is the top Yukawa coupling, TF = 1/2 and

Aµν1 = gµν − pν1p
µ
2

p1 · p2
. (2.2)

The form factor F4 is normalized such that

F4
mt→∞−−−−→ 4

3
+O(αs). (2.3)

The leading-order contribution to the form factor is analytic in the entire complex plane

with the exception of a branch cut for real z ≥ 1 due to on-shell tt̄ cuts. At NLO, massless

cuts like the one shown in the right of figure 2 introduce a branch cut starting at z = 0.

However, the branch cut can be made explicit

F4 = F 1l
4 +

αs
π
F 2l
4 +O(α2

s)

= F 1l
4 +

αs
π

[
CFF

2l
4,CF + CA

(
F 2l
4,CA + F 2l

4,CA,ln ln(−4z)
)]

+O(α2
s), (2.4)
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Figure 2. The LO diagram for Higgs production in gluon fusion (left) and an example for a NLO

diagram that contains a branch cut starting at ŝ = 0 (right).

such that all the F il4,x (with i = 1, 2 and x = CF , CA, (CA, ln)) on the right-hand side are

again analytic except for real z ≥ 1. In F 2l
4,CA , IR divergences in the amplitude have been

subtracted as described in ref. [24]. We can now apply the conformal transformation [28]

z =
4ω

(1 + ω)2
(2.5)

to map the entire complex z plane onto the unit disc |ω| ≤ 1 while the branch cut at

z ≥ 1 is mapped onto the perimeter. The physical branch Im(z) > 0 corresponds to the

upper semicircle, starting at ω(z = 1) = 1 and ending at ω(z →∞+ i0) = −1. With this

mapping, the F il4,x are analytic functions of ω inside the unit circle. We approximate them

using a Padé ansatz

[n/m](ω) =

n∑
i=0

aiω
i

1 +
m∑
j=1

bjωj
(2.6)

with a total of n+m+ 1 coefficients. They can be fixed by imposing conditions stemming

from known expansions of the approximated function. In many cases it is found that

diagonal Padé approximants with n = m provide the best description. Indeed, we find

that this also holds for our analysis. We therefore discard approximants that are too far

away from the diagonal, as detailed below.

The LME for the form factor F4 has been given up to terms of the order z4 in [8]. The

conformal mapping (2.5) transforms this into constraints on the derivatives of the Padé

approximant at ω = 0. Furthermore the form factor vanishes for z →∞ as F4(z) = O(1/z)

since ŝ ∼ z has been factored out in (2.1). In a direct approach this would imply the

constraint [n/m](ω = −1) = 0. Instead, we construct the Padé approximant for the

rescaled form factor

[n/m](ω) ' [1 + aR z(ω)]F4(z(ω)), (2.7)

where aR is a free parameter. This serves a double purpose. First, it removes the spurious

constraint at ω = −1 which implies that the dimensionality of the non-linear system of

equations that determines the coefficients of the Padé approximant is reduced by one.

Secondly, the variation of the parameter aR allows us to test the stability of the ansatz and

to assign an uncertainty to the reconstruction.

A set of Padé approximants with n + m = 4 can be constructed based only on the

constraints from the LME up to O(z4). The Padé ansatz (2.6) has m poles in the ω plane.
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Here, and in the remainder of this work, we eliminate a subset of Padé approximants based

on the positions of these poles. Since the amplitude is analytic inside the unit disc, the

canonical selection criterion is to exclude approximants with poles at |ω| ≤ 1 + δ, where

δ > 0 should be chosen such that no unphysical resonances, caused by nearby poles, are

observed in the amplitude. We find, however, that this criterion proves too restrictive as

it excludes almost all approximants. Thus, we relax the selection criterion and exclude

approximants with poles in the region corresponding to values of z with 0 ≤ Re(z) ≤ 8 and

−1 ≤ Im(z) ≤ 1, thereby excluding poles in the vicinity of the phenomenologically relevant

region 0.13 . z . 5. We have checked the stability of the results under variation of the

exclusion region. The result is shown in figure 3 and compared to the exact expression

for the form factor [5–8]. At LO the agreement is good, whereas at NLO the Padé curves

become unstable under variations of aR and n/m and show significant deviations from the

exact result for energies near and above the top threshold z & 1.

We can gain some insight into this deviation by studying the expansion of the form

factor around the top threshold. In particular we are interested in the non-analytic terms

in the expansion in (1−z) which can be determined with the help of a factorization formula

as discussed below in section 3. Our results take the form

F 1l
4
z→1� 2π(1− z)3/2 +

13π

3
(1− z)5/2 +O

(
(1− z)7/2

)
, (2.8)

F 2l
4,CF

z→1� π2(1− z) ln(1− z)− π(40− 3π2)

12
(1− z)3/2 +

2π2

3
(1− z)2 ln(1− z)

+O
(

(1− z)5/2
)
, (2.9)

F 2l
4,CA

z→1� −
π
(
3π2 − 4

)
12

(1− z)3/2 +O
(

(1− z)5/2
)
, (2.10)

F 2l
4,CA,ln

z→1� O
(

(1− z)5/2
)
, (2.11)

where we have used the symbol � to denote that terms that are analytic in (1 − z) have

been dropped on the right-hand side. We observe that threshold logarithms ln(1 − z),

which cannot be reproduced by the Padé ansatz, appear at NLO. Having determined the

coefficients of the logarithmic terms at the first two orders we can however subtract them

from the form factor and apply the Padé approximation to the subtracted function. Taking

a function f(z) with the threshold expansion

f(z)
z→1� c1

√
1− z + c2(1− z) ln(1− z) + c3(1− z)3/2 + c4(1− z)2 ln(1− z) + . . . (2.12)

as an example we define

f̃(z) = f(z)− c2s2(z)−
(
c4 −

c2

3

)
s4(z), (2.13)

where s2,4 are constructed such that their leading non-analytic terms in the threshold

expansion are given by (1− z) ln(1− z) and (1− z)2 ln(1− z), respectively. In addition, the

subtraction terms must be analytic around z = 0 and at most logarithmically divergent

for z → ∞.3 Apart from these constraints, the exact form of the subtraction functions is

3In principle, non-logarithmic poles of the form zn are also allowed, but these have to cancel against

corresponding poles in the Padé approximation.
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Figure 3. Padé approximants for F4 at LO (top) and NLO (bottom) constructed using only the

LME up to the order 1/m8
t as input. Shown are the real/imaginary part of the Padé approximants

(blue/orange) and the exact results (black). We constructed in total 20 approximants of the types

[1/3], [2/2] and [3/1] for random values of aR in the range [0.1,10], while approximants with poles in

the rectangle Re(z) ∈ [0, 8] and Im(z) ∈ [−1, 1] have been excluded since they can cause unphysical

resonances in the form factor.

arbitrary. Our choice for the functions s2,4 can be found in appendix A. The threshold

expansion of f̃ is free of logarithms up to and including the order (1 − z)2. An improved

approximation of the original function f is then given by

f(z) ' [n/m]f̃ (ω(z)) + c2s2(z) +
(
c4 −

c2

3

)
s4(z), (2.14)

where the Padé approximant [n/m]f̃ is constructed from the expansion terms of the sub-

tracted function f̃ .
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Figure 4. We show the same comparison as in figure 3 but for Padé approximants based on the

LME and the threshold expansion. Only [5/2], [4/3], [3/4] and [2/5] approximants were constructed

at LO and only [4/2], [3/3] and [2/4] approximants were constructed at NLO.

In addition, the non-integer powers of (1− z) in eqs. (2.8)–(2.11) imply constraints on

the derivatives of the Padé approximation at ω = 1. By using all the available constraints

we can construct approximants with a total of n + m + 1 = 8 coefficients at LO and

n + m + 1 = 7 coefficients at NLO. The results are given in figure 4 and show perfect

agreement with the exact LO form factor in the full energy range. At NLO the agreement is

excellent up to z ∼ 2.5 where tiny deviations begin to emerge. For very large z, outside the

phenomenologically relevant energy range, the approximants have unphysical extrema. We

suspect that they could be removed by including information from the small mt expansion

(SME) of the form factors in the construction.
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An alternative implementation is obtained by performing additional subtractions for

the root terms by employing the functions s1,3,5 in appendix A, thereby removing all known

non-analytic terms in the expansion. This yields the same number of constraints on the

Padé approximant. In the following we will only use the subtraction functions s2,4, since

we find no significant differences between the two approaches.

2.2 Padé approximation for gg → HH

The amplitude for the process gg → HH can be parametrized by two dimensionless form

factors F1,2

Aµνab (g(p1, µ, a), g(p2, ν, b)→ H(p3)H(p4)) = y2
t

αs
2π

δabTF z [Aµν1 F1 +Aµν2 F2] , (2.15)

where ŝ = (p1+p2)2, t̂ = (p1−p3)2, û = (p1−p4)2, ŝ+t̂+û = 2m2
H , Aµν1 is given in (2.2) and

Aµν2 = gµν +
p2

3 p
ν
1 p

µ
2 − 2 (p3 · p2) pν1 p

µ
3 − 2 (p3 · p1) pν3 p

µ
2 + 2 (p1 · p2) pµ3 p

ν
3

p2
T (p1 · p2)

, (2.16)

with

p2
T =

t̂û−m4
H

ŝ
. (2.17)

Given that there are four independent scales the dimensionless form factors depend on

three ratios

Fi = Fi

(
rH ≡

m2
H

ŝ
, rpT ≡

p2
T

ŝ
, z

)
, i = 1, 2. (2.18)

This implies that their analytic structure is much more complicated than it was the case

for F4. For instance, there are branch cuts in the complex t̂ and û planes above the thresh-

olds t̂ ≥ 4m2
t and û ≥ 4m2

t . These are, however, not kinematically accessible for external

momenta that are both real and on shell. Furthermore, for z ≥ 1/rH ≥ 4 there is also a

discontinuity from cuts corresponding to the processes gg → tt̄H and H → tt̄ which are,

however, not accessible for the physical Higgs and top masses. In the limit of small quark

masses, z → ∞, where this type of cut is present, the recent analytical computation of

the NLO virtual amplitudes for Higgs plus jet production [49, 50] has revealed a rather

complicated structure of logarithms in the soft and (in particular) the collinear limit which

is presently not fully understood.

Here, we take a practitioners approach and note that when rH and rpT are kept fixed

we can separate massless cuts as in (2.4) and again end up with functions that are analytic

in z apart from a branch cut for real z > 1. Therefore it is possible to approximate the

top-quark mass dependence of the form factors at a given phase-space point, i.e. for fixed

m2
H , ŝ and p2

T , by constructing a Padé approximant that describes the dependence on the

variable z.

We find that the inclusion of the top threshold terms, as described for the triangle

form factor (2.4) in section 2.1, is of even greater importance for the construction of Padé

approximants for the form factors (2.18) than for F4. The computation of these terms is

described in the following section 3 and our results are given in appendix C. Readers who

– 9 –
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are mostly interested in the phenomenological aspects may prefer to proceed to section 4.

There, we assess the reliability of our approach for Higgs pair production by performing a

detailed comparison with the exact NLO results.

3 The amplitude near threshold

In this section the computation of the non-analytic terms in the threshold expansion of the

form factors defined in section 2 is described. Factorization formulae for the inclusive pro-

duction cross section of heavy-particle pairs near threshold have been developed in [51–55]

and applied to a number of processes [56–63]. The approach is based on the factorization

of forward-scattering amplitudes which are related to the inclusive cross section by the op-

tical theorem. We have extended the factorization formula to the gg → H(∗), HH,HZ,ZZ

amplitudes. Only the basic aspects are sketched here and the reader is referred to the

original literature [51–55] for a detailed derivation and discussion.

3.1 Structure of the amplitude near threshold

Near the threshold, z → 1, the top quarks can only be on shell if they are non-relativistic.

This implies a large hierarchy between the top mass mt, its typical momentum mt

√
1− z

and its kinetic energy mt(1 − z) which set the hard, soft and ultrasoft scale, respectively.

Therefore, an effective field theory (EFT) can be constructed by integrating out the hard

and soft scale. Then, the only dynamical modes left are non-relativistic top quarks, collinear

and ultrasoft gluons and the external fields. The EFT describes the interactions of the

remaining modes and is based on potential non-relativistic QCD (PNRQCD) [64–69] and

Soft Collinear Effective Theory (SCET) [70–75]. The amplitudes for gg → F with final

states F = H(∗), HH,HZ,ZZ are given by the master formula (cf. [51, 52])

iAgg→F
z→1
=
∑
k,l

C
(k)
gg→tt̄C

(l)
tt̄→F

∫
d4x

〈
F
∣∣∣T [iO(l)

tt̄→F (x)iO(k)
gg→tt̄(0)

] ∣∣∣ gg〉
EFT

+ Cgg→F 〈F | iOgg→F (0) | gg〉EFT , (3.1)

where the matrix elements have to be evaluated in the EFT. In analogy with [51, 52] we call

the contributions in the first and second line of (3.1) line the ‘resonant’ and ‘non-resonant’

amplitude, respectively. This structure is shown in figure 5 in diagrammatic form.

The ‘resonant’ part in the first line of (3.1) contains the contributions that involve a

non-relativistic top quark pair, i.e. a top pair that is close to being on resonance. This

entails that only a soft spatial momentum can be exchanged between the initial and final

state. Since the incoming gluons contain hard momentum components they must be con-

nected by a hard subgraph. The same holds for the two final state particles. Integrating

out these hard subgraphs yields local production operators[
O(k)
gg→tt̄

]µν
= A⊥µc A⊥νc̄ ψ†Γ(k)χ, (3.2)

that annihilate the incoming gluons and create a non-relativistic top pair and local anni-

hilation operators

O(l)
tt̄→F = χ†Γ(l)ψ φ†F , (3.3)

– 10 –
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Figure 5. Graphical representation of the terms in the master formula (3.1). The diagram on the

left (right) corresponds to the ‘resonant’ (’non-resonant’) part of the amplitude. The shaded area

indicates that Coulomb exchanges between the top quark pair are resummed.

that annihilate the top pair and create the final-state particles. Here A⊥c̄ is the collinear

gluon field given in [54], the non-relativistic two-component spinor fields ψ and χ annihi-

late a top quark and produce an anti-top quark respectively, Γ(k) contains a combination of

Pauli matrices, SU(3)c generators and potentially covariant derivatives and φ†F represents a

combination of fields that produces the final state. Both types of operators have associated

hard-matching coefficients that absorb the higher-order corrections from hard modes. The

propagation of the non-relativistic top pair is subject to a non-local color Coulomb inter-

action that manifests as αs/
√

1− z corrections in the amplitude. These so-called Coulomb

singularities can be resummed to all orders within PNRQCD. The ‘resonant’ contribution

contains non-analytic
√

1− z and ln(1 − z) terms that correspond to on-shell cuts of the

non-relativistic top pair.

Contributions where a hard momentum component is exchanged between the initial

and the final state are contained in the ‘non-resonant’ part in the second line of (3.1). In

the EFT they are represented by the matrix element of the local operator

[Ogg→F ]µν = A⊥µc A⊥νc̄ φ†F , (3.4)

that annihilates the incoming state and creates the final state. Since the top quarks cannot

be on shell near threshold when they carry hard momentum, there are no discontinuities

associated with tt̄ cuts. Therefore, this contribution admits the form of a Taylor expan-

sion in (1 − z) once massless cuts have been separated as described in section 2.1. The

computation of this contribution is very involved since already the leading term in the Tay-

lor expansion has the complexity of the full amplitude evaluated directly at the threshold

z = 1. However, we expect the Padé approximation to predict this unknown analytic part

of the amplitude very accurately, even when using only the LME as input. Indeed, as we

showed explicitly in section 2.1, adding the knowledge of just the non-analytic terms near

threshold is already sufficient to reconstruct the full top-quark mass dependence with high

accuracy. Therefore we can safely ignore the non-resonant contribution and only focus on

the much simpler factorizable part.
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Figure 6. Matrix element at leading order in the power counting αs ∼
√

1− z.

3.2 Computation of the non-analytic terms

In this section we describe the computation of the ‘resonant’ part of the amplitude (3.1).

We adopt here the non-relativistic power counting where αs ∼
√

1− z and denote the k’th

order in this counting by nrNkLO to distinguish it from the fixed-order expansion in the

strong coupling constant. At nrLO, the matrix element is given by a non-relativistic Green

function which resums the 1/
√

1− z enhanced effects from the ladder-exchange of Coulomb

gluons as indicated in figure 6. Hence, at any loop order, the leading non-analytic term in

the threshold expansion of the amplitude can be determined by expanding the nrLO result

to the respective order in αs. Up to nrNNLO, terms of the relative order

A’resonant’

A0(z = 1)
∼
√

1− z 2l+1
∞∑
k=0

(
αs√
1− z

)k
×


1 nrLO,

αs,
√

1− z nrNLO,

α2
s, αs
√

1− z, (1− z) nrNNLO,

(3.5)

must be included, where A0(z = 1) is the LO amplitude evaluated at the top threshold,

l = 0, 1, . . . denotes the angular momentum of the top pair and the global factor
√

1− z
accounts for the suppression of the phase-space near threshold.

Figure 7 illustrates the relation between different orders in standard relativistic pertur-

bation theory and in the non-relativistic effective theory. For example, the following terms

on the right-hand side of eq. (3.5) contribute to the fixed-order expansion up to NLO:

• The nrLO terms with relative factors
√

1− z 2l+1
, αs
√

1− z 2l
.

• The nrNLO terms with relative factors
√

1− z 2l+2
, αs
√

1− z 2l+1
.

• The nrNNLO terms with relative factors
√

1− z 2l+3
, αs
√

1− z 2l+2
.

For the processes gg → H(∗) and gg → HH there is no contribution from S-wave

tt̄ states due to parity and C-parity conservation.4 The leading ‘resonant’ contribution

therefore contains the P-wave Green function [76] which is suppressed by (1 − z) near

threshold. We want to determine the ‘resonant’ amplitude up to nrNLO in the scaling (3.5),

which contains the next-to-leading non-analytic terms in the threshold expansion at any

loop order. In addition we compute the first two terms in the fixed-order expansion of the

nrNNLO result in αs, i.e. those of relative orders (1−z)5/2 and αs(1−z)2. They correspond

4The H and HH final states have even parity and C-parity and the tt̄ state with angular momentum l

and spin s = 0, 1 has P = (−1)l+1 and C = (−1)l+s. Thus, l is one (H) or odd (HH) and s = 1.
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Figure 7. Relation between relativistic (LO, NLO, NNLO) and non-relativistic (nrLO, nrNLO,

nrNNLO) power counting up to next-to-next-to-leading order. The axes show the powers of αs

and
√

1− z in the various coefficients represented by the markers. Note that the normalization is

chosen such that α0
s corresponds to LO.

to the next-to-next-to leading threshold terms for the one and two loop amplitude which

we study in section 4.

The matrix elements in (3.1) receive corrections from the higher-order non-local po-

tentials and the dynamical modes contained in the EFT. The EFT contains no interactions

of collinear modes with non-relativistic modes or between collinear modes of different di-

rections. They cannot be present because the combination of the involved momenta yields

hard modes which have been integrated out. Therefore the only collinear corrections at

nrNLO are from the left diagram in figure 8. The corresponding loop integral is scaleless

and therefore vanishes in dimensional regularization.

Ultrasoft gluons couple to the collinear and non-relativistic sector as well as to the

P-wave production and annihilation operators. The exchange of ultrasoft gluons between

the collinear states shown in the diagram on the right of figure 8 yields only scaleless

integrals. The interactions in the EFT must be multipole expanded. At leading order

in the multipole expansion ultrasoft gluons couple to the net color charge of the tt̄ state

since the large wavelength λ ∼ 1/(mt(1− z)) gluons cannot resolve the spatial separation

aB ∼ 1/(mt

√
1− z) of the top pair. The first non-vanishing term in the multipole expansion
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Figure 8. nrNLO diagrams involving collinear (left) and ultrasoft (right) gluon radiation. Both

loop integrals are scaleless and vanish in dimensional regularization.

for color singlet states is therefore the chromoelectric term ψ† x · Eψ which is suppressed

by α
1/2
s

√
1− z ∼ α3/2

s . Similarly the ultrasoft gluon term in the covariant derivative in the

P-wave operators is suppressed by α
1/2
s

√
1− z ∼ α3/2

s with respect to the derivative term.

A single insertion of either of these subleading terms vanishes by rotational invariance [55].

Thus, contributions from the subleading interactions require at least two insertions and

first appear at nrNNNLO.

The effects of higher-order potentials enter as corrections to the non-relativistic Green

function. The nrNNNLO S-wave and nrNLO P-wave Green functions have been computed

for tt̄ production in e+e− collisions near threshold [76, 77]. We determine the α0,1
s terms

in the nrNNLO P-wave Green function in appendix B. Up to the considered order the

resonant amplitudes hence take the simple factorized form

Aresonant =
∑
k,l

Nkl(1− z)C
(k)
gg→tt̄C

(l)
tt̄→F GS,P (1− z). (3.6)

The Wilson coefficients C
(k)
gg→tt̄, C

(l)
tt̄→F are perturbative in αs and independent of z. We

can compute them via matching to the full Standard Model, i.e. by performing a Taylor

expansion of the on-shell amplitudes for gg → tt̄, tt̄ → F around the top threshold and

comparing to the matrix elements of the effective operators O(k)
gg→tt̄, O

(l)
tt̄→F . Subleading

terms in the Taylor expansion in (1−z) correspond to higher-dimensional operators, which

contain derivatives acting on the non-relativistic top and anti-top fields. Since (1−z) ∼ α2
s,

we only require matrix elements with at most one subleading operator up to nrNNLO. The

normalization factors Nkl are either z-independent, if the operators O(k)
gg→tt̄ and O(l)

tt̄→F are

of leading order in the non-relativistic expansion, or proportional to (1− z) ∼ α2
s, if one of

the operators is of subleading order. To achieve the accuracies specified in (3.5) we require

the following ingredients

• nrLO:

– the tree-level coefficients C
(k)
gg→tt̄, C

(l)
tt̄→F

– the nrLO Green function GS,P (1− z)
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• nrNLO: the above and

– the one-loop coefficients C
(k)
gg→tt̄, C

(l)
tt̄→F

– the nrNLO Green function GS,P (1− z)

• the order α0,1
s terms at nrNNLO: the above and

– the tree-level coefficients C
(k)
gg→tt̄, C

(l)
tt̄→F for the (1− z)-suppressed operators

– the α0,1
s terms in the nrNNLO Green function GS,P (1− z)

• nrNNLO: the above and

– the two-loop coefficients C
(k)
gg→tt̄, C

(l)
tt̄→F

– the nrNNLO Green function GS,P (1− z)

As mentioned before, it is sufficient to know the nrNNLO terms proportional to α0
s and α1

s in

order to construct approximations to two-loop (NLO) fixed-order amplitudes (cf. figure 7).

The remaining nrNNLO terms of the relative order α2
s(1− z)3/2 will be important for the

reconstruction of the three-loop amplitude. Since its determination requires the calculation

of the two-loop matching coefficients C
(k)
gg→tt̄ and C

(l)
tt̄→F as the most complicated ingredient,

we postpone this to future work.

The one-loop coefficients C
(l)
tt̄→F are finite after field and mass renormalization. The

one-loop coefficients C
(k)
gg→tt̄, however, require additional IR subtractions since the virtual

amplitude by itself is not IR safe. Our results for the threshold expansion of the form factors

are given in (2.8)–(2.11) and appendix C together with the details of the IR subtractions.

Together with the nrNLO expression for the P-wave Green function [76] these results are

sufficient to determine the leading and next-to-leading non-analytic terms in the threshold

expansion of the form factors at any order in αs.

Another interesting, yet more involved, application of our formalism is Higgs plus jet

production. Here, we shortly comment on that, but leave a more careful assessment to

future work. The amplitudes gg → Hg, gq → Hq and qq̄ → Hg obey the same structure

of (3.1) near the top threshold but the corresponding ‘resonant’ matrix elements are more

complicated since the final state now contains a color-charged particle. Ultrasoft gluons

can then be exchanged between the initial state, the final state and the intermediate top

pair which is in a color octet state and no longer decouples. In [53–55] it was demonstrated

for arbitrary color structures that the ‘resonant’ matrix elements in forward-scattering

amplitudes factorize into the convolution of a non-relativistic Green function, therein called

the potential function, and an ultrasoft function, therein called the soft function. At leading

power this follows from field transformations that decouple the collinear and non-relativistic

fields from the ultrasoft fields. The extension to higher orders requires a careful assessment

of the subleading interactions and was performed to NNLL in [53–55]. Following these

derivations we identified no aspect that would obstruct the extension to Higgs plus jet

production and therefore conjecture that an analogous factorization formula holds for the

corresponding amplitudes.
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4 Comparison with the exact result

As a proof of method, we compare our results at LO and NLO with the results in full top

mass dependence for Higgs pair production. While at LO, the Higgs pair production cross

section is known in full mass dependence since the late 80’s [78–80], the computation of the

NLO QCD corrections is quite involved, due to the many scales of the problem. The first

work on the NLO corrections was based on the heavy top mass limit [81] reweighted with

the matrix elements squared of the full LO results (HEFT). The real corrections in full top

mass dependence have been computed in [82, 83], while the virtual corrections have been

kept in HEFT. The computation of the virtual corrections in full top mass dependence

became available only recently in [9, 10].

4.1 Numerical setup

For the numerical evaluation we choose a centre-of-mass energy of
√
s = 14 TeV. The Higgs

boson mass has been set equal to mH = 125 GeV and the top quark mass to mt = 173 GeV.

We do not account for bottom quark loops as they contribute with less than 1% at LO.

We have adopted the PDF set NNPDF3.0 [84]. The strong coupling constant is set to

αs(MZ) = 0.118 at LO and NLO. The renormalization scale has been set to MHH/2,

where MHH denotes the invariant mass of the Higgs boson pair, as suggested by the NNLL

soft gluon resummation performed in [85, 86].

We construct our Padé approximants at LO (NLO) as described in section 2 by solv-

ing numerically the 8 (7) equations from the LME [24] and threshold expansion, given in

section 2.1 and appendix C, by means of the FORTRAN routine MINPACK [87, 88].5 For every

phase space point we construct a total of 100 Padé approximants [n/m], where aR takes

a random value between [0.1,10], n,m ∈ [1, 6] at LO and n,m ∈ [1, 5] at NLO, and take

the mean value. From that we obtain an error estimate on every form factor by taking

the standard deviation. For the computation of the cross section or the virtual corrections

we add up the errors stemming from the different form factors quadratically. Padé ap-

proximants with poles in Re(z) ∈ [0, 8] and Im(z) ∈ [−1, 1] were excluded, since functions

with poles close-by in the complex plane could have an unwanted resonant behaviour. The

running time per phase space point for the construction of 100 Padé approximants at NLO

is usually below 6 s.

4.2 Comparison at LO

In table 1 we give the results for the LO cross section in different approximations. The first

row, [n/m] w/o THR, symbolizes the cross section obtained with Padé approximants con-

structed without input from the threshold expansion, where n,m ∈ [1, 3] and approximants

with poles as described above have been excluded. The result we obtain when including the

threshold information and using the specifications described in section 4.1 is denoted by

[n/m]. With [n/n±1, 3] we symbolize the results we find when only the Padé approximants

5We provide a FORTRAN routine of the Padé approximated matrix elements upon request.
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σ [fb]

[n/m] w/o THR 19.9± 5.4

[n/m] 21.7± 1.1

[n/n± 1, 3] 21.3± 0.4

full 21.3

Table 1. Numbers for the total LO cross section and standard deviation from the construction of

100 Padé approximants.

[5/2], [4/3], [3/4] and [2/5] are used.6 Finally, we give the full LO cross section (obtained

with HPAIR [89]) in the fourth row of table 1. As can be inferred from the table, the Padé

approximants provide a very good approximation for the full cross section, in particular

if only the most diagonal and next-to-diagonal Padé approximants are constructed. The

threshold expansion proves to be essential for a good approximation. As expected, the

standard deviation computed from the construction of 100 [n/m] Padé approximants with

random aR and different n,m becomes smaller if we construct only the most diagonal and

next-to-diagonal Padé approximants.

In figure 9 we show the invariant Higgs mass distribution for the full result (dark

blue), the [n/n± 1, 3] Padé approximants (pink) and the Padé approximants without the

threshold expansion (light blue). While the [n/n ± 1, 3] full Padé approximants fit the

shape of the invariant mass distribution in full mass dependence almost perfectly, the

approximation where the threshold expansion is not included (hence the approximation

is only built from the LME) fits the shape only for small invariant mass. The error on

the construction of the approximation including the threshold expansion is rather small

whereas if the approximation is constructed only from the LME, the error becomes much

larger in particular above the threshold.

We thus conclude that at LO our approximation of the mass effects by Padé approx-

imants works well as long as the conditions obtained from the threshold expansion are

included. Using only nearly diagonal Padé approximants leads to a result with smaller

error with values closer to the true result.

4.3 Comparison at NLO

Finally, we compare our results to the computation of the NLO corrections in full top

mass dependence of refs. [9, 10]. In the framework of ref. [90] a grid and an inter-

polation function with numerical values for the virtual corrections of refs. [9, 10] have

been provided.

6Note however that these are mainly [5/2] and [4/3] Padé approximants as [3/4] and [2/5] usually are

excluded by our pole criterion.
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Figure 9. Invariant Higgs mass distribution for the full LO cross section (dark blue), the [n/n±1, 3]

Padé approximants (pink line) and the Padé constructed without threshold expansion (light blue).

The standard deviation of the Padé lines are shown by the semi-transparent regions with the

corresponding color. The pink band is barely wider than the width of the curves and hardly visible.

In order to fit the conventions of ref. [90] we define the finite part of the virtual

corrections as

Vfin =
α2
s(µR)

16π2

ŝ2

128v4

[
|Mborn|2

(
CAπ

2 − CA log2

(
µ2
R

ŝ

))

+2
{

(F 1l
1 )∗

(
F

2l,[n/m]
1 + F 2∆

1

)
+ (F 1l

2 )∗
(
F

2l,[n/m]
2 + F 2∆

2

)
+ h.c.

}] (4.1)

with

|Mborn|2 =
∣∣∣F 1l

1

∣∣∣2 +
∣∣∣F 1l

2

∣∣∣2 (4.2)

and F1 defined in eq. (C.2). For F
2l,[n/m]
x we use the matrix elements constructed with the

Padé approximant [n/m]f̃ . All other matrix elements are used in full top mass dependence.

The form factors F 2∆
x stem from the double triangle contribution to the virtual corrections

and can be expressed in terms of one-loop integrals. They are given in ref. [24] in full top

mass dependence. In the heavy top mass limit they become

F 2∆
1 → 4

9
, F 2∆

2 → −4

9

p2
T

2t̂û
(ŝ− 2m2

H). (4.3)
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Vfin × 104

MHH [GeV] pT [GeV] HEFT [n/m] [n/n± 0, 2] full

336.85 37.75 0.912 0.996± 0.004 0.990± 0.001 0.996± 0.000

350.04 118.65 1.589 1.933± 0.012 1.937± 0.010 1.939± 0.061

411.36 163.21 4.894 4.326± 0.183 4.527± 0.069 4.510± 0.124

454.69 126.69 6.240 5.300± 0.192 5.114± 0.051 5.086± 0.060

586.96 219.87 7.797 4.935± 0.583 5.361± 0.281 4.943± 0.057

663.51 94.55 8.551 5.104± 1.010 4.096± 0.401 4.120± 0.018

Table 2. Numbers for the virtual corrections for some representative phase space points for the

HEFT result reweighted with the full Born cross section (as in ref. [81]), the Padé-approximated

ones and the full calculation [90].

The contribution of the double triangle diagrams to the virtual corrections is only of the

order of a few per cent [91].

In table 2 we compare values for the full computation of the virtual corrections ob-

tained from the grid of ref. [90], the HEFT results rescaled with the full Born cross section

(as e.g. implemented in HPAIR), and the Padé approximations including all possible ap-

proximants without poles in Re(z) ∈ [0, 8] and Im(z) ∈ [−1, 1] (called [n/m]) and the ones

where we only construct diagonal [3/3] and next-to diagonal [4/2] and [2/4] approximants

(called [n/n ± 0, 2]). The errors given in the table are, in case of the Padé-approximated

results, due to the construction of the different approximants and due to the rescaling with

aR. For the full results the error stems from internal binning in the grid. As can be inferred

from the table, the Padé construction approximates the full result quite well. It provides a

much better approximation than the HEFT results with a generally reliable error estimate.

While up to MHH = 450 GeV the Padé method provides an excellent approximation on

the level of . 2%, for larger invariant masses and pT the results worsen gradually. As

already anticipated from the LO results, constructing only diagonal and next-to diagonal

Padé approximants improves both the error and the values of the virtual corrections with

respect to the full result. Indeed we even find that only constructing diagonal Padé approx-

imants gives results even closer to the full result. Since this does not allow for a reliable

error estimate any more (the error would then solely stem from the variation of aR) we do

not discuss this here any further.

In figure 10 we show for pT = 100 GeV the virtual corrections Vfin for varying MHH

for the Padé approximations [n/n±0, 2], the Padé approximants constructed only from the

LME, the full result and the reweighted HEFT results. Again, we can see that contrary

to the HEFT results the Padé approximation can reproduce the correct scaling with the

invariant mass of the full result. The quality of the approximation is improved signifi-

cantly with the inclusion of the threshold expansion. The error of the Padé approximation

increases with the invariant mass. Note that the full result has, apart from the previous

error from the internal binning, also an error due to the interpolation procedure. We do
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Figure 10. Finite part of the virtual corrections, Vfin, as a function of MHH for pT = 100 GeV.

The light blue points are the reweighted HEFT results, the pink points the virtual corrections in

full top mass dependence from the interpolation function provided with ref. [90], the dark blue

points are from the diagonal and off-diagonal Padé approximants with their standard deviation and

the turquoise points with standard deviation are the Padé approximants constructed without the

threshold expansion.

not quantify this error but in comparison to the HEFT grid provided with ref. [90] we

conclude that while in the range up to MHH . 570 GeV this error is negligible, it will be

a few % for larger MHH . The comparison with the numerical results of [90] demonstrates

that our prescription for the uncertainty related to the construction of Padé approximants

also provides a reasonable error estimate at NLO.

In conclusion, we see that for the NLO corrections the Padé approximation reproduces

the correct scaling behaviour for small and moderate invariant mass and pT . Since the

cross section peaks around MHH ≈ 400 GeV and pT ≈ 150 GeV this will lead to a reliable

approximation and reliable error estimate also for the full cross section. It can be expected

that both the error and the difference with respect to the full result improves once more

input is used (i.e. higher orders in the threshold expansion, higher orders in the LME,

possibly input from a small mass expansion).

5 Conclusions and outlook

We have reconstructed the top-quark mass dependence of the one and two loop virtual

amplitudes for Higgs pair production in gluon fusion with Padé approximants based on
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the LME of the amplitude [24] and new analytic results near the top threshold ŝ = 4m2
t .

We observe perfect agreement of the one-loop results with the exact expressions once

the additional conditions from the threshold terms are imposed. Significant deviations

are observed when only the LME is used to construct Padé approximants, but we still

find agreement within the uncertainty estimate of our reconstruction, which is based on

variation of the rescaling parameter aR and the use of different [n/m] approximants. At the

two-loop level the full result can be reproduced in the entire phenomenologically relevant

range within typical uncertainties ranging from below ±3% in the region MHH ≤ 450 GeV

up to about ±20% for MHH = 700 GeV. Thus, our method allows for a determination of

the total cross section including top-quark mass effects at NLO where the uncertainty due

to the reconstruction is negligible compared to the scale uncertainty which is of the size of

±13% [9, 10]. This represents considerable progress compared to the rescaled HEFT and

LME approximations where a reliable uncertainty estimate is not possible. Our method

can also be systematically improved by including higher orders in the LME or threshold

expansions. We expect even better behaviour if one also considers the leading term in

the small-mass expansion z → ∞ which corresponds to the bottom-quark contribution

expanded for small mb. An approach for computations in this limit has recently been

introduced [49, 50, 92]. Furthermore our results strongly suggest that the combination of

the Padé approximants of the NLO virtual corrections with the exact evaluation of the real

corrections [82, 83] can reproduce differential distributions to high accuracy.

There is a large number of possible applications for our method. To further increase

the precision for Higgs pair production one needs to consider NNLO QCD corrections.

The rescaled HEFT approximation for the NNLO corrections increases the cross section

by 18% [10] which exceeds the estimate from scale variation at NLO. A NNLO computation

which retains the full top-quark mass effects is clearly out of reach of the current technol-

ogy. On the other hand, the LME has already been computed up to 1/m4
t in [23] and we

have determined the two first non-analytic terms in the threshold expansion. This presently

available input only allows for the construction of Padé approximants with n+m = 3 where

we do not expect stable behaviour, but a calculation of two or three more expansion pa-

rameters would allow the evaluation of NNLO corrections in the soft-virtual approximation

of [23, 93]. Additionally, one can study the NLO electroweak corrections involving top-

quark loops. Of particular interest are the contributions involving additional Higgs bosons

which alter the dependence of the cross section on the values of the Higgs self couplings.

It is straightforward to apply our method to gg → HZ and the top-quark mediated

gg → ZZ amplitude and at higher orders in perturbation theory. In all these cases, results

in the LME have been obtained at two loops [25–27] and for gg → H(∗) even at three

loops [18–22]. The determination of the threshold terms only requires the computation of

the respective one-loop matching coefficients in (3.6). Another phenomenologically very

interesting case is Higgs plus jet production. The construction of Padé approximants is

also possible here but the computation of the threshold expansion is more involved as

we outlined in section 3.2. Beyond LME results, also the leading term in the small-mass

expansion is know for the relevant two-loop amplitudes [49, 50]. Hence, the effects of this

additional input on the reconstruction of top-quark mass effects can be studied in this case.
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A Subtractions

We construct functions for the threshold subtractions based on the known analytical results

for the current correlators. The subtraction functions and their threshold expansions are

s1(z) =
2

π
(1− z)G(z)

z→1�
√

1− z +
1

2
(1− z)3/2 +

3

8
(1− z)5/2 +O

(
(1− z)7/2

)
,

s2(z) = −16(1− z)Π(1),v(z)

3z
z→1� (1− z) ln(1− z)− 8

π
(1− z)3/2 +

1

3
(1− z)2 ln(1− z) +O

(
(1− z)5/2

)
,

s3(z) =
2

π

(1− z)2G(z)− 1

z

z→1� (1− z)3/2 +
3

2
(1− z)5/2 +O

(
(1− z)7/2

)
,

s4(z) = − 8

81π2

54π2(1− z)2Π(1),v(z)− 41z

z2

z→1� (1− z)2 ln(1− z) +O
(

(1− z)5/2
)
,

s5(z) =
2

3π

3(1− z)3G(z) + 7z − 3

z2

z→1� (1− z)5/2 +O
(
(1− z)3

)
, (A.1)

where we have used the symbol � to denote that terms analytical in (1 − z) have been

dropped on the right-hand side,

G(z) =
1

2z
√

1− 1/z
ln

(√
1− 1/z − 1√
1− 1/z + 1

)
, (A.2)

and Π(1),v is the well-known two-loop correction to the vacuum polarization [94] in the

convention of [31]. The functions si in (A.1) are constant as z → 0 and only diverge

logarithmically as z →∞.

B Expansion of the P-wave Green function

The P-wave Green function has been computed up to nrNLO in [76]. In addition we have

determined the terms of order α0
s and α1

s in the nrNNLO correction. Those are given by

the insertion of the ’kinetic potential’ [69]

Vkin(p,p′) = − p4

4m3
t

(2π)d−1δ(d−1)(p− p′) (B.1)

and the 1/m2 potential [69]

V1/m2(p,p′) = −4παsCF
q2

[
V1/m2

q2

m2
t

+ Vp
p2 + p′2

2m2
t

]
, (B.2)
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where q = p−p′, the term proportional to V1/m2 vanishes for the P-wave due to asymmetry

under the integration over the spatial momentum components and Vp = 1 + O(αs). Our

result for the P-wave Green function expanded in αs and (1− z) reads

GP (1− z)
z→1� m4

t

4π

{[
(1− z)3/2 − 1

2
(1− z)5/2 +O

(
(1− z)7/2

)]
+ αsCF

[
1

2
(1− z) ln(1− z)− (1− z)2 ln(1− z) +O

(
(1− z)3

)]
+ α2

sCF

[
− CF

3 + π2

12

√
1− z

− 1− z
16π

(
β0 ln2(1− z)− 2(a1 + 2β0) ln(1− z)

)
+ O

(
(1− z)3/2

)]
+O(α3

s)

}
, (B.3)

where

β0 =
11

3
CA −

4

3
TFnl, a1 =

31

9
CA −

20

9
TFnl, (B.4)

and � again indicates that terms analytic in (1 − z) have been dropped.

C Results for the gg → HH form factors near threshold

We give the results for the threshold expansion of the gg → HH form factors up to three-

loop order. The expansion of the form factors F1 and F2 in the strong coupling constant

takes the form

Fi = F 1l
i +

αs
π

[
F 2l
i + F 24

i

]
+
(αs
π

)2
F̃ 3l
i + . . . , i = 1, 2. (C.1)

At the two-loop level the contributions F 24
i that involve two top-quark loops are known

exactly [24] and have therefore been separated in (C.1). They will not be considered

further because their threshold expansion does not contain any non-analytic terms. The

form factor F1 is further decomposed into a ‘triangle’ and ‘box’ contribution

F il1 =
3m2

H

ŝ−m2
H

F il4 + F il� , i = 1, 2, (C.2)

as indicated in figure 11. The contributions of the ’triangle’ diagrams to the form factor

F2 vanish. As discussed in section 2 we make massless cuts explicit

F 2l
i = CFF

2l
i,CF

+ CA

(
F 2l
i,CA

+ F 2l
i,CA,ln

ln(−4z)
)
, (C.3)

F̃ 3l
i = F 3l

i + F 3l
i,ln ln(−4z) + F 3l

i,ln2 ln(−4z)2, i = 4,�, 2, (C.4)

such that all the F ’s on the right-hand side of (C.3) and (C.4) are analytic in z except for

a branch cut for real z ≥ 1.
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’Triangle’ topology ’Box’ topology

Figure 11. The Feynman diagrams are divided into ‘triangle’ and ‘box’ topologies depending on

whether they contain an intermediate s-channel Higgs boson or not.

Like the previous works [5, 6, 24] we use the following MS scheme convention∫
d4l→ Γ(1− ε)

(4π)ε
µ2ε
R

∫
ddl =

[
1 +

π2

12
ε2 + . . .

]
eεγE

(4π)ε
µ2ε
R

∫
ddl (C.5)

in our calculation. The renormalized form factors still contain IR divergences which cancel

with contributions involving unresolved real radiation that are not considered here. We

use subtractions of a minimal type as refs. [5, 6, 24]7

F 2l
i = F 2l

i,virt+ct. +

[
CA
2ε2

(
µ2
R

−ŝ− i0

)ε
+
β0

4ε

]
F 1l
i , (C.6)

F̃ 3l
i

z→1� F̃ 3l
i,virt+ct. +

[
CA
2ε2

(
µ2
R

−ŝ− i0

)ε
+
β0

4ε

]
F 2l
i +O((1− z)3/2). (C.7)

The full form of the subtraction term at NNLO is known [23, 95] and includes a contribution

proportional to F 1l
i which has been omitted here because it only affects the three-loop

results beyond the considered order in the threshold expansion.

Our results for the triangle form factor at one and two loops are given in (2.8)–(2.11).

At the one-loop order we determine the remaining form factors up to nrNNLO in the

threshold expansion

F 1l
�

z→1� −2π(5− 8rH)

3(1− 2rH)2
(1− z)3/2 − π

15(1− 2rH)4
(1− z)5/2

×
[
147− 16rpT − rH(836− 64rpT ) + 4r2

H(409− 16rpT )− 1056r3
H

]
+O

(
(1− z)7/2

)
, (C.8)

F 1l
2

z→1� − 8π rpT
3(1− 2rH)2

(1− z)3/2 −
4π rpT

(
29− 100rH + 108r2

H

)
15(1− 2rH)4

(1− z)5/2

+O
(

(1− z)7/2
)
. (C.9)

7In spite of some notational differences, our convention is identical to [24]. There is an exact cancellation

between the β0/ε contribution in (C.6) and the charge and gluon field renormalization terms. This has been

exploited in [24] where both effects are not written explicitly. Furthermore, the sign in the factor (−ŝ−i0)−ε

has been ignored in [24] because the induced imaginary part is not relevant within the LME at the considered

order in the strong coupling constant.
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At two-loop order the threshold expansion up to nrNNLO takes the form

F 2l
�,CF

z→1� −π
2(5− 8rH)

3(1− 2rH)2
(1− z) ln(1− z) +

[
π

12(1− 2rH)2(1− 4rH)(
64− 3π2 − 32 ln(2)−

[
32 + 12π2 − 192 ln(2)

]
rpT

−
[
416− 12π2 − 256 ln(2)−

(
128 + 48π2 − 768 ln(2)

)
rpT
]
rH

+16 [41− 32 ln(2)] r2
H − 128r3

H

)

+
8π
(
1− 9rH + 20r2

H + 12r3
H − 40r4

H

)
3(1− 2rH)2(1− 4rH)2

ln(2− 4rH)

+
4π(3− 10rH + 16r2

H − 12r3
H)

3(1− 2rH)3

√
1− rH
rH

arctan

(
2
√
rH(1− rH)

1− 2rH

)

+
4π(2− 7rH + 2r2

H)

3(1− 2rH)
C0(1, 4rH ,−1 + 4rH ; 0, 1, 1)

]
(1− z)3/2 − 4π2

15(1− 2rH)4

×
(
9− 2rpT − 4rH(13− 2rpT ) + r2

H(107− 8rpT )− 72r3
H

)
(1− z)2 ln(1− z)

+O
(

(1− z)5/2
)
, (C.10)

F 2l
�,CA

z→1� − π

6(1− 2rH)2

[
2− 2π2 − 4 ln(2) +

[
2π2 + 16 ln(2)

]
rH

+
[
8− 3π2 + 24 ln(2)

]
rpT

]
(1− z)3/2 +O

(
(1− z)5/2

)
, (C.11)

F 2l
�,CA,ln

z→1� O
(

(1− z)5/2
)
, (C.12)

F 2l
2,CF

z→1� − 4π2rpT
3(1− 2rH)2

(1− z) ln(1− z)

+

[
4π rpT

3(1− 2rH)2(1− 4rH)2

(
13− 76rH + 116r2

H − 16r3
H

)
−

64π rpT (2− 15rH + 37r2
H − 36r3

H + 16r4
H)

3(1− 2rH)2(1− 4rH)3
ln(2− 4rH)

−
16π rpT rH(14− 67rH + 92r2

H − 36r3
H)

3(1− 2rH)3(1− 4rH)2

√
1− rH
rH

arctan

(
2
√
rH(1− rH)

1− 2rH

)

−
16π rpT (5− 12rH + 6r2

H + 4r3
H)

3(1− 2rH)(1− 4rH)2
C0(1, 4rH ,−1 + 4rH ; 0, 1, 1)

]
(1− z)3/2

−
4π2rpT

(
7− 20rH + 24r2

H

)
15(1− 2rH)4

(1− z)2 ln(1− z) +O
(

(1− z)5/2
)
, (C.13)

F 2l
2,CA

z→1� − 2π rpT
9(1− 2rH)2

(
2− 3π2 + 10 ln(2)

)
(1− z)3/2 +O

(
(1− z)5/2

)
, (C.14)

F 2l
2,CA,ln

z→1� − 22π rpT
9(1− 2rH)2

(1− z)3/2 +O
(

(1− z)5/2
)
. (C.15)
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The three-loop form factors are determined at nrNLO in the threshold expansion

F 3l
4

z→1� −π
3

6

(
3 + π2

)
C2
F

√
1− z +

π2CF (1− z)

8

{
− β0 ln2(1− z) (C.16)

+

[
2a1 + 4β0 −

(
π2 − 4

3

)
CA −

(
40

3
− π2

)
CF

]
ln(1− z)

}
+O

(
(1− z)3/2

)
,

F 3l
�

z→1�
π3
(
3 + π2

)
C2
F (5− 8rH)

√
1− z

18(1− 2rH)2
+
π2CF (1− z)

24(1− 2rH)2

{
β0(5− 8rH) ln2(1− z)

+

[
− 2(a1 + 2β0)(5− 8rH)− 4CA

(
1− 2 ln(2)− π2 + (8 ln(2) + π2)rH

+

(
4 + 12 ln(2)− 3π2

2

)
rpT

)
+ CF

[
−1

1− 4rH
+ 65− 32 ln(2)− 3π2

−(32− 192 ln(2) + 12π2)rpT − 4(39− 32 ln(2))rH + 32r2
H

+
32
(
1− 9rH + 20r2

H + 12r3
H − 40r4

H

)
(1− 4rH)2

ln(2− 4rH)

+
16
(
3− 10rH + 16r2

H − 12r3
H

)
1− 2rH

√
1− rH
rH

arctan

(
2
√
rH(1− rH)

1− 2rH

)

+16(1− 2rH)
(
2− 7rH + 2r2

H

)
C0(1, 4rH ,−1 + 4rH ; 0, 1, 1)

]]
ln(1− z)

}
+O

(
(1− z)3/2

)
, (C.17)

F 3l
2

z→1�
2π3

(
3 + π2

)
C2
F rpT

√
1− z

9(1− 2rH)2
+
π2CF rpT (1− z)

6(1− 2rH)2

{
β0 ln2(1− z)

+

[
− 2(a1 + 2β0)− 2

3
CA
(
2− 3π2 + 10 ln(2)

)
+

4CF
(1− 4rH)2

[
13

−76rH + 116r2
H − 16r3

H −
16
(
2− 15rH + 37r2

H − 36r3
H + 16r4

H

)
1− 4rH

ln(2− 4rH)

−
4rH

(
14− 67rH + 92r2

H − 36r3
H

)
1− 2rH

√
1− rH
rH

arctan

(
2
√
rH(1− rH)

1− 2rH

)

−4(1− 2rH)
(
5− 12rH + 6r2

H + 4r3
H

)
C0(1, 4rH ,−1 + 4rH ; 0, 1, 1)

]]
ln(1− z)

}
+O

(
(1− z)3/2

)
, (C.18)

F 3l
2,ln

z→1� −11π2CFCArpT (1− z) ln(1− z)

9(1− 2rH)2
+O

(
(1− z)3/2

)
. (C.19)

The logarithmic coefficients of (C.4) that are not written explicit above vanish up to and

including the order (1− z). The scalar triangle integral appearing above is given by

C0(1, 4rH ,−1 + 4rH ; 0, 1, 1) =

∫
ddl

iπd/2
m2
t

[l2][(l + q)2 −m2
t ][(l + q − pH)2 −m2

t ]
, (C.20)
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with q2 = m2
t , p

2
H = m2

H and q · pH = m2
t . All boxes that appear in the hard matching

computation can be reduced to at most triangles by partial fractioning since only three of

the propagators in each box are linearly independent at threshold.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the Large Perturbative

Corrections to Higgs Production at Hadron Colliders, Phys. Rev. D 79 (2009) 033013

[arXiv:0808.3008] [INSPIRE].

[2] V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved

Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333

[arXiv:0809.4283] [INSPIRE].

[3] M.A. Ebert, J.K.L. Michel and F.J. Tackmann, Resummation Improved Rapidity Spectrum

for Gluon Fusion Higgs Production, JHEP 05 (2017) 088 [arXiv:1702.00794] [INSPIRE].

[4] C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson

cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].

[5] M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC,

Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

[6] R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading

order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].

[7] C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and

master integrals for the production of a Higgs boson via a massive quark and a scalar-quark

loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

[8] U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic Results for Virtual QCD

Corrections to Higgs Production and Decay, JHEP 01 (2007) 021 [hep-ph/0611266]

[INSPIRE].

[9] S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order

with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid.

117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].

[10] S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO,

JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].

[11] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion

Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056]

[INSPIRE].

[12] D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading

Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].

[13] J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production

in the large top quark mass limit, Nucl. Phys. B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.79.033013
https://arxiv.org/abs/0808.3008
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.3008
https://doi.org/10.1140/epjc/s10052-009-1030-2
https://arxiv.org/abs/0809.4283
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.4283
https://doi.org/10.1007/JHEP05(2017)088
https://arxiv.org/abs/1702.00794
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.00794
https://doi.org/10.1007/JHEP05(2016)058
https://arxiv.org/abs/1602.00695
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.00695
https://doi.org/10.1016/0550-3213(95)00379-7
https://arxiv.org/abs/hep-ph/9504378
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9504378
https://doi.org/10.1088/1126-6708/2005/12/015
https://arxiv.org/abs/hep-ph/0509189
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0509189
https://doi.org/10.1088/1126-6708/2007/01/082
https://arxiv.org/abs/hep-ph/0611236
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0611236
https://doi.org/10.1088/1126-6708/2007/01/021
https://arxiv.org/abs/hep-ph/0611266
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0611266
https://doi.org/10.1103/PhysRevLett.117.079901
https://arxiv.org/abs/1604.06447
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06447
https://doi.org/10.1007/JHEP10(2016)107
https://arxiv.org/abs/1608.04798
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04798
https://doi.org/10.1103/PhysRevLett.114.212001
https://arxiv.org/abs/1503.06056
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.06056
https://doi.org/10.1103/PhysRevLett.111.201801
https://arxiv.org/abs/1309.6594
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6594
https://doi.org/10.1016/j.nuclphysb.2014.09.003
https://arxiv.org/abs/1408.2422
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2422


J
H
E
P
0
3
(
2
0
1
8
)
0
2
0

[14] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in

association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 06 (2013)

072 [arXiv:1302.6216] [INSPIRE].

[15] X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the

production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325]

[INSPIRE].

[16] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in

association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003

[arXiv:1504.07922] [INSPIRE].

[17] R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in

association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5

[arXiv:1505.03893] [INSPIRE].

[18] R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at

next-to-next-to-leading order QCD: Virtual corrections, Phys. Lett. B 679 (2009) 467

[arXiv:0907.2997] [INSPIRE].

[19] A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson

production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473

[arXiv:0907.2998] [INSPIRE].

[20] R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at

next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].

[21] A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson

production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].

[22] R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion

at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359

[arXiv:0912.2104] [INSPIRE].

[23] J. Grigo, J. Hoff and M. Steinhauser, Higgs boson pair production: top quark mass effects at

NLO and NNLO, Nucl. Phys. B 900 (2015) 412 [arXiv:1508.00909] [INSPIRE].
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[88] J. Moré, D. Sorenson, B. Garbow and K. Hillstrom, The MINPACK Project, Sources and

Development of Mathematical Software, W. Cowell ed., Prentice-Hall (1984)

[ISBN: 0-13-823501-5].

[89] Michael Spira’s webpage, http://tiger.web.psi.ch.

[90] G. Heinrich, S.P. Jones, M. Kerner, G. Luisoni and E. Vryonidou, NLO predictions for Higgs

boson pair production with full top quark mass dependence matched to parton showers, JHEP

08 (2017) 088 [arXiv:1703.09252] [INSPIRE].
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