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1 Introduction

When compactifying the IIB superstring theory on a Calabi-Yau (CY) threefold X, one can

write the low-energy effective theory in terms of the geometry of the CY moduli space [8].

More precisely, the effective Lagrangian of the vector multiplets in the superspace contains

h2,1 supermultiplets. Scalars from these multiplets take value in the target space M, which

is a moduli space of complex structures on a CY manifold and is a special Kähler manifold

itself [9, 13, 24]. Metric Gab̄ and Yukawa couplings κabc on this space are given by the

following formulae:

Gab̄ = ∂a∂b̄K, e−K = −i

∫

X
Ω ∧ Ω̄,

κabc =

∫

X
Ω ∧ ∂a∂b∂cΩ =

∂3F

∂za∂zb∂zc
,

(1.1)

where

za =

∫

Aa

Ω,
∂F

∂za
=

∫

Ba

Ω (1.2)

are the period integrals of the holomorphic volume form Ω on X. Here Aa and Ba form the

symplectic basis in H3(X,Z). We can rewrite the expression (1.1) for the Kähler potential

using the periods as

e−K = −iΠΣΠ†, Π = (∂F, z), (1.3)

where matrix (Σ)−1 is an intersection matrix of cycles Aa, Ba equal to the symplectic

unit. In practice, computation of periods in the symplectic basis is a very complicated

problem and was done explicitly only in few examples [10–12, 20]. It is due to the fact,

that it requires a case by case analysis and geometric description of the symplectic basis

of cycles. Recently we proposed a method [1, 2] to easily compute the Kähler metric (and
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the symplectic basis) for a large class of CY manifolds which can be represented by specific

hypersurfaces in weighted projective spaces [6]. Our method does not require the knowledge

of symplectic cycles, but instead uses a structure of a Frobenius algebra associated with a

CY of this class and its Hodge structure.1

Namely, let a CY manifold X be given as a solution of an equation

W (x, φ) = W0(x) +
h2,1
∑

s=1

φses(x) = 0 (1.4)

in some weighted projective space, where W0(x) is a quasihomogeneous function in C
5 of

weight d that defines an isolated singularity at x = 0,(see [3]) which is tightly related with

the underlying N = 2 superconformal theory [18, 21, 22]. The monomials es(x) also have

weight d and correspond to deformations of the complex structure of X.

Polynomial W0(x) defines a Milnor ring R0. Inside R0 there exists a subring RQ
0 which

is invariant w.r.t. the action of the so-called quantum symmetry group Q. This group acts

on C
5 diagonally, and preserves W (x, φ). In many cases dimRQ

0 = dimH3(X) and the

ring itself has a Hodge structure RQ
0 = (RQ

0 )
0 ⊕ (RQ

0 )
1 ⊕ (RQ

0 )
2 ⊕ (RQ

0 )
3 in correspondence

with degrees of the elements 0, d, 2d, 3d. One can introduce an invariant pairing η on RQ
0 .

The pairing turns the ring to a Frobenius algebra [17] and plays an important role in the

construction of our formula for e−K .

Using the invariant ring RQ
0 and differentials D± = d ± dW0∧ we construct two

groups of Q−invariant cohomology H5
D±

(C5)inv. These groups inherit the Hodge struc-

ture from RQ
0 . If we denote by {eµ(x)} some basis of RQ

0 , then {eµ(x) d
5x} will be a

basis of H5
D±

(C5)inv. As shown by Candelas [7], elements of these cohomology groups are

in correspondence with harmonic forms of H3(X). This isomorphism sends components

H3−q,q(X) to the Hodge decomposition components of H5
±(C

5)inv spanned by eµ(x) d
5x

with eµ(x) ∈ (RQ
0 )

q and sends the pairing on the differential forms on X to the invari-

ant Frobenius algebra pairing η. Also the same isomorphism allows to define a complex

conjugation (we denote this operation ∗) on the invariant cohomology.

It turns out, that in the basis {eµ(x)} the operation ∗ reads

∗ eµ(x) d
5x = Mν

µeν(x) d
5x . (1.5)

If we pick a basis {eµ(x)} such, that the Frobenius pairing η is antidiagonal, the matrix M

is antidiagonal as well:

∗ eµ(x) d
5x = Aµ eµ′(x) d5x, (1.6)

where eµ′(x) is the unique element of the basis such, that η(eµ(x), eµ′(x)) = 1, that is

eµ(x) ·eµ′(x) = eρ(x), which is a unique up to a constant element of degree 3d. Coefficients

Aµ are the coefficients of the matrix M in this basis. In particular, we have a useful

relation: AµAµ′ = 1, because M is an anti-involution. We compute Aµ in the section 5 for

the quintic threefold, see also section 6.

1Actually, moduli space of a CY manifold is closely related with a Frobenius manifold [17], and the

Frobenius algebra, we use, is a tangent space to this manifold at one point.
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Having H5
D±

(C5)inv we define the relative invariant homology groups H
±,inv
5 :=

H5(C
5,W0 = L, ReL → ±∞)inv inside a relative homology group H5(C

5,W0 = L, ReL →

±∞). For this purpose we use oscillatory integrals. Using the oscillatory integral pairing

we define a cycle Γ±
µ in the basis of relative invariant homology to be dual to eµ(x) d

5x.

At last we define periods σ±
µ (φ) to be oscillatory integrals over the basis of cycles Γ±

µ ,

which can be effectively computed using the techinque described in [1, 2, 4] that we remind

in the section 4. The periods σ±
µ (φ) are equal to periods of the holomorphic volume form

Ω on X in a special basis of cycles H3(X,C) with complex coefficients.

As shown in [1], Kähler potential for the metric is given by the followng formula

e−K(φ) =
∑

µ,ν,λ

σ+
µ (φ)η

µλMν
λσ

−
ν (φ), (1.7)

where the real structure matrix M is the same as the one in (1.5). Matrix M can be also

represented as M = T−1T̄ , where T is a transition matrix from periods in arbitrary real ba-

sis of cycles Q±
µ to periods σ±

µ (φ). In our basis matrix η is antidiagonal, and it follows, that

e−K(φ) =
∑

µ

(−1)|ν|σ+
µ (φ)A

µσ−
µ (φ). (1.8)

Using this we are able to explicitly compute the diagonal matrix elements Aµ and to obtain

the explicit expression for the whole e−K .

In [1, 2], to find the real structure, we used the knowledge of periods in some integral

basis of homology cycles (e.g. from [5]). However this basis is not always known.

In this paper we propose another method to compute the real structure matrix M and

apply it to the 101-dimensional moduli space of the quintic threefold complex structures

around the orbifold point to get an explicit exact result for the moduli space Kähler metric.

Together with the knowledge of the geometry of the 1-dimensional moduli space of the

quintic Kähler structures computed via the mirror symmetry in [11] it presumably gives

the geometry of the full moduli space of Calabi-Yau quintic threefold.

In what follows we apply our method for the quintic threefold, where the huge sym-

metry group S5 ⋉ (Z5)
5 simplifies the computations. (Z5)

5 is called a group of phase

symmetries, it acts diagonally on C
5 and preserves W0(x). It acts naturally on the invari-

ant ring RQ
0 , and this action respects the Hodge decomposition of RQ

0 . This allows to pick

a basis eµ(x) in each of the Hodge decomposition components of RQ
0 , which consists of

eigenvectors of the phase symmetry group action, which simplifies our computations. The

S5, which acts by permutations of xi among themselves, allows to reduce the amount of

computations even further.

If we consider other hypersurfaces in weighted projective spaces, they have less sym-

metry then the quintic threefold. However, most of the considerations are true and allow

to perform explicit computations in the more general case, as we briefly discuss in the

conclusion 7.
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2 Hodge structure on the middle cohomology of the quintic

First of all we notice, that the formula (1.3) may be written in the arbitrary basis of cycles

qµ ∈ H3(X,Z):

e−K(φ) = ωµ(φ)C
µνων(φ),

ωµ(φ) =

∫

qµ

Ω
(2.1)

and (C−1)µν = qµ ∩ qν .

Now let us specialize to the case where X is a quintic threefold:

X = {(x1 : · · · : x5) ∈ P
4 | W (x, φ) = 0}, (2.2)

where

W (x, φ) = W0(x) +
100
∑

t=0

φtet(x), W0(x) = x51 + x52 + x53 + x54 + x55 , (2.3)

and et(x) are the degree 5 monomials such that each variable has the power that is a

non-negative integer less then four. Let us denote monomials et(x) = xt11 x
t2
2 x

t3
3 x

t4
4 x

t5
5 by its

degree vector t = (t1, · · · , t5). Then there are precisely 101 of such monomials, which can

be divided into 5 sets in respect to the permutation group S5: (1, 1, 1, 1, 1), (2, 1, 1, 1, 0),

(2, 2, 1, 0, 0), (3, 1, 1, 0, 0), (3, 2, 0, 0, 0). In these groups there are correspondingly 1, 20,

30, 30, 20 different monomials. We denote e0(x) := e(1,1,1,1,1)(x) = x1x2x3x4x5 to be the

so-called fundamental monomial, which will be somewhat distinguished in our picture.

For this CY dimH3(X) = 204 and period integrals have the form

ωµ(x) =

∫

qµ

x5 dx1dx2dx3
∂W (x, φ)/∂x4

=

∫

Qµ

dx1 · · · dx5
W (x, φ)

, (2.4)

where qµ ∈ H3(X,Z) and Qµ ∈ H5(C
5\(W (x, φ) = 0),Z) are the corresponding cycles.

Cohomology groups of a Kähler manifold possess a Hodge structure H3(X) = H3,0(X) ⊕

H2,1(X)⊕H1,2(X)⊕H0,3(X). Period integrals measure variation of the Hodge structure

on H3(X) as the complex structure on X varies with φ. This Hodge structure variation is

equivalent to the one on a certain ring which we will now describe.

3 Hodge structure on the invariant Milnor ring

We can consider W0(x) as a singularity in C
5. Then there is an associated Milnor (also

Jacobi) ring

R0 =
C[x1, · · · , x5]

〈∂iW 〉
. (3.1)

We will identify its elements with unique smallest degree polynomial representatives. For

the quintic threefold X its Milnor ring R0 is generated as a vector space by monomials

where each variable has degree less than four, and dimR0 = 1024. Polynomial W0(x)

is homogeneous and, in particular, W0(αx1, . . . , αx5) = W0(x1, . . . , x5) for α5 = 1. This

action preserves W0(x) and is trivial in the corresponding projective space and on X. Such
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a group with this action is called a quantum symmetry Q, in our case Q ≃ Z5. Q obviously

acts on the Milnor ring R0.

Now we define a subring RQ
0 in the Milnor ring R0,

RQ
0 := {eµ(x) ∈ R0 | eµ(αx) = eµ(x)}, α

5 = 1, (3.2)

to be a Q-invariant part of the Milnor ring.

It is multiplicatively generated by 101 fifth-degree monomials et(x) from (2.3). More

precisely, RQ
0 consists of elements of degree 0, 5, 10 and 15, dimensions of the corresponding

subspaces are 1, 101, 101 and 1. This degree filtration defines a Hodge structure on RQ
0 .

Basically RQ
0 is isomorphic to H3(X) and the isomorphism sends the degree filtration to

the Hodge filtration on H3(X) [7]. Let us denote χi
j̄
= gik̄ χk̄j̄ as an extrinsic curvature

tensor for the hypersurface W (x, φ) = 0 in P
4. Then the isomorphism above can be written

as a map from RQ
0 to closed differential forms in H3(X):

1 → Ωijk ∈ H3,0(X),

eµ(x) → eµ(x(y))χ
l
īΩljk ∈ H2,1(X) if |µ| = 5,

eµ(x) → eµ(x(y))χ
l
ī χ

m
j̄ Ωlmk ∈ H1,2(X) if |µ| = 10,

eρ(x) = x31x
3
2x

3
3x

3
4x

3
5 → χl

ī χ
m
j̄ χp

k̄
Ωlmp = κΩ̄ ∈ H0,3(X) .

(3.3)

The details on this map can be found in [7, 14]. We also introduce the notation eµ(x) for

elements of the monomial basis of RQ
0 , where µ = (µ1, · · · , µ5), µi ∈ Z

5
+, eµ(x) =

∏

i x
µi

i

and |µ| =
∑

µi is the degree of eµ(x). In particular, ρ = (3, 3, 3, 3, 3), that is eρ(x) is a

unique degree 15 element of RQ
0 .

There is a Z
5
5 phase symmetry group acting diagonally on C

5: α · (x1, · · · , x5) =

(α1x1, · · · , α5x5), α5
i = 1. This action preserves W0 =

∑

i x
5
i . The mentioned above

quantum symmetry Q is a diagonal subgroup of the phase symmetries. Basis {eµ(x)} is

an eigenbasis of the phase symmetry and each eµ(x) has a unique weight. Note that phase

symmetry preserves the Hodge decomposition.

One additional important fact is that on the invariant ring RQ
0 there exists a natural

invariant pairing turning it into a Frobenius algebra [1, 17]:

ηµν = Res
eµ(x) eν(x)
∏

i ∂iW0(x)
. (3.4)

Up to an irrelevant constant for the monomial basis it is ηµν = δµ+ν,ρ. This pairing plays

a crucial role in our construction.

Let us introduce a couple of differentials [23] on differential forms on C
5 : D± =

d ± dW0(x)∧. They define the cohomology groups H∗
D±

(C5). The cohomologies are only

nontrivial in the top dimension H5
D±

(C5)
J
≃ R0. The isomorphism J has an explicit

description

J(eµ(x)) = eµ(x) d
5x, eµ(x) ∈ R0. (3.5)

We see, that Q = Z5 naturally acts on H5
D±

(C5) and J sends the Q-invariant part RQ
0

to Q-invariant subspace H5
D±

(C5)inv. Therefore, the latter space obtains the Hodge struc-

ture as well. Actually, this Hodge structure naturally corresponds to the Hodge structure

on H3(X).

– 5 –



J
H
E
P
0
3
(
2
0
1
8
)
0
1
8

The complex conjugation acts on H3(X) so that Hp,q(X) = Hq,p(X), in particular

H2,1(X) = H1,2(X). Through the isomorphism between RQ
0 and H3(X) the complex

conjugation acts also on the elements of the ring RQ
0 as ∗eµ(x) = pµeρ−µ(x), where pµ is a

constant to be determined. In particular, differential form built from eµ(x) + pµeρ−µ(x) ∈

H3(X,R) is real and pµpρ−µ = 1.

4 Oscillatory representation and computation of σµ(φ)

Relative homology groups H5(C
5,W0 = L, ReL → ±∞) have a natural pairing with

Q-invariant cohomology groups H5
D±

(C5)inv:

〈eµ(x)d
5x,Γ±〉 =

∫

Γ±

eµ(x)e
∓W0(x)d5x, H5(C

5,W0 = L, ReL → ±∞). (4.1)

Using this we define two invariant homology groups2 H
±,inv
5 as quotient of H5(C

5,W0 = L,

ReL → ±∞) with respect to the subgroups orthogonal to H5
D±

(C5)inv. Now we introduce

basises Γ±
µ in the homology groups H±,inv

5 using the duality with the basises in H5
D±

(C5)inv:

∫

Γ±
µ

eν(x)e
∓W0(x)d5x = δµν (4.2)

and the corresponding periods

σ±
αµ(φ) :=

∫

Γ±
µ

eα(x)e
∓W (x,φ)d5x,

σ±
µ (φ) := σ±

0µ(φ)

(4.3)

which are understood as series expansions in φ around zero.

Periods σ±
µ (φ) satisfy the same differential equation as periods ωµ(φ) of the holomor-

phic volume form on X. Moreover, these sets of periods span same subspaces as functions

of φ. It follows, that we can define cycles Q±
µ ∈ H

±,inv
5 such that

∫

Q±
µ

e∓W (x,φ)d5x =

∫

qµ

Ω =

∫

Qµ

d5x

W (x, φ)
, (4.4)

and periods ω±
αµ(φ) are given by the integrals over these cycles analogous to (4.3).

With these notations the idea of computation of periods [4]

σ±
µ (φ) =

∫

Γ±
µ

e∓W (x,φ) d5x (4.5)

can be stated as follows.

To explicitly compute σ±
µ (φ), first we expand the exponent in the integral (4.5) in φ

representing W (x, φ) = W0(x) +
∑

s φses(x)

σ±
µ (φ) =

∑

m

(

∏

s

(±φs)
ms

ms!

)

∫

Γ±
µ

∏

r

er(x)
mr e∓W0(x) d5x, (4.6)

2We are grateful to V. Vasiliev for explaining to us the details about these homology groups and their

connection with the middle homology of X.
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where m := {ms}s, ms ≥ 0 denotes a multi-index of powers of ψs in the expansion above.

We note, that σ−
µ (φ) = (−1)|µ|σ+

µ (φ), so we focus on σµ(φ) := σ+
µ (φ).

For each of the summands in (4.6) the form
∏

s es(x)
ms d5x belongs to H5

D±
(C5)inv,

because it is Q−invariant. Therefore, we can expand it in the basis {eµ(x) d
5x}

dimRQ
0

µ=1 ⊂

H5
D±

(C5)inv. Namely we always can find such a polynomial 4−form U, that

∏

s

es(x)
ms d5x =

∑

ν

Cν(m) eν(x) d
5x+D+U, (4.7)

where Cν(m) are uniquely determined as coefficients of the expansion of the l.h.s. in the

basis eµ(x) d
5x. Therefore for the integral in (4.6) we obtain

∫

Γ±
µ

∏

s

es(x)
ms e∓W0(x) d5x = Cµ(m). (4.8)

Writing (4.6) explicitly we have

σµ(φ) =
∑

m

(

∏

s

φms
s

ms!

)

∫

Γ+
µ

∏

s,i

xmssi
i e−W0(x) d5x. (4.9)

Let mssi = 5ni + νi, νi < 5. Therefore we want to expand

∏

i

x5ni+νi
i d5x =

∑

ν

Cν(m) eν(x) d
5x+D+U. (4.10)

Note that

D+

(

1

5
x5n+k−4
1 f(x2, · · · , x5) dx2 ∧ · · · ∧ dx5

)

=

=

[

x5n+k
1 +

(

n+
k − 4

5

)

x
5(n−1)+k
1

]

f(x2, · · · , x5) d
5x . (4.11)

Therefore in D+ cohomology we have

∏

i

x5ni+νi
i d5x = −

(

n1 +
ν1 − 4

5

)

x
5(n1−1)+ν1
1

5
∏

i=2

x5ni+νi
i d5x, νi < 5. (4.12)

By induction we obtain

∏

i

x5ni+νi
i d5x = (−1)

∑
i ni

∏

i

(

νi + 1

5

)

ni

∏

i

xνii d5x, νi < 5. (4.13)

where (a)n = Γ(a+ n)/Γ(a).

Using (4.11) once again, we see that if any νi = 4 then the differential form is trivial

and the integral is zero. Hence, r.h.s. of (4.13) is proportional to eν(x) and gives the desired

expression. Plugging (4.13) into (4.9) and integrating over Γ+
µ gives the answer

σµ(φ) = σ+
µ (φ) =

∑

ni≥0

∏

i

(

µi + 1

5

)

ni

∑

m∈Σn

∏

s

φms
s

ms!
, (4.14)
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where

Σn =

{

m |
∑

s

mssi = 5ni + µi

}

. (4.15)

Further we will also use the periods with slightly different normalization, which turn out

to be convenient

σ̂µ(φ) =
∏

i

Γ

(

µi + 1

5

)

σµ(φ) =
∑

ni≥0

∏

i

Γ

(

ni +
µi + 1

5

)

∑

m∈Σn

∏

s

φms
s

ms!
. (4.16)

5 Computation of the Kähler potential

Pick any basis Q±
µ of cycles with integer or real coefficients as in (4.4). Then for the Kähler

potential we have the formula

e−K = ω+
µ (φ)C

µνω−
ν (φ) (5.1)

in which the matrix Cµν is related with the Frobenius pairing η as

ηαβ = ω+
αµ(0)C

µνω−
βν(0). (5.2)

The last expression is due to [15, 16]. Let also T± be a coordinate change matrix Q±
µ =

(T±)νµΓ
±
ν . Then M = (T−)−1T− is a real structure matrix, that is MM̄ = 1 and by

construction M doesn’t depend on the choice of basis Q±
µ . M is only defined by our choice

of Γ±
µ .

In [1] we deduced from (5.1) and (5.2) the formula

e−K(φ) = σ+
µ (φ)η

µλMν
λσ

−
ν (φ) = σµA

µνσν , (5.3)

where ηµν = ηµν = δµ,ρ−ν . In that papers our method to compute the real structure matrix

M used the knowledge of the periods in some basis qµ computed using the residue formula

and monodromy considerations. However, this method gives only 4 out of 204 linearly

independent periods for the quintic threefold X.

Therefore we propose here a different method to find M .

Lemma 5.1. Inverse intersection matrix Aµν in (5.3) is diagonal.

Proof. We may extend the action of the phase symmetry group to the action A on the

parameter space {φs} such that W = W0 +
∑

s φses(x) is invariant under this new action.

Each es(x) has a unique weight under this group action.

Action A can be compensated using the coordinate tranformation and therefore is

trivial on the moduli space of the quintic (implying that point W = W0 is an orbifold point

of the moduli space). In particular, e−K =
∫

X Ω ∧ Ω̄ is A invariant. Consider

e−K = σµA
µνσν (5.4)

as a series in φs, φt Each monomial has a certain weight under A. For the series to be

invariant, each monomial must have weight 0. But weight of σµσν equals to µ− ν and due

to non-degeneracy of weights of σµ only the ones with µ = ν have weight zero.

– 8 –
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Thus, (5.3) becomes

e−K =
∑

µ

Aµ|σµ(φ)|
2. (5.5)

Moreover, the matrix A should be real and, because A = η ·M, MM̄ = 1 and ηµν = δµ+ν,ρ,

we have

AµAρ−µ = 1. (5.6)

Monodromy considerations. To fix the remaining 102 real numbers Aµ we use mon-

odromy invariance of e−K around φ0 = ∞. Fix some t = (t1, t2, t3, t4, t5), |t| = 5 and let

φs|s 6=t,0 = 0, also consider only the first order in φt. Then the condition that period σµ(φ)

contains only non-zero summands of the form φm0

0 φt implies that µ = t+const·(1, 1, 1, 1, 1)

mod 5. For each t from the table below the only such possibilities are µ = t and

µ = ρ − t′ = (3, 3, 3, 3, 3) − t′, where t′ denotes a vector obtained from t by permuta-

tion (written explicitly in the table below) of its coordinates.

Therefore, in this setting (5.3) becomes

e−K =
3

∑

k=0

ak|σ̂(k,k,k,k,k)|
2 + at|σ̂t|

2 + aρ−t′ |σ̂ρ−t′ |
2 +O(φ2

t ), (5.7)

where we used periods σ̂ from (4.16), at = At/
∏

i Γ((ti + 1)/5)2 and ak, k = 0, 1, 2, 3 are

already known [11]. This expression should be monodromy invariant. We consider the

effect of the transport of φ0 around ∞. From the formula (4.16) we have

F1 = σ̂k(φt, φ0) = gtφk F (a, b; a+ b | (φ0/5)
5) +O(φ6

t ),

F2 = σ̂ρ−t′(φt, φ0) = gρ−t′φt φ
1−a−b
0 F (1− a, 1− b; 2− a− b | (φ0/5)

5) +O(φ6
t ),

(5.8)

where gt, gρ−t′ are some constants. Explicitly for all different labels t

t ρ− t′ (a, b)

(2,1,1,1,0) (3,2,2,2,1) (2/5,2/5)

(2,2,1,0,0) (3,3,2,1,1) (1/5,3/5)

(3,1,1,0,0) (0,3,3,2,2) (1/5,2/5)

(3,2,0,0,0) (1,0,3,3,3) (1/5,1/5)

and

F (a, b; c|z) :=
Γ(a)Γ(b)

Γ(c)
2F1(a, b; c; z). (5.9)

When φ0 goes around infinity
(

F1

F2

)

= B ·

(

F1

F2

)

, (5.10)

where (e.g. [19]3)

B =
1

is(a+ b)

(

c(a− b)− eiπ(a+b) 2s(a)s(b)

2e2πi(a+b)s(a)s(b) eπi(a+b)[e2πia + e2πib − 2]/2

)

. (5.11)

3Translated from the Russian, translation edited and with a preface by Alan Jeffrey and Daniel

Zwillinger, with one CD-ROM (Windows, Macintosh and UNIX).
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Here c(x) = cos(πx), s(x) = sin(πx). It is straightforward to show the following

Proposition 1.

at|σ̂t|
2 + aρ−t′ |σ̂ρ−t′ |

2 = at
∏

i

Γ

(

ti + 1

5

)2

|σt|
2 + aρ−t′

∏

i

Γ

(

4− ti
5

)2

|σρ−t′ |
2 (5.12)

is B-invariant iff at = −aρ−t′.

Due to symmetry we have aρ−t′ = aρ−t in each case. From (5.6) it follows that the

product of the coefficients at |σµ|
2 and |σρ−µ|

2 in the expression for e−K should be 1:

Aρ−t′ ·At = aρ−t′ · at
∏

i

Γ

(

ti + 1

5

)2

Γ

(

4− ti
5

)2

= 1. (5.13)

Due to reflection formula at = ±
∏

i sin(π(ti +1)/5) up to a common factor of π. The sign

turns out to be minus for Kähler metric to be positive definite in the origin. Therefore

Aµ = (−1)deg(µ)/5
∏

γ

(

µi + 1

5

)

. (5.14)

Finally the Kähler potential becomes

e−K(φ) =
203
∑

µ=0

(−1)deg(µ)/5
∏

γ

(

µi + 1

5

)

|σµ(φ)|
2, (5.15)

where γ(x) = Γ(x)
Γ(1−x) .

6 Real structure on the cycles Γ±
µ

Let cycles γµ ∈ H3(X) be the images of cycles Γ+
µ under the isomorphism H

+,inv
5 ≃ H3(X).

Complex conjugation sends (2, 1)-forms to (1, 2)-forms. Similarly it extends to a map-

ping on the dual homology cycles γµ. In the real basis of cycles a version of the formula (5.3)

takes an especially simple form, because the real structure matrix M becomes an identity.

Lemma 6.1. Conjugation of homology classes has the following form: ∗γµ = pµγρ−µ,

where ρ = (3, 3, 3, 3, 3) is a unique maximal degree element in the Milnor ring.

Proof. We perform a proof for the cohomology classes represented by differential forms.

For one-dimensional H3,0(X) and H0,3(X) it is obvious. Let

Ω2,1 := et(x)χ
l
īΩljk ∈ H2,1(X). (6.1)

Any element from H1,2(X) is representable by a degree 10 polynomial P (x) as follows

from (3.3) as

Ω2,1 = Ω1,2 := P (x)χl
ī χ

m
j̄ Ωlmk ∈ H1,2(X). (6.2)

The group of phase symmetries modulo common factor acts by isomorphisms on X.

Therefore, it also acts on the differential forms. Lhs and r.h.s. of the previous equation

should have the same weigth under this action, and weight of the l.h.s. is equal −t modulo

(1, 1, 1, 1, 1). It follows that P (x) = pt eρ−t(x) with some constant pt.
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Using this lemma and applying the complex conjugation of cycles to the formula (5.3)

to obtain

e−K =
∑

µ

Aµ|σµ|
2 =

∑

µ

p2µA
µ |σρ−µ|

2, (6.3)

it follows that Aµ = ±1/pµ. Now formula (5.15) implies

pµ =
∏

i

γ

(

4− µi

5

)

. (6.4)

7 Conclusions

The method for computing the Kähler potential on the CY moduli space from [1] modified

in this paper does not require knowledge of periods in some real homology basis. Instead,

we use some simple monodromy considerations to fix the real structure matrix. Another

possible interesting method would be to determine this matrix by direct computation of

coefficients (6.4) of the complex conjugation in the basis eµ(x). In this paper we use our

modified method to compute Weil-Peterson metric on the whole 101-dimensional complex

structure moduli space of the quintic threefold around the orbifold point (5.15). Together

with the computation of the moduli space geometry of the Kähler structures through the

mirror map [11] it describes the Special geometry of all Ricci flat deformations of CY metric

in the region.

Though we present our result for the quintic threefold, our method should be applicable

to a bigger class of models, which are connected with Landau-Ginzburg description, in

particular hypersurfaces in toric varieties. At least in the case of the hypersurfaces in

weighted projective spaces, we can, in principle, compute the basis {eµ(x)} of RQ
0 such,

that the pairing η is antidiagonal, and the periods σµ(φ). Indeed, it reduces to Jacobi

ideal computations. Using the connection of the pairing ηµν with the natural pairing in

the cohomology H3(X) it is possible to prove (1.8) in this generality. Then the whole

computation of the Kähler potential is reduced to finding of the coefficients Aµ. One

way to do it is to restrict the expression to the different one-dimensional subspaces of the

moduli space and to require the monodromy invariance of the Kähler potential, as we did

in the section 5 for the quintic threefold. In general, monodromy invariance translates to

properties of generalized hypergeometric functions in one variable.

The main problem of our method in general is to choose the convenient starting point

W0(x) such, that Jacobi ideal computations are not be too complicated. We plan to address

possible generalizations in details in the future publications.
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