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1 Introduction

When compactifying the IIB superstring theory on a Calabi-Yau (CY) threefold X, one can
write the low-energy effective theory in terms of the geometry of the CY moduli space [8].
More precisely, the effective Lagrangian of the vector multiplets in the superspace contains
h>! supermultiplets. Scalars from these multiplets take value in the target space M, which
is a moduli space of complex structures on a CY manifold and is a special Kahler manifold
itself [9, 13, 24]. Metric G,; and Yukawa couplings kg on this space are given by the
following formulae:

G = 0.00K, &= —i/ QAQ,
et (1.1)
0200202¢’

OF
a_ [ % _ [ q 1.2
: /A F N (12)

are the period integrals of the holomorphic volume form 2 on X. Here A, and B* form the

Kabe = / QN 0,0p0:8) =
X

where

symplectic basis in H3(X,Z). We can rewrite the expression (1.1) for the Ké&hler potential
using the periods as
e K = XTI, 11 = (OF, 2), (1.3)

where matrix (¥)~!

is an intersection matrix of cycles A,, B® equal to the symplectic
unit. In practice, computation of periods in the symplectic basis is a very complicated
problem and was done explicitly only in few examples [10-12, 20]. It is due to the fact,
that it requires a case by case analysis and geometric description of the symplectic basis

of cycles. Recently we proposed a method [1, 2] to easily compute the Kéhler metric (and



the symplectic basis) for a large class of CY manifolds which can be represented by specific
hypersurfaces in weighted projective spaces [6]. Our method does not require the knowledge
of symplectic cycles, but instead uses a structure of a Frobenius algebra associated with a
CY of this class and its Hodge structure.!

Namely, let a CY manifold X be given as a solution of an equation

h2,1

W (x,¢) = Wo(x) + Y _ dees(z) =0 (1.4)
s=1

in some weighted projective space, where Wy(x) is a quasihomogeneous function in C° of
weight d that defines an isolated singularity at = = 0,(see [3]) which is tightly related with
the underlying N = 2 superconformal theory [18, 21, 22]. The monomials es(x) also have
weight d and correspond to deformations of the complex structure of X.

Polynomial Wy (z) defines a Milnor ring Ry. Inside Ry there exists a subring Rg} which
is invariant w.r.t. the action of the so-called quantum symmetry group (). This group acts
on C° diagonally, and preserves W (z,¢). In many cases dim ROQ = dim H3(X) and the
ring itself has a Hodge structure ROQ = (ROQ)0 @ (RS2 1 e (Rg2 2@ (RSQ)?’ in correspondence
with degrees of the elements 0, d, 2d, 3d. One can introduce an invariant pairing 7 on ROQ.
The pairing turns the ring to a Frobenius algebra [17] and plays an important role in the
construction of our formula for e~ .

Using the invariant ring R(('j? and differentials D+ = d + dWpA we construct two
groups of Q—invariant cohomology H 15) N (C®)iny. These groups inherit the Hodge struc-
ture from ROQ. If we denote by {e,(x)} some basis of ROQ, then {e,(x)d%z} will be a
basis of H?Y, . (C®)iny. As shown by Candelas [7], elements of these cohomology groups are
in correspondence with harmonic forms of H3(X). This isomorphism sends components
H37%49(X) to the Hodge decomposition components of H?(C%)y,, spanned by e,(z)d’z
with e,(z) € (R(? )4 and sends the pairing on the differential forms on X to the invari-
ant Frobenius algebra pairing 7. Also the same isomorphism allows to define a complex
conjugation (we denote this operation ) on the invariant cohomology.

It turns out, that in the basis {e,(x)} the operation * reads

xe,(x)dr = Mye,(x) d’z. (1.5)

If we pick a basis {e,(x)} such, that the Frobenius pairing 7 is antidiagonal, the matrix M
is antidiagonal as well:
xe,(z) dPx = At ey (z) d°x, (1.6)

where e,/ (x) is the unique element of the basis such, that n(e,(x), e (x)) = 1, that is
eu(x)- ey (x) = e,(x), which is a unique up to a constant element of degree 3d. Coefficients
A, are the coefficients of the matrix M in this basis. In particular, we have a useful
relation: AMTM = 1, because M is an anti-involution. We compute A, in the section 5 for
the quintic threefold, see also section 6.

! Actually, moduli space of a CY manifold is closely related with a Frobenius manifold [17], and the
Frobenius algebra, we use, is a tangent space to this manifold at one point.



Having H3 . (C®)iny we define the relative invariant homology groups J—C;E’inv =

H5(C3 Wy = L, ReL — £00)iyy inside a relative homology group Hs(C?, Wy = L, ReL —
+00). For this purpose we use oscillatory integrals. Using the oscillatory integral pairing
we define a cycle Fljf in the basis of relative invariant homology to be dual to e, (z) d°z.

At last we define periods ai(@ to be oscillatory integrals over the basis of cycles Fﬁ,
which can be effectively computed using the techinque described in [1, 2, 4] that we remind
in the section 4. The periods aff(qb) are equal to periods of the holomorphic volume form
Q on X in a special basis of cycles H3(X,C) with complex coefficients.

As shown in [1], Kédhler potential for the metric is given by the followng formula

e KO =" ol (@) Moy (9), (1.7)
JTR7Z9

where the real structure matrix M is the same as the one in (1.5). Matrix M can be also
represented as M = T~ T, where T is a transition matrix from periods in arbitrary real ba-
sis of cycles fo to periods Uf(gb). In our basis matrix 7 is antidiagonal, and it follows, that

e KO =3 (—1)of () Aoy (0). (1.8)

I

Using this we are able to explicitly compute the diagonal matrix elements A* and to obtain

the explicit expression for the whole e~ X.

In [1, 2], to find the real structure, we used the knowledge of periods in some integral
basis of homology cycles (e.g. from [5]). However this basis is not always known.

In this paper we propose another method to compute the real structure matrix M and
apply it to the 101-dimensional moduli space of the quintic threefold complex structures
around the orbifold point to get an explicit exact result for the moduli space Kahler metric.
Together with the knowledge of the geometry of the 1-dimensional moduli space of the
quintic Kéhler structures computed via the mirror symmetry in [11] it presumably gives
the geometry of the full moduli space of Calabi-Yau quintic threefold.

In what follows we apply our method for the quintic threefold, where the huge sym-
metry group Ss x (Zs)? simplifies the computations. (Zs)® is called a group of phase
symmetries, it acts diagonally on C° and preserves Wy(x). It acts naturally on the invari-
ant ring ROQ, and this action respects the Hodge decomposition of Rg') . This allows to pick
a basis e,(x) in each of the Hodge decomposition components of ROQ, which consists of
eigenvectors of the phase symmetry group action, which simplifies our computations. The
S5, which acts by permutations of x; among themselves, allows to reduce the amount of
computations even further.

If we consider other hypersurfaces in weighted projective spaces, they have less sym-
metry then the quintic threefold. However, most of the considerations are true and allow
to perform explicit computations in the more general case, as we briefly discuss in the
conclusion 7.



2 Hodge structure on the middle cohomology of the quintic

First of all we notice, that the formula (1.3) may be written in the arbitrary basis of cycles
du € H3 (X7 Z)

e KO =, (8)CMw, (9),
o) = [ 0 (21)

and (C’_I)W =quNqy.
Now let us specialize to the case where X is a quintic threefold:

X={(xy:-:25) € P*| W(x,9) =0}, (2.2)

where 100
W(z,¢) = Wolw) + Y duer(x), Wolw) = 2] + 25 + af + 2 + 23, (2.3)

t=0

and e;(z) are the degree 5 monomials such that each variable has the power that is a
non-negative integer less then four. Let us denote monomials e;(x) = az? :cg2 x?mi“x? by its
degree vector t = (t1,--- ,t5). Then there are precisely 101 of such monomials, which can
be divided into 5 sets in respect to the permutation group Ss: (1,1,1,1,1), (2,1,1,1,0),
(2,2,1,0,0), (3,1,1,0,0), (3,2,0,0,0). In these groups there are correspondingly 1, 20,
30, 30, 20 different monomials. We denote eq(7) := e(1,1,1,1,1)(%) = 172237475 to be the
so-called fundamental monomial, which will be somewhat distinguished in our picture.
For this CY dim Hs(X) = 204 and period integrals have the form
an ) 4 Qu €T, d))

where ¢, € H3(X,Z) and Q, € Hs(C°\(W(x,¢) = 0),Z) are the corresponding cycles.
Cohomology groups of a Kihler manifold possess a Hodge structure H3(X) = H*?(X) @
H?>Y(X)® HY2(X) @ H%3(X). Period integrals measure variation of the Hodge structure
on H3(X) as the complex structure on X varies with ¢. This Hodge structure variation is
equivalent to the one on a certain ring which we will now describe.

3 Hodge structure on the invariant Milnor ring

We can consider Wy(x) as a singularity in C°. Then there is an associated Milnor (also

Jacobi) ring

(C[x17 . ,.1’5]
(O:W)

We will identify its elements with unique smallest degree polynomial representatives. For

Ry = (3.1)

the quintic threefold X its Milnor ring Ry is generated as a vector space by monomials
where each variable has degree less than four, and dim Ry = 1024. Polynomial Wy(z)
is homogeneous and, in particular, Wy(azx1,...,axs) = Wy(z1,...,z5) for o® = 1. This
action preserves Wy(x) and is trivial in the corresponding projective space and on X. Such



a group with this action is called a quantum symmetry @, in our case Q ~ Zs. () obviously
acts on the Milnor ring Ry.
Now we define a subring R(Cj? in the Milnor ring Ry,

RY = {e,(x) € Ry | eplax) = eu(z)}, o® =1, (3.2)

to be a Q-invariant part of the Milnor ring.

It is multiplicatively generated by 101 fifth-degree monomials e;(x) from (2.3). More
precisely, Rg) consists of elements of degree 0,5, 10 and 15, dimensions of the corresponding
subspaces are 1,101,101 and 1. This degree filtration defines a Hodge structure on ROQ.
Basically ROQ is isomorphic to H3(X) and the isomorphism sends the degree filtration to
the Hodge filtration on H?(X) [7]. Let us denote X% = gt Xpj as an extrinsic curvature
tensor for the hypersurface W (z, ¢) = 0 in P%. Then the isomorphism above can be written
as a map from R(? to closed differential forms in H3(X):

1 — Qi € H¥(X),
eu(®) = eu(x(y)) Xb Qe € H'(X) if || = 5,
en(r) = eu(2(y)) X X3 Qi € HY2(X) if || = 10,

l ’
e, () = 2l - X XTAT Yy = 502 € HOP(X).

(3.3)

The details on this map can be found in [7, 14]. We also introduce the notation e, (x) for
elements of the monomial basis of ROQ, where p = (1, . ps), wi € Z%, ey(x) = ], ="
and |p| = > g is the degree of e,(x). In particular, p = (3,3,3,3,3), that is e,(x) is a
unique degree 15 element of Rg?.

There is a Z2 phase symmetry group acting diagonally on C*: « - (21, -+ ,75) =
(11, -+, 5x5), a? = 1. This action preserves Wy = >, xf The mentioned above
quantum symmetry @ is a diagonal subgroup of the phase symmetries. Basis {e,(z)} is
an eigenbasis of the phase symmetry and each e, (x) has a unique weight. Note that phase
symmetry preserves the Hodge decomposition.

One additional important fact is that on the invariant ring ROQ there exists a natural
invariant pairing turning it into a Frobenius algebra [1, 17]:

eu(w) ev(z)
7ﬁ‘ V() (3.4)

Up to an irrelevant constant for the monomial basis it is 1, = 0,4,,,. This pairing plays

Nuw = Res

a crucial role in our construction.
Let us introduce a couple of differentials [23] on differential forms on C° : Dy =
d = dWy(z)A. They define the cohomology groups Hp, (C®). The cohomologies are only

J
nontrivial in the top dimension H]% i((CE’) ~ Rg. The isomorphism J has an explicit
description
J(eu(z)) = eu(x) d®z, eu(z) € Ro. (3.5)
We see, that Q = Zs naturally acts on H?Y, N (C®) and J sends the Q-invariant part R(?
to Q-invariant subspace H% N (C®)iny. Therefore, the latter space obtains the Hodge struc-

ture as well. Actually, this Hodge structure naturally corresponds to the Hodge structure
on H3(X).



The complex conjugation acts on H3(X) so that HP4(X) = H%P(X), in particular
H21(X) = H"“2(X). Through the isomorphism between ROQ and H3(X) the complex
conjugation acts also on the elements of the ring Rg2 as xe,(x) = pyep,—pu(x), where p, is a
constant to be determined. In particular, differential form built from e, (z) + pye,—u(z) €
H3(X,R) is real and p,p,—, = 1.

4 Oscillatory representation and computation of o, (¢)

Relative homology groups Hs(C>, Wy = L, ReL — 4oo0) have a natural pairing with
Q-invariant cohomology groups Hj) N (C?)iny:

(ep(x)ddz, TE) = / eu(z)eTV@Q5e Hy(C®, Wy = L, ReL — +00). (4.1)
T+

Using this we define two invariant homology groups? ngE’mv as quotient of H5(C% Wy = L
ReL — +o0) with respect to the subgroups orthogonal to H?, j[(((35)i]m,. Now we introduce

basises I‘ff in the homology groups f}{?’mv using the duality with the basises in H 15) . (C®)iny:

/i e, (2)eTV@ Py =5, (4.2)
I

m

and the corresponding periods
7 (0)i= [ calo)eTV O
o
05 () = 05,,(¢)

which are understood as series expansions in ¢ around zero.

(4.3)

Periods Jf(qﬁ) satisfy the same differential equation as periods w,(¢) of the holomor-
phic volume form on X. Moreover, these sets of periods span same subspaces as functions
of ¢. It follows, that we can define cycles Qf € J{gt’mv such that

/ e:FW(x’¢)d5x:/ Q:/ (157‘7;’ (4.4)
Q;:i: qM QM W(x7 (b)

and periods wk (¢) are given by the integrals over these cycles analogous to (4.3).

ap
With these notations the idea of computation of periods [4]

0y () = /F LTV P (4.5)
m

can be stated as follows.

To explicitly compute Uff(qb), first we expand the exponent in the integral (4.5) in ¢

representing W(zx, ¢) = Wo(x) + >, dses(x)

aff(gb):Z( i‘bs > /F iHe )7 eFVol) @by, (4.6)

m

*We are grateful to V. Vasiliev for explaining to us the details about these homology groups and their
connection with the middle homology of X.



where m := {ms}s, ms > 0 denotes a multi-index of powers of 15 in the expansion above.

We note, that o, (¢) = (—1)'“'02‘((}5), so we focus on 0,(¢) := o (¢).

For each of the summands in (4.6) the form [], es(x)™s d°z belongs to H% (C*)iny,

because it is Q—invariant. Therefore, we can expand it in the basis {e,(z )d%}dlmR
H?, N (C?)iny- Namely we always can find such a polynomial 4—form U, that

[es(z)md x—ZC z)d®z + D, U, (4.7)

S

where C),(m) are uniquely determined as coefficients of the expansion of the Lh.s. in the
basis e, (z) d°z. Therefore for the integral in (4.6) we obtain

/i H es(x)ms eFWo@) @5 = ), (m). (4.8)
Iy s

Writing (4.6) explicitly we have

Uu(¢) = (

Let mgs; = bn; + v;, v; < 5. Therefore we want to expand

)/F+Hazm ~Wo@) @y, (4.9)

K8

H a2tV @y = Z Cu( z)d°z + D, U. (4.10)
Note that
1
Dy (53:?”+k_4f(x2, ceyxs)dzg A A d:c5> =

_ [ximk + (n + k;“) xi("—l”’“] faa, - a5) Pz (4.11)

Therefore in D cohomology we have

5
L —4 _ L
Hx?nﬁ”l = — (nl 4 E ) x?(nl D+ Hm?mﬂ“ d’z, v; < 5. (4.12)
; =2

By induction we obtain

[Tt d®e = ()= ] <”" ; 1) [0 dx, vi <5 (4.13)

where (a), =I'(a +n)/I'(a).

Using (4.11) once again, we see that if any v; = 4 then the differential form is trivial
and the integral is zero. Hence, r.h.s. of (4.13) is proportional to e, (x) and gives the desired
expression. Plugging (4.13) into (4.9) and integrating over Tl‘f gives the answer

o) =@ = Y ] (“"5“) > (4.14)

n;>0 1 i med, s




where
Y = {m\ stsizfmi—i—ui}. (4.15)

Further we will also use the periods with slightly different normalization, which turn out
to be convenient

o) =7 (*‘i;l) (@) = 3 HF(ni—F “Z’é“) >

n;>0 1 meX, S

(4.16)

5 Computation of the Kahler potential

Pick any basis fo of cycles with integer or real coefficients as in (4.4). Then for the Ké&hler
potential we have the formula

e K = wi(d)CHwy (¢) (5.1)
in which the matrix C*¥ is related with the Frobenius pairing n as
Mg = W, (0)CH a5, (0). (5.2)

The last expression is due to [15, 16]. Let also T be a coordinate change matrix fo =
(Ti)l’ijE. Then M = (T~)7'T~ is a real structure matrix, that is MM = 1 and by
construction M doesn’t depend on the choice of basis fo. M is only defined by our choice
of I ff

In [1] we deduced from (5.1) and (5.2) the formula

e KO = ot (oI Mo, () = 0, A" 57, (5.3)

where 0" = 1, = 0,, p—. In that papers our method to compute the real structure matrix
M used the knowledge of the periods in some basis ¢, computed using the residue formula
and monodromy considerations. However, this method gives only 4 out of 204 linearly
independent periods for the quintic threefold X.

Therefore we propose here a different method to find M.

Lemma 5.1. Inverse intersection matriz A* in (5.3) is diagonal.

Proof. We may extend the action of the phase symmetry group to the action 2l on the
parameter space {¢s} such that W = Wy + > ¢ses(x) is invariant under this new action.
Each eg4(z) has a unique weight under this group action.

Action 2 can be compensated using the coordinate tranformation and therefore is
trivial on the moduli space of the quintic (implying that point W = W is an orbifold point
of the moduli space). In particular, e ™% = J ¥ 2N Q is 2 invariant. Consider

et =0,A"F, (5.4)

as a series in ¢4, ¢; Each monomial has a certain weight under 2. For the series to be
invariant, each monomial must have weight 0. But weight of 0,0, equals to ;1 — v and due
to non-degeneracy of weights of o, only the ones with p = v have weight zero. O



Thus, (5.3) becomes
=N A au(e)). (5.5)
o

Moreover, the matrix A should be real and, because A =n-M, MM =1 and Nuw = Outv,ps
we have

AR AR =1, (5.6)

Monodromy considerations. To fix the remaining 102 real numbers A* we use mon-
odromy invariance of e~ around ¢g = oco. Fix some t = (t1,1o,t3,t4,15), |[t| = 5 and let
®s|s£t,0 = 0, also consider only the first order in ¢;. Then the condition that period o, (¢)
contains only non-zero summands of the form ¢(™ ¢; implies that x = t+const-(1,1,1,1,1)
mod 5. For each t from the table below the only such possibilities are © = t and
p=p—1t =(3,33,3,3) —t, where t' denotes a vector obtained from ¢ by permuta-
tion (written explicitly in the table below) of its coordinates.
Therefore, in this setting (5.3) becomes
3
e K =" arloppml? + atldil? + appld,—ul? + O(@3), (5.7)
k=0

where we used periods ¢ from (4.16), a; = A'/ [, T((t; + 1)/5)* and ai, k = 0,1,2,3 are
already known [11]. This expression should be monodromy invariant. We consider the
effect of the transport of ¢g around co. From the formula (4.16) we have

Fy = 6k(¢r, d0) = g0k Fla,b;a+ b (¢0/5)°) + O(47),

N 1—a—b 5 6 (58)
= O_pft’(¢ta ¢0) = gpft’(ﬁt ®o F(l—-a,1-b2—a~— b‘ (¢0/5) ) + O(¢t)>
where g;, g,—¢ are some constants. Explicitly for all different labels t
£ p—t (a, b)
(2,1,1,1,0) | (3,2,2,2,1) | (2/5,2/5)
(2,2,1,0,0) | (3,3,2,1,1) | (1/5,3/5)
(3,1,1,0,0) | (0,3,3,2,2) | (1/5,2/5)
(3,2,0,0,0) | (1,0,3,3,3) | (1/5,1/5)
and (a)(b
F(a,b;clz) :== (?’)(c)() oFi(a,b;c; z). (5.9)
When ¢y goes around infinity
Fy F
=B 5.10
where (e.g. [19]?)
B 1 cla — b) — eimlath) 2s(a)s(b) (5.11)
- is(a i b) 2627ri(a+b)8(a)8(b) e7ri((L+b) [627”;0, + e2mib _ 2]/2 ) ’

3Translated from the Russian, translation edited and with a preface by Alan Jeffrey and Daniel
Zwillinger, with one CD-ROM (Windows, Macintosh and UNIX).



Here ¢(z) = cos(wz), s(z) = sin(nx). It is straightforward to show the following
Proposition 1.

ti+1\? 4—t;\2
at’&t|2 + ap—t"a'p—t”Q = atHF ( ! z > ]at|2 +a,—y HF ( z Z) ]ap_t/]2 (5.12)
; i

)

is B-invariant iff a; = —a,_y .

Due to symmetry we have a,_y = a,—; in each case. From (5.6) it follows that the
product of the coefficients at |o,|> and |o,_,|* in the expression for e~ should be 1:

! t;+1 2 4—t; 2
Apt-At:ap_twatHI‘< ;r > F( - > = 1. (5.13)

Due to reflection formula a; = =[], sin(7(¢; +1)/5) up to a common factor of 7. The sign

turns out to be minus for Kahler metric to be positive definite in the origin. Therefore

AF = (_l)deg(ﬂ)/S H7 <:u’l5+1> (5'14)

Finally the Kahler potential becomes

203 1
e K(9) — Z(_l)deg(u)/fJ H7 <’“Z5 >|0u(¢)‘27 (5.15)

pn=0

I'(z)
rl—=)-

where y(z) =

6 Real structure on the cycles I‘f

Let cycles v, € H3(X) be the images of cycles I'} under the isomorphism CFC;’inV ~ Hs(X).

Complex conjugation sends (2, 1)-forms to (1,2)-forms. Similarly it extends to a map-
ping on the dual homology cycles 7. In the real basis of cycles a version of the formula (5.3)
takes an especially simple form, because the real structure matrix M becomes an identity.

Lemma 6.1. Conjugation of homology classes has the following form: v, = puYp—pu,
where p = (3,3,3,3,3) is a unique mazximal degree element in the Milnor ring.

Proof. We perform a proof for the cohomology classes represented by differential forms.
For one-dimensional H3%(X) and H%3(X) it is obvious. Let

Qo1 = er(w) X Qi € HPH(X). (6.1)

Any element from HY“?(X) is representable by a degree 10 polynomial P(z) as follows
from (3.3) as
9271 = QLQ = P(.’L‘) X% Xgn lek € H1’2(X). (62)

The group of phase symmetries modulo common factor acts by isomorphisms on X.
Therefore, it also acts on the differential forms. Lhs and r.h.s. of the previous equation
should have the same weigth under this action, and weight of the 1.h.s. is equal —t modulo
(1,1,1,1,1). It follows that P(x) = p;e,—¢(x) with some constant p;. O

,10,



Using this lemma and applying the complex conjugation of cycles to the formula (5.3)
to obtain

e =" Ao P =) pi At o, ), (6.3)
Iz 1
it follows that A* = £1/p,. Now formula (5.15) implies

pu=l:[7<4_5’”>- (6.4)

7 Conclusions

The method for computing the Kéhler potential on the CY moduli space from [1] modified
in this paper does not require knowledge of periods in some real homology basis. Instead,
we use some simple monodromy considerations to fix the real structure matrix. Another
possible interesting method would be to determine this matrix by direct computation of
coefficients (6.4) of the complex conjugation in the basis e, (). In this paper we use our
modified method to compute Weil-Peterson metric on the whole 101-dimensional complex
structure moduli space of the quintic threefold around the orbifold point (5.15). Together
with the computation of the moduli space geometry of the Kahler structures through the
mirror map [11] it describes the Special geometry of all Ricci flat deformations of CY metric
in the region.

Though we present our result for the quintic threefold, our method should be applicable
to a bigger class of models, which are connected with Landau-Ginzburg description, in
particular hypersurfaces in toric varieties. At least in the case of the hypersurfaces in
weighted projective spaces, we can, in principle, compute the basis {e, ()} of ROQ such,
that the pairing 7 is antidiagonal, and the periods o,(¢). Indeed, it reduces to Jacobi
ideal computations. Using the connection of the pairing 7, with the natural pairing in
the cohomology H?(X) it is possible to prove (1.8) in this generality. Then the whole
computation of the Kahler potential is reduced to finding of the coefficients A,. One
way to do it is to restrict the expression to the different one-dimensional subspaces of the
moduli space and to require the monodromy invariance of the Kéahler potential, as we did
in the section 5 for the quintic threefold. In general, monodromy invariance translates to
properties of generalized hypergeometric functions in one variable.

The main problem of our method in general is to choose the convenient starting point
Woy(x) such, that Jacobi ideal computations are not be too complicated. We plan to address
possible generalizations in details in the future publications.
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