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1 Introduction

A convincing theory of fermion masses has proven elusive. Indeed, there is not even consen-

sus as to whether the pattern of quark, charged lepton, and neutrino masses is determined

by dynamics or is anarchical in nature. This confusion is partially driven by measure-

ments of highly incongruent masses and mixings between the quark and lepton sectors,

and hence most attempts to explain this disparate spectrum choose a family symmetry

that treats them differently. There is little evidence for such extended structures given

limited available data.

In this paper we study whether, due to an underlying see-saw mechanism generating

neutrino masses, a unified and family symmetric description of flavour is possible. Impor-

tantly, an enhanced symmetry of the system can lead to a universal texture zero (UTZ)

in all fermion mass matrices (Dirac and Majorana) that gives quantitative postdictions for

masses, mixings, and CP violation in good agreement with data, a significant advantage

over anarchical schemes.
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The structure of the underlying family symmetry we choose to study is motivated by

the observation that neutrino mixing is quite close to tribimaximal mixing, in which limit

the neutrino mass eigenstates are given by

νa = (νµ + ντ ) /
√

2

νb = (νe + νµ − ντ ) /
√

3

νc = (2νe − νµ + ντ ) /
√

6

(1.1)

This pattern follows if there is a Z2 × Z2 discrete group closed, in the νa,b,c basis, by

the generators1

S = Diag(−1,−1, 1), U = Diag(1,−1,−1)

which form a subgroup of S4 [1] or, more generally, of an SU(3) family symmetry. In the

pioneering works with A4 [2–5], only one of the Z2 is a subgroup of the family symmetry,

the other Z2 is generated accidentally due to the specific choice of representations of A4.

In any case, this Z2 × Z2 symmetry must be broken to obtain an acceptable value of the

leptonic ‘reactor’ angle θl13. More significantly, the symmetry must be strongly broken in

the quark and charged lepton sectors where the heaviest states are mainly aligned along

the third generation, leaving an approximate SU(2) symmetry. To obtain a universal

description of fermions it is therefore necessary that aspects of both the Z2 × Z2 and

approximate SU(2) symmetries be present. Many attempts at integration have been made

in the literature (see e.g. [6] for a recent review), including a host of model-independent

scans of finite groups [7–19] which impose specific breaking patterns down to the desired

‘residual’ symmetries in the quark and/or lepton sectors. Unfortunately these scans only

yield partially successful results for very large groups, and in any event do not attempt to

explain the dynamics of the purported symmetry breaking.

To achieve the desired patterns of mass and mixing we instead consider the group

∆(27) [20–23], which can be understood as the (Z3 × Z3) o Z3 semi-direct product sym-

metry (see [24] for a detailed discussion of the group properties of ∆(27)). We note that

the Z2 × Z2 neutrino symmetry above is not a subgroup of ∆(27); it appears indirectly

due to the specific vacuum alignments which arise naturally from ∆(27). Family symmetry

eigenstates transform as ψj → eiαjψj (j = 1, 2, 3) under the first Z3 with αj = 2πj/3

and as cyclic permutations under the last Z3. As we discuss in the appendix, spontaneous

symmetry breaking of either Z3 can readily occur through triplet familon fields acquiring

vacuum expectation values (vevs). For the case the vev is in the 〈θ3〉 ∝ (0, 0, 1) direc-

tion the symmetry is broken to the Z3 phase symmetry. Coupling of the θ3 familon to

fermions can lead to fermion masses for the third generation. For the case the vev is in the

〈θ123〉 ∝ (1, 1,−1) direction, the symmetry breaks to the Z3 permutation symmetry (up to

a rephasing, see appendix A) and a mass can be generated for a combination of fermion

generations, such as νb, along this direction. If there are several familons both types of vev

can arise and indeed a further familon can acquire vevs along the 〈θ23〉 ∝ (0, 1, 1) direction,

allowing for mass generation for fermions such as the νa state.

1Acting with S permutes νa → −νa, νb → −νb, νc → νc and similarly for U .
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Given this pattern of symmetry breaking (and including an additional cyclic shaping

symmetry) it is possible to have a ubiquitous structure for the Dirac matrices describing up

and down quarks, charged leptons, and neutrinos. This gives a UTZ in the (1, 1) direction

that results in excellent postdictions for quark and charged lepton masses. The light

neutrino mass and mixing structure is quite different because the right-handed neutrinos

can also have large Majorana masses and, for the case this is dominated by the third

generation mass, sequential dominance takes place [25–29] and the see-saw mechanism

suppresses the large third generation Dirac mass matrix contribution, allowing for the

light neutrino mass eigenstates to be approximately given by eq. (1.1). However, unlike

previous models of this type (see e.g. [30–32] and references therein), the (1, 1) texture zero

structure remains after the see-saw and leads to a specific departure from pure tribimaximal

mixing in the neutrino sector, and thus gives a non-zero θl13.

The organisation of the paper is as follows: in section 2 we discuss the Dirac matrix

structure needed to get acceptable masses and mixings for the charged fermions, concen-

trating on the maximally symmetric form. We show how, with an additional shaping

symmetry, the structure can be generated by coupling the fermions to the θ3, θ23 and θ123

familons. In section 3 we use the underlying symmetries to constrain both the Dirac and

Majorana mass matrices for the neutrinos, show that the (1, 1) texture zero persists for

the light neutrino mass matrix after a type-I see-saw, and discuss the generic form of the

resulting relations between masses and mixings. In section 4 we explore the consistency of

our model when continued to the UV by discussing the relevant discrete gauge anomalies

present, and ultimately show that our model as currently formatted is safe. Finally in

section 5 we show that, with a reasonable choice of the parameters of the model, a quanti-

tatively acceptable structure for the masses and mixing of quarks and leptons results. The

details of vacuum alignment are presented in the appendix.

2 Charged fermion mass structure

An important issue in the determination of fermion mass predictions is the scale at which

the prediction applies. If this is large, at the GUT or Planck scale, there will be significant

radiative corrections which depend on the structure of the theory up to this scale. In

this paper we assume the scale is indeed large and further that supersymmetry (SUSY)2

prevents radiative corrections from driving an unacceptably large electroweak breaking

scale (the hierarchy problem) and allows for precise gauge coupling unification. In this

case the radiative corrections due to gauge interactions are well understood for the quarks.

Due to the fact that the QCD coupling is much larger than the electroweak couplings, at

low scales the quark masses are enhanced by about a factor of 3 relative to the lepton

masses. However this enhancement is reduced by renormalisation group flow generated

by Yukawa couplings and this introduces considerable uncertainty due to the fact that in

2Our flavour model does not necessarily rely on the specifics of the MSSM, and indeed the additional

familons we employ are not part of its spectrum, but of course the physical parameters we study (and

ultimately fit) must be radiatively corrected to the UV in a model-dependent way. To do this we assume

the MSSM does play a role in our vacuum alignment, cf. appendix A.

– 3 –
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SUSY the top and bottom Yukawa couplings depend sensitively on tan β, the ratio of the

vevs of the two Higgs doublets in the MSSM [33–35]. In addition there may be large SUSY

threshold corrections [34].

Taking these corrections into account, quark and charged lepton masses and mixings

are consistent with a symmetric3 mass matrix structure of the form

MD
a ≈ m3


0 ε3

a ε3
a

ε3
a raε

2
a raε

2
a

ε3
a raε

2
a 1

 , ru,d = 1/3, re = −1 (2.1)

This describes the observed masses and mixings provided the parameters εa, a = u, d, e

differ between the up quark and down quark/charged lepton sectors with εu ≈ 0.05,

εd,e ≈ 0.15. This symmetric structure has a (1,1) texture zero and, in the quark sector,

implements the Gatto-Sartori-Tonin relation [36] for the Cabibbo angle given by

sin θc =

∣∣∣∣√md

ms
− eiδ

√
mu

mc

∣∣∣∣ (2.2)

for some phase δ. With δ ≈ π/2 this is in excellent agreement with the observed masses

and mixing angle. The factors ri implement the Georgi-Jarlskog mechanism [37] giving

mb = mτ , mµ = 3ms, me = 1
3md at the unification scale, which is also in good agreement

with the measured values after including radiative corrections [34].

2.1 Familon description

This structure can be obtained by coupling the fermions to familons θi, provided the

discrete family symmetry is supplemented by an underlying shaping symmetry. In writing

the effective Lagrangian preserving the underlying discrete ∆(27) symmetry we assume

that only triplet representations are present and that the higher dimensional operators

that arise are just those consistent with the exchange of triplets, ensuring that, at the non-

renormalizable level, there are no contractions involving the non-trivial singlets of ∆(27).4

The difference between the down quark and charged lepton matrices can be derived from

an underlying GUT structure. As an example of this consider the effective Lagrangian of

the form

Leff
a,mass = ψi

(
1

M2
3,a

θi3θ
j
3 +

1

M3
23,a

θi23θ
j
23Σ +

1

M3
123,a

(θi123θ
j
23 + θi23θ

j
123)S

)
ψcjH5 (2.3)

where a = u, d, e and

〈θ3〉 = v3(0, 0, 1), 〈θ23〉 = v23(0, 1, 1)/
√

2, 〈θ123〉 = v123(1, 1,−1)/
√

3 (2.4)

The restricted form of eq. (2.3) is determined by a simple ZN shaping symmetry under

which the fields with non-zero ZN are shown in table 1, along with the full symmetry

3We are interested in the maximum symmetry consistent with all fermion masses and mixing — hence

the choice of symmetric mass matrices. An underlying SO(10) symmetry may be the origin of this structure.
4This structure is found in orbifold string compactifications [38].
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Fields ψq,e,ν ψcq,e,ν H5 Σ S θ3 θ23 θ123 θ θX

∆(27) 3 3 100 100 100 3̄ 3̄ 3̄ 3̄ 3

ZN 0 0 0 2 -1 0 -1 2 0 x

Table 1. Fields and their family symmetry assignments. The field θX only plays a role in the vac-

uum alignment. Hence the only requirement of its ZN charge is that it be assigned so that the field

does not contribute significantly to the fermionic mass matrices — we have therefore left it generic.

assignments of our model. The field S is ZN charged and indirectly affects the Majorana

terms such that the UTZ is preserved (see section 3). The field Σ is associated with the

breaking of the underlying GUT with a vev ∝ B − L + κTR3 . It implements the Georgi-

Jarlskog relation [37] with re/rd = −3 for κ = 0. For the case κ = 2, plus domination by

the RH messengers, it gives re/rd = 3. Since the sign is irrelevant both cases are viable.

Here we concentrate on the case κ = 0 which gives rν = −1 and ru/rd = 1. We note that,

although we do not go into the details of the GUT breaking, we checked it can proceed as

normal from an underlying SO(10) down to the SM gauge group. The reasons for this are

that the H5 field that breaks SO(10) to the Pati-Salam group is neutral under the ZN and

that, although Σ has a non-trivial ZN charge, it can obtain a VEV from non-holomorphic

terms in the potential that are traces of the (ZN invariant) combination ΣΣ†, which arise

due to SUSY breaking, similarly to the terms responsible for the alignment of the familon

VEVs discussed in more detail in appendix A. Finally, the Mi,a are the heavy masses of

the mediators that have been integrated out when forming the effective Lagrangian. There

is a subtlety in that at least the top Yukawa coupling should not be suppressed and to do

this one must take θ3/M3 large, a known issue in this type of model [39]. This is the case

if θ3 is the dominant contribution to the messenger mass, and we assume here that this

applies to the u, d and e sectors. An alternative that solves this issue is through the use

of Higgs mediators as described in [40], although this is beyond the scope of the present

paper as it requires an entirely different set of superfields.

2.2 Mass matrix parameters and messenger masses

The parameters of eq. (2.1) in the (2,3) block are given by

ε2a =
〈θ23〉2〈Σ〉
M3

23,a

.
M2

3,a

〈θ3〉2
(2.5)

Referring to the ZN charges of the fields as Q, if the Q = 0/Q = −1 mediator mass ratio
M3,a
M23,a

is smaller in the up sector than in the down sector, one will have εu < εd. Of course

equality of the down quark and charged lepton matrix elements in the (1,2), (2,1), and (3,3)

positions requires that the expansion parameters be the same in the two sectors. This is

consistent with an underlying spontaneously broken SU(2)R symmetry because the down

quarks and leptons are both TR,3 = −1/2 states and, in SUSY, both acquire their mass

from the same Higgs doublet, Hd.

Here we consider the case that the messengers carry quark and lepton quantum num-

bers. For the messengers carrying left-handed quantum number, SU(2)L requires the up

– 5 –
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and down messenger masses should be equal. Thus the only way the expansion parameters

can be different in the up and down sectors is if the right-handed messengers dominate. In

this case, if the underlying symmetry breaking pattern is

SO(10)→ SU(4)× SU(2)L × SU(2)R → SU(3)× SU(2)L ×U(1) (2.6)

the down quarks and charged leptons will have the same expansion parameter after SU(2)R
breaking.

Up to signs and O(1) coefficients allowed by the ZN symmetry, the (1,j), (j,1) entries

of eq. (2.1) are given by

ε3a =
〈θ23〉〈θ123〉〈S〉

M3
123,a

.
M2

3,a

〈θ3〉2
, (2.7)

to be consistent with the form of eq. (2.1). Since they involve both the Q = 1 and Q = −1

mediator masses there is sufficient freedom for this to be the case.

2.3 Higher order operators

We may also be sensitive to terms of higher mass dimension in the operator product

expansion of the effective theory. The higher order operators allowed by the symmetries in

table 1 at the next order relevant to contributions in eq. (2.1) are of dimension eight, and

hence are suppressed by four powers of the relevant messenger masses:

LHO
a,mass = ψi

(
1

M4
23,a

(θi23θ
j
3 + θi3θ

j
23)ΣS +

1

M4
123,a

(θi123θ
j
3 + θi3θ

j
123)S2

)
ψcjH5 (2.8)

However, the relative magnitude of their contributions are of different orders in the mass

matrix. Assuming approximately universal messenger masses and given that the lowest

order contributions involving the vev of Σ are parametrically larger than those involving

S, one finds that

〈θ23〉〈θ23〉〈Σ〉
M3

23

∼ O(ε2),
〈θ23〉〈θ123〉〈S〉

M3
123

∼ O(ε3) =⇒ 〈θ23〉〈Σ〉
〈θ123〉〈S〉

∼ O
(

1

ε

)
(2.9)

where ε is the small parameter of eq. (2.1). The contributions ∝ ΣS in eq. (2.8) are

therefore also parametrically larger than those ∝ S2:

〈θ3〉〈θ23〉〈Σ〉〈S〉
M4

∼ 1

ε

〈θ3〉〈θ123〉〈S〉2

M4
(2.10)

Hence we neglect the contributions to the mass matrix generated by the S2 terms in the

numerical fits performed in section 5. Beyond the two terms discussed in this section, the

remaining higher order operators allowed by the symmetries have at least three additional

insertions of ∆(27) triplets, and their contributions are negligible.

– 6 –
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3 Neutrino mass structure

The neutrino sector is not as well understood as the charged fermions, as only two mass-

squared differences ∆m2
ij and the three leptonic mixings angles θlij are constrained to a

reasonable accuracy. A recent global fit to available neutrino data from the NuFit Collabo-

ration [41, 42] finds ∆m2
21 ' 7.5×10−5eV2, ∆m2

31 ' 2.524×10−3eV2 (central values, normal

mass ordering), and a leptonic PMNS mixing matrix within the 3σ confidence level of

|VPMNS|3σ ∈

 (0.800− 0.844) (0.515− 0.581) (0.139− 0.155)

(0.229− 0.516) (0.438− 0.699) (0.614− 0.790)

(0.249− 0.528) (0.462− 0.715) (0.595− 0.776)

 (3.1)

The leptonic CP violating phase is not constrained at the 3σ confidence level. Unlike

quark mixing, leptonic mixing is clearly large, non-hierarchical, and still consistent with

tribimaximal mixing up to obvious corrections in the (1,3) element. However, neutrinos’

fundamental nature as either Dirac or Majorana fermions, mass generation mechanism,

absolute mass values, and associated CP violating phase(s) are currently unknown. Fur-

thermore, as with the charged fermions, we must be concerned about radiative corrections

to neutrino mass and mixing parameters. The case where neutrino masses are generated

with a type-I see-saw mechanism and radiatively corrected with an MSSM spectrum is well

studied [43–47]. The authors of [47] conclude that, while a degenerate (or nearly degener-

ate) mass spectrum, large tan β, and/or special configurations of Dirac and Majorana CP

violating phases can conspire and contribute to substantive running for the mixing param-

eters, the general expectation is that ∆θνij ≡ θνij(ΛGUT)−θνij(ΛMZ) ∼ O(10−1−10−3), even

for rather large values of tan β. Given that we predict a hierarchical mass spectrum with

the lightest neutrino mass many orders of magnitude smaller than the rest, we take the

current 3σ bounds from NuFit to be valid in the UV as well.

Neutrino masses are more sensitive to radiative effects and can change by tens of

percent over many decades of evolution to the UV. In fact, in certain scenarios a normal

spectrum in the UV can look like an inverted spectrum in the IR [47]! Our solutions in

the charged fermion sector tend to favor larger values of tan β, and in this scenario the

heaviest mass eigenstate will split from the lighter ones during its RGE. This means that

our principal mass prediction, the ratio of the solar and atmospheric mass splitting, will

diminish in the UV. Using the most recent values from NuFit one finds (in the IR) that

∆m2
sol

∆m2
atm

∈ {.0266, .0336} (3.2)

although we estimate that
∆m2

sol

∆m2
atm

& .021 at the GUT scale, given the above discussion.

3.1 Familon description

We again find that this generic structure can be understood by coupling neutrino family

triplets to familons although, due to the see-saw mechanism, the neutrino mass matrix

will obviously have a different structure than the charged fermions. In the context of

– 7 –
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an underlying SO(10) the neutrinos must have the same form of the Dirac Lagrangian,

eq. (2.1). Taking the case κ = 0 gives rν = −1.

On the other hand, the Majorana mass matrix requires lepton number violation. In

the context of the familon structure introduced above it is an obvious choice to assume

that the lepton number violation occurs through the vev of a further familon triplet field

θ carrying lepton number −1. Then the Lagrangian terms responsible for the Majorana

mass, consistent with the underlying ∆(27) symmetry, are given by

LνMajorana mass =ψci

(
1

M
θiθj+

1

M4
[c1θ

i
23θ

j
23(θaθaθa123)+c2(θi23θ

j
123+θi123θ

j
23)(θaθaθa23)]

)
ψcj

(3.3)

Due to the different mediators (and couplings) we have allowed for different coefficients

c1, c2 of the two components of the second term. In this form, we note the absence of terms

with two θ123 familons, which would destroy the UTZ (the field S which appears in the

Dirac terms only is indirectly responsible for this absence). The higher order operators

allowed by the symmetries have at least three additional insertions of fields, and their

contributions are again negligible. The lowest order operator with two θ123 familons in

particular, appears with one additional θ23 familon and S3.

3.2 Qualitative analysis of neutrino masses and mixing

The high inverse power of the mediator mass associated with the second term of eq. (3.3)

allows the hierarchical structure in the Majorana mass matrix to readily be much greater

than that in the Dirac matrix. In this case the contribution to the LH neutrino masses via

the see-saw with νc3 exchange is negligible and thus the mass matrix structure giving mass

via the see-saw to the 2 heaviest neutrinos is effectively two dimensional. The Majorana

mass matrix is defined in the (ν1, ν2) basis and the Dirac mass matrix is in the (νb, νa)(ν1, ν2)

basis where νa,b are given in eq. (1.1). In this basis (and taking κ = 0) the application of

the type-I see-saw generates a simple matrix of two complex parameters:

MMajorana∝

(
0 c2

c2 c1+2c2

)
, MDirac∝

(
0
√

3/2

1 1+s

)
=⇒︸︷︷︸

see-saw

Mν ∝

(
0 −

√
3/2c2

−
√

3/2c2 c′1

)
(3.4)

where c′1 ≡ c1 − 2 c2 s with c1 � c2 and s ∝ 〈Σ〉〈θ23〉/(〈S〉〈θ123〉). From this one easily

finds that the ratio of neutrino masses is given by

m2

m1
≈ 3

2

c2
2

c′,21

,
c2

c′1
≡ |c2

c′1
| eiη, (3.5)

defining the phase η, and that the heaviest neutrino mass eigenstate is

ν1 ∝ νa − eiη
√
m2

m1
νb (3.6)

– 8 –
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Thus the (1,1) texture zero gives rise to the following mixing sum rules:

sin θν13 ≈
√

m2

3m1
(3.7)

sin θν23 ≈ |
1√
2
− eiη sin θν13| (3.8)

sin θν12 ≈
1√
3

(3.9)

where the ν label indicates that only the contribution from the neutrino mixing matrix

has been included. Apart from the solar angle θν12, it is clear that the mixing deviates

from the tribimaximal form, but now with too large a value for the reactor angle after

inputing explicit experimental values for m1,2 in eq. (3.7). We will show in section 5 that

an excellent value for θl13 is obtained after including the contributions predicted from the

charged lepton sector, which also affect the solar and atmospheric mixing angles. While we

focus on an exact numerical approach in this paper, a detailed analytic discussion of these

effects, including the relationship between η and the standard Dirac CP violating phase

δCP, may be found in [48].

4 Discrete gauge anomalies

A long-standing argument of Krauss and Wilzcek [49] holds that apparent global discrete

symmetries (Abelian Z or non-Abelian D), e.g. R-Parity in standard SUSY models or

our family symmetries, must be local/gauged in order to avoid complications with quan-

tum gravity (wormhole) effects. Such discrete gauge symmetries should be anomaly free

and the resultant constraints for the case of Abelian discrete symmetries were determined

in [50–52]. The analogous computation for non-Abelian discrete symmetries has since been

formalized [24, 53, 54] with a path-integral approach,5 concluding that the only relevant

anomalies in the IR assuming a fully massless spectrum are mixed non-Abelian gauge (G)

and mixed gravitational (g) anomalies:

D −G−G, D − g − g, Z −G−G, Z − g − g (4.1)

There are no IR anomaly constraints of the form [Z]2 U(1)Y and [U(1)Y ]2 Z because the

corresponding discrete charge α of any group element transformation is always defined

modulo N , the order of the group element of the transformation, and as the hypercharges

of the U(1) symmetry groups can always be rescaled, one can do so such that this modulo

constraint is satisfied.

Furthermore, cubic discrete anomalies and mixed discrete anomalies of the form

Z −D −D or D−Z−Z can be avoided by arguing charge fractionalization in the massive

particle spectrum [50–52, 54, 55].6

5We use the notation of [54] in the equations that follow.
6Failure to satisfy the cubic constraints can give valuable information about the ultimate order required

of the Z and/or D groups.
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The authors of [24, 53, 54] conclude that the only difference between calculating the

anomaly coefficient for an Abelian ZN or non-Abelian D discrete symmetry is that, in the

latter case, one must calculate the Abelian coefficients ZN i for each generator hi of D.

We call the matrix representations of these elements U , and they live in some irreducible

representation of D labeled by d(f):

U(d) = eiα(d) = ei2π τ(d)/N (4.2)

The condition for a discrete symmetry transformation to be anomaly-free is not uniquely

determined, but is instead only determined modulo N i. Via a standard derivation, one

can simultaneously read off the constraint on the anomaly coefficient for Z − G − G or

D −G−G:

Z/D −G−G :
∑

r(f),d(f)

tr
[
τ(d(f))

]
· l(r(f))

!
= 0 mod

N

2
(4.3)

The notation is such that the summation is only over chiral fermions living in representa-

tions that are non-trivial with respect to both G and D. l(r(f)) is the Dynkin index for

a fermion living in a representation r(f) of the gauge group. It is normalized such that

l(M) = 1/2, 1 for SU(M) and SO(M) respectively. Of course, Abelian discrete symmetries

only have singlet irreducible representations. Here it is clear that tr
[
τ(d(f))

]
is a charge

(called δ(f) in [54]), and from eq. (4.2) one notes that it can be written in terms of a

(multi-valued) logarithm:

tr
[
τ(d(f))

]
= N

ln det U(d(f))

2πi
(4.4)

For the Abelian case, tr
[
τ(d(f))

]
→ q(f), with q(f) the standard charge of the fermion.

From eq. (4.3) and eq. (4.4) we conclude that anomalous transformations correspond to

those with det
[
U(d(f))

]
6= 1.

The mixed gravitational anomaly constraints are similarly straightforward and are

given by:

D − g − g :
∑
d(f)

tr
[
τ(d(f))

]
!

= 0 mod
N

2
(4.5)

Z − g − g :
∑
f

q(f) =
∑
m

q(m) · dim R(m) !
= 0 mod

N

2
(4.6)

where R(m) denotes the representations of all internal symmetries and the sum is such that

each representation R(m) only appears once.

4.1 Anomalies in the UTZ model

Turning to our universal texture zero model, we observe from table 1 that we only ever

assign fields to the (anti-)triplet or trivial singlet representations. Yet from table 2 we

see that determinants over these representations are unit in ∆(27). As the summation in
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∆(3N2) 1k,l 3[k][l]

det(h2) ωk 1

det(h1) ωl 1

det(h′1) ωl 1

Table 2. Determinants over the generators of ∆(3N2) where N/3 ∈ Z, for all irreducible represen-

tations of the group. ω is the cubic root of unity, ω3 = 1, while h1, h′1 and h2 simply denote the

generators of the group. Finally, the k, l indices simply indicate different irreducible representations

— see [24] for a detailed discussion of the group properties of ∆(27).

eq. (4.3) and eq. (4.5) is only over fields that are non-trivial with respect to both D and G

(or just D for the gravitational anomalies), and since the coefficients are always ∝ det(h),

we can make a strong claim: we are free of all anomalies from the triangles D−G−G and

D − g − g, regardless of the form of the gauge group G.

This means that we only have to be concerned with Z−G−G and Z−g−g anomalies,

yet these also turn out to be trivially met, given the effective theory we have outlined. For

one, in a non-supersymmetric model, the only contributing fermions are the triplets of

quarks, charged leptons, and neutrinos. These are not charged under the ZN shaping

symmetry, and thus contribute a vanishing anomaly coefficient. For the supersymmetric

case we would in principle have to include the fermionic partners to the familons θi, S,

Higgs(es) Hu,d and the additional Σ multiplet. However, we expect these fields to be heavy

at the relevant scale of our effective Lagrangians, and hence they already ‘contribute’ to

the massive state contributions on the r.h.s. of our anomaly equations.7 In order to check

for anomaly cancellation above the mass scale of these supersymmetric bosons one would

also have to construct the full theory including Froggatt-Nielsen type messenger states,

which is beyond the scope of our discussion.

5 Quantitative fit to the data

We now turn to a detailed numerical analysis of the associated phenomenology. The core

predictions of our model are complex symmetric mass matrices with a universal texture

zero in the (1,1) position for all fermion families. As our model cannot determine the overall

mass scale of the fermions, we work with matrices that have been rescaled by a factor from

the (3,3) position that provides the bulk of the contribution to the third (heavy) generation.

For the Dirac masses, one obtains lowest order matrices of the form

MD
i ≡

MD
i

c
'

 0 a ei(α+β+γ) a ei(β+γ)

a ei(α+β+γ) (b e−iγ + 2a e−iδ) ei(2α+γ+δ) b ei(α+δ)

a ei(β+γ) b ei(α+δ) 1− 2a eiγ + b eiδ

 (5.1)

7The Higgsinos are trivially charged under the family symmetries we employ and thus would not con-

tribute regardless of the relevant scale.
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where i ∈ {u, d, e, ν} and where a′i = v123v23〈S〉√
6M3

123,a

, b′i =
rav2

23〈Σ〉
2M3

23,a
, ci =

v2
3

M2
3,a

and ru,d,e,ν =

(1, 1,−3,−3)/3. The phases α, β are the those allowed from our generic complex vacuum

alignment vectors while γ and δ are the implicit phases of our complex mass matrix:

a′

c
= |a

′

c
| eiγ ≡ a eiγ , b′

c
= |b

′

c
| eiδ ≡ b eiδ (5.2)

The form of the mass matrix is the same for the heavy singlet Majorana neutrinos, but the

overall mass scale is different. We relabel the analogous free parameters as a→ y, b→ x,

c → M (the mass scale in eq. (3.3)), γ → ρ, δ → φ, and keep the phases from vacuum

alignment labeled as α and β.

In the quark and charged lepton sectors there are two mass ratios (a,b) and two phases

(γ,δ) for each family (u, d, e), and an additional two phases (α,β) from vacuum alignment.

This gives (2 + 2) × 3 + 2 = 14 parameters, which reduces to 10 parameters if we assume

an underlying GUT relation in the Georgi-Jarlskog form relating the down quarks to the

charged leptons. Six of these are phases, not all of which are physical. In fact, only two

phases are relevant at leading order [56], which we take to be γd and δd, leaving only six free

parameters (including two phases). Thus the 3 mixing angles and CP violating phase in the

CKM matrix as well as the four quark and two charged lepton mass ratios are determined

by just four real parameters and two phases.

The number of parameters needed in the neutrino sector is significantly reduced in

the sequential limit where the νc3 exchange contribution to the see-saw masses is negligible.

There are just two parameters (including a phase) needed in this case (cf. eqs. (3.4)–(3.6)),

plus a parameter setting the scale of neutrino masses. Thus, taking into account the

contribution of the charged leptons, the leptonic mixing angles, atmospheric and solar mass

differences, and CP violating phases are determined by two real parameters and a phase. In

summary, we see that both the charged fermion and neutrino sectors are over-constrained;

18 measurable quantities are determined by nine parameters, giving nine predictions at

leading order in the operator expansion.

Having parameterized the mass matrices, one must then reliably calculate the associ-

ated mixing matrices. The procedure we follow is enumerated below:

1. Find the matrix with columns as eigenvectors of M2 ≡M ·M†.

2. Diagonalize M by defining M̂ = U † · M · U?.

3. Define P = diag
(
e−i arg[M̂11]/2, e−i arg[M̂22]/2, e−i arg[M̂33]/2

)
. U can now be made

generic by U → U ′ = U · P .

4. Diagonalize the combination M2 by calculating U ′† · M2 · U ′.

5. CKM matrices are now calculated as V †U · VD, where V = U ′.

6. For the leptonic mixing the only thing that changes is that M→M ·MM,−1
νR · MT

because of the see-saw. Then VPMNS = V †e · Vν .
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Universal Texture Zero Input Parameters

(1/c) × (a, b)e (a, b)u (a, b)ν (x, y) dd

L.O. Fit (.0042, -.0545) (-.00014, .003) (4, 11.8)×10−5 (12.75, 4.055) ×10−13 N.A.

H.O. Fit (.00416, -.0566) (-.00014, .00275) (4, 11.8)×10−5 (12.75, 4.055) ×10−13 .0145

(γ, δ)e (γ, δ)u (γ, δ)ν (ρ, φ) ψd

L.O. Fit (.13, 1.83) (0, 0) (2π/5,0) (0,−2π/5) N.A.

H.O. Fit (0, 2) (0,0) (2π/5,0) (0,−2π/5) π

Table 3. Free parameters used for fitting the fermionic mass and mixing spectrum. As discussed in

the text, only nine parameters are relevant to constraining the low-energy flavour phenomenology

at lowest order in the operator product expansion. The mass and phase parameters of the down

quarks are implied by the corresponding values for the charged leptons. The parameters dd and ψd
are only relevant to fits including the higher order operator ∝ ΣS in eq. (2.8), which sources an

independent entry analogous to eq. (5.2) labeled d′/c ≡ deiψ. The subscript d indicates that this

contribution is only turned on for the down quarks (and hence also the charged leptons). Note that

the smallness of the Majorana neutrino parameters is compensated by a parameter determining

their overall mass scale, which is not determined in our model.

We note that this procedure is consistent with unitary rotations in the Standard Model

Yukawa8 sector and charged-current terms of the form:

uIL → VUuL eIL → VeeL (5.3)

dIL → VDdL νIL → VννL (5.4)

where {u, d, e, ν}L are all left-handed family triplets.

5.1 Results of numerical fit

We have performed a fit where all of the up-quark phases are turned off and both γd and

δd are left free, as is consistent with [56]. This automatically also sets the corresponding

phases for the charged leptons. The values of all of the free parameters are given in table 3,

and the corresponding predictions for the mass ratios, mixing angles, and CP violating

phases are given in tables 4–5 where we find excellent agreement with data (we use [34] for

our comparisons and do not assume specific values for tan β, threshold corrections, etc.).

Contours of these predictions over planes representing our degrees of freedom are given

in figure 1 for the charged leptons and up quarks assuming no higher order corrections

as discussed in section 2.3. The down quark contour is implied by the charged leptons.

Figure 1 also includes contours for both the CKM Jarlskog and acceptable bands of CKM

mixing after fixing (a, b)e,u but before fixing γd and δd.

8Our low-energy neutrino mass term is of the Majorana form LMν ∼ ν̄LMν ν
c
L.
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Figure 1. Contours from our lowest order fit. Top left : contours of the charged lepton mass fit.

Black contours represent the bounds for the ratio of mµ/mτ whereas blue contours represent those

for me/mτ , both taken from [34]. The plot is at a fixed mτ/mτ = 1. Red dashed lines represent

our solution. Top right : the same, but for up quarks. Bottom left : the contours of the Jarlskog

Invariant over the plane of the two free phases left in this fit after fixing the mass ratios (a, b)e,u.

The blue plane represents the minimum JCKM allowed in [34], and it is clear that portions of the

parameter space (our solutions) can fit this. Bottom right : contours of acceptable values of |Vij |CKM

and the CKM Jarlskog (interior of blue circle), also after fixing (a, b)e,u. The red line is the Cabibbo

angle, and regions exterior to the black circle reflect acceptable values for the (1,3) element. The

relative magnitudes of the (1,3) and (3,1) elements are not successfully resolved at lowest order in

our fit. Higher order corrections as discussed in the text remedy this.

We also performed simple goodness-of-fit tests for both the ‘L.O’ and ‘H.O Predictions’

listed in tables 4–5, treating central values averaged between the listed uncertainty bands

as our ‘observations.’ We find χ2
d.o.f. < 1 per degree of freedom in both cases9 despite

the additional parameters involved in the H.O. fit, thus demonstrating the quality of our

results. We now discuss the quark and lepton sector mixings explicitly.

9We do not include the leptonic CP violating phase in the fit as it is not constrained at the 3σ level and

thus constitutes a true prediction of the model.
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Uncertainties on UV Mixing Observables

(µ = MX) sin θq12 sin θq23 sin θq13 sin δqCP sin θl12 sin θl23 sin θl13 sin δlCP

Upper .228 .0468 .00508 1.000 .588 .800 .155 -

Lower .226 .0220 .00169 .186 .520 .620 .139 -

Universal Texture Zero Mixing Predictions

(µ = MX) sin θq12 sin θq23 sin θq13 sin δqCP sin θl12 sin θl23 sin θl13 sin δlCP

L.O. Prediction .226 .0191 .0042 .561 .554 .778 .152 -.905

H.O. Prediction .226 .0313 .00307 .788 .543 .751 .153 -.925

Table 4. Top: uncertainty estimates for mixing observables in the UV. For the quarks, the

upper and lower values are estimated by taking overall error bands calculated by running the

observables (with propagated experimental uncertainty) at various choices of tan β and other RGE

input from [34]. We take the 3σ global bounds from NuFit as extrema for the leptons, within

which the leptonic CP violating phase is not constrained. Bottom: predictions of mixing angles

and CP violating phases extracted from the lower and higher order fits in eq. (5.5)–eq. (5.8). Our

predictions are within the estimated uncertainty bounds.

Uncertainties on UV Mass Ratios

(µ = MX) me/mτ mµ/mτ mu/mt mc/mt md/mb ms/mb ∆m2
sol/∆m

2
atm

Upper .00031 .061 8.91× 10−6 .0027 .0012 .021 .0336

Lower .00022 .048 1.68× 10−6 .00084 .00035 .008 .021

Universal Texture Zero Mass Predictions

(µ = MX) me/mτ mµ/mτ mu/mt mc/mt md/mb ms/mb ∆m2
sol/∆m

2
atm

L.O. Prediction .00031 .055 7.16× 10−6 .0027 .00090 .020 .0213

H.O. Prediction .00026 .049 7.89× 10−6 .0025 .0010 .020 .0213

Table 5. Top: uncertainty estimates for mass ratios in the UV. Bounds for the quarks are again

taken from the running calculated in [34] which includes a propagated experimental uncertainty,

without assuming specific RGE input. We estimate the neutrino mass squared difference in the

UV from [47]. Bottom: predictions of mass ratios obtained from the numerical fits described in the

text, both including (H.O.) and not including (L.O.) a higher order operator. It is again clear that

our predictions fit well within the uncertainty bounds.

5.1.1 CKM matrix

The CKM mixing angles and Dirac CP-violating phase we predict, using only the lowest

order parameters and applicable at the GUT scale, are given under ‘L.O. Predictions’ in

table 4 and imply that the full CKM matrix and Jarlskog invariant are given by:

|VCKM|LO =

 .974 .226 .00420

.226 .974 .0191

.00248 .0194 .9998

 , J LO
CKM = 9.898 × 10−6 (5.5)

– 15 –



J
H
E
P
0
3
(
2
0
1
8
)
0
0
7

where it is clear that the Cabibbo sector in the (1,2) block is essentially perfect, the other

off-diagonal elements are of the correct order of magnitude, and the Jarlskog invariant is

successfully above its minimum value of ∼ 9.8 × 10−6. On the other hand the (2,3) and

(3,2) elements are a bit low and the (3,1) element is too small — it should be approximately

twice the (1,3) element. While elements involving the third row or column are particularly

sensitive to renormalization group running, being small, they are also sensitive to higher

order corrections. Thus it is of interest to determine whether these discrepancies can be

eliminated by the leading higher order contribution discussed in section 2.3. We find that

by only turning on the d′ contribution to the down (and therefore also charged-lepton)

mass matrices we can do so, but with the same number of free phases (we need one fewer

from the lowest order parameter set). Choosing dd = .0145 and its phase ψd = π, one

achieves the mixing angles and CP phases listed under the ‘H.O. Prediction’ of table 4,

which implies the following CKM matrix and Jarlskog invariant:

|VCKM|HO =

 .974 .226 .00307

.226 .974 .0313

.00574 .0309 .9995

 , J HO
CKM = 1.665 × 10−5 (5.6)

Note that the CKM elements, and in particular the relative magnitude of the (1,3)

and (3,1) elements, are now in good agreement with data considering the uncertainties

associated to the RG running to the GUT scale.

5.1.2 PMNS matrix

As discussed in section 3, we expect the PMNS observables to be largely insensitive to RG

running to the GUT scale, and so we wish to compare our results to the available NuFit

data in eq. (3.1). Taking only the lowest order parameter set, the leptonic mixing angles

and Dirac CP phase are given under the ‘L.O. Prediction’ of table 4, implying a PMNS

matrix and Jarlskog invariant of

|VPMNS|LO =

 .823 .547 .152

.400 .499 .769

.404 .672 .621

 , J LO
PMNS = −.0304 (5.7)

which is in excellent agreement with observation. Of course, the PMNS sector is also

sensitive to the higher order correction discussed above, which affects the charged lepton

mixing matrix. Upon turning on d′, the predictions become:

|VPMNS|HO =

 .830 .536 .153

.405 .534 .742

.384 .654 .652

 , J HO
PMNS = −.0311 (5.8)

which is still in total agreement with eq. (3.1). We conclude that our UTZ model realizes

very successful predictions across the spectrum of fermionic mass and mixing data.
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Figure 2. Predictions obtained for VPMNS observables upon constraining the phase dependence of

these observables with the 3σ data from NuFit and assumptions described in section 5.2. In this

example we only utilize the L.O. UTZ Lagrangian.

5.2 Error determination

We have seen that there are nine predictions involving the eighteen measurable quantities

in the leading order fit and it is, of course, of interest to determine the errors in these

predictions. However, mainly due to the sizeable uncertainties associated with the con-

tinuation of the quark and charged lepton observables to the GUT scale that depend on

unknown structure above the electroweak scale, we cannot determine the errors reliably in

these sectors. The continuation to high scales is more reliable in the neutrino sector and,

despite the fact it is also sensitive to the charged lepton sector, we have attempted to get

a rough estimate of the errors on our predictions for PMNS observables.

Of special interest is the constraint on the Dirac CP violating phase, given that it

is not strongly constrained by data at the present. This phase is particularly sensitive

to the phases in the neutrino sector: γν , δν , ρ and φ. To preserve a reasonable value

for the neutrino mass ratios there is a strong correlation needed, namely γν = −φ. The

remaining three phases which determine the Majorana and Dirac CP violating phases are

also constrained by the fit to the observables, and the resulting limitation on their values

simultaneously limits the variation of the CP phases. To illustrate this we show in figure 2

the variation of the Dirac CP violating phase as γν = −φ is varied over its 3σ allowed

range, keeping ρ and δν fixed. This corresponds to a variation of the Dirac phase in the

range sin δlCP ∈ (−1.0,−0.82).

Of course, a serious evaluation of the errors should involve the error correlation with

the other phases and parameters, but this is beyond the scope of this analysis. Also shown

in figure 2 are the variations of the mixing angles as γν varies. In accordance with the form

of eqs. (3.7)–(3.9), only sin θl23 varies appreciably.
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6 Summary and conclusion

Most attempts to determine the pattern of fermion masses and mixings have assumed that

there are separate symmetries describing the quark and the lepton sector in order to explain

the disparate nature of quark and lepton mixing angles. However we have stressed that

this may not be the case if the neutrino masses are generated by the see-saw mechanism.

Exploiting this possibility we have constructed a viable model based on an egalitarian

discrete symmetry model where all fermions and additional familons are triplets under the

finite group, here ∆(27). As a result, the Dirac masses of both the quarks and leptons

have the same form, albeit with different expansion parameters. The model is consistent

with both an underlying stage of Grand Unification and the absence of discrete family

symmetry anomalies.

A feature of the model is the appearance of a texture zero in the (1,1) position not

only in the Dirac masses of all sectors, but also in both the heavy and light Majorana

neutrino mass matrices. Combined with a symmetric mass matrix structure this leads to

the successful Gatto-Sartori-Tonin relation for the Cabibbo angle. Assuming the Georgi-

Jarlskog GUT structure for the down-quark and charged lepton mass matrices, the texture

zero gives an excellent prediction for the electron mass. Finally in the neutrino sector the

texture zero requires a departure from pure tribimaximal mixing, leading to a non-zero

value for θl13 consistent with the observed value.

In a detailed numerical analysis we show that the present measurements of fermion

masses and mixings, up to the uncertainties in the radiative evolution of these parameters

to the UV, are realized alongside of predictions for the Dirac leptonic CP violating phase.

Overall, with just 9 free parameters, excellent agreement is found with the 18 observables

in the charged fermion and neutrino sectors. As such it provides some evidence in favour

of a dynamical rather than anarchical origin for fermion masses and mixings.
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A Vacuum alignment

In what follows we consider the minimum number of triplet familon fields that can lead

to the desired vacuum alignment. These are the four anti-triplet fields θ3,23,123 and θ in-

troduced above together with a fifth triplet field θX . Assuming the underlying theory is

supersymmetric we should include in the potential only those terms consistent with (spon-

taneously broken) SUSY. For the case the associated familon superfields are R singlets
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there are no cubic terms in the superpotential involving only familon fields and hence, in

the supersymmetric limit, no quartic terms. After SUSY breaking the scalar components

of the superfields acquire SUSY breaking masses, giving the potential

V1(θi) = m2
i |θi|2 (A.1)

Radiative corrections can drive m2
i negative, triggering spontaneous breaking [45] of the

family symmetry at a scale close to the scale at which m2
i is zero, and this may happen for

all the familon fields.

These are the dominant terms that set the scale for the familon vevs. However, being

SU(3)f invariant, these terms do not align the vevs in the manner required. To do that we

need to consider terms allowed by the discrete symmetry that are not SU(3)f symmetric.

In studying this it is necessary to determine which couplings dominate. In the context

of a supersymmetric UV completion the leading quartic couplings come from F-terms

associated with trilinear couplings to heavy mediators in the superpotential and, due to

F-term decoupling, the couplings are small, suppressed by the square of the SUSY breaking

scale over the mediator scale (m0/M)2, and depend sensitively on the mediator spectrum.

As discussed above, we allow only triplet mediators and consider the most general set of

effective couplings that can arise from the exchange of such mediators.

Consider the case that the dominant coupling for the θ3,123 fields is the self-coupling

term

V2(θi) = hi(θi)
2
(
θ†i
)2
. (A.2)

Minimising the potential10 one sees that these terms align the field vevs, the direction

depending on the sign of h:

〈θi〉 =

 0

0

1

 vθ, hi < 0, 〈θi〉 =
1√
3

 1

1

1

 vθ, hi > 0

These are in the directions required for θ3 and θ123!

To complete the model it is necessary to arrange the alignment of the θ23 field vev.

The field θX can readily be made orthogonal to θ123 if its dominant effective coupling is

V3 = k1θX,iθ
†i
123θ123,jθ

†j
X , k1 > 0. (A.3)

However this term does not distinguish between (0, 1,−1)/
√

2 and (2,−1,−1)/
√

6 (up to

permutations of the elements). The latter vev is chosen if the dominant term sensitive to

the difference is

V4 = k2m0θ
1
Xθ

2
Xθ

3
X (A.4)

Although a cubic term in the superpotential involving the θX superfield is forbidden by R-

symmetry, it is generated with coefficient m0 after SUSY breaking. Then, in supergravity,

10For clarity we assume real vevs here. The general case is presented below.
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the cubic term in the potential appears with k2 = O(m0/M) where m0 is the gravitino

mass. With this the final alignment of θ23 is driven by the term

V5 = k3θ23,iθ
i
Xθ
†j
23θ
†j
X + k4θ23,iθ

†i
3 θ3,iθ

†i
23, with k3 > 0 and k4 < 0 (A.5)

To summarise, the potential

V =
∑

i=3,123

(V1(θi) + V2(θi)) + V3 + V4 + V5 (A.6)

aligns the fields in the directions

〈θ3〉 =

 0

0

1

 v3, 〈θ123〉 =
1√
3

 eiβ

eiα

−1

 v123,

〈θ23〉 =
1√
2

 0

eiα

1

 v23,
〈
θ†X

〉
=

1√
6

 2eiβ

−eiα

1

 vX (A.7)

where we have now included the relative phases explicitly. The vevs vi may also be complex.

Note that further quartic terms allowed by the symmetries may be present but they should

be subdominant to preserve this alignment. It is straightforwrd to assign a ZN charge to

θX so that it does not contribute significantly to the fermion mass matrix.11

Finally, it is necessary to align the θ familon that carries lepton number -1. This is

readily the case through the potential

Vθ = V1(θ) + V2(θ) + k5θ3,iθ
†iθiθ

†i
3 , k5 < 0 (A.8)

Open Access. This article is distributed under the terms of the Creative Commons
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