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1 Introduction

Since its proposal in 1996 [1], the type IIB matrix model has been studied from various

angles as a possible nonperturbative formulation of superstring theory. Formally it re-

sembles the proposals in refs. [2, 3] in the sense that all the models can be obtained by

dimensionally reducing 10D N = 1 super Yang-Mills action to lower dimensions. From

this point of view, the type IIB matrix model may be viewed as an extreme case since

the dimensional reduction is conducted down to d = 0. This makes the model distinct in

that not only space but also time is treated as an emergent concept that appears from the

matrix degrees of freedom, and consequently the model enjoys manifest Lorentz invariance.

There is also a strong evidence that the model can reproduce the perturbation theory of

type IIB superstring theory to all orders in the string coupling constant [4].

In the literature, the type IIB matrix model was studied mostly after making a “Wick

rotation” A0 = iA10, where A0 represents the matrix corresponding to the time. The

Euclidean version obtained in this way has a positive semi-definite action for the bosonic

part, and the partition function is proved to be finite in spite of the existence of flat

directions [5, 6]. The SO(10) symmetry of the model is expected to be spontaneously

broken down to SO(4) in order to realize the dynamical generation of four-dimensional

space-time [7]. The latest result obtained by the Gaussian expansion method suggests,

however, that it is broken down to SO(3), and the extent of space in the extended directions

is only five times larger than the shrunken directions [8].

The Lorentzian version of the type IIB matrix model, on the other hand, is not well-

defined as it is since the bosonic part of the action is not positive semi-definite. In ref. [9],

the model was studied by Monte Carlo simulation after regularizing the matrix integral by

introducing “infrared” cutoffs on tr (A0)
2 and

∑9
i=1 tr (Ai)

2 for the temporal and spatial
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directions, respectively. The matrix configurations obtained by the simulation were found

to have an approximate band-diagonal structure in the basis which diagonalizes the tem-

poral matrix as A0 = diag(α1, · · · , αN ) with the order α1 < · · · < αN . Therefore it makes

sense to identify the state at time αa by cutting out a block matrix from Ai (i = 1, · · · , 9)

around the diagonal element at the position of αa in A0. The real-time evolution extracted

in this way showed the following exciting behavior: the extent of space in three out of

nine directions starts to grow at some point in time indicating that the SO(9) rotational

symmetry of the spatial matrices is broken down to SO(3) at that point. The expanding

behavior is speculated to be exponential at early times [10] and to turn into a power law at

later times [11] based on results obtained by Monte Carlo simulation of simplified models.

Classical solutions, which may describe the expanding behavior at even later times, are

also discussed [12, 13]. These results are encouraging since they seem to suggest that the

Lorentzian version of the type IIB matrix model correctly describes the history of our Uni-

verse as it should for a nonperturbative formulation of superstring theory. See refs. [14–23]

for closely related work in this direction.

In this paper we investigate the effects of the infrared (IR) cutoffs, which are inevitably

introduced in the Lorentzian type IIB matrix model. For that purpose, we generalize the

form of the IR cutoffs as tr {(A0)
2}p and trQp with Q =

∑9
i=1(Ai)

2, where p is a real

positive parameter. The previous choice corresponds to the p = 1 case, and in the p→∞
limit, the cutoffs constrain only the largest eigenvalues of (A0)

2 and Q. We first perform

Monte Carlo simulation of a simplified model for 1.0 ≤ p ≤ 1.5, and find that the results

become universal for p > pcr, where pcr = 1.2 ∼ 1.3. The previous results with p = 1 agree

with this universal behavior qualitatively but not quantitatively. Some preliminary results

have been reported in our proceedings article [24].

The universality observed here suggests that the effects of the IR cutoffs disappear in

the infinite-volume limit for p > pcr. In order to clarify this possibility, we consider the

Schwinger-Dyson equations (SDE) and calculate each term by Monte Carlo simulation of

the simplified model for p = 0.5, 1.0 and 1.5. We find for p = 1.5 that the terms arising

from the IR cutoffs indeed decrease in magnitude compared with the other terms in the

SDE as the volume is increased. This is not the case for p = 0.5 and 1.0.

On the other hand, when p becomes as large as 2.0, we find that large-N scaling

behaviors do not show up, which implies that we cannot take a sensible large-N limit

unlike the cases with p ≤ 1.5. This has something to do with the fact that the number of

eigenvalues αi of A0 that correspond to the time region in which the spontaneous symmetry

breaking occurs does not increase with N for p = 2.0. Interestingly, for p = 2.0, we observe

a (5+1)d structure instead of a (3+1)d structure observed for p ≤ 1.5.

Thus we conclude that there is a certain range of p in which a universal large-N limit

can be taken. Within this range of p, the dynamical space-time dimensionality turns out

to be (3 + 1), at least in the simplified model.

The rest of this paper is organized as follows. In section 2 we introduce the Lorentzian

type IIB matrix model with a generalized form of the IR cutoffs including the arbitrary

parameter p. In section 3 we explain the simplification of the model we adopt, and present

the results of Monte Carlo simulation for p ≤ 1.5. In particular, we show that a universal
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behavior is obtained when p is larger than some critical value. In section 4 we investigate

the IR cutoff effects by calculating each term in the SDE by Monte Carlo simulation. In

section 5 we show that large-N scaling behaviors do not show up for p as large as 2.0.

Section 6 is devoted to a summary and discussions.

2 The Lorentzian type IIB matrix model with generalized IR cutoffs

The action of the type IIB matrix model is given by [1]

S = Sb + Sf , (2.1)

Sb = − 1

4g2
Tr ([Aµ, Aν ] [Aµ, Aν ]) , (2.2)

Sf = − 1

2g2
Tr
(

Ψα (CΓµ)αβ [Aµ,Ψβ ]
)
, (2.3)

where Aµ (µ = 0, . . . , 9) and Ψα (α = 1, . . . , 16) are bosonic and fermionic N×N matrices,

respectively, both of which are traceless and Hermitian. The indices µ and ν are con-

tracted using the Lorentzian metric ηµν = diag (−1, 1, . . . , 1), whereas the 16× 16 matrices

Γµ and C are gamma-matrices and the charge conjugation matrix, respectively, after the

Weyl projection in (9+1)-dimensions. The model has manifest (9+1)-dimensional Lorentz

symmetry, where Aµ and Ψα transform as a vector and a Majorana-Weyl spinor, respec-

tively. The “coupling constant” g is merely a scale parameter since it can be absorbed by

an appropriate rescaling of Aµ and Ψα. The Euclidean version can be obtained by making

a “Wick rotation” A0 = iA10, where A10 is supposed to be Hermitian.

The partition function for the Lorentzian version is proposed in ref. [9] as

Z =

∫
dAdΨ eiS (2.4)

with the action (2.1). The “i” in front of the action is motivated from the fact that the

string world-sheet metric should also have a Lorentzian signature. By integrating out the

fermionic matrices, we obtain the Pfaffian∫
dΨ eiSf = PfM (A) , (2.5)

which is real unlike in the Euclidean case [25]. Note also that the bosonic action (2.2) can

be written as

Sb =
1

4g2
Tr (FµνF

µν) =
1

4g2

{
−2Tr (F0i)

2 + Tr (Fij)
2
}
, (2.6)

where we have introduced the Hermitian matrices Fµν = i [Aµ, Aν ]. Since the two terms in

the last expression of eq. (2.6) have opposite signs, Sb is not positive semi-definite, which

makes the partition function (2.4) divergent. Let us recall that in the Euclidean case, Sb
is positive semi-definite, and the partition function is finite [5, 6].

– 3 –



J
H
E
P
0
3
(
2
0
1
7
)
1
4
3

In order to make the partition function (2.4) finite, we introduce IR cutoffs in both

the temporal and spatial directions as1

1

N
Tr {(A0)

2}p ≤ κp 1

N
Tr {(Ai)2}p , (2.7)

1

N
Tr {(Ai)2}p ≤ L2p , (2.8)

which generalizes the original one adopted in ref. [9] corresponding to the p = 1 case.

In what follows, we set L = 1 without loss of generality. After some manipulation and

rescaling of Aµ, we can rewrite the partition function (2.4) as [9] (See appendix A of

ref. [10] for a refined argument.)

Z =

∫
dAPfM (A) δ

(
1

N
Tr (FµνF

µν)

)
δ

(
1

N
Tr{(Ai)2}p − 1

)
θ

(
κp − 1

N
Tr{(A0)

2}p
)
,

(2.9)

where θ (x) is the Heaviside step function. This form allows us to perform Monte Carlo

simulation without the sign problem unlike in the Euclidean model.2

A peculiar feature of the Lorentzian version of the type IIB matrix model is that one

can extract the “real-time dynamics” by identifying the eigenvalues of the temporal matrix

A0 as representing the time [9]. For that purpose we use the SU(N) symmetry of the model

to diagonalize the temporal matrix A0 as

A0 = diag (α1, . . . , αN ) , whereα1 < · · · < αN . (2.10)

In this basis, the spatial matrices Ai generated by the Monte Carlo simulation of (2.9) turn

out to have an approximate band-diagonal structure. More precisely, there exists some

integer n such that the elements of spatial matrices (Ai)ab for |a− b| ≥ n are much smaller

than those for |a− b| < n. Based on this observation, we may naturally consider n × n
matrices (

Āi
)
IJ

(t) ≡ (Ai)ν+I,ν+J (2.11)

as representing the state of the 9d space at time t defined by

t =
1

n

n∑
I=1

αν+I , (2.12)

where I, J = 1, . . . , n and ν = 0, 1, . . . , N − n. For example, we can define the extent of

space at time t as

R2 (t) =

〈
1

n
tr
∑
i

(
Āi (t)

)2〉
, (2.13)

1One might be tempted to introduce a Lorentz invariant IR cutoff of the form 1
N

Tr (AµA
µ)p ≤ L2p. This

does not work, however, because AµA
µ = −(A0)2 + (Ai)

2 can be small in magnitude due to cancellations

between the two terms.
2Strictly speaking, the Pfaffian PfM in (2.9) can change its sign, but configurations with positive Pfaffian

dominate at large N .
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where the symbol tr represents a trace over the n× n block. We also define the “moment

of inertia tensor”

Tij (t) =
1

n
tr
(
Āi (t) Āj (t)

)
, (2.14)

which is a 9 × 9 real symmetric matrix. The eigenvalues of Tij (t), which we denote by

λi (t) with the order

λ1 (t) > λ2 (t) > · · · > λ9 (t) , (2.15)

represent the spatial extent in each of the nine directions at time t. The block size n used

in calculating quantities such as (2.13) and (2.14) by Monte Carlo simulation is determined

as described in section 5 of ref. [11].

In actual simulation, it is convenient to “gauge fix” the SU(N) symmetry by the

condition (2.10). The usual Fadeev-Popov procedure for the gauge fixing implies that the

integration
∫
dA0 in (2.9) should be replaced by

∫ ∏N
k=1 dαk ∆(α)2, where

∆(α) ≡
N∏
a>b

(αa − αb) (2.16)

is the van der Monde determinant. The delta functions and the step function in (2.9) are

replaced by the Gaussian-type potentials in the action given by

S(C) =
1

2
γ(C)N2

(
1

N
Tr(FµνF

µν)

)2

, (2.17)

S(L) =
1

2
γ(L)N2

(
1

N
Tr
[
{(Ai)2}p

]
− 1

)2

, (2.18)

S(κ) =


1

2
γ(κ)N2

(
1
NTr

[
{(A0)

2}p
]
− κp

)2
for

1

N
Tr
[
{(A0)

2}p
]
> κp ,

0 otherwise ,
(2.19)

where the coefficients γ(C), γ(L) and γ(κ) are taken to be large enough to make the generated

configurations satisfy the constraints with good accuracy. Thus, the partition function (2.9)

is replaced by3

Z =

∫ 9∏
i=1

dAi

N∏
k=1

dαk ∆(α)2 PfM (A) e−(S(C)+S(L)+S(κ)) . (2.20)

This model can be investigated by Monte Carlo simulation as described in appendix B of

ref. [10] for p = 1.

3As a yet another technical detail, we use a potential for stabilizing the peak of R2(t) defined by (2.13),

whose position would otherwise fluctuate slowly as the simulation proceeds. See appendix B of ref. [10] for

the details. This is done just for the sake of effective measurements, and it does not affect the properties

of the model. For instance, we have explicitly checked that a term that appears from this peak-stabilizing

potential is negligible compared with the other terms in the SDE investigated in section 4.
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Figure 1. (Left) The expectation values of the eigenvalues λi (t) of Tij (t) are plotted against

t for p = 1 with N = 256 and κ = 16, where we use the block size n = 10. The lines are

drawn to guide the eye. (Right) The extent of space R2 (t) normalized by R2 (tc) is plotted against

x = (t− tc) /R (tc) for the same set of parameters. The solid line is a fit to the exponential behavior

f(x) = a+ (1− a) exp(bx) with a constraint f(0) = 1, where a = 0.983(3) and b = 3.56(11).

3 Universality in the results for various p

Let us investigate how the results of the model (2.20) depend on the parameter p introduced

in the cutoffs (2.7) and (2.8). Here, we adopt a simplification [10], which amounts to

replacing the Pfaffian in (2.20) as

PfM (A) =⇒ ∆16 (α) , (3.1)

where ∆ (α) is the van der Monde determinant defined in (2.16). This simplification occurs

when one omits the dependence of PfM (A) on the spatial matrices Ai, which makes sense

at early times, where the expansion of space has not proceeded much. The partition

function of the simplified model is given by

Z =

∫ 9∏
i=1

dAi

N∏
k=1

dαk ∆(α)18 e−(S(C)+S(L)+S(κ)) , (3.2)

and the computational cost is considerably reduced from that of the original model (2.20).

Let us first consider the case in which p = 1 is used for the IR cutoffs (2.7) and (2.8)

as is done in all the previous work. Figure 1 (Left) shows the expectation values of the

eigenvalues λi (t) of Tij (t) defined by (2.14) as a function of t for the simplified model with

N = 256 and κ = 16. We find that the SO(9) symmetry is spontaneously broken down to

SO(3) at a critical time tc = −0.68014(7). (Precise definition of tc is given in section 3 of

ref. [10].) Since the extent of space R2 (tc) = 0.04099(4) at the critical time tc is a physical

quantity which is dimensionful, we use it to fix the scale of the system. In figure 1 (Right),

we plot the extent of space R2 (t) normalized by R2 (tc) against x = (t− tc) /R (tc) for the

same N and κ. The result can be nicely fitted to an exponential function. (Note that the

data points at late times are affected by finite N effects as one can see from the large-N

scaling behaviors in figure 3 below.) Similar behaviors were observed previously in the

(5+1)d version of the simplified model with the matrix size N ≤ 64 [10].
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p N κ n tc R2 (tc) a b

1.0 256 16 10 −0.68014(7) 0.04099(04) 0.983(03) 3.56(11)

1.1 256 16 6 −0.39307(6) 0.03213(14) 0.961(18) 5.36(39)

1.2 256 16 6 −0.34441(6) 0.02904(16) 0.976(12) 6.82(53)

1.3 256 16 6 −0.29213(8) 0.03055(11) 0.940(12) 8.10(28)

1.4 256 16 6 −0.23933(8) 0.02940(19) 0.944(27) 8.07(63)

1.5 256 16 6 −0.23593(7) 0.02579(02) 0.950(11) 8.24(30)

Table 1. The block size n, the critical time tc and the extent of space R2 (tc) at the critical time,

which are used to make the plots in figure 2, are given for each p. We also present the values of a

and b obtained by fitting R2 (t) /R2 (tc) to f (x) = a+ (1− a) exp (bx) with x = (t− tc) /R (tc) for

each p.

Next we show our results for p 6= 1. In figure 2 we plot the extent of space R2 (t)

normalized by R2 (tc) against x = (t− tc) /R (tc) for various values of p within 1 ≤ p ≤
1.5. While the results exhibit certain p-dependence, qualitative behaviors such as the

exponential expansion remain the same as those for p = 1.0. We have also confirmed that

only three directions start to expand at some critical time for the values of p within this

region. What is most remarkable in these plots is that the data points for 1.3 ≤ p ≤ 1.5

lie on a single curve except for the region of t in which R2(t) approaches its maximum. This

universality suggests that the IR cutoffs are not affecting the results for these values of p

except near the spatial “boundary”, where the cutoff effects should, of course, be visible.

In the next section, we examine this interpretation directly by investigating the IR

cutoff effects through the SDE. In particular, we show that the IR cutoff effects actually

decrease in magnitude for large enough p as we take the infinite-volume limit. In the

remainder of this section, we discuss how we take this limit. First we define the “volume”

∆ and the “lattice spacing” ε in the temporal direction by

∆ ≡
tpeak − tc
R (tc)

, ε =
∆

ν
, (3.3)

where tpeak represents the time t at which R2(t) becomes maximum, and ν is the number of

data points within ∆. The infinite-volume limit corresponds to increasing ∆ with fixed ε,

while the continuum limit corresponds to decreasing ε with fixed ∆. By tuning the cutoff

parameter κ as one increases N , one can take these limits separately or simultaneously.

When we investigate the SDE in section 4, we need to take the infinite-volume limit

since the IR cutoff effects are expected to disappear in that limit. For that purpose, we tune

the cutoff parameter κ as we increase N for each p so that the lattice spacing is kept almost

constant in N . In table 2, we show the values of κ thus obtained together with the lattice

spacing ε and the volume ∆ measured using (3.3). In figure 3, we plot the extent of space

R2 (t) normalized by R2 (tc) against x = (t− tc) /R (tc) for the set of parameters given in

table 2. We find that the horizontal distance of the data points is almost independent of

N , while the extent in the temporal and spatial directions grows with N .

Note also that figure 3 exhibits a scaling region in which the data for different N lie

on top of each other. In making these plots, we have shifted the value of tc slightly so

– 7 –
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Figure 2. (Top) The extent of space R2 (t) normalized by R2 (tc) is plotted against x =

(t− tc) /R (tc) for 1.0 ≤ p ≤ 1.5 with N = 256 and κ = 16. The parameters used to make

these plots are given in table 1. The lines are fits to R2 (t) /R2 (tc) = a + (1− a) exp (bx). The

values of the fitting parameters a and b obtained by the fits are also presented in table 1. (Bottom)

Zoom up of the plot at the top.
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Figure 3. The extent of space R2 (t) normalized by R2 (tc) is plotted against x = (t− tc) /R (tc)

for p = 0.5 (Top-Left), p = 1.0 (Top-Right) and p = 1.5 (Bottom). The parameters N and κ are

chosen as in table 2 for each p so that the lattice spacing ε is kept almost constant in N , while the

volume ∆ in the temporal direction increases with N .

p N κ n tc R2 (tc) ε ∆

0.5 64 4 8 −1.27274(45) 0.15612(90) 0.28 4.19

0.5 96 8 8 −1.54629(53) 0.09735(66) 0.27 4.96

1.0 64 6 6 −0.71603(18) 0.09398(16) 0.38 2.28

1.0 96 10 8 −0.83132(75) 0.07762(39) 0.35 2.48

1.5 64 4 4 −0.38586(16) 0.07797(18) 0.312 1.12

1.5 96 6 5 −0.35286(14) 0.06658(26) 0.294 1.18

1.5 128 8 6 −0.33829(19) 0.05349(14) 0.298 1.49

Table 2. The set of parameters N and κ chosen for each p in such a way that the lattice spacing ε

is kept almost constant in N , while the volume ∆ in the temporal direction increases with N . The

block size n, the critical time tc and the extent of space R2 (tc) at the critical time are also given.

that the observed scaling behavior is optimized, which is legitimate taking into account

the ambiguity in the definition of tc at finite N . Similar shifts are used also in figure 5,

figure 6 (Top-Left), figure 6 (Top-Right) and figure 9, where we discuss large-N asymptotic

behaviors.
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4 Probing the IR cutoff effects by the SDE

As we mentioned above, the universal behavior observed in figure 2 suggests that the effects

of the IR cutoffs (2.7) and (2.8) vanish in the infinite-volume limit for sufficiently large p.

In order to clarify this possibility, we investigate the effects directly by using the SDE.

Here we rewrite the partition function (3.2) as

Z =

∫
dAdα e−S , (4.1)

S = S(C) + S(L) + S(κ) + S(α) , (4.2)

where S(C), S(L) and S(κ) are defined by (2.17), (2.18) and (2.19), respectively, and S(α)

is defined by

S(α) = −18
∑
a>b

ln (αa − αb) . (4.3)

Let us then consider the SDE

1

Z

∫
dAdα

∂

∂αb

(
αae

−S) = 0 , (4.4)

1

Z

∫
dAdα

∂

∂(Aj)cd

(
(Ai)abe

−S) = 0 . (4.5)

Contracting some indices, we obtain the identities〈
αa

∂S

∂αb

〉
= δab −

1

N
, (4.6)

1

9N

9∑
i=1

N∑
c=1

〈
(Ai)ac

∂S

∂ (Ai)bc

〉
=

(
1− 1

N2

)
δab , (4.7)

which should be satisfied for each a and b. Below we focus on the identities corresponding

to the a = b case. Corresponding to the decomposition (4.2) of the action, we obtain

G(C)
a +G(κ)

a +G(α)
a = 1− 1

N
, (4.8)

H(C)
a +H(L)

a = 1− 1

N2
, (4.9)

where a = 1, · · · , N and we have defined

G(C)
a ≡

〈
αa
∂S(C)

∂αa

〉
, G(κ)

a ≡

〈
αa
∂S(κ)

∂αa

〉
, G(α)

a ≡

〈
αa
∂S(α)

∂αa

〉
, (4.10)

H(C)
a ≡ 1

9N

9∑
i=1

N∑
c=1

〈
(Ai)ac

∂S(C)

∂ (Ai)ac

〉
, H(L)

a ≡ 1

9N

9∑
i=1

N∑
c=1

〈
(Ai)ac

∂S(L)

∂ (Ai)ac

〉
. (4.11)

In figure 4, we plot G
(C)
a , G

(κ)
a , G

(α)
a and their sum against (αa − tc) /R (tc) for N = 32

and κ = 6 with p = 0.5, 1.0 and 1.5. We find that the sum of the three terms is constant

and agrees with 1 − 1
N , which implies that the temporal SDE (4.8) is satisfied for all αa.
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Figure 4. The terms G
(C)
a , G

(κ)
a and G

(α)
a in the temporal SDE (4.8) are plotted against x =

(αa − tc) /R (tc) for p = 0.5 (Top), p = 1.0 (Middle) and p = 1.5 (Bottom) with N = 32 and κ = 6.

The plots on the right are zoom up of the plots on the left in the t ≥ 0 region. We also plot the

sum of the three terms, which agrees well with 1 − 1/N represented by the dotted lines. The solid

lines represent fits of G
(α)
a to the (αa)2p behavior.

We also find that G
(κ)
a can be nicely fitted to the (αa)

2p behavior. This is understandable

since G
(κ)
a can be written explicitly as

G(κ)
a = c

(
(αa)

2p − αa
N

N∑
b=1

αb (αb)
2(p−1)

)
, (4.12)

where the coefficient is given as

c = 2pγ(κ)N

[
1

N

N∑
b=1

(
α2
b

)p − κp] , (4.13)

and the first term in (4.12) actually dominates.
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Figure 5. The IR cutoff termG
(κ)
a in the temporal SDE (4.8) is plotted against x = (αa − tc) /R (tc)

for p = 0.5 (Top-Left), p = 1.0 (Top-Right) and p = 1.5 (Bottom) with κ and N given in table 2.

The lines are drawn to guide the eye.

From this figure, we find that the effects of the IR cutoffs in the temporal direction rep-

resented by G
(κ)
a become large towards the boundary in the temporal direction represented

by the left-most point in the plots on the left. However, the IR cutoff effects are suppressed

as one goes away from the boundary, in particular for large p as expected from (4.12).

Let us then consider the infinite-volume limit discussed at the end of section 3 and

see how the IR cutoff effects behave in that limit. In figure 5, we plot G
(κ)
a against x =

(αa − tc) /R (tc) for p = 0.5, p = 1.0 and p = 1.5. The parameters N and κ are chosen as

in table 2 so that the lattice spacing in the temporal direction is kept almost constant in

N , while the volume ∆ increases with N . We find that G
(κ)
a increases with the volume ∆

for p = 0.5, whereas it decreases with the volume ∆ for p = 1.5. For p = 1.0, the results of

G
(κ)
a for different ∆ lie almost on top of each other.

Our results for the SDE in the spatial direction are presented in appendix A, where

we find that the term H
(L)
a in (4.9), which comes from the spatial cutoff, decreases in

magnitude for p = 1.5 as the infinite-volume limit is taken. This is not the case for p = 0.5

and p = 1.0.

5 Absence of large-N scaling behavior for p = 2.0

In this section we discuss the results obtained for larger p. Here we focus on p = 2.0,

in which case the IR cutoffs in (2.7) and (2.8) involve a term with the same canonical
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Figure 6. The extent of space R2 (t) normalized by R2 (tc) is plotted against x = (t− tc) /R (tc)

for κ = 6 with p = 1.0 (Top-Left), p = 1.5 (Top-Right) and p = 2.0 (Bottom).

dimension as the bosonic action (2.2). In figure 6 we plot the extent of space R2 (t)

normalized by R2 (tc) for κ = 6 with p = 1.0 (Top-Left), p = 1.5 (Top-Right) and p = 2.0

(Bottom). While we observe large-N scaling behaviors for p = 1.0 and p = 1.5 as we have

already seen in figure 3, this turns out to be not the case for p = 2.0. Hence, we cannot

take a sensible large-N limit for p = 2.0. In fact, the number of data points in the region

where the spontaneous breaking of SO(9) symmetry occurs increases with N for p = 1.0

and p = 1.5, but not for p = 2.0, where we have seven data points in the symmetry broken

region for all N . We consider that this is the reason why large-N scaling behaviors do not

show up for p = 2.0.

Another interesting observation here concerns the dimensionality of the space. In

figure 7 we plot the expectation values of the eigenvalues λi (t) of Tij (t) obtained for

p = 2.0, N = 64 and κ = 6. We observe five large values near t = 0, which indicates the

emergence of a 5d structure. However, we emphasize that this by no means implies that

(5+1)d space-time can also appear from the model since one cannot take a sensible large-N

limit for p = 2.0.

6 Summary

In this paper, we have addressed an important issue in the Lorentzian type IIB matrix

model concerning the IR cutoffs, which are inevitably introduced to make the model well-
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Figure 7. The expectation values of the eigenvalues λi (t) of Tij (t) are plotted against t for p = 2.0,

N = 64 and κ = 6, where we use the block size n = 4. The lines are drawn to guide the eye.

defined. In particular, we have generalized the form of the IR cutoffs as (2.7) and (2.8) with

a parameter p, and performed Monte Carlo simulation of the simplified model for various

values of p. From the results obtained for p ≤ 1.5, we observe a universal behavior for

p = 1.3, 1.4, 1.5 except near the “boundary”. This suggests the possibility that the effects

of the IR cutoffs vanish in the infinite-volume limit for p > pcr, where pcr = 1.2 ∼ 1.3. In

order to clarify this possibility, we have investigated the effects of the IR cutoffs directly

by the SDE. The results show clear tendency that the IR cutoff effects decrease as we take

the infinite-volume limit for sufficiently large p.

On the other hand, for p as large as 2.0, we observe that the number of data points

in the region with the spontaneous breaking of SO(9) symmetry does not increase with

N , and that large-N scaling behaviors do not show up. Combining this with the results

obtained for p ≤ 1.5, we conclude that there exists a finite range of p, in which a sensible

large-N limit can be taken and the results become independent of p. While this range of

p does not include the value p = 1.0 used in the previous work, the qualitative properties

of the model such as the dimensionality of the emergent space-time and the exponential

expansion remain the same. It is also interesting that a (5+1)d structure is observed for

p = 2.0, where a sensible large-N limit cannot be taken.

We consider that a similar conclusion holds also in the original Lorentzian type IIB

matrix model since the simplified model captures the early time behaviors qualitatively. It

is therefore important to study the original model with various p and to identify the region

of p, in which a universal large-N limit can be taken. We hope to address this issue in

future publications.
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A Results for the spatial SDE

In this section, we present our results for the spatial SDE (4.9). In figure 8, we plot H
(C)
a ,

H
(L)
a and their sum against x = (αa − tc) /R (tc) obtained for N = 32 and κ = 6 with

p = 0.5, 1.0 and 1.5. We find that the spatial SDE (4.9) is actually satisfied for all αa. The

effects of the IR cutoffs in the spatial direction represented by H
(L)
a become large towards

the “boundary” represented by the right-most point in these plots, where the extent of

space R (t) becomes maximum.

In figure 9, we plot H
(L)
a against x = (αa − tc) /R (tc) for p = 0.5, p = 1.0 and p = 1.5

with the parameters N and κ chosen as in table 2. Let us focus on the region in which
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Figure 9. The IR cutoff term H
(L)
a in the spatial SDE (4.9) is plotted against x = (αa − tc) /R (tc)

for p = 0.5 (Top-Left), p = 1.0 (Top-Right) and p = 1.5 (Bottom) with κ and N given in table 2.

The lines are drawn to guide the eye.

we observe scaling behaviors in figure 3; namely x . 4 for p = 0.5, x . 1 for p = 1.0 and

x . 0.6 for p = 1.5. In these scaling regions, we find for p = 0.5 and p = 1.0 that H
(L)
a

is more or less independent of the volume ∆, whereas for p = 1.5, we see a clear trend

showing that it decreases with the volume ∆.
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